spi-topcliff-pch.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756
  1. /*
  2. * SPI bus driver for the Topcliff PCH used by Intel SoCs
  3. *
  4. * Copyright (C) 2010 OKI SEMICONDUCTOR Co., LTD.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; version 2 of the License.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
  18. */
  19. #include <linux/delay.h>
  20. #include <linux/pci.h>
  21. #include <linux/wait.h>
  22. #include <linux/spi/spi.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/sched.h>
  25. #include <linux/spi/spidev.h>
  26. #include <linux/module.h>
  27. #include <linux/device.h>
  28. #include <linux/platform_device.h>
  29. #include <linux/dmaengine.h>
  30. #include <linux/pch_dma.h>
  31. /* Register offsets */
  32. #define PCH_SPCR 0x00 /* SPI control register */
  33. #define PCH_SPBRR 0x04 /* SPI baud rate register */
  34. #define PCH_SPSR 0x08 /* SPI status register */
  35. #define PCH_SPDWR 0x0C /* SPI write data register */
  36. #define PCH_SPDRR 0x10 /* SPI read data register */
  37. #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */
  38. #define PCH_SRST 0x1C /* SPI reset register */
  39. #define PCH_ADDRESS_SIZE 0x20
  40. #define PCH_SPSR_TFD 0x000007C0
  41. #define PCH_SPSR_RFD 0x0000F800
  42. #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11)
  43. #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6)
  44. #define PCH_RX_THOLD 7
  45. #define PCH_RX_THOLD_MAX 15
  46. #define PCH_TX_THOLD 2
  47. #define PCH_MAX_BAUDRATE 5000000
  48. #define PCH_MAX_FIFO_DEPTH 16
  49. #define STATUS_RUNNING 1
  50. #define STATUS_EXITING 2
  51. #define PCH_SLEEP_TIME 10
  52. #define SSN_LOW 0x02U
  53. #define SSN_HIGH 0x03U
  54. #define SSN_NO_CONTROL 0x00U
  55. #define PCH_MAX_CS 0xFF
  56. #define PCI_DEVICE_ID_GE_SPI 0x8816
  57. #define SPCR_SPE_BIT (1 << 0)
  58. #define SPCR_MSTR_BIT (1 << 1)
  59. #define SPCR_LSBF_BIT (1 << 4)
  60. #define SPCR_CPHA_BIT (1 << 5)
  61. #define SPCR_CPOL_BIT (1 << 6)
  62. #define SPCR_TFIE_BIT (1 << 8)
  63. #define SPCR_RFIE_BIT (1 << 9)
  64. #define SPCR_FIE_BIT (1 << 10)
  65. #define SPCR_ORIE_BIT (1 << 11)
  66. #define SPCR_MDFIE_BIT (1 << 12)
  67. #define SPCR_FICLR_BIT (1 << 24)
  68. #define SPSR_TFI_BIT (1 << 0)
  69. #define SPSR_RFI_BIT (1 << 1)
  70. #define SPSR_FI_BIT (1 << 2)
  71. #define SPSR_ORF_BIT (1 << 3)
  72. #define SPBRR_SIZE_BIT (1 << 10)
  73. #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
  74. SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
  75. #define SPCR_RFIC_FIELD 20
  76. #define SPCR_TFIC_FIELD 16
  77. #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1)
  78. #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD)
  79. #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD)
  80. #define PCH_CLOCK_HZ 50000000
  81. #define PCH_MAX_SPBR 1023
  82. /* Definition for ML7213 by OKI SEMICONDUCTOR */
  83. #define PCI_VENDOR_ID_ROHM 0x10DB
  84. #define PCI_DEVICE_ID_ML7213_SPI 0x802c
  85. #define PCI_DEVICE_ID_ML7223_SPI 0x800F
  86. /*
  87. * Set the number of SPI instance max
  88. * Intel EG20T PCH : 1ch
  89. * OKI SEMICONDUCTOR ML7213 IOH : 2ch
  90. * OKI SEMICONDUCTOR ML7223 IOH : 1ch
  91. */
  92. #define PCH_SPI_MAX_DEV 2
  93. #define PCH_BUF_SIZE 4096
  94. #define PCH_DMA_TRANS_SIZE 12
  95. static int use_dma = 1;
  96. struct pch_spi_dma_ctrl {
  97. struct dma_async_tx_descriptor *desc_tx;
  98. struct dma_async_tx_descriptor *desc_rx;
  99. struct pch_dma_slave param_tx;
  100. struct pch_dma_slave param_rx;
  101. struct dma_chan *chan_tx;
  102. struct dma_chan *chan_rx;
  103. struct scatterlist *sg_tx_p;
  104. struct scatterlist *sg_rx_p;
  105. struct scatterlist sg_tx;
  106. struct scatterlist sg_rx;
  107. int nent;
  108. void *tx_buf_virt;
  109. void *rx_buf_virt;
  110. dma_addr_t tx_buf_dma;
  111. dma_addr_t rx_buf_dma;
  112. };
  113. /**
  114. * struct pch_spi_data - Holds the SPI channel specific details
  115. * @io_remap_addr: The remapped PCI base address
  116. * @master: Pointer to the SPI master structure
  117. * @work: Reference to work queue handler
  118. * @wk: Workqueue for carrying out execution of the
  119. * requests
  120. * @wait: Wait queue for waking up upon receiving an
  121. * interrupt.
  122. * @transfer_complete: Status of SPI Transfer
  123. * @bcurrent_msg_processing: Status flag for message processing
  124. * @lock: Lock for protecting this structure
  125. * @queue: SPI Message queue
  126. * @status: Status of the SPI driver
  127. * @bpw_len: Length of data to be transferred in bits per
  128. * word
  129. * @transfer_active: Flag showing active transfer
  130. * @tx_index: Transmit data count; for bookkeeping during
  131. * transfer
  132. * @rx_index: Receive data count; for bookkeeping during
  133. * transfer
  134. * @tx_buff: Buffer for data to be transmitted
  135. * @rx_index: Buffer for Received data
  136. * @n_curnt_chip: The chip number that this SPI driver currently
  137. * operates on
  138. * @current_chip: Reference to the current chip that this SPI
  139. * driver currently operates on
  140. * @current_msg: The current message that this SPI driver is
  141. * handling
  142. * @cur_trans: The current transfer that this SPI driver is
  143. * handling
  144. * @board_dat: Reference to the SPI device data structure
  145. * @plat_dev: platform_device structure
  146. * @ch: SPI channel number
  147. * @irq_reg_sts: Status of IRQ registration
  148. */
  149. struct pch_spi_data {
  150. void __iomem *io_remap_addr;
  151. unsigned long io_base_addr;
  152. struct spi_master *master;
  153. struct work_struct work;
  154. struct workqueue_struct *wk;
  155. wait_queue_head_t wait;
  156. u8 transfer_complete;
  157. u8 bcurrent_msg_processing;
  158. spinlock_t lock;
  159. struct list_head queue;
  160. u8 status;
  161. u32 bpw_len;
  162. u8 transfer_active;
  163. u32 tx_index;
  164. u32 rx_index;
  165. u16 *pkt_tx_buff;
  166. u16 *pkt_rx_buff;
  167. u8 n_curnt_chip;
  168. struct spi_device *current_chip;
  169. struct spi_message *current_msg;
  170. struct spi_transfer *cur_trans;
  171. struct pch_spi_board_data *board_dat;
  172. struct platform_device *plat_dev;
  173. int ch;
  174. struct pch_spi_dma_ctrl dma;
  175. int use_dma;
  176. u8 irq_reg_sts;
  177. };
  178. /**
  179. * struct pch_spi_board_data - Holds the SPI device specific details
  180. * @pdev: Pointer to the PCI device
  181. * @suspend_sts: Status of suspend
  182. * @num: The number of SPI device instance
  183. */
  184. struct pch_spi_board_data {
  185. struct pci_dev *pdev;
  186. u8 suspend_sts;
  187. int num;
  188. };
  189. struct pch_pd_dev_save {
  190. int num;
  191. struct platform_device *pd_save[PCH_SPI_MAX_DEV];
  192. struct pch_spi_board_data *board_dat;
  193. };
  194. static struct pci_device_id pch_spi_pcidev_id[] = {
  195. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, },
  196. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
  197. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
  198. { }
  199. };
  200. /**
  201. * pch_spi_writereg() - Performs register writes
  202. * @master: Pointer to struct spi_master.
  203. * @idx: Register offset.
  204. * @val: Value to be written to register.
  205. */
  206. static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
  207. {
  208. struct pch_spi_data *data = spi_master_get_devdata(master);
  209. iowrite32(val, (data->io_remap_addr + idx));
  210. }
  211. /**
  212. * pch_spi_readreg() - Performs register reads
  213. * @master: Pointer to struct spi_master.
  214. * @idx: Register offset.
  215. */
  216. static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
  217. {
  218. struct pch_spi_data *data = spi_master_get_devdata(master);
  219. return ioread32(data->io_remap_addr + idx);
  220. }
  221. static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
  222. u32 set, u32 clr)
  223. {
  224. u32 tmp = pch_spi_readreg(master, idx);
  225. tmp = (tmp & ~clr) | set;
  226. pch_spi_writereg(master, idx, tmp);
  227. }
  228. static void pch_spi_set_master_mode(struct spi_master *master)
  229. {
  230. pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
  231. }
  232. /**
  233. * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
  234. * @master: Pointer to struct spi_master.
  235. */
  236. static void pch_spi_clear_fifo(struct spi_master *master)
  237. {
  238. pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
  239. pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
  240. }
  241. static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
  242. void __iomem *io_remap_addr)
  243. {
  244. u32 n_read, tx_index, rx_index, bpw_len;
  245. u16 *pkt_rx_buffer, *pkt_tx_buff;
  246. int read_cnt;
  247. u32 reg_spcr_val;
  248. void __iomem *spsr;
  249. void __iomem *spdrr;
  250. void __iomem *spdwr;
  251. spsr = io_remap_addr + PCH_SPSR;
  252. iowrite32(reg_spsr_val, spsr);
  253. if (data->transfer_active) {
  254. rx_index = data->rx_index;
  255. tx_index = data->tx_index;
  256. bpw_len = data->bpw_len;
  257. pkt_rx_buffer = data->pkt_rx_buff;
  258. pkt_tx_buff = data->pkt_tx_buff;
  259. spdrr = io_remap_addr + PCH_SPDRR;
  260. spdwr = io_remap_addr + PCH_SPDWR;
  261. n_read = PCH_READABLE(reg_spsr_val);
  262. for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
  263. pkt_rx_buffer[rx_index++] = ioread32(spdrr);
  264. if (tx_index < bpw_len)
  265. iowrite32(pkt_tx_buff[tx_index++], spdwr);
  266. }
  267. /* disable RFI if not needed */
  268. if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
  269. reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
  270. reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
  271. /* reset rx threshold */
  272. reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
  273. reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
  274. iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
  275. }
  276. /* update counts */
  277. data->tx_index = tx_index;
  278. data->rx_index = rx_index;
  279. }
  280. /* if transfer complete interrupt */
  281. if (reg_spsr_val & SPSR_FI_BIT) {
  282. if ((tx_index == bpw_len) && (rx_index == tx_index)) {
  283. /* disable interrupts */
  284. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
  285. /* transfer is completed;
  286. inform pch_spi_process_messages */
  287. data->transfer_complete = true;
  288. data->transfer_active = false;
  289. wake_up(&data->wait);
  290. } else {
  291. dev_err(&data->master->dev,
  292. "%s : Transfer is not completed", __func__);
  293. }
  294. }
  295. }
  296. /**
  297. * pch_spi_handler() - Interrupt handler
  298. * @irq: The interrupt number.
  299. * @dev_id: Pointer to struct pch_spi_board_data.
  300. */
  301. static irqreturn_t pch_spi_handler(int irq, void *dev_id)
  302. {
  303. u32 reg_spsr_val;
  304. void __iomem *spsr;
  305. void __iomem *io_remap_addr;
  306. irqreturn_t ret = IRQ_NONE;
  307. struct pch_spi_data *data = dev_id;
  308. struct pch_spi_board_data *board_dat = data->board_dat;
  309. if (board_dat->suspend_sts) {
  310. dev_dbg(&board_dat->pdev->dev,
  311. "%s returning due to suspend\n", __func__);
  312. return IRQ_NONE;
  313. }
  314. io_remap_addr = data->io_remap_addr;
  315. spsr = io_remap_addr + PCH_SPSR;
  316. reg_spsr_val = ioread32(spsr);
  317. if (reg_spsr_val & SPSR_ORF_BIT) {
  318. dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
  319. if (data->current_msg->complete != 0) {
  320. data->transfer_complete = true;
  321. data->current_msg->status = -EIO;
  322. data->current_msg->complete(data->current_msg->context);
  323. data->bcurrent_msg_processing = false;
  324. data->current_msg = NULL;
  325. data->cur_trans = NULL;
  326. }
  327. }
  328. if (data->use_dma)
  329. return IRQ_NONE;
  330. /* Check if the interrupt is for SPI device */
  331. if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
  332. pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
  333. ret = IRQ_HANDLED;
  334. }
  335. dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
  336. __func__, ret);
  337. return ret;
  338. }
  339. /**
  340. * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
  341. * @master: Pointer to struct spi_master.
  342. * @speed_hz: Baud rate.
  343. */
  344. static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
  345. {
  346. u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
  347. /* if baud rate is less than we can support limit it */
  348. if (n_spbr > PCH_MAX_SPBR)
  349. n_spbr = PCH_MAX_SPBR;
  350. pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
  351. }
  352. /**
  353. * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
  354. * @master: Pointer to struct spi_master.
  355. * @bits_per_word: Bits per word for SPI transfer.
  356. */
  357. static void pch_spi_set_bits_per_word(struct spi_master *master,
  358. u8 bits_per_word)
  359. {
  360. if (bits_per_word == 8)
  361. pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
  362. else
  363. pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
  364. }
  365. /**
  366. * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
  367. * @spi: Pointer to struct spi_device.
  368. */
  369. static void pch_spi_setup_transfer(struct spi_device *spi)
  370. {
  371. u32 flags = 0;
  372. dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
  373. __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
  374. spi->max_speed_hz);
  375. pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
  376. /* set bits per word */
  377. pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
  378. if (!(spi->mode & SPI_LSB_FIRST))
  379. flags |= SPCR_LSBF_BIT;
  380. if (spi->mode & SPI_CPOL)
  381. flags |= SPCR_CPOL_BIT;
  382. if (spi->mode & SPI_CPHA)
  383. flags |= SPCR_CPHA_BIT;
  384. pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
  385. (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
  386. /* Clear the FIFO by toggling FICLR to 1 and back to 0 */
  387. pch_spi_clear_fifo(spi->master);
  388. }
  389. /**
  390. * pch_spi_reset() - Clears SPI registers
  391. * @master: Pointer to struct spi_master.
  392. */
  393. static void pch_spi_reset(struct spi_master *master)
  394. {
  395. /* write 1 to reset SPI */
  396. pch_spi_writereg(master, PCH_SRST, 0x1);
  397. /* clear reset */
  398. pch_spi_writereg(master, PCH_SRST, 0x0);
  399. }
  400. static int pch_spi_setup(struct spi_device *pspi)
  401. {
  402. /* check bits per word */
  403. if (pspi->bits_per_word == 0) {
  404. pspi->bits_per_word = 8;
  405. dev_dbg(&pspi->dev, "%s 8 bits per word\n", __func__);
  406. }
  407. if ((pspi->bits_per_word != 8) && (pspi->bits_per_word != 16)) {
  408. dev_err(&pspi->dev, "%s Invalid bits per word\n", __func__);
  409. return -EINVAL;
  410. }
  411. /* Check baud rate setting */
  412. /* if baud rate of chip is greater than
  413. max we can support,return error */
  414. if ((pspi->max_speed_hz) > PCH_MAX_BAUDRATE)
  415. pspi->max_speed_hz = PCH_MAX_BAUDRATE;
  416. dev_dbg(&pspi->dev, "%s MODE = %x\n", __func__,
  417. (pspi->mode) & (SPI_CPOL | SPI_CPHA));
  418. return 0;
  419. }
  420. static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
  421. {
  422. struct spi_transfer *transfer;
  423. struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
  424. int retval;
  425. unsigned long flags;
  426. /* validate spi message and baud rate */
  427. if (unlikely(list_empty(&pmsg->transfers) == 1)) {
  428. dev_err(&pspi->dev, "%s list empty\n", __func__);
  429. retval = -EINVAL;
  430. goto err_out;
  431. }
  432. if (unlikely(pspi->max_speed_hz == 0)) {
  433. dev_err(&pspi->dev, "%s pch_spi_tranfer maxspeed=%d\n",
  434. __func__, pspi->max_speed_hz);
  435. retval = -EINVAL;
  436. goto err_out;
  437. }
  438. dev_dbg(&pspi->dev, "%s Transfer List not empty. "
  439. "Transfer Speed is set.\n", __func__);
  440. spin_lock_irqsave(&data->lock, flags);
  441. /* validate Tx/Rx buffers and Transfer length */
  442. list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
  443. if (!transfer->tx_buf && !transfer->rx_buf) {
  444. dev_err(&pspi->dev,
  445. "%s Tx and Rx buffer NULL\n", __func__);
  446. retval = -EINVAL;
  447. goto err_return_spinlock;
  448. }
  449. if (!transfer->len) {
  450. dev_err(&pspi->dev, "%s Transfer length invalid\n",
  451. __func__);
  452. retval = -EINVAL;
  453. goto err_return_spinlock;
  454. }
  455. dev_dbg(&pspi->dev, "%s Tx/Rx buffer valid. Transfer length"
  456. " valid\n", __func__);
  457. /* if baud rate has been specified validate the same */
  458. if (transfer->speed_hz > PCH_MAX_BAUDRATE)
  459. transfer->speed_hz = PCH_MAX_BAUDRATE;
  460. /* if bits per word has been specified validate the same */
  461. if (transfer->bits_per_word) {
  462. if ((transfer->bits_per_word != 8)
  463. && (transfer->bits_per_word != 16)) {
  464. retval = -EINVAL;
  465. dev_err(&pspi->dev,
  466. "%s Invalid bits per word\n", __func__);
  467. goto err_return_spinlock;
  468. }
  469. }
  470. }
  471. spin_unlock_irqrestore(&data->lock, flags);
  472. /* We won't process any messages if we have been asked to terminate */
  473. if (data->status == STATUS_EXITING) {
  474. dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
  475. retval = -ESHUTDOWN;
  476. goto err_out;
  477. }
  478. /* If suspended ,return -EINVAL */
  479. if (data->board_dat->suspend_sts) {
  480. dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
  481. retval = -EINVAL;
  482. goto err_out;
  483. }
  484. /* set status of message */
  485. pmsg->actual_length = 0;
  486. dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
  487. pmsg->status = -EINPROGRESS;
  488. spin_lock_irqsave(&data->lock, flags);
  489. /* add message to queue */
  490. list_add_tail(&pmsg->queue, &data->queue);
  491. spin_unlock_irqrestore(&data->lock, flags);
  492. dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
  493. /* schedule work queue to run */
  494. queue_work(data->wk, &data->work);
  495. dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
  496. retval = 0;
  497. err_out:
  498. dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
  499. return retval;
  500. err_return_spinlock:
  501. dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
  502. spin_unlock_irqrestore(&data->lock, flags);
  503. return retval;
  504. }
  505. static inline void pch_spi_select_chip(struct pch_spi_data *data,
  506. struct spi_device *pspi)
  507. {
  508. if (data->current_chip != NULL) {
  509. if (pspi->chip_select != data->n_curnt_chip) {
  510. dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
  511. data->current_chip = NULL;
  512. }
  513. }
  514. data->current_chip = pspi;
  515. data->n_curnt_chip = data->current_chip->chip_select;
  516. dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
  517. pch_spi_setup_transfer(pspi);
  518. }
  519. static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
  520. {
  521. int size;
  522. u32 n_writes;
  523. int j;
  524. struct spi_message *pmsg;
  525. const u8 *tx_buf;
  526. const u16 *tx_sbuf;
  527. /* set baud rate if needed */
  528. if (data->cur_trans->speed_hz) {
  529. dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
  530. pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
  531. }
  532. /* set bits per word if needed */
  533. if (data->cur_trans->bits_per_word &&
  534. (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
  535. dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
  536. pch_spi_set_bits_per_word(data->master,
  537. data->cur_trans->bits_per_word);
  538. *bpw = data->cur_trans->bits_per_word;
  539. } else {
  540. *bpw = data->current_msg->spi->bits_per_word;
  541. }
  542. /* reset Tx/Rx index */
  543. data->tx_index = 0;
  544. data->rx_index = 0;
  545. data->bpw_len = data->cur_trans->len / (*bpw / 8);
  546. /* find alloc size */
  547. size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
  548. /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
  549. data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
  550. if (data->pkt_tx_buff != NULL) {
  551. data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
  552. if (!data->pkt_rx_buff)
  553. kfree(data->pkt_tx_buff);
  554. }
  555. if (!data->pkt_rx_buff) {
  556. /* flush queue and set status of all transfers to -ENOMEM */
  557. dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
  558. list_for_each_entry(pmsg, data->queue.next, queue) {
  559. pmsg->status = -ENOMEM;
  560. if (pmsg->complete != 0)
  561. pmsg->complete(pmsg->context);
  562. /* delete from queue */
  563. list_del_init(&pmsg->queue);
  564. }
  565. return;
  566. }
  567. /* copy Tx Data */
  568. if (data->cur_trans->tx_buf != NULL) {
  569. if (*bpw == 8) {
  570. tx_buf = data->cur_trans->tx_buf;
  571. for (j = 0; j < data->bpw_len; j++)
  572. data->pkt_tx_buff[j] = *tx_buf++;
  573. } else {
  574. tx_sbuf = data->cur_trans->tx_buf;
  575. for (j = 0; j < data->bpw_len; j++)
  576. data->pkt_tx_buff[j] = *tx_sbuf++;
  577. }
  578. }
  579. /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
  580. n_writes = data->bpw_len;
  581. if (n_writes > PCH_MAX_FIFO_DEPTH)
  582. n_writes = PCH_MAX_FIFO_DEPTH;
  583. dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
  584. "0x2 to SSNXCR\n", __func__);
  585. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
  586. for (j = 0; j < n_writes; j++)
  587. pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
  588. /* update tx_index */
  589. data->tx_index = j;
  590. /* reset transfer complete flag */
  591. data->transfer_complete = false;
  592. data->transfer_active = true;
  593. }
  594. static void pch_spi_nomore_transfer(struct pch_spi_data *data)
  595. {
  596. struct spi_message *pmsg;
  597. dev_dbg(&data->master->dev, "%s called\n", __func__);
  598. /* Invoke complete callback
  599. * [To the spi core..indicating end of transfer] */
  600. data->current_msg->status = 0;
  601. if (data->current_msg->complete != 0) {
  602. dev_dbg(&data->master->dev,
  603. "%s:Invoking callback of SPI core\n", __func__);
  604. data->current_msg->complete(data->current_msg->context);
  605. }
  606. /* update status in global variable */
  607. data->bcurrent_msg_processing = false;
  608. dev_dbg(&data->master->dev,
  609. "%s:data->bcurrent_msg_processing = false\n", __func__);
  610. data->current_msg = NULL;
  611. data->cur_trans = NULL;
  612. /* check if we have items in list and not suspending
  613. * return 1 if list empty */
  614. if ((list_empty(&data->queue) == 0) &&
  615. (!data->board_dat->suspend_sts) &&
  616. (data->status != STATUS_EXITING)) {
  617. /* We have some more work to do (either there is more tranint
  618. * bpw;sfer requests in the current message or there are
  619. *more messages)
  620. */
  621. dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
  622. queue_work(data->wk, &data->work);
  623. } else if (data->board_dat->suspend_sts ||
  624. data->status == STATUS_EXITING) {
  625. dev_dbg(&data->master->dev,
  626. "%s suspend/remove initiated, flushing queue\n",
  627. __func__);
  628. list_for_each_entry(pmsg, data->queue.next, queue) {
  629. pmsg->status = -EIO;
  630. if (pmsg->complete)
  631. pmsg->complete(pmsg->context);
  632. /* delete from queue */
  633. list_del_init(&pmsg->queue);
  634. }
  635. }
  636. }
  637. static void pch_spi_set_ir(struct pch_spi_data *data)
  638. {
  639. /* enable interrupts, set threshold, enable SPI */
  640. if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
  641. /* set receive threshold to PCH_RX_THOLD */
  642. pch_spi_setclr_reg(data->master, PCH_SPCR,
  643. PCH_RX_THOLD << SPCR_RFIC_FIELD |
  644. SPCR_FIE_BIT | SPCR_RFIE_BIT |
  645. SPCR_ORIE_BIT | SPCR_SPE_BIT,
  646. MASK_RFIC_SPCR_BITS | PCH_ALL);
  647. else
  648. /* set receive threshold to maximum */
  649. pch_spi_setclr_reg(data->master, PCH_SPCR,
  650. PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
  651. SPCR_FIE_BIT | SPCR_ORIE_BIT |
  652. SPCR_SPE_BIT,
  653. MASK_RFIC_SPCR_BITS | PCH_ALL);
  654. /* Wait until the transfer completes; go to sleep after
  655. initiating the transfer. */
  656. dev_dbg(&data->master->dev,
  657. "%s:waiting for transfer to get over\n", __func__);
  658. wait_event_interruptible(data->wait, data->transfer_complete);
  659. /* clear all interrupts */
  660. pch_spi_writereg(data->master, PCH_SPSR,
  661. pch_spi_readreg(data->master, PCH_SPSR));
  662. /* Disable interrupts and SPI transfer */
  663. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
  664. /* clear FIFO */
  665. pch_spi_clear_fifo(data->master);
  666. }
  667. static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
  668. {
  669. int j;
  670. u8 *rx_buf;
  671. u16 *rx_sbuf;
  672. /* copy Rx Data */
  673. if (!data->cur_trans->rx_buf)
  674. return;
  675. if (bpw == 8) {
  676. rx_buf = data->cur_trans->rx_buf;
  677. for (j = 0; j < data->bpw_len; j++)
  678. *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
  679. } else {
  680. rx_sbuf = data->cur_trans->rx_buf;
  681. for (j = 0; j < data->bpw_len; j++)
  682. *rx_sbuf++ = data->pkt_rx_buff[j];
  683. }
  684. }
  685. static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
  686. {
  687. int j;
  688. u8 *rx_buf;
  689. u16 *rx_sbuf;
  690. const u8 *rx_dma_buf;
  691. const u16 *rx_dma_sbuf;
  692. /* copy Rx Data */
  693. if (!data->cur_trans->rx_buf)
  694. return;
  695. if (bpw == 8) {
  696. rx_buf = data->cur_trans->rx_buf;
  697. rx_dma_buf = data->dma.rx_buf_virt;
  698. for (j = 0; j < data->bpw_len; j++)
  699. *rx_buf++ = *rx_dma_buf++ & 0xFF;
  700. } else {
  701. rx_sbuf = data->cur_trans->rx_buf;
  702. rx_dma_sbuf = data->dma.rx_buf_virt;
  703. for (j = 0; j < data->bpw_len; j++)
  704. *rx_sbuf++ = *rx_dma_sbuf++;
  705. }
  706. }
  707. static int pch_spi_start_transfer(struct pch_spi_data *data)
  708. {
  709. struct pch_spi_dma_ctrl *dma;
  710. unsigned long flags;
  711. int rtn;
  712. dma = &data->dma;
  713. spin_lock_irqsave(&data->lock, flags);
  714. /* disable interrupts, SPI set enable */
  715. pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
  716. spin_unlock_irqrestore(&data->lock, flags);
  717. /* Wait until the transfer completes; go to sleep after
  718. initiating the transfer. */
  719. dev_dbg(&data->master->dev,
  720. "%s:waiting for transfer to get over\n", __func__);
  721. rtn = wait_event_interruptible_timeout(data->wait,
  722. data->transfer_complete,
  723. msecs_to_jiffies(2 * HZ));
  724. dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
  725. DMA_FROM_DEVICE);
  726. dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
  727. DMA_FROM_DEVICE);
  728. memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
  729. async_tx_ack(dma->desc_rx);
  730. async_tx_ack(dma->desc_tx);
  731. kfree(dma->sg_tx_p);
  732. kfree(dma->sg_rx_p);
  733. spin_lock_irqsave(&data->lock, flags);
  734. /* clear fifo threshold, disable interrupts, disable SPI transfer */
  735. pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
  736. MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
  737. SPCR_SPE_BIT);
  738. /* clear all interrupts */
  739. pch_spi_writereg(data->master, PCH_SPSR,
  740. pch_spi_readreg(data->master, PCH_SPSR));
  741. /* clear FIFO */
  742. pch_spi_clear_fifo(data->master);
  743. spin_unlock_irqrestore(&data->lock, flags);
  744. return rtn;
  745. }
  746. static void pch_dma_rx_complete(void *arg)
  747. {
  748. struct pch_spi_data *data = arg;
  749. /* transfer is completed;inform pch_spi_process_messages_dma */
  750. data->transfer_complete = true;
  751. wake_up_interruptible(&data->wait);
  752. }
  753. static bool pch_spi_filter(struct dma_chan *chan, void *slave)
  754. {
  755. struct pch_dma_slave *param = slave;
  756. if ((chan->chan_id == param->chan_id) &&
  757. (param->dma_dev == chan->device->dev)) {
  758. chan->private = param;
  759. return true;
  760. } else {
  761. return false;
  762. }
  763. }
  764. static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
  765. {
  766. dma_cap_mask_t mask;
  767. struct dma_chan *chan;
  768. struct pci_dev *dma_dev;
  769. struct pch_dma_slave *param;
  770. struct pch_spi_dma_ctrl *dma;
  771. unsigned int width;
  772. if (bpw == 8)
  773. width = PCH_DMA_WIDTH_1_BYTE;
  774. else
  775. width = PCH_DMA_WIDTH_2_BYTES;
  776. dma = &data->dma;
  777. dma_cap_zero(mask);
  778. dma_cap_set(DMA_SLAVE, mask);
  779. /* Get DMA's dev information */
  780. dma_dev = pci_get_bus_and_slot(2, PCI_DEVFN(12, 0));
  781. /* Set Tx DMA */
  782. param = &dma->param_tx;
  783. param->dma_dev = &dma_dev->dev;
  784. param->chan_id = data->master->bus_num * 2; /* Tx = 0, 2 */
  785. param->tx_reg = data->io_base_addr + PCH_SPDWR;
  786. param->width = width;
  787. chan = dma_request_channel(mask, pch_spi_filter, param);
  788. if (!chan) {
  789. dev_err(&data->master->dev,
  790. "ERROR: dma_request_channel FAILS(Tx)\n");
  791. data->use_dma = 0;
  792. return;
  793. }
  794. dma->chan_tx = chan;
  795. /* Set Rx DMA */
  796. param = &dma->param_rx;
  797. param->dma_dev = &dma_dev->dev;
  798. param->chan_id = data->master->bus_num * 2 + 1; /* Rx = Tx + 1 */
  799. param->rx_reg = data->io_base_addr + PCH_SPDRR;
  800. param->width = width;
  801. chan = dma_request_channel(mask, pch_spi_filter, param);
  802. if (!chan) {
  803. dev_err(&data->master->dev,
  804. "ERROR: dma_request_channel FAILS(Rx)\n");
  805. dma_release_channel(dma->chan_tx);
  806. dma->chan_tx = NULL;
  807. data->use_dma = 0;
  808. return;
  809. }
  810. dma->chan_rx = chan;
  811. }
  812. static void pch_spi_release_dma(struct pch_spi_data *data)
  813. {
  814. struct pch_spi_dma_ctrl *dma;
  815. dma = &data->dma;
  816. if (dma->chan_tx) {
  817. dma_release_channel(dma->chan_tx);
  818. dma->chan_tx = NULL;
  819. }
  820. if (dma->chan_rx) {
  821. dma_release_channel(dma->chan_rx);
  822. dma->chan_rx = NULL;
  823. }
  824. return;
  825. }
  826. static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
  827. {
  828. const u8 *tx_buf;
  829. const u16 *tx_sbuf;
  830. u8 *tx_dma_buf;
  831. u16 *tx_dma_sbuf;
  832. struct scatterlist *sg;
  833. struct dma_async_tx_descriptor *desc_tx;
  834. struct dma_async_tx_descriptor *desc_rx;
  835. int num;
  836. int i;
  837. int size;
  838. int rem;
  839. unsigned long flags;
  840. struct pch_spi_dma_ctrl *dma;
  841. dma = &data->dma;
  842. /* set baud rate if needed */
  843. if (data->cur_trans->speed_hz) {
  844. dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
  845. spin_lock_irqsave(&data->lock, flags);
  846. pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
  847. spin_unlock_irqrestore(&data->lock, flags);
  848. }
  849. /* set bits per word if needed */
  850. if (data->cur_trans->bits_per_word &&
  851. (data->current_msg->spi->bits_per_word !=
  852. data->cur_trans->bits_per_word)) {
  853. dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
  854. spin_lock_irqsave(&data->lock, flags);
  855. pch_spi_set_bits_per_word(data->master,
  856. data->cur_trans->bits_per_word);
  857. spin_unlock_irqrestore(&data->lock, flags);
  858. *bpw = data->cur_trans->bits_per_word;
  859. } else {
  860. *bpw = data->current_msg->spi->bits_per_word;
  861. }
  862. data->bpw_len = data->cur_trans->len / (*bpw / 8);
  863. /* copy Tx Data */
  864. if (data->cur_trans->tx_buf != NULL) {
  865. if (*bpw == 8) {
  866. tx_buf = data->cur_trans->tx_buf;
  867. tx_dma_buf = dma->tx_buf_virt;
  868. for (i = 0; i < data->bpw_len; i++)
  869. *tx_dma_buf++ = *tx_buf++;
  870. } else {
  871. tx_sbuf = data->cur_trans->tx_buf;
  872. tx_dma_sbuf = dma->tx_buf_virt;
  873. for (i = 0; i < data->bpw_len; i++)
  874. *tx_dma_sbuf++ = *tx_sbuf++;
  875. }
  876. }
  877. if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
  878. num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
  879. size = PCH_DMA_TRANS_SIZE;
  880. rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
  881. } else {
  882. num = 1;
  883. size = data->bpw_len;
  884. rem = data->bpw_len;
  885. }
  886. dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
  887. __func__, num, size, rem);
  888. spin_lock_irqsave(&data->lock, flags);
  889. /* set receive fifo threshold and transmit fifo threshold */
  890. pch_spi_setclr_reg(data->master, PCH_SPCR,
  891. ((size - 1) << SPCR_RFIC_FIELD) |
  892. (PCH_TX_THOLD << SPCR_TFIC_FIELD),
  893. MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
  894. spin_unlock_irqrestore(&data->lock, flags);
  895. /* RX */
  896. dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
  897. sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
  898. /* offset, length setting */
  899. sg = dma->sg_rx_p;
  900. for (i = 0; i < num; i++, sg++) {
  901. if (i == (num - 2)) {
  902. sg->offset = size * i;
  903. sg->offset = sg->offset * (*bpw / 8);
  904. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
  905. sg->offset);
  906. sg_dma_len(sg) = rem;
  907. } else if (i == (num - 1)) {
  908. sg->offset = size * (i - 1) + rem;
  909. sg->offset = sg->offset * (*bpw / 8);
  910. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
  911. sg->offset);
  912. sg_dma_len(sg) = size;
  913. } else {
  914. sg->offset = size * i;
  915. sg->offset = sg->offset * (*bpw / 8);
  916. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
  917. sg->offset);
  918. sg_dma_len(sg) = size;
  919. }
  920. sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
  921. }
  922. sg = dma->sg_rx_p;
  923. desc_rx = dma->chan_rx->device->device_prep_slave_sg(dma->chan_rx, sg,
  924. num, DMA_FROM_DEVICE,
  925. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  926. if (!desc_rx) {
  927. dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
  928. __func__);
  929. return;
  930. }
  931. dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
  932. desc_rx->callback = pch_dma_rx_complete;
  933. desc_rx->callback_param = data;
  934. dma->nent = num;
  935. dma->desc_rx = desc_rx;
  936. /* TX */
  937. if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
  938. num = data->bpw_len / PCH_DMA_TRANS_SIZE;
  939. size = PCH_DMA_TRANS_SIZE;
  940. rem = 16;
  941. } else {
  942. num = 1;
  943. size = data->bpw_len;
  944. rem = data->bpw_len;
  945. }
  946. dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
  947. sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
  948. /* offset, length setting */
  949. sg = dma->sg_tx_p;
  950. for (i = 0; i < num; i++, sg++) {
  951. if (i == 0) {
  952. sg->offset = 0;
  953. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
  954. sg->offset);
  955. sg_dma_len(sg) = rem;
  956. } else {
  957. sg->offset = rem + size * (i - 1);
  958. sg->offset = sg->offset * (*bpw / 8);
  959. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
  960. sg->offset);
  961. sg_dma_len(sg) = size;
  962. }
  963. sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
  964. }
  965. sg = dma->sg_tx_p;
  966. desc_tx = dma->chan_tx->device->device_prep_slave_sg(dma->chan_tx,
  967. sg, num, DMA_TO_DEVICE,
  968. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  969. if (!desc_tx) {
  970. dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
  971. __func__);
  972. return;
  973. }
  974. dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
  975. desc_tx->callback = NULL;
  976. desc_tx->callback_param = data;
  977. dma->nent = num;
  978. dma->desc_tx = desc_tx;
  979. dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
  980. "0x2 to SSNXCR\n", __func__);
  981. spin_lock_irqsave(&data->lock, flags);
  982. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
  983. desc_rx->tx_submit(desc_rx);
  984. desc_tx->tx_submit(desc_tx);
  985. spin_unlock_irqrestore(&data->lock, flags);
  986. /* reset transfer complete flag */
  987. data->transfer_complete = false;
  988. }
  989. static void pch_spi_process_messages(struct work_struct *pwork)
  990. {
  991. struct spi_message *pmsg;
  992. struct pch_spi_data *data;
  993. int bpw;
  994. data = container_of(pwork, struct pch_spi_data, work);
  995. dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
  996. spin_lock(&data->lock);
  997. /* check if suspend has been initiated;if yes flush queue */
  998. if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
  999. dev_dbg(&data->master->dev, "%s suspend/remove initiated,"
  1000. "flushing queue\n", __func__);
  1001. list_for_each_entry(pmsg, data->queue.next, queue) {
  1002. pmsg->status = -EIO;
  1003. if (pmsg->complete != 0) {
  1004. spin_unlock(&data->lock);
  1005. pmsg->complete(pmsg->context);
  1006. spin_lock(&data->lock);
  1007. }
  1008. /* delete from queue */
  1009. list_del_init(&pmsg->queue);
  1010. }
  1011. spin_unlock(&data->lock);
  1012. return;
  1013. }
  1014. data->bcurrent_msg_processing = true;
  1015. dev_dbg(&data->master->dev,
  1016. "%s Set data->bcurrent_msg_processing= true\n", __func__);
  1017. /* Get the message from the queue and delete it from there. */
  1018. data->current_msg = list_entry(data->queue.next, struct spi_message,
  1019. queue);
  1020. list_del_init(&data->current_msg->queue);
  1021. data->current_msg->status = 0;
  1022. pch_spi_select_chip(data, data->current_msg->spi);
  1023. spin_unlock(&data->lock);
  1024. if (data->use_dma)
  1025. pch_spi_request_dma(data,
  1026. data->current_msg->spi->bits_per_word);
  1027. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
  1028. do {
  1029. /* If we are already processing a message get the next
  1030. transfer structure from the message otherwise retrieve
  1031. the 1st transfer request from the message. */
  1032. spin_lock(&data->lock);
  1033. if (data->cur_trans == NULL) {
  1034. data->cur_trans =
  1035. list_entry(data->current_msg->transfers.next,
  1036. struct spi_transfer, transfer_list);
  1037. dev_dbg(&data->master->dev, "%s "
  1038. ":Getting 1st transfer message\n", __func__);
  1039. } else {
  1040. data->cur_trans =
  1041. list_entry(data->cur_trans->transfer_list.next,
  1042. struct spi_transfer, transfer_list);
  1043. dev_dbg(&data->master->dev, "%s "
  1044. ":Getting next transfer message\n", __func__);
  1045. }
  1046. spin_unlock(&data->lock);
  1047. if (data->use_dma) {
  1048. pch_spi_handle_dma(data, &bpw);
  1049. if (!pch_spi_start_transfer(data))
  1050. goto out;
  1051. pch_spi_copy_rx_data_for_dma(data, bpw);
  1052. } else {
  1053. pch_spi_set_tx(data, &bpw);
  1054. pch_spi_set_ir(data);
  1055. pch_spi_copy_rx_data(data, bpw);
  1056. kfree(data->pkt_rx_buff);
  1057. data->pkt_rx_buff = NULL;
  1058. kfree(data->pkt_tx_buff);
  1059. data->pkt_tx_buff = NULL;
  1060. }
  1061. /* increment message count */
  1062. data->current_msg->actual_length += data->cur_trans->len;
  1063. dev_dbg(&data->master->dev,
  1064. "%s:data->current_msg->actual_length=%d\n",
  1065. __func__, data->current_msg->actual_length);
  1066. /* check for delay */
  1067. if (data->cur_trans->delay_usecs) {
  1068. dev_dbg(&data->master->dev, "%s:"
  1069. "delay in usec=%d\n", __func__,
  1070. data->cur_trans->delay_usecs);
  1071. udelay(data->cur_trans->delay_usecs);
  1072. }
  1073. spin_lock(&data->lock);
  1074. /* No more transfer in this message. */
  1075. if ((data->cur_trans->transfer_list.next) ==
  1076. &(data->current_msg->transfers)) {
  1077. pch_spi_nomore_transfer(data);
  1078. }
  1079. spin_unlock(&data->lock);
  1080. } while (data->cur_trans != NULL);
  1081. out:
  1082. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
  1083. if (data->use_dma)
  1084. pch_spi_release_dma(data);
  1085. }
  1086. static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
  1087. struct pch_spi_data *data)
  1088. {
  1089. dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
  1090. /* free workqueue */
  1091. if (data->wk != NULL) {
  1092. destroy_workqueue(data->wk);
  1093. data->wk = NULL;
  1094. dev_dbg(&board_dat->pdev->dev,
  1095. "%s destroy_workqueue invoked successfully\n",
  1096. __func__);
  1097. }
  1098. }
  1099. static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
  1100. struct pch_spi_data *data)
  1101. {
  1102. int retval = 0;
  1103. dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
  1104. /* create workqueue */
  1105. data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
  1106. if (!data->wk) {
  1107. dev_err(&board_dat->pdev->dev,
  1108. "%s create_singlet hread_workqueue failed\n", __func__);
  1109. retval = -EBUSY;
  1110. goto err_return;
  1111. }
  1112. /* reset PCH SPI h/w */
  1113. pch_spi_reset(data->master);
  1114. dev_dbg(&board_dat->pdev->dev,
  1115. "%s pch_spi_reset invoked successfully\n", __func__);
  1116. dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
  1117. err_return:
  1118. if (retval != 0) {
  1119. dev_err(&board_dat->pdev->dev,
  1120. "%s FAIL:invoking pch_spi_free_resources\n", __func__);
  1121. pch_spi_free_resources(board_dat, data);
  1122. }
  1123. dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
  1124. return retval;
  1125. }
  1126. static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
  1127. struct pch_spi_data *data)
  1128. {
  1129. struct pch_spi_dma_ctrl *dma;
  1130. dma = &data->dma;
  1131. if (dma->tx_buf_dma)
  1132. dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
  1133. dma->tx_buf_virt, dma->tx_buf_dma);
  1134. if (dma->rx_buf_dma)
  1135. dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
  1136. dma->rx_buf_virt, dma->rx_buf_dma);
  1137. return;
  1138. }
  1139. static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
  1140. struct pch_spi_data *data)
  1141. {
  1142. struct pch_spi_dma_ctrl *dma;
  1143. dma = &data->dma;
  1144. /* Get Consistent memory for Tx DMA */
  1145. dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
  1146. PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
  1147. /* Get Consistent memory for Rx DMA */
  1148. dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
  1149. PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
  1150. }
  1151. static int __devinit pch_spi_pd_probe(struct platform_device *plat_dev)
  1152. {
  1153. int ret;
  1154. struct spi_master *master;
  1155. struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
  1156. struct pch_spi_data *data;
  1157. dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
  1158. master = spi_alloc_master(&board_dat->pdev->dev,
  1159. sizeof(struct pch_spi_data));
  1160. if (!master) {
  1161. dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
  1162. plat_dev->id);
  1163. return -ENOMEM;
  1164. }
  1165. data = spi_master_get_devdata(master);
  1166. data->master = master;
  1167. platform_set_drvdata(plat_dev, data);
  1168. /* baseaddress + address offset) */
  1169. data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
  1170. PCH_ADDRESS_SIZE * plat_dev->id;
  1171. data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0) +
  1172. PCH_ADDRESS_SIZE * plat_dev->id;
  1173. if (!data->io_remap_addr) {
  1174. dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
  1175. ret = -ENOMEM;
  1176. goto err_pci_iomap;
  1177. }
  1178. dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
  1179. plat_dev->id, data->io_remap_addr);
  1180. /* initialize members of SPI master */
  1181. master->bus_num = -1;
  1182. master->num_chipselect = PCH_MAX_CS;
  1183. master->setup = pch_spi_setup;
  1184. master->transfer = pch_spi_transfer;
  1185. data->board_dat = board_dat;
  1186. data->plat_dev = plat_dev;
  1187. data->n_curnt_chip = 255;
  1188. data->status = STATUS_RUNNING;
  1189. data->ch = plat_dev->id;
  1190. data->use_dma = use_dma;
  1191. INIT_LIST_HEAD(&data->queue);
  1192. spin_lock_init(&data->lock);
  1193. INIT_WORK(&data->work, pch_spi_process_messages);
  1194. init_waitqueue_head(&data->wait);
  1195. ret = pch_spi_get_resources(board_dat, data);
  1196. if (ret) {
  1197. dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
  1198. goto err_spi_get_resources;
  1199. }
  1200. ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
  1201. IRQF_SHARED, KBUILD_MODNAME, data);
  1202. if (ret) {
  1203. dev_err(&plat_dev->dev,
  1204. "%s request_irq failed\n", __func__);
  1205. goto err_request_irq;
  1206. }
  1207. data->irq_reg_sts = true;
  1208. pch_spi_set_master_mode(master);
  1209. ret = spi_register_master(master);
  1210. if (ret != 0) {
  1211. dev_err(&plat_dev->dev,
  1212. "%s spi_register_master FAILED\n", __func__);
  1213. goto err_spi_register_master;
  1214. }
  1215. if (use_dma) {
  1216. dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
  1217. pch_alloc_dma_buf(board_dat, data);
  1218. }
  1219. return 0;
  1220. err_spi_register_master:
  1221. free_irq(board_dat->pdev->irq, board_dat);
  1222. err_request_irq:
  1223. pch_spi_free_resources(board_dat, data);
  1224. err_spi_get_resources:
  1225. pci_iounmap(board_dat->pdev, data->io_remap_addr);
  1226. err_pci_iomap:
  1227. spi_master_put(master);
  1228. return ret;
  1229. }
  1230. static int __devexit pch_spi_pd_remove(struct platform_device *plat_dev)
  1231. {
  1232. struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
  1233. struct pch_spi_data *data = platform_get_drvdata(plat_dev);
  1234. int count;
  1235. unsigned long flags;
  1236. dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
  1237. __func__, plat_dev->id, board_dat->pdev->irq);
  1238. if (use_dma)
  1239. pch_free_dma_buf(board_dat, data);
  1240. /* check for any pending messages; no action is taken if the queue
  1241. * is still full; but at least we tried. Unload anyway */
  1242. count = 500;
  1243. spin_lock_irqsave(&data->lock, flags);
  1244. data->status = STATUS_EXITING;
  1245. while ((list_empty(&data->queue) == 0) && --count) {
  1246. dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
  1247. __func__);
  1248. spin_unlock_irqrestore(&data->lock, flags);
  1249. msleep(PCH_SLEEP_TIME);
  1250. spin_lock_irqsave(&data->lock, flags);
  1251. }
  1252. spin_unlock_irqrestore(&data->lock, flags);
  1253. pch_spi_free_resources(board_dat, data);
  1254. /* disable interrupts & free IRQ */
  1255. if (data->irq_reg_sts) {
  1256. /* disable interrupts */
  1257. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
  1258. data->irq_reg_sts = false;
  1259. free_irq(board_dat->pdev->irq, data);
  1260. }
  1261. pci_iounmap(board_dat->pdev, data->io_remap_addr);
  1262. spi_unregister_master(data->master);
  1263. spi_master_put(data->master);
  1264. platform_set_drvdata(plat_dev, NULL);
  1265. return 0;
  1266. }
  1267. #ifdef CONFIG_PM
  1268. static int pch_spi_pd_suspend(struct platform_device *pd_dev,
  1269. pm_message_t state)
  1270. {
  1271. u8 count;
  1272. struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
  1273. struct pch_spi_data *data = platform_get_drvdata(pd_dev);
  1274. dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
  1275. if (!board_dat) {
  1276. dev_err(&pd_dev->dev,
  1277. "%s pci_get_drvdata returned NULL\n", __func__);
  1278. return -EFAULT;
  1279. }
  1280. /* check if the current message is processed:
  1281. Only after thats done the transfer will be suspended */
  1282. count = 255;
  1283. while ((--count) > 0) {
  1284. if (!(data->bcurrent_msg_processing))
  1285. break;
  1286. msleep(PCH_SLEEP_TIME);
  1287. }
  1288. /* Free IRQ */
  1289. if (data->irq_reg_sts) {
  1290. /* disable all interrupts */
  1291. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
  1292. pch_spi_reset(data->master);
  1293. free_irq(board_dat->pdev->irq, data);
  1294. data->irq_reg_sts = false;
  1295. dev_dbg(&pd_dev->dev,
  1296. "%s free_irq invoked successfully.\n", __func__);
  1297. }
  1298. return 0;
  1299. }
  1300. static int pch_spi_pd_resume(struct platform_device *pd_dev)
  1301. {
  1302. struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
  1303. struct pch_spi_data *data = platform_get_drvdata(pd_dev);
  1304. int retval;
  1305. if (!board_dat) {
  1306. dev_err(&pd_dev->dev,
  1307. "%s pci_get_drvdata returned NULL\n", __func__);
  1308. return -EFAULT;
  1309. }
  1310. if (!data->irq_reg_sts) {
  1311. /* register IRQ */
  1312. retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
  1313. IRQF_SHARED, KBUILD_MODNAME, data);
  1314. if (retval < 0) {
  1315. dev_err(&pd_dev->dev,
  1316. "%s request_irq failed\n", __func__);
  1317. return retval;
  1318. }
  1319. /* reset PCH SPI h/w */
  1320. pch_spi_reset(data->master);
  1321. pch_spi_set_master_mode(data->master);
  1322. data->irq_reg_sts = true;
  1323. }
  1324. return 0;
  1325. }
  1326. #else
  1327. #define pch_spi_pd_suspend NULL
  1328. #define pch_spi_pd_resume NULL
  1329. #endif
  1330. static struct platform_driver pch_spi_pd_driver = {
  1331. .driver = {
  1332. .name = "pch-spi",
  1333. .owner = THIS_MODULE,
  1334. },
  1335. .probe = pch_spi_pd_probe,
  1336. .remove = __devexit_p(pch_spi_pd_remove),
  1337. .suspend = pch_spi_pd_suspend,
  1338. .resume = pch_spi_pd_resume
  1339. };
  1340. static int __devinit pch_spi_probe(struct pci_dev *pdev,
  1341. const struct pci_device_id *id)
  1342. {
  1343. struct pch_spi_board_data *board_dat;
  1344. struct platform_device *pd_dev = NULL;
  1345. int retval;
  1346. int i;
  1347. struct pch_pd_dev_save *pd_dev_save;
  1348. pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
  1349. if (!pd_dev_save) {
  1350. dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
  1351. return -ENOMEM;
  1352. }
  1353. board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
  1354. if (!board_dat) {
  1355. dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
  1356. retval = -ENOMEM;
  1357. goto err_no_mem;
  1358. }
  1359. retval = pci_request_regions(pdev, KBUILD_MODNAME);
  1360. if (retval) {
  1361. dev_err(&pdev->dev, "%s request_region failed\n", __func__);
  1362. goto pci_request_regions;
  1363. }
  1364. board_dat->pdev = pdev;
  1365. board_dat->num = id->driver_data;
  1366. pd_dev_save->num = id->driver_data;
  1367. pd_dev_save->board_dat = board_dat;
  1368. retval = pci_enable_device(pdev);
  1369. if (retval) {
  1370. dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
  1371. goto pci_enable_device;
  1372. }
  1373. for (i = 0; i < board_dat->num; i++) {
  1374. pd_dev = platform_device_alloc("pch-spi", i);
  1375. if (!pd_dev) {
  1376. dev_err(&pdev->dev, "platform_device_alloc failed\n");
  1377. goto err_platform_device;
  1378. }
  1379. pd_dev_save->pd_save[i] = pd_dev;
  1380. pd_dev->dev.parent = &pdev->dev;
  1381. retval = platform_device_add_data(pd_dev, board_dat,
  1382. sizeof(*board_dat));
  1383. if (retval) {
  1384. dev_err(&pdev->dev,
  1385. "platform_device_add_data failed\n");
  1386. platform_device_put(pd_dev);
  1387. goto err_platform_device;
  1388. }
  1389. retval = platform_device_add(pd_dev);
  1390. if (retval) {
  1391. dev_err(&pdev->dev, "platform_device_add failed\n");
  1392. platform_device_put(pd_dev);
  1393. goto err_platform_device;
  1394. }
  1395. }
  1396. pci_set_drvdata(pdev, pd_dev_save);
  1397. return 0;
  1398. err_platform_device:
  1399. pci_disable_device(pdev);
  1400. pci_enable_device:
  1401. pci_release_regions(pdev);
  1402. pci_request_regions:
  1403. kfree(board_dat);
  1404. err_no_mem:
  1405. kfree(pd_dev_save);
  1406. return retval;
  1407. }
  1408. static void __devexit pch_spi_remove(struct pci_dev *pdev)
  1409. {
  1410. int i;
  1411. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1412. dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
  1413. for (i = 0; i < pd_dev_save->num; i++)
  1414. platform_device_unregister(pd_dev_save->pd_save[i]);
  1415. pci_disable_device(pdev);
  1416. pci_release_regions(pdev);
  1417. kfree(pd_dev_save->board_dat);
  1418. kfree(pd_dev_save);
  1419. }
  1420. #ifdef CONFIG_PM
  1421. static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
  1422. {
  1423. int retval;
  1424. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1425. dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
  1426. pd_dev_save->board_dat->suspend_sts = true;
  1427. /* save config space */
  1428. retval = pci_save_state(pdev);
  1429. if (retval == 0) {
  1430. pci_enable_wake(pdev, PCI_D3hot, 0);
  1431. pci_disable_device(pdev);
  1432. pci_set_power_state(pdev, PCI_D3hot);
  1433. } else {
  1434. dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
  1435. }
  1436. return retval;
  1437. }
  1438. static int pch_spi_resume(struct pci_dev *pdev)
  1439. {
  1440. int retval;
  1441. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1442. dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
  1443. pci_set_power_state(pdev, PCI_D0);
  1444. pci_restore_state(pdev);
  1445. retval = pci_enable_device(pdev);
  1446. if (retval < 0) {
  1447. dev_err(&pdev->dev,
  1448. "%s pci_enable_device failed\n", __func__);
  1449. } else {
  1450. pci_enable_wake(pdev, PCI_D3hot, 0);
  1451. /* set suspend status to false */
  1452. pd_dev_save->board_dat->suspend_sts = false;
  1453. }
  1454. return retval;
  1455. }
  1456. #else
  1457. #define pch_spi_suspend NULL
  1458. #define pch_spi_resume NULL
  1459. #endif
  1460. static struct pci_driver pch_spi_pcidev = {
  1461. .name = "pch_spi",
  1462. .id_table = pch_spi_pcidev_id,
  1463. .probe = pch_spi_probe,
  1464. .remove = pch_spi_remove,
  1465. .suspend = pch_spi_suspend,
  1466. .resume = pch_spi_resume,
  1467. };
  1468. static int __init pch_spi_init(void)
  1469. {
  1470. int ret;
  1471. ret = platform_driver_register(&pch_spi_pd_driver);
  1472. if (ret)
  1473. return ret;
  1474. ret = pci_register_driver(&pch_spi_pcidev);
  1475. if (ret)
  1476. return ret;
  1477. return 0;
  1478. }
  1479. module_init(pch_spi_init);
  1480. static void __exit pch_spi_exit(void)
  1481. {
  1482. pci_unregister_driver(&pch_spi_pcidev);
  1483. platform_driver_unregister(&pch_spi_pd_driver);
  1484. }
  1485. module_exit(pch_spi_exit);
  1486. module_param(use_dma, int, 0644);
  1487. MODULE_PARM_DESC(use_dma,
  1488. "to use DMA for data transfers pass 1 else 0; default 1");
  1489. MODULE_LICENSE("GPL");
  1490. MODULE_DESCRIPTION("Intel EG20T PCH/OKI SEMICONDUCTOR ML7xxx IOH SPI Driver");