driver_chipcommon_pmu.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609
  1. /*
  2. * Sonics Silicon Backplane
  3. * Broadcom ChipCommon Power Management Unit driver
  4. *
  5. * Copyright 2009, Michael Buesch <m@bues.ch>
  6. * Copyright 2007, Broadcom Corporation
  7. *
  8. * Licensed under the GNU/GPL. See COPYING for details.
  9. */
  10. #include <linux/ssb/ssb.h>
  11. #include <linux/ssb/ssb_regs.h>
  12. #include <linux/ssb/ssb_driver_chipcommon.h>
  13. #include <linux/delay.h>
  14. #include <linux/export.h>
  15. #include "ssb_private.h"
  16. static u32 ssb_chipco_pll_read(struct ssb_chipcommon *cc, u32 offset)
  17. {
  18. chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, offset);
  19. return chipco_read32(cc, SSB_CHIPCO_PLLCTL_DATA);
  20. }
  21. static void ssb_chipco_pll_write(struct ssb_chipcommon *cc,
  22. u32 offset, u32 value)
  23. {
  24. chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, offset);
  25. chipco_write32(cc, SSB_CHIPCO_PLLCTL_DATA, value);
  26. }
  27. static void ssb_chipco_regctl_maskset(struct ssb_chipcommon *cc,
  28. u32 offset, u32 mask, u32 set)
  29. {
  30. u32 value;
  31. chipco_read32(cc, SSB_CHIPCO_REGCTL_ADDR);
  32. chipco_write32(cc, SSB_CHIPCO_REGCTL_ADDR, offset);
  33. chipco_read32(cc, SSB_CHIPCO_REGCTL_ADDR);
  34. value = chipco_read32(cc, SSB_CHIPCO_REGCTL_DATA);
  35. value &= mask;
  36. value |= set;
  37. chipco_write32(cc, SSB_CHIPCO_REGCTL_DATA, value);
  38. chipco_read32(cc, SSB_CHIPCO_REGCTL_DATA);
  39. }
  40. struct pmu0_plltab_entry {
  41. u16 freq; /* Crystal frequency in kHz.*/
  42. u8 xf; /* Crystal frequency value for PMU control */
  43. u8 wb_int;
  44. u32 wb_frac;
  45. };
  46. static const struct pmu0_plltab_entry pmu0_plltab[] = {
  47. { .freq = 12000, .xf = 1, .wb_int = 73, .wb_frac = 349525, },
  48. { .freq = 13000, .xf = 2, .wb_int = 67, .wb_frac = 725937, },
  49. { .freq = 14400, .xf = 3, .wb_int = 61, .wb_frac = 116508, },
  50. { .freq = 15360, .xf = 4, .wb_int = 57, .wb_frac = 305834, },
  51. { .freq = 16200, .xf = 5, .wb_int = 54, .wb_frac = 336579, },
  52. { .freq = 16800, .xf = 6, .wb_int = 52, .wb_frac = 399457, },
  53. { .freq = 19200, .xf = 7, .wb_int = 45, .wb_frac = 873813, },
  54. { .freq = 19800, .xf = 8, .wb_int = 44, .wb_frac = 466033, },
  55. { .freq = 20000, .xf = 9, .wb_int = 44, .wb_frac = 0, },
  56. { .freq = 25000, .xf = 10, .wb_int = 70, .wb_frac = 419430, },
  57. { .freq = 26000, .xf = 11, .wb_int = 67, .wb_frac = 725937, },
  58. { .freq = 30000, .xf = 12, .wb_int = 58, .wb_frac = 699050, },
  59. { .freq = 38400, .xf = 13, .wb_int = 45, .wb_frac = 873813, },
  60. { .freq = 40000, .xf = 14, .wb_int = 45, .wb_frac = 0, },
  61. };
  62. #define SSB_PMU0_DEFAULT_XTALFREQ 20000
  63. static const struct pmu0_plltab_entry * pmu0_plltab_find_entry(u32 crystalfreq)
  64. {
  65. const struct pmu0_plltab_entry *e;
  66. unsigned int i;
  67. for (i = 0; i < ARRAY_SIZE(pmu0_plltab); i++) {
  68. e = &pmu0_plltab[i];
  69. if (e->freq == crystalfreq)
  70. return e;
  71. }
  72. return NULL;
  73. }
  74. /* Tune the PLL to the crystal speed. crystalfreq is in kHz. */
  75. static void ssb_pmu0_pllinit_r0(struct ssb_chipcommon *cc,
  76. u32 crystalfreq)
  77. {
  78. struct ssb_bus *bus = cc->dev->bus;
  79. const struct pmu0_plltab_entry *e = NULL;
  80. u32 pmuctl, tmp, pllctl;
  81. unsigned int i;
  82. if ((bus->chip_id == 0x5354) && !crystalfreq) {
  83. /* The 5354 crystal freq is 25MHz */
  84. crystalfreq = 25000;
  85. }
  86. if (crystalfreq)
  87. e = pmu0_plltab_find_entry(crystalfreq);
  88. if (!e)
  89. e = pmu0_plltab_find_entry(SSB_PMU0_DEFAULT_XTALFREQ);
  90. BUG_ON(!e);
  91. crystalfreq = e->freq;
  92. cc->pmu.crystalfreq = e->freq;
  93. /* Check if the PLL already is programmed to this frequency. */
  94. pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
  95. if (((pmuctl & SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) == e->xf) {
  96. /* We're already there... */
  97. return;
  98. }
  99. ssb_printk(KERN_INFO PFX "Programming PLL to %u.%03u MHz\n",
  100. (crystalfreq / 1000), (crystalfreq % 1000));
  101. /* First turn the PLL off. */
  102. switch (bus->chip_id) {
  103. case 0x4328:
  104. chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
  105. ~(1 << SSB_PMURES_4328_BB_PLL_PU));
  106. chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
  107. ~(1 << SSB_PMURES_4328_BB_PLL_PU));
  108. break;
  109. case 0x5354:
  110. chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
  111. ~(1 << SSB_PMURES_5354_BB_PLL_PU));
  112. chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
  113. ~(1 << SSB_PMURES_5354_BB_PLL_PU));
  114. break;
  115. default:
  116. SSB_WARN_ON(1);
  117. }
  118. for (i = 1500; i; i--) {
  119. tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
  120. if (!(tmp & SSB_CHIPCO_CLKCTLST_HAVEHT))
  121. break;
  122. udelay(10);
  123. }
  124. tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
  125. if (tmp & SSB_CHIPCO_CLKCTLST_HAVEHT)
  126. ssb_printk(KERN_EMERG PFX "Failed to turn the PLL off!\n");
  127. /* Set PDIV in PLL control 0. */
  128. pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL0);
  129. if (crystalfreq >= SSB_PMU0_PLLCTL0_PDIV_FREQ)
  130. pllctl |= SSB_PMU0_PLLCTL0_PDIV_MSK;
  131. else
  132. pllctl &= ~SSB_PMU0_PLLCTL0_PDIV_MSK;
  133. ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL0, pllctl);
  134. /* Set WILD in PLL control 1. */
  135. pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL1);
  136. pllctl &= ~SSB_PMU0_PLLCTL1_STOPMOD;
  137. pllctl &= ~(SSB_PMU0_PLLCTL1_WILD_IMSK | SSB_PMU0_PLLCTL1_WILD_FMSK);
  138. pllctl |= ((u32)e->wb_int << SSB_PMU0_PLLCTL1_WILD_IMSK_SHIFT) & SSB_PMU0_PLLCTL1_WILD_IMSK;
  139. pllctl |= ((u32)e->wb_frac << SSB_PMU0_PLLCTL1_WILD_FMSK_SHIFT) & SSB_PMU0_PLLCTL1_WILD_FMSK;
  140. if (e->wb_frac == 0)
  141. pllctl |= SSB_PMU0_PLLCTL1_STOPMOD;
  142. ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL1, pllctl);
  143. /* Set WILD in PLL control 2. */
  144. pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL2);
  145. pllctl &= ~SSB_PMU0_PLLCTL2_WILD_IMSKHI;
  146. pllctl |= (((u32)e->wb_int >> 4) << SSB_PMU0_PLLCTL2_WILD_IMSKHI_SHIFT) & SSB_PMU0_PLLCTL2_WILD_IMSKHI;
  147. ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL2, pllctl);
  148. /* Set the crystalfrequency and the divisor. */
  149. pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
  150. pmuctl &= ~SSB_CHIPCO_PMU_CTL_ILP_DIV;
  151. pmuctl |= (((crystalfreq + 127) / 128 - 1) << SSB_CHIPCO_PMU_CTL_ILP_DIV_SHIFT)
  152. & SSB_CHIPCO_PMU_CTL_ILP_DIV;
  153. pmuctl &= ~SSB_CHIPCO_PMU_CTL_XTALFREQ;
  154. pmuctl |= ((u32)e->xf << SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) & SSB_CHIPCO_PMU_CTL_XTALFREQ;
  155. chipco_write32(cc, SSB_CHIPCO_PMU_CTL, pmuctl);
  156. }
  157. struct pmu1_plltab_entry {
  158. u16 freq; /* Crystal frequency in kHz.*/
  159. u8 xf; /* Crystal frequency value for PMU control */
  160. u8 ndiv_int;
  161. u32 ndiv_frac;
  162. u8 p1div;
  163. u8 p2div;
  164. };
  165. static const struct pmu1_plltab_entry pmu1_plltab[] = {
  166. { .freq = 12000, .xf = 1, .p1div = 3, .p2div = 22, .ndiv_int = 0x9, .ndiv_frac = 0xFFFFEF, },
  167. { .freq = 13000, .xf = 2, .p1div = 1, .p2div = 6, .ndiv_int = 0xb, .ndiv_frac = 0x483483, },
  168. { .freq = 14400, .xf = 3, .p1div = 1, .p2div = 10, .ndiv_int = 0xa, .ndiv_frac = 0x1C71C7, },
  169. { .freq = 15360, .xf = 4, .p1div = 1, .p2div = 5, .ndiv_int = 0xb, .ndiv_frac = 0x755555, },
  170. { .freq = 16200, .xf = 5, .p1div = 1, .p2div = 10, .ndiv_int = 0x5, .ndiv_frac = 0x6E9E06, },
  171. { .freq = 16800, .xf = 6, .p1div = 1, .p2div = 10, .ndiv_int = 0x5, .ndiv_frac = 0x3CF3CF, },
  172. { .freq = 19200, .xf = 7, .p1div = 1, .p2div = 9, .ndiv_int = 0x5, .ndiv_frac = 0x17B425, },
  173. { .freq = 19800, .xf = 8, .p1div = 1, .p2div = 11, .ndiv_int = 0x4, .ndiv_frac = 0xA57EB, },
  174. { .freq = 20000, .xf = 9, .p1div = 1, .p2div = 11, .ndiv_int = 0x4, .ndiv_frac = 0, },
  175. { .freq = 24000, .xf = 10, .p1div = 3, .p2div = 11, .ndiv_int = 0xa, .ndiv_frac = 0, },
  176. { .freq = 25000, .xf = 11, .p1div = 5, .p2div = 16, .ndiv_int = 0xb, .ndiv_frac = 0, },
  177. { .freq = 26000, .xf = 12, .p1div = 1, .p2div = 2, .ndiv_int = 0x10, .ndiv_frac = 0xEC4EC4, },
  178. { .freq = 30000, .xf = 13, .p1div = 3, .p2div = 8, .ndiv_int = 0xb, .ndiv_frac = 0, },
  179. { .freq = 38400, .xf = 14, .p1div = 1, .p2div = 5, .ndiv_int = 0x4, .ndiv_frac = 0x955555, },
  180. { .freq = 40000, .xf = 15, .p1div = 1, .p2div = 2, .ndiv_int = 0xb, .ndiv_frac = 0, },
  181. };
  182. #define SSB_PMU1_DEFAULT_XTALFREQ 15360
  183. static const struct pmu1_plltab_entry * pmu1_plltab_find_entry(u32 crystalfreq)
  184. {
  185. const struct pmu1_plltab_entry *e;
  186. unsigned int i;
  187. for (i = 0; i < ARRAY_SIZE(pmu1_plltab); i++) {
  188. e = &pmu1_plltab[i];
  189. if (e->freq == crystalfreq)
  190. return e;
  191. }
  192. return NULL;
  193. }
  194. /* Tune the PLL to the crystal speed. crystalfreq is in kHz. */
  195. static void ssb_pmu1_pllinit_r0(struct ssb_chipcommon *cc,
  196. u32 crystalfreq)
  197. {
  198. struct ssb_bus *bus = cc->dev->bus;
  199. const struct pmu1_plltab_entry *e = NULL;
  200. u32 buffer_strength = 0;
  201. u32 tmp, pllctl, pmuctl;
  202. unsigned int i;
  203. if (bus->chip_id == 0x4312) {
  204. /* We do not touch the BCM4312 PLL and assume
  205. * the default crystal settings work out-of-the-box. */
  206. cc->pmu.crystalfreq = 20000;
  207. return;
  208. }
  209. if (crystalfreq)
  210. e = pmu1_plltab_find_entry(crystalfreq);
  211. if (!e)
  212. e = pmu1_plltab_find_entry(SSB_PMU1_DEFAULT_XTALFREQ);
  213. BUG_ON(!e);
  214. crystalfreq = e->freq;
  215. cc->pmu.crystalfreq = e->freq;
  216. /* Check if the PLL already is programmed to this frequency. */
  217. pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
  218. if (((pmuctl & SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) == e->xf) {
  219. /* We're already there... */
  220. return;
  221. }
  222. ssb_printk(KERN_INFO PFX "Programming PLL to %u.%03u MHz\n",
  223. (crystalfreq / 1000), (crystalfreq % 1000));
  224. /* First turn the PLL off. */
  225. switch (bus->chip_id) {
  226. case 0x4325:
  227. chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
  228. ~((1 << SSB_PMURES_4325_BBPLL_PWRSW_PU) |
  229. (1 << SSB_PMURES_4325_HT_AVAIL)));
  230. chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
  231. ~((1 << SSB_PMURES_4325_BBPLL_PWRSW_PU) |
  232. (1 << SSB_PMURES_4325_HT_AVAIL)));
  233. /* Adjust the BBPLL to 2 on all channels later. */
  234. buffer_strength = 0x222222;
  235. break;
  236. default:
  237. SSB_WARN_ON(1);
  238. }
  239. for (i = 1500; i; i--) {
  240. tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
  241. if (!(tmp & SSB_CHIPCO_CLKCTLST_HAVEHT))
  242. break;
  243. udelay(10);
  244. }
  245. tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
  246. if (tmp & SSB_CHIPCO_CLKCTLST_HAVEHT)
  247. ssb_printk(KERN_EMERG PFX "Failed to turn the PLL off!\n");
  248. /* Set p1div and p2div. */
  249. pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL0);
  250. pllctl &= ~(SSB_PMU1_PLLCTL0_P1DIV | SSB_PMU1_PLLCTL0_P2DIV);
  251. pllctl |= ((u32)e->p1div << SSB_PMU1_PLLCTL0_P1DIV_SHIFT) & SSB_PMU1_PLLCTL0_P1DIV;
  252. pllctl |= ((u32)e->p2div << SSB_PMU1_PLLCTL0_P2DIV_SHIFT) & SSB_PMU1_PLLCTL0_P2DIV;
  253. ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL0, pllctl);
  254. /* Set ndiv int and ndiv mode */
  255. pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL2);
  256. pllctl &= ~(SSB_PMU1_PLLCTL2_NDIVINT | SSB_PMU1_PLLCTL2_NDIVMODE);
  257. pllctl |= ((u32)e->ndiv_int << SSB_PMU1_PLLCTL2_NDIVINT_SHIFT) & SSB_PMU1_PLLCTL2_NDIVINT;
  258. pllctl |= (1 << SSB_PMU1_PLLCTL2_NDIVMODE_SHIFT) & SSB_PMU1_PLLCTL2_NDIVMODE;
  259. ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, pllctl);
  260. /* Set ndiv frac */
  261. pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL3);
  262. pllctl &= ~SSB_PMU1_PLLCTL3_NDIVFRAC;
  263. pllctl |= ((u32)e->ndiv_frac << SSB_PMU1_PLLCTL3_NDIVFRAC_SHIFT) & SSB_PMU1_PLLCTL3_NDIVFRAC;
  264. ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL3, pllctl);
  265. /* Change the drive strength, if required. */
  266. if (buffer_strength) {
  267. pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL5);
  268. pllctl &= ~SSB_PMU1_PLLCTL5_CLKDRV;
  269. pllctl |= (buffer_strength << SSB_PMU1_PLLCTL5_CLKDRV_SHIFT) & SSB_PMU1_PLLCTL5_CLKDRV;
  270. ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL5, pllctl);
  271. }
  272. /* Tune the crystalfreq and the divisor. */
  273. pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
  274. pmuctl &= ~(SSB_CHIPCO_PMU_CTL_ILP_DIV | SSB_CHIPCO_PMU_CTL_XTALFREQ);
  275. pmuctl |= ((((u32)e->freq + 127) / 128 - 1) << SSB_CHIPCO_PMU_CTL_ILP_DIV_SHIFT)
  276. & SSB_CHIPCO_PMU_CTL_ILP_DIV;
  277. pmuctl |= ((u32)e->xf << SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) & SSB_CHIPCO_PMU_CTL_XTALFREQ;
  278. chipco_write32(cc, SSB_CHIPCO_PMU_CTL, pmuctl);
  279. }
  280. static void ssb_pmu_pll_init(struct ssb_chipcommon *cc)
  281. {
  282. struct ssb_bus *bus = cc->dev->bus;
  283. u32 crystalfreq = 0; /* in kHz. 0 = keep default freq. */
  284. if (bus->bustype == SSB_BUSTYPE_SSB) {
  285. /* TODO: The user may override the crystal frequency. */
  286. }
  287. switch (bus->chip_id) {
  288. case 0x4312:
  289. case 0x4325:
  290. ssb_pmu1_pllinit_r0(cc, crystalfreq);
  291. break;
  292. case 0x4328:
  293. case 0x5354:
  294. ssb_pmu0_pllinit_r0(cc, crystalfreq);
  295. break;
  296. case 0x4322:
  297. if (cc->pmu.rev == 2) {
  298. chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, 0x0000000A);
  299. chipco_write32(cc, SSB_CHIPCO_PLLCTL_DATA, 0x380005C0);
  300. }
  301. break;
  302. default:
  303. ssb_printk(KERN_ERR PFX
  304. "ERROR: PLL init unknown for device %04X\n",
  305. bus->chip_id);
  306. }
  307. }
  308. struct pmu_res_updown_tab_entry {
  309. u8 resource; /* The resource number */
  310. u16 updown; /* The updown value */
  311. };
  312. enum pmu_res_depend_tab_task {
  313. PMU_RES_DEP_SET = 1,
  314. PMU_RES_DEP_ADD,
  315. PMU_RES_DEP_REMOVE,
  316. };
  317. struct pmu_res_depend_tab_entry {
  318. u8 resource; /* The resource number */
  319. u8 task; /* SET | ADD | REMOVE */
  320. u32 depend; /* The depend mask */
  321. };
  322. static const struct pmu_res_updown_tab_entry pmu_res_updown_tab_4328a0[] = {
  323. { .resource = SSB_PMURES_4328_EXT_SWITCHER_PWM, .updown = 0x0101, },
  324. { .resource = SSB_PMURES_4328_BB_SWITCHER_PWM, .updown = 0x1F01, },
  325. { .resource = SSB_PMURES_4328_BB_SWITCHER_BURST, .updown = 0x010F, },
  326. { .resource = SSB_PMURES_4328_BB_EXT_SWITCHER_BURST, .updown = 0x0101, },
  327. { .resource = SSB_PMURES_4328_ILP_REQUEST, .updown = 0x0202, },
  328. { .resource = SSB_PMURES_4328_RADIO_SWITCHER_PWM, .updown = 0x0F01, },
  329. { .resource = SSB_PMURES_4328_RADIO_SWITCHER_BURST, .updown = 0x0F01, },
  330. { .resource = SSB_PMURES_4328_ROM_SWITCH, .updown = 0x0101, },
  331. { .resource = SSB_PMURES_4328_PA_REF_LDO, .updown = 0x0F01, },
  332. { .resource = SSB_PMURES_4328_RADIO_LDO, .updown = 0x0F01, },
  333. { .resource = SSB_PMURES_4328_AFE_LDO, .updown = 0x0F01, },
  334. { .resource = SSB_PMURES_4328_PLL_LDO, .updown = 0x0F01, },
  335. { .resource = SSB_PMURES_4328_BG_FILTBYP, .updown = 0x0101, },
  336. { .resource = SSB_PMURES_4328_TX_FILTBYP, .updown = 0x0101, },
  337. { .resource = SSB_PMURES_4328_RX_FILTBYP, .updown = 0x0101, },
  338. { .resource = SSB_PMURES_4328_XTAL_PU, .updown = 0x0101, },
  339. { .resource = SSB_PMURES_4328_XTAL_EN, .updown = 0xA001, },
  340. { .resource = SSB_PMURES_4328_BB_PLL_FILTBYP, .updown = 0x0101, },
  341. { .resource = SSB_PMURES_4328_RF_PLL_FILTBYP, .updown = 0x0101, },
  342. { .resource = SSB_PMURES_4328_BB_PLL_PU, .updown = 0x0701, },
  343. };
  344. static const struct pmu_res_depend_tab_entry pmu_res_depend_tab_4328a0[] = {
  345. {
  346. /* Adjust ILP Request to avoid forcing EXT/BB into burst mode. */
  347. .resource = SSB_PMURES_4328_ILP_REQUEST,
  348. .task = PMU_RES_DEP_SET,
  349. .depend = ((1 << SSB_PMURES_4328_EXT_SWITCHER_PWM) |
  350. (1 << SSB_PMURES_4328_BB_SWITCHER_PWM)),
  351. },
  352. };
  353. static const struct pmu_res_updown_tab_entry pmu_res_updown_tab_4325a0[] = {
  354. { .resource = SSB_PMURES_4325_XTAL_PU, .updown = 0x1501, },
  355. };
  356. static const struct pmu_res_depend_tab_entry pmu_res_depend_tab_4325a0[] = {
  357. {
  358. /* Adjust HT-Available dependencies. */
  359. .resource = SSB_PMURES_4325_HT_AVAIL,
  360. .task = PMU_RES_DEP_ADD,
  361. .depend = ((1 << SSB_PMURES_4325_RX_PWRSW_PU) |
  362. (1 << SSB_PMURES_4325_TX_PWRSW_PU) |
  363. (1 << SSB_PMURES_4325_LOGEN_PWRSW_PU) |
  364. (1 << SSB_PMURES_4325_AFE_PWRSW_PU)),
  365. },
  366. };
  367. static void ssb_pmu_resources_init(struct ssb_chipcommon *cc)
  368. {
  369. struct ssb_bus *bus = cc->dev->bus;
  370. u32 min_msk = 0, max_msk = 0;
  371. unsigned int i;
  372. const struct pmu_res_updown_tab_entry *updown_tab = NULL;
  373. unsigned int updown_tab_size = 0;
  374. const struct pmu_res_depend_tab_entry *depend_tab = NULL;
  375. unsigned int depend_tab_size = 0;
  376. switch (bus->chip_id) {
  377. case 0x4312:
  378. min_msk = 0xCBB;
  379. break;
  380. case 0x4322:
  381. /* We keep the default settings:
  382. * min_msk = 0xCBB
  383. * max_msk = 0x7FFFF
  384. */
  385. break;
  386. case 0x4325:
  387. /* Power OTP down later. */
  388. min_msk = (1 << SSB_PMURES_4325_CBUCK_BURST) |
  389. (1 << SSB_PMURES_4325_LNLDO2_PU);
  390. if (chipco_read32(cc, SSB_CHIPCO_CHIPSTAT) &
  391. SSB_CHIPCO_CHST_4325_PMUTOP_2B)
  392. min_msk |= (1 << SSB_PMURES_4325_CLDO_CBUCK_BURST);
  393. /* The PLL may turn on, if it decides so. */
  394. max_msk = 0xFFFFF;
  395. updown_tab = pmu_res_updown_tab_4325a0;
  396. updown_tab_size = ARRAY_SIZE(pmu_res_updown_tab_4325a0);
  397. depend_tab = pmu_res_depend_tab_4325a0;
  398. depend_tab_size = ARRAY_SIZE(pmu_res_depend_tab_4325a0);
  399. break;
  400. case 0x4328:
  401. min_msk = (1 << SSB_PMURES_4328_EXT_SWITCHER_PWM) |
  402. (1 << SSB_PMURES_4328_BB_SWITCHER_PWM) |
  403. (1 << SSB_PMURES_4328_XTAL_EN);
  404. /* The PLL may turn on, if it decides so. */
  405. max_msk = 0xFFFFF;
  406. updown_tab = pmu_res_updown_tab_4328a0;
  407. updown_tab_size = ARRAY_SIZE(pmu_res_updown_tab_4328a0);
  408. depend_tab = pmu_res_depend_tab_4328a0;
  409. depend_tab_size = ARRAY_SIZE(pmu_res_depend_tab_4328a0);
  410. break;
  411. case 0x5354:
  412. /* The PLL may turn on, if it decides so. */
  413. max_msk = 0xFFFFF;
  414. break;
  415. default:
  416. ssb_printk(KERN_ERR PFX
  417. "ERROR: PMU resource config unknown for device %04X\n",
  418. bus->chip_id);
  419. }
  420. if (updown_tab) {
  421. for (i = 0; i < updown_tab_size; i++) {
  422. chipco_write32(cc, SSB_CHIPCO_PMU_RES_TABSEL,
  423. updown_tab[i].resource);
  424. chipco_write32(cc, SSB_CHIPCO_PMU_RES_UPDNTM,
  425. updown_tab[i].updown);
  426. }
  427. }
  428. if (depend_tab) {
  429. for (i = 0; i < depend_tab_size; i++) {
  430. chipco_write32(cc, SSB_CHIPCO_PMU_RES_TABSEL,
  431. depend_tab[i].resource);
  432. switch (depend_tab[i].task) {
  433. case PMU_RES_DEP_SET:
  434. chipco_write32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
  435. depend_tab[i].depend);
  436. break;
  437. case PMU_RES_DEP_ADD:
  438. chipco_set32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
  439. depend_tab[i].depend);
  440. break;
  441. case PMU_RES_DEP_REMOVE:
  442. chipco_mask32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
  443. ~(depend_tab[i].depend));
  444. break;
  445. default:
  446. SSB_WARN_ON(1);
  447. }
  448. }
  449. }
  450. /* Set the resource masks. */
  451. if (min_msk)
  452. chipco_write32(cc, SSB_CHIPCO_PMU_MINRES_MSK, min_msk);
  453. if (max_msk)
  454. chipco_write32(cc, SSB_CHIPCO_PMU_MAXRES_MSK, max_msk);
  455. }
  456. /* http://bcm-v4.sipsolutions.net/802.11/SSB/PmuInit */
  457. void ssb_pmu_init(struct ssb_chipcommon *cc)
  458. {
  459. u32 pmucap;
  460. if (!(cc->capabilities & SSB_CHIPCO_CAP_PMU))
  461. return;
  462. pmucap = chipco_read32(cc, SSB_CHIPCO_PMU_CAP);
  463. cc->pmu.rev = (pmucap & SSB_CHIPCO_PMU_CAP_REVISION);
  464. ssb_dprintk(KERN_DEBUG PFX "Found rev %u PMU (capabilities 0x%08X)\n",
  465. cc->pmu.rev, pmucap);
  466. if (cc->pmu.rev == 1)
  467. chipco_mask32(cc, SSB_CHIPCO_PMU_CTL,
  468. ~SSB_CHIPCO_PMU_CTL_NOILPONW);
  469. else
  470. chipco_set32(cc, SSB_CHIPCO_PMU_CTL,
  471. SSB_CHIPCO_PMU_CTL_NOILPONW);
  472. ssb_pmu_pll_init(cc);
  473. ssb_pmu_resources_init(cc);
  474. }
  475. void ssb_pmu_set_ldo_voltage(struct ssb_chipcommon *cc,
  476. enum ssb_pmu_ldo_volt_id id, u32 voltage)
  477. {
  478. struct ssb_bus *bus = cc->dev->bus;
  479. u32 addr, shift, mask;
  480. switch (bus->chip_id) {
  481. case 0x4328:
  482. case 0x5354:
  483. switch (id) {
  484. case LDO_VOLT1:
  485. addr = 2;
  486. shift = 25;
  487. mask = 0xF;
  488. break;
  489. case LDO_VOLT2:
  490. addr = 3;
  491. shift = 1;
  492. mask = 0xF;
  493. break;
  494. case LDO_VOLT3:
  495. addr = 3;
  496. shift = 9;
  497. mask = 0xF;
  498. break;
  499. case LDO_PAREF:
  500. addr = 3;
  501. shift = 17;
  502. mask = 0x3F;
  503. break;
  504. default:
  505. SSB_WARN_ON(1);
  506. return;
  507. }
  508. break;
  509. case 0x4312:
  510. if (SSB_WARN_ON(id != LDO_PAREF))
  511. return;
  512. addr = 0;
  513. shift = 21;
  514. mask = 0x3F;
  515. break;
  516. default:
  517. return;
  518. }
  519. ssb_chipco_regctl_maskset(cc, addr, ~(mask << shift),
  520. (voltage & mask) << shift);
  521. }
  522. void ssb_pmu_set_ldo_paref(struct ssb_chipcommon *cc, bool on)
  523. {
  524. struct ssb_bus *bus = cc->dev->bus;
  525. int ldo;
  526. switch (bus->chip_id) {
  527. case 0x4312:
  528. ldo = SSB_PMURES_4312_PA_REF_LDO;
  529. break;
  530. case 0x4328:
  531. ldo = SSB_PMURES_4328_PA_REF_LDO;
  532. break;
  533. case 0x5354:
  534. ldo = SSB_PMURES_5354_PA_REF_LDO;
  535. break;
  536. default:
  537. return;
  538. }
  539. if (on)
  540. chipco_set32(cc, SSB_CHIPCO_PMU_MINRES_MSK, 1 << ldo);
  541. else
  542. chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK, ~(1 << ldo));
  543. chipco_read32(cc, SSB_CHIPCO_PMU_MINRES_MSK); //SPEC FIXME found via mmiotrace - dummy read?
  544. }
  545. EXPORT_SYMBOL(ssb_pmu_set_ldo_voltage);
  546. EXPORT_SYMBOL(ssb_pmu_set_ldo_paref);