spi-pl022.c 67 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451
  1. /*
  2. * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
  3. *
  4. * Copyright (C) 2008-2009 ST-Ericsson AB
  5. * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
  6. *
  7. * Author: Linus Walleij <linus.walleij@stericsson.com>
  8. *
  9. * Initial version inspired by:
  10. * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
  11. * Initial adoption to PL022 by:
  12. * Sachin Verma <sachin.verma@st.com>
  13. *
  14. * This program is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License as published by
  16. * the Free Software Foundation; either version 2 of the License, or
  17. * (at your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. */
  24. #include <linux/init.h>
  25. #include <linux/module.h>
  26. #include <linux/device.h>
  27. #include <linux/ioport.h>
  28. #include <linux/errno.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/spi/spi.h>
  31. #include <linux/workqueue.h>
  32. #include <linux/delay.h>
  33. #include <linux/clk.h>
  34. #include <linux/err.h>
  35. #include <linux/amba/bus.h>
  36. #include <linux/amba/pl022.h>
  37. #include <linux/io.h>
  38. #include <linux/slab.h>
  39. #include <linux/dmaengine.h>
  40. #include <linux/dma-mapping.h>
  41. #include <linux/scatterlist.h>
  42. #include <linux/pm_runtime.h>
  43. /*
  44. * This macro is used to define some register default values.
  45. * reg is masked with mask, the OR:ed with an (again masked)
  46. * val shifted sb steps to the left.
  47. */
  48. #define SSP_WRITE_BITS(reg, val, mask, sb) \
  49. ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
  50. /*
  51. * This macro is also used to define some default values.
  52. * It will just shift val by sb steps to the left and mask
  53. * the result with mask.
  54. */
  55. #define GEN_MASK_BITS(val, mask, sb) \
  56. (((val)<<(sb)) & (mask))
  57. #define DRIVE_TX 0
  58. #define DO_NOT_DRIVE_TX 1
  59. #define DO_NOT_QUEUE_DMA 0
  60. #define QUEUE_DMA 1
  61. #define RX_TRANSFER 1
  62. #define TX_TRANSFER 2
  63. /*
  64. * Macros to access SSP Registers with their offsets
  65. */
  66. #define SSP_CR0(r) (r + 0x000)
  67. #define SSP_CR1(r) (r + 0x004)
  68. #define SSP_DR(r) (r + 0x008)
  69. #define SSP_SR(r) (r + 0x00C)
  70. #define SSP_CPSR(r) (r + 0x010)
  71. #define SSP_IMSC(r) (r + 0x014)
  72. #define SSP_RIS(r) (r + 0x018)
  73. #define SSP_MIS(r) (r + 0x01C)
  74. #define SSP_ICR(r) (r + 0x020)
  75. #define SSP_DMACR(r) (r + 0x024)
  76. #define SSP_ITCR(r) (r + 0x080)
  77. #define SSP_ITIP(r) (r + 0x084)
  78. #define SSP_ITOP(r) (r + 0x088)
  79. #define SSP_TDR(r) (r + 0x08C)
  80. #define SSP_PID0(r) (r + 0xFE0)
  81. #define SSP_PID1(r) (r + 0xFE4)
  82. #define SSP_PID2(r) (r + 0xFE8)
  83. #define SSP_PID3(r) (r + 0xFEC)
  84. #define SSP_CID0(r) (r + 0xFF0)
  85. #define SSP_CID1(r) (r + 0xFF4)
  86. #define SSP_CID2(r) (r + 0xFF8)
  87. #define SSP_CID3(r) (r + 0xFFC)
  88. /*
  89. * SSP Control Register 0 - SSP_CR0
  90. */
  91. #define SSP_CR0_MASK_DSS (0x0FUL << 0)
  92. #define SSP_CR0_MASK_FRF (0x3UL << 4)
  93. #define SSP_CR0_MASK_SPO (0x1UL << 6)
  94. #define SSP_CR0_MASK_SPH (0x1UL << 7)
  95. #define SSP_CR0_MASK_SCR (0xFFUL << 8)
  96. /*
  97. * The ST version of this block moves som bits
  98. * in SSP_CR0 and extends it to 32 bits
  99. */
  100. #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
  101. #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
  102. #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
  103. #define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
  104. /*
  105. * SSP Control Register 0 - SSP_CR1
  106. */
  107. #define SSP_CR1_MASK_LBM (0x1UL << 0)
  108. #define SSP_CR1_MASK_SSE (0x1UL << 1)
  109. #define SSP_CR1_MASK_MS (0x1UL << 2)
  110. #define SSP_CR1_MASK_SOD (0x1UL << 3)
  111. /*
  112. * The ST version of this block adds some bits
  113. * in SSP_CR1
  114. */
  115. #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
  116. #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
  117. #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
  118. #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
  119. #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
  120. /* This one is only in the PL023 variant */
  121. #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
  122. /*
  123. * SSP Status Register - SSP_SR
  124. */
  125. #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
  126. #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
  127. #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
  128. #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
  129. #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
  130. /*
  131. * SSP Clock Prescale Register - SSP_CPSR
  132. */
  133. #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
  134. /*
  135. * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
  136. */
  137. #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
  138. #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
  139. #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
  140. #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
  141. /*
  142. * SSP Raw Interrupt Status Register - SSP_RIS
  143. */
  144. /* Receive Overrun Raw Interrupt status */
  145. #define SSP_RIS_MASK_RORRIS (0x1UL << 0)
  146. /* Receive Timeout Raw Interrupt status */
  147. #define SSP_RIS_MASK_RTRIS (0x1UL << 1)
  148. /* Receive FIFO Raw Interrupt status */
  149. #define SSP_RIS_MASK_RXRIS (0x1UL << 2)
  150. /* Transmit FIFO Raw Interrupt status */
  151. #define SSP_RIS_MASK_TXRIS (0x1UL << 3)
  152. /*
  153. * SSP Masked Interrupt Status Register - SSP_MIS
  154. */
  155. /* Receive Overrun Masked Interrupt status */
  156. #define SSP_MIS_MASK_RORMIS (0x1UL << 0)
  157. /* Receive Timeout Masked Interrupt status */
  158. #define SSP_MIS_MASK_RTMIS (0x1UL << 1)
  159. /* Receive FIFO Masked Interrupt status */
  160. #define SSP_MIS_MASK_RXMIS (0x1UL << 2)
  161. /* Transmit FIFO Masked Interrupt status */
  162. #define SSP_MIS_MASK_TXMIS (0x1UL << 3)
  163. /*
  164. * SSP Interrupt Clear Register - SSP_ICR
  165. */
  166. /* Receive Overrun Raw Clear Interrupt bit */
  167. #define SSP_ICR_MASK_RORIC (0x1UL << 0)
  168. /* Receive Timeout Clear Interrupt bit */
  169. #define SSP_ICR_MASK_RTIC (0x1UL << 1)
  170. /*
  171. * SSP DMA Control Register - SSP_DMACR
  172. */
  173. /* Receive DMA Enable bit */
  174. #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
  175. /* Transmit DMA Enable bit */
  176. #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
  177. /*
  178. * SSP Integration Test control Register - SSP_ITCR
  179. */
  180. #define SSP_ITCR_MASK_ITEN (0x1UL << 0)
  181. #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
  182. /*
  183. * SSP Integration Test Input Register - SSP_ITIP
  184. */
  185. #define ITIP_MASK_SSPRXD (0x1UL << 0)
  186. #define ITIP_MASK_SSPFSSIN (0x1UL << 1)
  187. #define ITIP_MASK_SSPCLKIN (0x1UL << 2)
  188. #define ITIP_MASK_RXDMAC (0x1UL << 3)
  189. #define ITIP_MASK_TXDMAC (0x1UL << 4)
  190. #define ITIP_MASK_SSPTXDIN (0x1UL << 5)
  191. /*
  192. * SSP Integration Test output Register - SSP_ITOP
  193. */
  194. #define ITOP_MASK_SSPTXD (0x1UL << 0)
  195. #define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
  196. #define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
  197. #define ITOP_MASK_SSPOEn (0x1UL << 3)
  198. #define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
  199. #define ITOP_MASK_RORINTR (0x1UL << 5)
  200. #define ITOP_MASK_RTINTR (0x1UL << 6)
  201. #define ITOP_MASK_RXINTR (0x1UL << 7)
  202. #define ITOP_MASK_TXINTR (0x1UL << 8)
  203. #define ITOP_MASK_INTR (0x1UL << 9)
  204. #define ITOP_MASK_RXDMABREQ (0x1UL << 10)
  205. #define ITOP_MASK_RXDMASREQ (0x1UL << 11)
  206. #define ITOP_MASK_TXDMABREQ (0x1UL << 12)
  207. #define ITOP_MASK_TXDMASREQ (0x1UL << 13)
  208. /*
  209. * SSP Test Data Register - SSP_TDR
  210. */
  211. #define TDR_MASK_TESTDATA (0xFFFFFFFF)
  212. /*
  213. * Message State
  214. * we use the spi_message.state (void *) pointer to
  215. * hold a single state value, that's why all this
  216. * (void *) casting is done here.
  217. */
  218. #define STATE_START ((void *) 0)
  219. #define STATE_RUNNING ((void *) 1)
  220. #define STATE_DONE ((void *) 2)
  221. #define STATE_ERROR ((void *) -1)
  222. /*
  223. * SSP State - Whether Enabled or Disabled
  224. */
  225. #define SSP_DISABLED (0)
  226. #define SSP_ENABLED (1)
  227. /*
  228. * SSP DMA State - Whether DMA Enabled or Disabled
  229. */
  230. #define SSP_DMA_DISABLED (0)
  231. #define SSP_DMA_ENABLED (1)
  232. /*
  233. * SSP Clock Defaults
  234. */
  235. #define SSP_DEFAULT_CLKRATE 0x2
  236. #define SSP_DEFAULT_PRESCALE 0x40
  237. /*
  238. * SSP Clock Parameter ranges
  239. */
  240. #define CPSDVR_MIN 0x02
  241. #define CPSDVR_MAX 0xFE
  242. #define SCR_MIN 0x00
  243. #define SCR_MAX 0xFF
  244. /*
  245. * SSP Interrupt related Macros
  246. */
  247. #define DEFAULT_SSP_REG_IMSC 0x0UL
  248. #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
  249. #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
  250. #define CLEAR_ALL_INTERRUPTS 0x3
  251. #define SPI_POLLING_TIMEOUT 1000
  252. /*
  253. * The type of reading going on on this chip
  254. */
  255. enum ssp_reading {
  256. READING_NULL,
  257. READING_U8,
  258. READING_U16,
  259. READING_U32
  260. };
  261. /**
  262. * The type of writing going on on this chip
  263. */
  264. enum ssp_writing {
  265. WRITING_NULL,
  266. WRITING_U8,
  267. WRITING_U16,
  268. WRITING_U32
  269. };
  270. /**
  271. * struct vendor_data - vendor-specific config parameters
  272. * for PL022 derivates
  273. * @fifodepth: depth of FIFOs (both)
  274. * @max_bpw: maximum number of bits per word
  275. * @unidir: supports unidirection transfers
  276. * @extended_cr: 32 bit wide control register 0 with extra
  277. * features and extra features in CR1 as found in the ST variants
  278. * @pl023: supports a subset of the ST extensions called "PL023"
  279. */
  280. struct vendor_data {
  281. int fifodepth;
  282. int max_bpw;
  283. bool unidir;
  284. bool extended_cr;
  285. bool pl023;
  286. bool loopback;
  287. };
  288. /**
  289. * struct pl022 - This is the private SSP driver data structure
  290. * @adev: AMBA device model hookup
  291. * @vendor: vendor data for the IP block
  292. * @phybase: the physical memory where the SSP device resides
  293. * @virtbase: the virtual memory where the SSP is mapped
  294. * @clk: outgoing clock "SPICLK" for the SPI bus
  295. * @master: SPI framework hookup
  296. * @master_info: controller-specific data from machine setup
  297. * @workqueue: a workqueue on which any spi_message request is queued
  298. * @pump_messages: work struct for scheduling work to the workqueue
  299. * @queue_lock: spinlock to syncronise access to message queue
  300. * @queue: message queue
  301. * @busy: workqueue is busy
  302. * @running: workqueue is running
  303. * @pump_transfers: Tasklet used in Interrupt Transfer mode
  304. * @cur_msg: Pointer to current spi_message being processed
  305. * @cur_transfer: Pointer to current spi_transfer
  306. * @cur_chip: pointer to current clients chip(assigned from controller_state)
  307. * @tx: current position in TX buffer to be read
  308. * @tx_end: end position in TX buffer to be read
  309. * @rx: current position in RX buffer to be written
  310. * @rx_end: end position in RX buffer to be written
  311. * @read: the type of read currently going on
  312. * @write: the type of write currently going on
  313. * @exp_fifo_level: expected FIFO level
  314. * @dma_rx_channel: optional channel for RX DMA
  315. * @dma_tx_channel: optional channel for TX DMA
  316. * @sgt_rx: scattertable for the RX transfer
  317. * @sgt_tx: scattertable for the TX transfer
  318. * @dummypage: a dummy page used for driving data on the bus with DMA
  319. */
  320. struct pl022 {
  321. struct amba_device *adev;
  322. struct vendor_data *vendor;
  323. resource_size_t phybase;
  324. void __iomem *virtbase;
  325. struct clk *clk;
  326. struct spi_master *master;
  327. struct pl022_ssp_controller *master_info;
  328. /* Driver message queue */
  329. struct workqueue_struct *workqueue;
  330. struct work_struct pump_messages;
  331. spinlock_t queue_lock;
  332. struct list_head queue;
  333. bool busy;
  334. bool running;
  335. /* Message transfer pump */
  336. struct tasklet_struct pump_transfers;
  337. struct spi_message *cur_msg;
  338. struct spi_transfer *cur_transfer;
  339. struct chip_data *cur_chip;
  340. void *tx;
  341. void *tx_end;
  342. void *rx;
  343. void *rx_end;
  344. enum ssp_reading read;
  345. enum ssp_writing write;
  346. u32 exp_fifo_level;
  347. enum ssp_rx_level_trig rx_lev_trig;
  348. enum ssp_tx_level_trig tx_lev_trig;
  349. /* DMA settings */
  350. #ifdef CONFIG_DMA_ENGINE
  351. struct dma_chan *dma_rx_channel;
  352. struct dma_chan *dma_tx_channel;
  353. struct sg_table sgt_rx;
  354. struct sg_table sgt_tx;
  355. char *dummypage;
  356. #endif
  357. };
  358. /**
  359. * struct chip_data - To maintain runtime state of SSP for each client chip
  360. * @cr0: Value of control register CR0 of SSP - on later ST variants this
  361. * register is 32 bits wide rather than just 16
  362. * @cr1: Value of control register CR1 of SSP
  363. * @dmacr: Value of DMA control Register of SSP
  364. * @cpsr: Value of Clock prescale register
  365. * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
  366. * @enable_dma: Whether to enable DMA or not
  367. * @read: function ptr to be used to read when doing xfer for this chip
  368. * @write: function ptr to be used to write when doing xfer for this chip
  369. * @cs_control: chip select callback provided by chip
  370. * @xfer_type: polling/interrupt/DMA
  371. *
  372. * Runtime state of the SSP controller, maintained per chip,
  373. * This would be set according to the current message that would be served
  374. */
  375. struct chip_data {
  376. u32 cr0;
  377. u16 cr1;
  378. u16 dmacr;
  379. u16 cpsr;
  380. u8 n_bytes;
  381. bool enable_dma;
  382. enum ssp_reading read;
  383. enum ssp_writing write;
  384. void (*cs_control) (u32 command);
  385. int xfer_type;
  386. };
  387. /**
  388. * null_cs_control - Dummy chip select function
  389. * @command: select/delect the chip
  390. *
  391. * If no chip select function is provided by client this is used as dummy
  392. * chip select
  393. */
  394. static void null_cs_control(u32 command)
  395. {
  396. pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
  397. }
  398. /**
  399. * giveback - current spi_message is over, schedule next message and call
  400. * callback of this message. Assumes that caller already
  401. * set message->status; dma and pio irqs are blocked
  402. * @pl022: SSP driver private data structure
  403. */
  404. static void giveback(struct pl022 *pl022)
  405. {
  406. struct spi_transfer *last_transfer;
  407. unsigned long flags;
  408. struct spi_message *msg;
  409. void (*curr_cs_control) (u32 command);
  410. /*
  411. * This local reference to the chip select function
  412. * is needed because we set curr_chip to NULL
  413. * as a step toward termininating the message.
  414. */
  415. curr_cs_control = pl022->cur_chip->cs_control;
  416. spin_lock_irqsave(&pl022->queue_lock, flags);
  417. msg = pl022->cur_msg;
  418. pl022->cur_msg = NULL;
  419. pl022->cur_transfer = NULL;
  420. pl022->cur_chip = NULL;
  421. queue_work(pl022->workqueue, &pl022->pump_messages);
  422. spin_unlock_irqrestore(&pl022->queue_lock, flags);
  423. last_transfer = list_entry(msg->transfers.prev,
  424. struct spi_transfer,
  425. transfer_list);
  426. /* Delay if requested before any change in chip select */
  427. if (last_transfer->delay_usecs)
  428. /*
  429. * FIXME: This runs in interrupt context.
  430. * Is this really smart?
  431. */
  432. udelay(last_transfer->delay_usecs);
  433. /*
  434. * Drop chip select UNLESS cs_change is true or we are returning
  435. * a message with an error, or next message is for another chip
  436. */
  437. if (!last_transfer->cs_change)
  438. curr_cs_control(SSP_CHIP_DESELECT);
  439. else {
  440. struct spi_message *next_msg;
  441. /* Holding of cs was hinted, but we need to make sure
  442. * the next message is for the same chip. Don't waste
  443. * time with the following tests unless this was hinted.
  444. *
  445. * We cannot postpone this until pump_messages, because
  446. * after calling msg->complete (below) the driver that
  447. * sent the current message could be unloaded, which
  448. * could invalidate the cs_control() callback...
  449. */
  450. /* get a pointer to the next message, if any */
  451. spin_lock_irqsave(&pl022->queue_lock, flags);
  452. if (list_empty(&pl022->queue))
  453. next_msg = NULL;
  454. else
  455. next_msg = list_entry(pl022->queue.next,
  456. struct spi_message, queue);
  457. spin_unlock_irqrestore(&pl022->queue_lock, flags);
  458. /* see if the next and current messages point
  459. * to the same chip
  460. */
  461. if (next_msg && next_msg->spi != msg->spi)
  462. next_msg = NULL;
  463. if (!next_msg || msg->state == STATE_ERROR)
  464. curr_cs_control(SSP_CHIP_DESELECT);
  465. }
  466. msg->state = NULL;
  467. if (msg->complete)
  468. msg->complete(msg->context);
  469. /* This message is completed, so let's turn off the clocks & power */
  470. pm_runtime_put(&pl022->adev->dev);
  471. }
  472. /**
  473. * flush - flush the FIFO to reach a clean state
  474. * @pl022: SSP driver private data structure
  475. */
  476. static int flush(struct pl022 *pl022)
  477. {
  478. unsigned long limit = loops_per_jiffy << 1;
  479. dev_dbg(&pl022->adev->dev, "flush\n");
  480. do {
  481. while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
  482. readw(SSP_DR(pl022->virtbase));
  483. } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
  484. pl022->exp_fifo_level = 0;
  485. return limit;
  486. }
  487. /**
  488. * restore_state - Load configuration of current chip
  489. * @pl022: SSP driver private data structure
  490. */
  491. static void restore_state(struct pl022 *pl022)
  492. {
  493. struct chip_data *chip = pl022->cur_chip;
  494. if (pl022->vendor->extended_cr)
  495. writel(chip->cr0, SSP_CR0(pl022->virtbase));
  496. else
  497. writew(chip->cr0, SSP_CR0(pl022->virtbase));
  498. writew(chip->cr1, SSP_CR1(pl022->virtbase));
  499. writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
  500. writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
  501. writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
  502. writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
  503. }
  504. /*
  505. * Default SSP Register Values
  506. */
  507. #define DEFAULT_SSP_REG_CR0 ( \
  508. GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
  509. GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
  510. GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
  511. GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
  512. GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
  513. )
  514. /* ST versions have slightly different bit layout */
  515. #define DEFAULT_SSP_REG_CR0_ST ( \
  516. GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
  517. GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
  518. GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
  519. GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
  520. GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
  521. GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
  522. GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
  523. )
  524. /* The PL023 version is slightly different again */
  525. #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
  526. GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
  527. GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
  528. GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
  529. GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
  530. )
  531. #define DEFAULT_SSP_REG_CR1 ( \
  532. GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
  533. GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
  534. GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
  535. GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
  536. )
  537. /* ST versions extend this register to use all 16 bits */
  538. #define DEFAULT_SSP_REG_CR1_ST ( \
  539. DEFAULT_SSP_REG_CR1 | \
  540. GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
  541. GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
  542. GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
  543. GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
  544. GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
  545. )
  546. /*
  547. * The PL023 variant has further differences: no loopback mode, no microwire
  548. * support, and a new clock feedback delay setting.
  549. */
  550. #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
  551. GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
  552. GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
  553. GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
  554. GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
  555. GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
  556. GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
  557. GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
  558. GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
  559. )
  560. #define DEFAULT_SSP_REG_CPSR ( \
  561. GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
  562. )
  563. #define DEFAULT_SSP_REG_DMACR (\
  564. GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
  565. GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
  566. )
  567. /**
  568. * load_ssp_default_config - Load default configuration for SSP
  569. * @pl022: SSP driver private data structure
  570. */
  571. static void load_ssp_default_config(struct pl022 *pl022)
  572. {
  573. if (pl022->vendor->pl023) {
  574. writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
  575. writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
  576. } else if (pl022->vendor->extended_cr) {
  577. writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
  578. writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
  579. } else {
  580. writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
  581. writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
  582. }
  583. writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
  584. writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
  585. writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
  586. writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
  587. }
  588. /**
  589. * This will write to TX and read from RX according to the parameters
  590. * set in pl022.
  591. */
  592. static void readwriter(struct pl022 *pl022)
  593. {
  594. /*
  595. * The FIFO depth is different between primecell variants.
  596. * I believe filling in too much in the FIFO might cause
  597. * errons in 8bit wide transfers on ARM variants (just 8 words
  598. * FIFO, means only 8x8 = 64 bits in FIFO) at least.
  599. *
  600. * To prevent this issue, the TX FIFO is only filled to the
  601. * unused RX FIFO fill length, regardless of what the TX
  602. * FIFO status flag indicates.
  603. */
  604. dev_dbg(&pl022->adev->dev,
  605. "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
  606. __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
  607. /* Read as much as you can */
  608. while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
  609. && (pl022->rx < pl022->rx_end)) {
  610. switch (pl022->read) {
  611. case READING_NULL:
  612. readw(SSP_DR(pl022->virtbase));
  613. break;
  614. case READING_U8:
  615. *(u8 *) (pl022->rx) =
  616. readw(SSP_DR(pl022->virtbase)) & 0xFFU;
  617. break;
  618. case READING_U16:
  619. *(u16 *) (pl022->rx) =
  620. (u16) readw(SSP_DR(pl022->virtbase));
  621. break;
  622. case READING_U32:
  623. *(u32 *) (pl022->rx) =
  624. readl(SSP_DR(pl022->virtbase));
  625. break;
  626. }
  627. pl022->rx += (pl022->cur_chip->n_bytes);
  628. pl022->exp_fifo_level--;
  629. }
  630. /*
  631. * Write as much as possible up to the RX FIFO size
  632. */
  633. while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
  634. && (pl022->tx < pl022->tx_end)) {
  635. switch (pl022->write) {
  636. case WRITING_NULL:
  637. writew(0x0, SSP_DR(pl022->virtbase));
  638. break;
  639. case WRITING_U8:
  640. writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
  641. break;
  642. case WRITING_U16:
  643. writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
  644. break;
  645. case WRITING_U32:
  646. writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
  647. break;
  648. }
  649. pl022->tx += (pl022->cur_chip->n_bytes);
  650. pl022->exp_fifo_level++;
  651. /*
  652. * This inner reader takes care of things appearing in the RX
  653. * FIFO as we're transmitting. This will happen a lot since the
  654. * clock starts running when you put things into the TX FIFO,
  655. * and then things are continuously clocked into the RX FIFO.
  656. */
  657. while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
  658. && (pl022->rx < pl022->rx_end)) {
  659. switch (pl022->read) {
  660. case READING_NULL:
  661. readw(SSP_DR(pl022->virtbase));
  662. break;
  663. case READING_U8:
  664. *(u8 *) (pl022->rx) =
  665. readw(SSP_DR(pl022->virtbase)) & 0xFFU;
  666. break;
  667. case READING_U16:
  668. *(u16 *) (pl022->rx) =
  669. (u16) readw(SSP_DR(pl022->virtbase));
  670. break;
  671. case READING_U32:
  672. *(u32 *) (pl022->rx) =
  673. readl(SSP_DR(pl022->virtbase));
  674. break;
  675. }
  676. pl022->rx += (pl022->cur_chip->n_bytes);
  677. pl022->exp_fifo_level--;
  678. }
  679. }
  680. /*
  681. * When we exit here the TX FIFO should be full and the RX FIFO
  682. * should be empty
  683. */
  684. }
  685. /**
  686. * next_transfer - Move to the Next transfer in the current spi message
  687. * @pl022: SSP driver private data structure
  688. *
  689. * This function moves though the linked list of spi transfers in the
  690. * current spi message and returns with the state of current spi
  691. * message i.e whether its last transfer is done(STATE_DONE) or
  692. * Next transfer is ready(STATE_RUNNING)
  693. */
  694. static void *next_transfer(struct pl022 *pl022)
  695. {
  696. struct spi_message *msg = pl022->cur_msg;
  697. struct spi_transfer *trans = pl022->cur_transfer;
  698. /* Move to next transfer */
  699. if (trans->transfer_list.next != &msg->transfers) {
  700. pl022->cur_transfer =
  701. list_entry(trans->transfer_list.next,
  702. struct spi_transfer, transfer_list);
  703. return STATE_RUNNING;
  704. }
  705. return STATE_DONE;
  706. }
  707. /*
  708. * This DMA functionality is only compiled in if we have
  709. * access to the generic DMA devices/DMA engine.
  710. */
  711. #ifdef CONFIG_DMA_ENGINE
  712. static void unmap_free_dma_scatter(struct pl022 *pl022)
  713. {
  714. /* Unmap and free the SG tables */
  715. dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
  716. pl022->sgt_tx.nents, DMA_TO_DEVICE);
  717. dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
  718. pl022->sgt_rx.nents, DMA_FROM_DEVICE);
  719. sg_free_table(&pl022->sgt_rx);
  720. sg_free_table(&pl022->sgt_tx);
  721. }
  722. static void dma_callback(void *data)
  723. {
  724. struct pl022 *pl022 = data;
  725. struct spi_message *msg = pl022->cur_msg;
  726. BUG_ON(!pl022->sgt_rx.sgl);
  727. #ifdef VERBOSE_DEBUG
  728. /*
  729. * Optionally dump out buffers to inspect contents, this is
  730. * good if you want to convince yourself that the loopback
  731. * read/write contents are the same, when adopting to a new
  732. * DMA engine.
  733. */
  734. {
  735. struct scatterlist *sg;
  736. unsigned int i;
  737. dma_sync_sg_for_cpu(&pl022->adev->dev,
  738. pl022->sgt_rx.sgl,
  739. pl022->sgt_rx.nents,
  740. DMA_FROM_DEVICE);
  741. for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
  742. dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
  743. print_hex_dump(KERN_ERR, "SPI RX: ",
  744. DUMP_PREFIX_OFFSET,
  745. 16,
  746. 1,
  747. sg_virt(sg),
  748. sg_dma_len(sg),
  749. 1);
  750. }
  751. for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
  752. dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
  753. print_hex_dump(KERN_ERR, "SPI TX: ",
  754. DUMP_PREFIX_OFFSET,
  755. 16,
  756. 1,
  757. sg_virt(sg),
  758. sg_dma_len(sg),
  759. 1);
  760. }
  761. }
  762. #endif
  763. unmap_free_dma_scatter(pl022);
  764. /* Update total bytes transferred */
  765. msg->actual_length += pl022->cur_transfer->len;
  766. if (pl022->cur_transfer->cs_change)
  767. pl022->cur_chip->
  768. cs_control(SSP_CHIP_DESELECT);
  769. /* Move to next transfer */
  770. msg->state = next_transfer(pl022);
  771. tasklet_schedule(&pl022->pump_transfers);
  772. }
  773. static void setup_dma_scatter(struct pl022 *pl022,
  774. void *buffer,
  775. unsigned int length,
  776. struct sg_table *sgtab)
  777. {
  778. struct scatterlist *sg;
  779. int bytesleft = length;
  780. void *bufp = buffer;
  781. int mapbytes;
  782. int i;
  783. if (buffer) {
  784. for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
  785. /*
  786. * If there are less bytes left than what fits
  787. * in the current page (plus page alignment offset)
  788. * we just feed in this, else we stuff in as much
  789. * as we can.
  790. */
  791. if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
  792. mapbytes = bytesleft;
  793. else
  794. mapbytes = PAGE_SIZE - offset_in_page(bufp);
  795. sg_set_page(sg, virt_to_page(bufp),
  796. mapbytes, offset_in_page(bufp));
  797. bufp += mapbytes;
  798. bytesleft -= mapbytes;
  799. dev_dbg(&pl022->adev->dev,
  800. "set RX/TX target page @ %p, %d bytes, %d left\n",
  801. bufp, mapbytes, bytesleft);
  802. }
  803. } else {
  804. /* Map the dummy buffer on every page */
  805. for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
  806. if (bytesleft < PAGE_SIZE)
  807. mapbytes = bytesleft;
  808. else
  809. mapbytes = PAGE_SIZE;
  810. sg_set_page(sg, virt_to_page(pl022->dummypage),
  811. mapbytes, 0);
  812. bytesleft -= mapbytes;
  813. dev_dbg(&pl022->adev->dev,
  814. "set RX/TX to dummy page %d bytes, %d left\n",
  815. mapbytes, bytesleft);
  816. }
  817. }
  818. BUG_ON(bytesleft);
  819. }
  820. /**
  821. * configure_dma - configures the channels for the next transfer
  822. * @pl022: SSP driver's private data structure
  823. */
  824. static int configure_dma(struct pl022 *pl022)
  825. {
  826. struct dma_slave_config rx_conf = {
  827. .src_addr = SSP_DR(pl022->phybase),
  828. .direction = DMA_FROM_DEVICE,
  829. };
  830. struct dma_slave_config tx_conf = {
  831. .dst_addr = SSP_DR(pl022->phybase),
  832. .direction = DMA_TO_DEVICE,
  833. };
  834. unsigned int pages;
  835. int ret;
  836. int rx_sglen, tx_sglen;
  837. struct dma_chan *rxchan = pl022->dma_rx_channel;
  838. struct dma_chan *txchan = pl022->dma_tx_channel;
  839. struct dma_async_tx_descriptor *rxdesc;
  840. struct dma_async_tx_descriptor *txdesc;
  841. /* Check that the channels are available */
  842. if (!rxchan || !txchan)
  843. return -ENODEV;
  844. /*
  845. * If supplied, the DMA burstsize should equal the FIFO trigger level.
  846. * Notice that the DMA engine uses one-to-one mapping. Since we can
  847. * not trigger on 2 elements this needs explicit mapping rather than
  848. * calculation.
  849. */
  850. switch (pl022->rx_lev_trig) {
  851. case SSP_RX_1_OR_MORE_ELEM:
  852. rx_conf.src_maxburst = 1;
  853. break;
  854. case SSP_RX_4_OR_MORE_ELEM:
  855. rx_conf.src_maxburst = 4;
  856. break;
  857. case SSP_RX_8_OR_MORE_ELEM:
  858. rx_conf.src_maxburst = 8;
  859. break;
  860. case SSP_RX_16_OR_MORE_ELEM:
  861. rx_conf.src_maxburst = 16;
  862. break;
  863. case SSP_RX_32_OR_MORE_ELEM:
  864. rx_conf.src_maxburst = 32;
  865. break;
  866. default:
  867. rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
  868. break;
  869. }
  870. switch (pl022->tx_lev_trig) {
  871. case SSP_TX_1_OR_MORE_EMPTY_LOC:
  872. tx_conf.dst_maxburst = 1;
  873. break;
  874. case SSP_TX_4_OR_MORE_EMPTY_LOC:
  875. tx_conf.dst_maxburst = 4;
  876. break;
  877. case SSP_TX_8_OR_MORE_EMPTY_LOC:
  878. tx_conf.dst_maxburst = 8;
  879. break;
  880. case SSP_TX_16_OR_MORE_EMPTY_LOC:
  881. tx_conf.dst_maxburst = 16;
  882. break;
  883. case SSP_TX_32_OR_MORE_EMPTY_LOC:
  884. tx_conf.dst_maxburst = 32;
  885. break;
  886. default:
  887. tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
  888. break;
  889. }
  890. switch (pl022->read) {
  891. case READING_NULL:
  892. /* Use the same as for writing */
  893. rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
  894. break;
  895. case READING_U8:
  896. rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  897. break;
  898. case READING_U16:
  899. rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
  900. break;
  901. case READING_U32:
  902. rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  903. break;
  904. }
  905. switch (pl022->write) {
  906. case WRITING_NULL:
  907. /* Use the same as for reading */
  908. tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
  909. break;
  910. case WRITING_U8:
  911. tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  912. break;
  913. case WRITING_U16:
  914. tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
  915. break;
  916. case WRITING_U32:
  917. tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  918. break;
  919. }
  920. /* SPI pecularity: we need to read and write the same width */
  921. if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  922. rx_conf.src_addr_width = tx_conf.dst_addr_width;
  923. if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  924. tx_conf.dst_addr_width = rx_conf.src_addr_width;
  925. BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
  926. dmaengine_slave_config(rxchan, &rx_conf);
  927. dmaengine_slave_config(txchan, &tx_conf);
  928. /* Create sglists for the transfers */
  929. pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
  930. dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
  931. ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
  932. if (ret)
  933. goto err_alloc_rx_sg;
  934. ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
  935. if (ret)
  936. goto err_alloc_tx_sg;
  937. /* Fill in the scatterlists for the RX+TX buffers */
  938. setup_dma_scatter(pl022, pl022->rx,
  939. pl022->cur_transfer->len, &pl022->sgt_rx);
  940. setup_dma_scatter(pl022, pl022->tx,
  941. pl022->cur_transfer->len, &pl022->sgt_tx);
  942. /* Map DMA buffers */
  943. rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
  944. pl022->sgt_rx.nents, DMA_FROM_DEVICE);
  945. if (!rx_sglen)
  946. goto err_rx_sgmap;
  947. tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
  948. pl022->sgt_tx.nents, DMA_TO_DEVICE);
  949. if (!tx_sglen)
  950. goto err_tx_sgmap;
  951. /* Send both scatterlists */
  952. rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
  953. pl022->sgt_rx.sgl,
  954. rx_sglen,
  955. DMA_FROM_DEVICE,
  956. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  957. if (!rxdesc)
  958. goto err_rxdesc;
  959. txdesc = txchan->device->device_prep_slave_sg(txchan,
  960. pl022->sgt_tx.sgl,
  961. tx_sglen,
  962. DMA_TO_DEVICE,
  963. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  964. if (!txdesc)
  965. goto err_txdesc;
  966. /* Put the callback on the RX transfer only, that should finish last */
  967. rxdesc->callback = dma_callback;
  968. rxdesc->callback_param = pl022;
  969. /* Submit and fire RX and TX with TX last so we're ready to read! */
  970. dmaengine_submit(rxdesc);
  971. dmaengine_submit(txdesc);
  972. dma_async_issue_pending(rxchan);
  973. dma_async_issue_pending(txchan);
  974. return 0;
  975. err_txdesc:
  976. dmaengine_terminate_all(txchan);
  977. err_rxdesc:
  978. dmaengine_terminate_all(rxchan);
  979. dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
  980. pl022->sgt_tx.nents, DMA_TO_DEVICE);
  981. err_tx_sgmap:
  982. dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
  983. pl022->sgt_tx.nents, DMA_FROM_DEVICE);
  984. err_rx_sgmap:
  985. sg_free_table(&pl022->sgt_tx);
  986. err_alloc_tx_sg:
  987. sg_free_table(&pl022->sgt_rx);
  988. err_alloc_rx_sg:
  989. return -ENOMEM;
  990. }
  991. static int __init pl022_dma_probe(struct pl022 *pl022)
  992. {
  993. dma_cap_mask_t mask;
  994. /* Try to acquire a generic DMA engine slave channel */
  995. dma_cap_zero(mask);
  996. dma_cap_set(DMA_SLAVE, mask);
  997. /*
  998. * We need both RX and TX channels to do DMA, else do none
  999. * of them.
  1000. */
  1001. pl022->dma_rx_channel = dma_request_channel(mask,
  1002. pl022->master_info->dma_filter,
  1003. pl022->master_info->dma_rx_param);
  1004. if (!pl022->dma_rx_channel) {
  1005. dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
  1006. goto err_no_rxchan;
  1007. }
  1008. pl022->dma_tx_channel = dma_request_channel(mask,
  1009. pl022->master_info->dma_filter,
  1010. pl022->master_info->dma_tx_param);
  1011. if (!pl022->dma_tx_channel) {
  1012. dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
  1013. goto err_no_txchan;
  1014. }
  1015. pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1016. if (!pl022->dummypage) {
  1017. dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
  1018. goto err_no_dummypage;
  1019. }
  1020. dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
  1021. dma_chan_name(pl022->dma_rx_channel),
  1022. dma_chan_name(pl022->dma_tx_channel));
  1023. return 0;
  1024. err_no_dummypage:
  1025. dma_release_channel(pl022->dma_tx_channel);
  1026. err_no_txchan:
  1027. dma_release_channel(pl022->dma_rx_channel);
  1028. pl022->dma_rx_channel = NULL;
  1029. err_no_rxchan:
  1030. dev_err(&pl022->adev->dev,
  1031. "Failed to work in dma mode, work without dma!\n");
  1032. return -ENODEV;
  1033. }
  1034. static void terminate_dma(struct pl022 *pl022)
  1035. {
  1036. struct dma_chan *rxchan = pl022->dma_rx_channel;
  1037. struct dma_chan *txchan = pl022->dma_tx_channel;
  1038. dmaengine_terminate_all(rxchan);
  1039. dmaengine_terminate_all(txchan);
  1040. unmap_free_dma_scatter(pl022);
  1041. }
  1042. static void pl022_dma_remove(struct pl022 *pl022)
  1043. {
  1044. if (pl022->busy)
  1045. terminate_dma(pl022);
  1046. if (pl022->dma_tx_channel)
  1047. dma_release_channel(pl022->dma_tx_channel);
  1048. if (pl022->dma_rx_channel)
  1049. dma_release_channel(pl022->dma_rx_channel);
  1050. kfree(pl022->dummypage);
  1051. }
  1052. #else
  1053. static inline int configure_dma(struct pl022 *pl022)
  1054. {
  1055. return -ENODEV;
  1056. }
  1057. static inline int pl022_dma_probe(struct pl022 *pl022)
  1058. {
  1059. return 0;
  1060. }
  1061. static inline void pl022_dma_remove(struct pl022 *pl022)
  1062. {
  1063. }
  1064. #endif
  1065. /**
  1066. * pl022_interrupt_handler - Interrupt handler for SSP controller
  1067. *
  1068. * This function handles interrupts generated for an interrupt based transfer.
  1069. * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
  1070. * current message's state as STATE_ERROR and schedule the tasklet
  1071. * pump_transfers which will do the postprocessing of the current message by
  1072. * calling giveback(). Otherwise it reads data from RX FIFO till there is no
  1073. * more data, and writes data in TX FIFO till it is not full. If we complete
  1074. * the transfer we move to the next transfer and schedule the tasklet.
  1075. */
  1076. static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
  1077. {
  1078. struct pl022 *pl022 = dev_id;
  1079. struct spi_message *msg = pl022->cur_msg;
  1080. u16 irq_status = 0;
  1081. u16 flag = 0;
  1082. if (unlikely(!msg)) {
  1083. dev_err(&pl022->adev->dev,
  1084. "bad message state in interrupt handler");
  1085. /* Never fail */
  1086. return IRQ_HANDLED;
  1087. }
  1088. /* Read the Interrupt Status Register */
  1089. irq_status = readw(SSP_MIS(pl022->virtbase));
  1090. if (unlikely(!irq_status))
  1091. return IRQ_NONE;
  1092. /*
  1093. * This handles the FIFO interrupts, the timeout
  1094. * interrupts are flatly ignored, they cannot be
  1095. * trusted.
  1096. */
  1097. if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
  1098. /*
  1099. * Overrun interrupt - bail out since our Data has been
  1100. * corrupted
  1101. */
  1102. dev_err(&pl022->adev->dev, "FIFO overrun\n");
  1103. if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
  1104. dev_err(&pl022->adev->dev,
  1105. "RXFIFO is full\n");
  1106. if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
  1107. dev_err(&pl022->adev->dev,
  1108. "TXFIFO is full\n");
  1109. /*
  1110. * Disable and clear interrupts, disable SSP,
  1111. * mark message with bad status so it can be
  1112. * retried.
  1113. */
  1114. writew(DISABLE_ALL_INTERRUPTS,
  1115. SSP_IMSC(pl022->virtbase));
  1116. writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
  1117. writew((readw(SSP_CR1(pl022->virtbase)) &
  1118. (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
  1119. msg->state = STATE_ERROR;
  1120. /* Schedule message queue handler */
  1121. tasklet_schedule(&pl022->pump_transfers);
  1122. return IRQ_HANDLED;
  1123. }
  1124. readwriter(pl022);
  1125. if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
  1126. flag = 1;
  1127. /* Disable Transmit interrupt */
  1128. writew(readw(SSP_IMSC(pl022->virtbase)) &
  1129. (~SSP_IMSC_MASK_TXIM),
  1130. SSP_IMSC(pl022->virtbase));
  1131. }
  1132. /*
  1133. * Since all transactions must write as much as shall be read,
  1134. * we can conclude the entire transaction once RX is complete.
  1135. * At this point, all TX will always be finished.
  1136. */
  1137. if (pl022->rx >= pl022->rx_end) {
  1138. writew(DISABLE_ALL_INTERRUPTS,
  1139. SSP_IMSC(pl022->virtbase));
  1140. writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
  1141. if (unlikely(pl022->rx > pl022->rx_end)) {
  1142. dev_warn(&pl022->adev->dev, "read %u surplus "
  1143. "bytes (did you request an odd "
  1144. "number of bytes on a 16bit bus?)\n",
  1145. (u32) (pl022->rx - pl022->rx_end));
  1146. }
  1147. /* Update total bytes transferred */
  1148. msg->actual_length += pl022->cur_transfer->len;
  1149. if (pl022->cur_transfer->cs_change)
  1150. pl022->cur_chip->
  1151. cs_control(SSP_CHIP_DESELECT);
  1152. /* Move to next transfer */
  1153. msg->state = next_transfer(pl022);
  1154. tasklet_schedule(&pl022->pump_transfers);
  1155. return IRQ_HANDLED;
  1156. }
  1157. return IRQ_HANDLED;
  1158. }
  1159. /**
  1160. * This sets up the pointers to memory for the next message to
  1161. * send out on the SPI bus.
  1162. */
  1163. static int set_up_next_transfer(struct pl022 *pl022,
  1164. struct spi_transfer *transfer)
  1165. {
  1166. int residue;
  1167. /* Sanity check the message for this bus width */
  1168. residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
  1169. if (unlikely(residue != 0)) {
  1170. dev_err(&pl022->adev->dev,
  1171. "message of %u bytes to transmit but the current "
  1172. "chip bus has a data width of %u bytes!\n",
  1173. pl022->cur_transfer->len,
  1174. pl022->cur_chip->n_bytes);
  1175. dev_err(&pl022->adev->dev, "skipping this message\n");
  1176. return -EIO;
  1177. }
  1178. pl022->tx = (void *)transfer->tx_buf;
  1179. pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
  1180. pl022->rx = (void *)transfer->rx_buf;
  1181. pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
  1182. pl022->write =
  1183. pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
  1184. pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
  1185. return 0;
  1186. }
  1187. /**
  1188. * pump_transfers - Tasklet function which schedules next transfer
  1189. * when running in interrupt or DMA transfer mode.
  1190. * @data: SSP driver private data structure
  1191. *
  1192. */
  1193. static void pump_transfers(unsigned long data)
  1194. {
  1195. struct pl022 *pl022 = (struct pl022 *) data;
  1196. struct spi_message *message = NULL;
  1197. struct spi_transfer *transfer = NULL;
  1198. struct spi_transfer *previous = NULL;
  1199. /* Get current state information */
  1200. message = pl022->cur_msg;
  1201. transfer = pl022->cur_transfer;
  1202. /* Handle for abort */
  1203. if (message->state == STATE_ERROR) {
  1204. message->status = -EIO;
  1205. giveback(pl022);
  1206. return;
  1207. }
  1208. /* Handle end of message */
  1209. if (message->state == STATE_DONE) {
  1210. message->status = 0;
  1211. giveback(pl022);
  1212. return;
  1213. }
  1214. /* Delay if requested at end of transfer before CS change */
  1215. if (message->state == STATE_RUNNING) {
  1216. previous = list_entry(transfer->transfer_list.prev,
  1217. struct spi_transfer,
  1218. transfer_list);
  1219. if (previous->delay_usecs)
  1220. /*
  1221. * FIXME: This runs in interrupt context.
  1222. * Is this really smart?
  1223. */
  1224. udelay(previous->delay_usecs);
  1225. /* Drop chip select only if cs_change is requested */
  1226. if (previous->cs_change)
  1227. pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
  1228. } else {
  1229. /* STATE_START */
  1230. message->state = STATE_RUNNING;
  1231. }
  1232. if (set_up_next_transfer(pl022, transfer)) {
  1233. message->state = STATE_ERROR;
  1234. message->status = -EIO;
  1235. giveback(pl022);
  1236. return;
  1237. }
  1238. /* Flush the FIFOs and let's go! */
  1239. flush(pl022);
  1240. if (pl022->cur_chip->enable_dma) {
  1241. if (configure_dma(pl022)) {
  1242. dev_dbg(&pl022->adev->dev,
  1243. "configuration of DMA failed, fall back to interrupt mode\n");
  1244. goto err_config_dma;
  1245. }
  1246. return;
  1247. }
  1248. err_config_dma:
  1249. writew(ENABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
  1250. }
  1251. static void do_interrupt_dma_transfer(struct pl022 *pl022)
  1252. {
  1253. u32 irqflags = ENABLE_ALL_INTERRUPTS;
  1254. /* Enable target chip */
  1255. pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
  1256. if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
  1257. /* Error path */
  1258. pl022->cur_msg->state = STATE_ERROR;
  1259. pl022->cur_msg->status = -EIO;
  1260. giveback(pl022);
  1261. return;
  1262. }
  1263. /* If we're using DMA, set up DMA here */
  1264. if (pl022->cur_chip->enable_dma) {
  1265. /* Configure DMA transfer */
  1266. if (configure_dma(pl022)) {
  1267. dev_dbg(&pl022->adev->dev,
  1268. "configuration of DMA failed, fall back to interrupt mode\n");
  1269. goto err_config_dma;
  1270. }
  1271. /* Disable interrupts in DMA mode, IRQ from DMA controller */
  1272. irqflags = DISABLE_ALL_INTERRUPTS;
  1273. }
  1274. err_config_dma:
  1275. /* Enable SSP, turn on interrupts */
  1276. writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
  1277. SSP_CR1(pl022->virtbase));
  1278. writew(irqflags, SSP_IMSC(pl022->virtbase));
  1279. }
  1280. static void do_polling_transfer(struct pl022 *pl022)
  1281. {
  1282. struct spi_message *message = NULL;
  1283. struct spi_transfer *transfer = NULL;
  1284. struct spi_transfer *previous = NULL;
  1285. struct chip_data *chip;
  1286. unsigned long time, timeout;
  1287. chip = pl022->cur_chip;
  1288. message = pl022->cur_msg;
  1289. while (message->state != STATE_DONE) {
  1290. /* Handle for abort */
  1291. if (message->state == STATE_ERROR)
  1292. break;
  1293. transfer = pl022->cur_transfer;
  1294. /* Delay if requested at end of transfer */
  1295. if (message->state == STATE_RUNNING) {
  1296. previous =
  1297. list_entry(transfer->transfer_list.prev,
  1298. struct spi_transfer, transfer_list);
  1299. if (previous->delay_usecs)
  1300. udelay(previous->delay_usecs);
  1301. if (previous->cs_change)
  1302. pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
  1303. } else {
  1304. /* STATE_START */
  1305. message->state = STATE_RUNNING;
  1306. pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
  1307. }
  1308. /* Configuration Changing Per Transfer */
  1309. if (set_up_next_transfer(pl022, transfer)) {
  1310. /* Error path */
  1311. message->state = STATE_ERROR;
  1312. break;
  1313. }
  1314. /* Flush FIFOs and enable SSP */
  1315. flush(pl022);
  1316. writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
  1317. SSP_CR1(pl022->virtbase));
  1318. dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
  1319. timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
  1320. while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
  1321. time = jiffies;
  1322. readwriter(pl022);
  1323. if (time_after(time, timeout)) {
  1324. dev_warn(&pl022->adev->dev,
  1325. "%s: timeout!\n", __func__);
  1326. message->state = STATE_ERROR;
  1327. goto out;
  1328. }
  1329. cpu_relax();
  1330. }
  1331. /* Update total byte transferred */
  1332. message->actual_length += pl022->cur_transfer->len;
  1333. if (pl022->cur_transfer->cs_change)
  1334. pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
  1335. /* Move to next transfer */
  1336. message->state = next_transfer(pl022);
  1337. }
  1338. out:
  1339. /* Handle end of message */
  1340. if (message->state == STATE_DONE)
  1341. message->status = 0;
  1342. else
  1343. message->status = -EIO;
  1344. giveback(pl022);
  1345. return;
  1346. }
  1347. /**
  1348. * pump_messages - Workqueue function which processes spi message queue
  1349. * @data: pointer to private data of SSP driver
  1350. *
  1351. * This function checks if there is any spi message in the queue that
  1352. * needs processing and delegate control to appropriate function
  1353. * do_polling_transfer()/do_interrupt_dma_transfer()
  1354. * based on the kind of the transfer
  1355. *
  1356. */
  1357. static void pump_messages(struct work_struct *work)
  1358. {
  1359. struct pl022 *pl022 =
  1360. container_of(work, struct pl022, pump_messages);
  1361. unsigned long flags;
  1362. /* Lock queue and check for queue work */
  1363. spin_lock_irqsave(&pl022->queue_lock, flags);
  1364. if (list_empty(&pl022->queue) || !pl022->running) {
  1365. pl022->busy = false;
  1366. spin_unlock_irqrestore(&pl022->queue_lock, flags);
  1367. return;
  1368. }
  1369. /* Make sure we are not already running a message */
  1370. if (pl022->cur_msg) {
  1371. spin_unlock_irqrestore(&pl022->queue_lock, flags);
  1372. return;
  1373. }
  1374. /* Extract head of queue */
  1375. pl022->cur_msg =
  1376. list_entry(pl022->queue.next, struct spi_message, queue);
  1377. list_del_init(&pl022->cur_msg->queue);
  1378. pl022->busy = true;
  1379. spin_unlock_irqrestore(&pl022->queue_lock, flags);
  1380. /* Initial message state */
  1381. pl022->cur_msg->state = STATE_START;
  1382. pl022->cur_transfer = list_entry(pl022->cur_msg->transfers.next,
  1383. struct spi_transfer, transfer_list);
  1384. /* Setup the SPI using the per chip configuration */
  1385. pl022->cur_chip = spi_get_ctldata(pl022->cur_msg->spi);
  1386. /*
  1387. * We enable the core voltage and clocks here, then the clocks
  1388. * and core will be disabled when giveback() is called in each method
  1389. * (poll/interrupt/DMA)
  1390. */
  1391. pm_runtime_get_sync(&pl022->adev->dev);
  1392. restore_state(pl022);
  1393. flush(pl022);
  1394. if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
  1395. do_polling_transfer(pl022);
  1396. else
  1397. do_interrupt_dma_transfer(pl022);
  1398. }
  1399. static int __init init_queue(struct pl022 *pl022)
  1400. {
  1401. INIT_LIST_HEAD(&pl022->queue);
  1402. spin_lock_init(&pl022->queue_lock);
  1403. pl022->running = false;
  1404. pl022->busy = false;
  1405. tasklet_init(&pl022->pump_transfers, pump_transfers,
  1406. (unsigned long)pl022);
  1407. INIT_WORK(&pl022->pump_messages, pump_messages);
  1408. pl022->workqueue = create_singlethread_workqueue(
  1409. dev_name(pl022->master->dev.parent));
  1410. if (pl022->workqueue == NULL)
  1411. return -EBUSY;
  1412. return 0;
  1413. }
  1414. static int start_queue(struct pl022 *pl022)
  1415. {
  1416. unsigned long flags;
  1417. spin_lock_irqsave(&pl022->queue_lock, flags);
  1418. if (pl022->running || pl022->busy) {
  1419. spin_unlock_irqrestore(&pl022->queue_lock, flags);
  1420. return -EBUSY;
  1421. }
  1422. pl022->running = true;
  1423. pl022->cur_msg = NULL;
  1424. pl022->cur_transfer = NULL;
  1425. pl022->cur_chip = NULL;
  1426. spin_unlock_irqrestore(&pl022->queue_lock, flags);
  1427. queue_work(pl022->workqueue, &pl022->pump_messages);
  1428. return 0;
  1429. }
  1430. static int stop_queue(struct pl022 *pl022)
  1431. {
  1432. unsigned long flags;
  1433. unsigned limit = 500;
  1434. int status = 0;
  1435. spin_lock_irqsave(&pl022->queue_lock, flags);
  1436. /* This is a bit lame, but is optimized for the common execution path.
  1437. * A wait_queue on the pl022->busy could be used, but then the common
  1438. * execution path (pump_messages) would be required to call wake_up or
  1439. * friends on every SPI message. Do this instead */
  1440. while ((!list_empty(&pl022->queue) || pl022->busy) && limit--) {
  1441. spin_unlock_irqrestore(&pl022->queue_lock, flags);
  1442. msleep(10);
  1443. spin_lock_irqsave(&pl022->queue_lock, flags);
  1444. }
  1445. if (!list_empty(&pl022->queue) || pl022->busy)
  1446. status = -EBUSY;
  1447. else
  1448. pl022->running = false;
  1449. spin_unlock_irqrestore(&pl022->queue_lock, flags);
  1450. return status;
  1451. }
  1452. static int destroy_queue(struct pl022 *pl022)
  1453. {
  1454. int status;
  1455. status = stop_queue(pl022);
  1456. /* we are unloading the module or failing to load (only two calls
  1457. * to this routine), and neither call can handle a return value.
  1458. * However, destroy_workqueue calls flush_workqueue, and that will
  1459. * block until all work is done. If the reason that stop_queue
  1460. * timed out is that the work will never finish, then it does no
  1461. * good to call destroy_workqueue, so return anyway. */
  1462. if (status != 0)
  1463. return status;
  1464. destroy_workqueue(pl022->workqueue);
  1465. return 0;
  1466. }
  1467. static int verify_controller_parameters(struct pl022 *pl022,
  1468. struct pl022_config_chip const *chip_info)
  1469. {
  1470. if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
  1471. || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
  1472. dev_err(&pl022->adev->dev,
  1473. "interface is configured incorrectly\n");
  1474. return -EINVAL;
  1475. }
  1476. if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
  1477. (!pl022->vendor->unidir)) {
  1478. dev_err(&pl022->adev->dev,
  1479. "unidirectional mode not supported in this "
  1480. "hardware version\n");
  1481. return -EINVAL;
  1482. }
  1483. if ((chip_info->hierarchy != SSP_MASTER)
  1484. && (chip_info->hierarchy != SSP_SLAVE)) {
  1485. dev_err(&pl022->adev->dev,
  1486. "hierarchy is configured incorrectly\n");
  1487. return -EINVAL;
  1488. }
  1489. if ((chip_info->com_mode != INTERRUPT_TRANSFER)
  1490. && (chip_info->com_mode != DMA_TRANSFER)
  1491. && (chip_info->com_mode != POLLING_TRANSFER)) {
  1492. dev_err(&pl022->adev->dev,
  1493. "Communication mode is configured incorrectly\n");
  1494. return -EINVAL;
  1495. }
  1496. switch (chip_info->rx_lev_trig) {
  1497. case SSP_RX_1_OR_MORE_ELEM:
  1498. case SSP_RX_4_OR_MORE_ELEM:
  1499. case SSP_RX_8_OR_MORE_ELEM:
  1500. /* These are always OK, all variants can handle this */
  1501. break;
  1502. case SSP_RX_16_OR_MORE_ELEM:
  1503. if (pl022->vendor->fifodepth < 16) {
  1504. dev_err(&pl022->adev->dev,
  1505. "RX FIFO Trigger Level is configured incorrectly\n");
  1506. return -EINVAL;
  1507. }
  1508. break;
  1509. case SSP_RX_32_OR_MORE_ELEM:
  1510. if (pl022->vendor->fifodepth < 32) {
  1511. dev_err(&pl022->adev->dev,
  1512. "RX FIFO Trigger Level is configured incorrectly\n");
  1513. return -EINVAL;
  1514. }
  1515. break;
  1516. default:
  1517. dev_err(&pl022->adev->dev,
  1518. "RX FIFO Trigger Level is configured incorrectly\n");
  1519. return -EINVAL;
  1520. break;
  1521. }
  1522. switch (chip_info->tx_lev_trig) {
  1523. case SSP_TX_1_OR_MORE_EMPTY_LOC:
  1524. case SSP_TX_4_OR_MORE_EMPTY_LOC:
  1525. case SSP_TX_8_OR_MORE_EMPTY_LOC:
  1526. /* These are always OK, all variants can handle this */
  1527. break;
  1528. case SSP_TX_16_OR_MORE_EMPTY_LOC:
  1529. if (pl022->vendor->fifodepth < 16) {
  1530. dev_err(&pl022->adev->dev,
  1531. "TX FIFO Trigger Level is configured incorrectly\n");
  1532. return -EINVAL;
  1533. }
  1534. break;
  1535. case SSP_TX_32_OR_MORE_EMPTY_LOC:
  1536. if (pl022->vendor->fifodepth < 32) {
  1537. dev_err(&pl022->adev->dev,
  1538. "TX FIFO Trigger Level is configured incorrectly\n");
  1539. return -EINVAL;
  1540. }
  1541. break;
  1542. default:
  1543. dev_err(&pl022->adev->dev,
  1544. "TX FIFO Trigger Level is configured incorrectly\n");
  1545. return -EINVAL;
  1546. break;
  1547. }
  1548. if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
  1549. if ((chip_info->ctrl_len < SSP_BITS_4)
  1550. || (chip_info->ctrl_len > SSP_BITS_32)) {
  1551. dev_err(&pl022->adev->dev,
  1552. "CTRL LEN is configured incorrectly\n");
  1553. return -EINVAL;
  1554. }
  1555. if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
  1556. && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
  1557. dev_err(&pl022->adev->dev,
  1558. "Wait State is configured incorrectly\n");
  1559. return -EINVAL;
  1560. }
  1561. /* Half duplex is only available in the ST Micro version */
  1562. if (pl022->vendor->extended_cr) {
  1563. if ((chip_info->duplex !=
  1564. SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
  1565. && (chip_info->duplex !=
  1566. SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
  1567. dev_err(&pl022->adev->dev,
  1568. "Microwire duplex mode is configured incorrectly\n");
  1569. return -EINVAL;
  1570. }
  1571. } else {
  1572. if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
  1573. dev_err(&pl022->adev->dev,
  1574. "Microwire half duplex mode requested,"
  1575. " but this is only available in the"
  1576. " ST version of PL022\n");
  1577. return -EINVAL;
  1578. }
  1579. }
  1580. return 0;
  1581. }
  1582. /**
  1583. * pl022_transfer - transfer function registered to SPI master framework
  1584. * @spi: spi device which is requesting transfer
  1585. * @msg: spi message which is to handled is queued to driver queue
  1586. *
  1587. * This function is registered to the SPI framework for this SPI master
  1588. * controller. It will queue the spi_message in the queue of driver if
  1589. * the queue is not stopped and return.
  1590. */
  1591. static int pl022_transfer(struct spi_device *spi, struct spi_message *msg)
  1592. {
  1593. struct pl022 *pl022 = spi_master_get_devdata(spi->master);
  1594. unsigned long flags;
  1595. spin_lock_irqsave(&pl022->queue_lock, flags);
  1596. if (!pl022->running) {
  1597. spin_unlock_irqrestore(&pl022->queue_lock, flags);
  1598. return -ESHUTDOWN;
  1599. }
  1600. msg->actual_length = 0;
  1601. msg->status = -EINPROGRESS;
  1602. msg->state = STATE_START;
  1603. list_add_tail(&msg->queue, &pl022->queue);
  1604. if (pl022->running && !pl022->busy)
  1605. queue_work(pl022->workqueue, &pl022->pump_messages);
  1606. spin_unlock_irqrestore(&pl022->queue_lock, flags);
  1607. return 0;
  1608. }
  1609. static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
  1610. {
  1611. return rate / (cpsdvsr * (1 + scr));
  1612. }
  1613. static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
  1614. ssp_clock_params * clk_freq)
  1615. {
  1616. /* Lets calculate the frequency parameters */
  1617. u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
  1618. u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
  1619. best_scr = 0, tmp, found = 0;
  1620. rate = clk_get_rate(pl022->clk);
  1621. /* cpsdvscr = 2 & scr 0 */
  1622. max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
  1623. /* cpsdvsr = 254 & scr = 255 */
  1624. min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
  1625. if (!((freq <= max_tclk) && (freq >= min_tclk))) {
  1626. dev_err(&pl022->adev->dev,
  1627. "controller data is incorrect: out of range frequency");
  1628. return -EINVAL;
  1629. }
  1630. /*
  1631. * best_freq will give closest possible available rate (<= requested
  1632. * freq) for all values of scr & cpsdvsr.
  1633. */
  1634. while ((cpsdvsr <= CPSDVR_MAX) && !found) {
  1635. while (scr <= SCR_MAX) {
  1636. tmp = spi_rate(rate, cpsdvsr, scr);
  1637. if (tmp > freq)
  1638. scr++;
  1639. /*
  1640. * If found exact value, update and break.
  1641. * If found more closer value, update and continue.
  1642. */
  1643. else if ((tmp == freq) || (tmp > best_freq)) {
  1644. best_freq = tmp;
  1645. best_cpsdvsr = cpsdvsr;
  1646. best_scr = scr;
  1647. if (tmp == freq)
  1648. break;
  1649. }
  1650. scr++;
  1651. }
  1652. cpsdvsr += 2;
  1653. scr = SCR_MIN;
  1654. }
  1655. clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
  1656. clk_freq->scr = (u8) (best_scr & 0xFF);
  1657. dev_dbg(&pl022->adev->dev,
  1658. "SSP Target Frequency is: %u, Effective Frequency is %u\n",
  1659. freq, best_freq);
  1660. dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
  1661. clk_freq->cpsdvsr, clk_freq->scr);
  1662. return 0;
  1663. }
  1664. /*
  1665. * A piece of default chip info unless the platform
  1666. * supplies it.
  1667. */
  1668. static const struct pl022_config_chip pl022_default_chip_info = {
  1669. .com_mode = POLLING_TRANSFER,
  1670. .iface = SSP_INTERFACE_MOTOROLA_SPI,
  1671. .hierarchy = SSP_SLAVE,
  1672. .slave_tx_disable = DO_NOT_DRIVE_TX,
  1673. .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
  1674. .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
  1675. .ctrl_len = SSP_BITS_8,
  1676. .wait_state = SSP_MWIRE_WAIT_ZERO,
  1677. .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
  1678. .cs_control = null_cs_control,
  1679. };
  1680. /**
  1681. * pl022_setup - setup function registered to SPI master framework
  1682. * @spi: spi device which is requesting setup
  1683. *
  1684. * This function is registered to the SPI framework for this SPI master
  1685. * controller. If it is the first time when setup is called by this device,
  1686. * this function will initialize the runtime state for this chip and save
  1687. * the same in the device structure. Else it will update the runtime info
  1688. * with the updated chip info. Nothing is really being written to the
  1689. * controller hardware here, that is not done until the actual transfer
  1690. * commence.
  1691. */
  1692. static int pl022_setup(struct spi_device *spi)
  1693. {
  1694. struct pl022_config_chip const *chip_info;
  1695. struct chip_data *chip;
  1696. struct ssp_clock_params clk_freq = {0, };
  1697. int status = 0;
  1698. struct pl022 *pl022 = spi_master_get_devdata(spi->master);
  1699. unsigned int bits = spi->bits_per_word;
  1700. u32 tmp;
  1701. if (!spi->max_speed_hz)
  1702. return -EINVAL;
  1703. /* Get controller_state if one is supplied */
  1704. chip = spi_get_ctldata(spi);
  1705. if (chip == NULL) {
  1706. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  1707. if (!chip) {
  1708. dev_err(&spi->dev,
  1709. "cannot allocate controller state\n");
  1710. return -ENOMEM;
  1711. }
  1712. dev_dbg(&spi->dev,
  1713. "allocated memory for controller's runtime state\n");
  1714. }
  1715. /* Get controller data if one is supplied */
  1716. chip_info = spi->controller_data;
  1717. if (chip_info == NULL) {
  1718. chip_info = &pl022_default_chip_info;
  1719. /* spi_board_info.controller_data not is supplied */
  1720. dev_dbg(&spi->dev,
  1721. "using default controller_data settings\n");
  1722. } else
  1723. dev_dbg(&spi->dev,
  1724. "using user supplied controller_data settings\n");
  1725. /*
  1726. * We can override with custom divisors, else we use the board
  1727. * frequency setting
  1728. */
  1729. if ((0 == chip_info->clk_freq.cpsdvsr)
  1730. && (0 == chip_info->clk_freq.scr)) {
  1731. status = calculate_effective_freq(pl022,
  1732. spi->max_speed_hz,
  1733. &clk_freq);
  1734. if (status < 0)
  1735. goto err_config_params;
  1736. } else {
  1737. memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
  1738. if ((clk_freq.cpsdvsr % 2) != 0)
  1739. clk_freq.cpsdvsr =
  1740. clk_freq.cpsdvsr - 1;
  1741. }
  1742. if ((clk_freq.cpsdvsr < CPSDVR_MIN)
  1743. || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
  1744. status = -EINVAL;
  1745. dev_err(&spi->dev,
  1746. "cpsdvsr is configured incorrectly\n");
  1747. goto err_config_params;
  1748. }
  1749. status = verify_controller_parameters(pl022, chip_info);
  1750. if (status) {
  1751. dev_err(&spi->dev, "controller data is incorrect");
  1752. goto err_config_params;
  1753. }
  1754. pl022->rx_lev_trig = chip_info->rx_lev_trig;
  1755. pl022->tx_lev_trig = chip_info->tx_lev_trig;
  1756. /* Now set controller state based on controller data */
  1757. chip->xfer_type = chip_info->com_mode;
  1758. if (!chip_info->cs_control) {
  1759. chip->cs_control = null_cs_control;
  1760. dev_warn(&spi->dev,
  1761. "chip select function is NULL for this chip\n");
  1762. } else
  1763. chip->cs_control = chip_info->cs_control;
  1764. if (bits <= 3) {
  1765. /* PL022 doesn't support less than 4-bits */
  1766. status = -ENOTSUPP;
  1767. goto err_config_params;
  1768. } else if (bits <= 8) {
  1769. dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
  1770. chip->n_bytes = 1;
  1771. chip->read = READING_U8;
  1772. chip->write = WRITING_U8;
  1773. } else if (bits <= 16) {
  1774. dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
  1775. chip->n_bytes = 2;
  1776. chip->read = READING_U16;
  1777. chip->write = WRITING_U16;
  1778. } else {
  1779. if (pl022->vendor->max_bpw >= 32) {
  1780. dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
  1781. chip->n_bytes = 4;
  1782. chip->read = READING_U32;
  1783. chip->write = WRITING_U32;
  1784. } else {
  1785. dev_err(&spi->dev,
  1786. "illegal data size for this controller!\n");
  1787. dev_err(&spi->dev,
  1788. "a standard pl022 can only handle "
  1789. "1 <= n <= 16 bit words\n");
  1790. status = -ENOTSUPP;
  1791. goto err_config_params;
  1792. }
  1793. }
  1794. /* Now Initialize all register settings required for this chip */
  1795. chip->cr0 = 0;
  1796. chip->cr1 = 0;
  1797. chip->dmacr = 0;
  1798. chip->cpsr = 0;
  1799. if ((chip_info->com_mode == DMA_TRANSFER)
  1800. && ((pl022->master_info)->enable_dma)) {
  1801. chip->enable_dma = true;
  1802. dev_dbg(&spi->dev, "DMA mode set in controller state\n");
  1803. SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
  1804. SSP_DMACR_MASK_RXDMAE, 0);
  1805. SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
  1806. SSP_DMACR_MASK_TXDMAE, 1);
  1807. } else {
  1808. chip->enable_dma = false;
  1809. dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
  1810. SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
  1811. SSP_DMACR_MASK_RXDMAE, 0);
  1812. SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
  1813. SSP_DMACR_MASK_TXDMAE, 1);
  1814. }
  1815. chip->cpsr = clk_freq.cpsdvsr;
  1816. /* Special setup for the ST micro extended control registers */
  1817. if (pl022->vendor->extended_cr) {
  1818. u32 etx;
  1819. if (pl022->vendor->pl023) {
  1820. /* These bits are only in the PL023 */
  1821. SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
  1822. SSP_CR1_MASK_FBCLKDEL_ST, 13);
  1823. } else {
  1824. /* These bits are in the PL022 but not PL023 */
  1825. SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
  1826. SSP_CR0_MASK_HALFDUP_ST, 5);
  1827. SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
  1828. SSP_CR0_MASK_CSS_ST, 16);
  1829. SSP_WRITE_BITS(chip->cr0, chip_info->iface,
  1830. SSP_CR0_MASK_FRF_ST, 21);
  1831. SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
  1832. SSP_CR1_MASK_MWAIT_ST, 6);
  1833. }
  1834. SSP_WRITE_BITS(chip->cr0, bits - 1,
  1835. SSP_CR0_MASK_DSS_ST, 0);
  1836. if (spi->mode & SPI_LSB_FIRST) {
  1837. tmp = SSP_RX_LSB;
  1838. etx = SSP_TX_LSB;
  1839. } else {
  1840. tmp = SSP_RX_MSB;
  1841. etx = SSP_TX_MSB;
  1842. }
  1843. SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
  1844. SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
  1845. SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
  1846. SSP_CR1_MASK_RXIFLSEL_ST, 7);
  1847. SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
  1848. SSP_CR1_MASK_TXIFLSEL_ST, 10);
  1849. } else {
  1850. SSP_WRITE_BITS(chip->cr0, bits - 1,
  1851. SSP_CR0_MASK_DSS, 0);
  1852. SSP_WRITE_BITS(chip->cr0, chip_info->iface,
  1853. SSP_CR0_MASK_FRF, 4);
  1854. }
  1855. /* Stuff that is common for all versions */
  1856. if (spi->mode & SPI_CPOL)
  1857. tmp = SSP_CLK_POL_IDLE_HIGH;
  1858. else
  1859. tmp = SSP_CLK_POL_IDLE_LOW;
  1860. SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
  1861. if (spi->mode & SPI_CPHA)
  1862. tmp = SSP_CLK_SECOND_EDGE;
  1863. else
  1864. tmp = SSP_CLK_FIRST_EDGE;
  1865. SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
  1866. SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
  1867. /* Loopback is available on all versions except PL023 */
  1868. if (pl022->vendor->loopback) {
  1869. if (spi->mode & SPI_LOOP)
  1870. tmp = LOOPBACK_ENABLED;
  1871. else
  1872. tmp = LOOPBACK_DISABLED;
  1873. SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
  1874. }
  1875. SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
  1876. SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
  1877. SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
  1878. 3);
  1879. /* Save controller_state */
  1880. spi_set_ctldata(spi, chip);
  1881. return status;
  1882. err_config_params:
  1883. spi_set_ctldata(spi, NULL);
  1884. kfree(chip);
  1885. return status;
  1886. }
  1887. /**
  1888. * pl022_cleanup - cleanup function registered to SPI master framework
  1889. * @spi: spi device which is requesting cleanup
  1890. *
  1891. * This function is registered to the SPI framework for this SPI master
  1892. * controller. It will free the runtime state of chip.
  1893. */
  1894. static void pl022_cleanup(struct spi_device *spi)
  1895. {
  1896. struct chip_data *chip = spi_get_ctldata(spi);
  1897. spi_set_ctldata(spi, NULL);
  1898. kfree(chip);
  1899. }
  1900. static int __devinit
  1901. pl022_probe(struct amba_device *adev, const struct amba_id *id)
  1902. {
  1903. struct device *dev = &adev->dev;
  1904. struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
  1905. struct spi_master *master;
  1906. struct pl022 *pl022 = NULL; /*Data for this driver */
  1907. int status = 0;
  1908. dev_info(&adev->dev,
  1909. "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
  1910. if (platform_info == NULL) {
  1911. dev_err(&adev->dev, "probe - no platform data supplied\n");
  1912. status = -ENODEV;
  1913. goto err_no_pdata;
  1914. }
  1915. /* Allocate master with space for data */
  1916. master = spi_alloc_master(dev, sizeof(struct pl022));
  1917. if (master == NULL) {
  1918. dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
  1919. status = -ENOMEM;
  1920. goto err_no_master;
  1921. }
  1922. pl022 = spi_master_get_devdata(master);
  1923. pl022->master = master;
  1924. pl022->master_info = platform_info;
  1925. pl022->adev = adev;
  1926. pl022->vendor = id->data;
  1927. /*
  1928. * Bus Number Which has been Assigned to this SSP controller
  1929. * on this board
  1930. */
  1931. master->bus_num = platform_info->bus_id;
  1932. master->num_chipselect = platform_info->num_chipselect;
  1933. master->cleanup = pl022_cleanup;
  1934. master->setup = pl022_setup;
  1935. master->transfer = pl022_transfer;
  1936. /*
  1937. * Supports mode 0-3, loopback, and active low CS. Transfers are
  1938. * always MS bit first on the original pl022.
  1939. */
  1940. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
  1941. if (pl022->vendor->extended_cr)
  1942. master->mode_bits |= SPI_LSB_FIRST;
  1943. dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
  1944. status = amba_request_regions(adev, NULL);
  1945. if (status)
  1946. goto err_no_ioregion;
  1947. pl022->phybase = adev->res.start;
  1948. pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
  1949. if (pl022->virtbase == NULL) {
  1950. status = -ENOMEM;
  1951. goto err_no_ioremap;
  1952. }
  1953. printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
  1954. adev->res.start, pl022->virtbase);
  1955. pl022->clk = clk_get(&adev->dev, NULL);
  1956. if (IS_ERR(pl022->clk)) {
  1957. status = PTR_ERR(pl022->clk);
  1958. dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
  1959. goto err_no_clk;
  1960. }
  1961. status = clk_prepare(pl022->clk);
  1962. if (status) {
  1963. dev_err(&adev->dev, "could not prepare SSP/SPI bus clock\n");
  1964. goto err_clk_prep;
  1965. }
  1966. /* Disable SSP */
  1967. writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
  1968. SSP_CR1(pl022->virtbase));
  1969. load_ssp_default_config(pl022);
  1970. status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
  1971. pl022);
  1972. if (status < 0) {
  1973. dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
  1974. goto err_no_irq;
  1975. }
  1976. /* Get DMA channels */
  1977. if (platform_info->enable_dma) {
  1978. status = pl022_dma_probe(pl022);
  1979. if (status != 0)
  1980. platform_info->enable_dma = 0;
  1981. }
  1982. /* Initialize and start queue */
  1983. status = init_queue(pl022);
  1984. if (status != 0) {
  1985. dev_err(&adev->dev, "probe - problem initializing queue\n");
  1986. goto err_init_queue;
  1987. }
  1988. status = start_queue(pl022);
  1989. if (status != 0) {
  1990. dev_err(&adev->dev, "probe - problem starting queue\n");
  1991. goto err_start_queue;
  1992. }
  1993. /* Register with the SPI framework */
  1994. amba_set_drvdata(adev, pl022);
  1995. status = spi_register_master(master);
  1996. if (status != 0) {
  1997. dev_err(&adev->dev,
  1998. "probe - problem registering spi master\n");
  1999. goto err_spi_register;
  2000. }
  2001. dev_dbg(dev, "probe succeeded\n");
  2002. /* let runtime pm put suspend */
  2003. pm_runtime_put(dev);
  2004. return 0;
  2005. err_spi_register:
  2006. err_start_queue:
  2007. err_init_queue:
  2008. destroy_queue(pl022);
  2009. if (platform_info->enable_dma)
  2010. pl022_dma_remove(pl022);
  2011. free_irq(adev->irq[0], pl022);
  2012. err_no_irq:
  2013. clk_unprepare(pl022->clk);
  2014. err_clk_prep:
  2015. clk_put(pl022->clk);
  2016. err_no_clk:
  2017. iounmap(pl022->virtbase);
  2018. err_no_ioremap:
  2019. amba_release_regions(adev);
  2020. err_no_ioregion:
  2021. spi_master_put(master);
  2022. err_no_master:
  2023. err_no_pdata:
  2024. return status;
  2025. }
  2026. static int __devexit
  2027. pl022_remove(struct amba_device *adev)
  2028. {
  2029. struct pl022 *pl022 = amba_get_drvdata(adev);
  2030. if (!pl022)
  2031. return 0;
  2032. /*
  2033. * undo pm_runtime_put() in probe. I assume that we're not
  2034. * accessing the primecell here.
  2035. */
  2036. pm_runtime_get_noresume(&adev->dev);
  2037. /* Remove the queue */
  2038. if (destroy_queue(pl022) != 0)
  2039. dev_err(&adev->dev, "queue remove failed\n");
  2040. load_ssp_default_config(pl022);
  2041. if (pl022->master_info->enable_dma)
  2042. pl022_dma_remove(pl022);
  2043. free_irq(adev->irq[0], pl022);
  2044. clk_disable(pl022->clk);
  2045. clk_unprepare(pl022->clk);
  2046. clk_put(pl022->clk);
  2047. iounmap(pl022->virtbase);
  2048. amba_release_regions(adev);
  2049. tasklet_disable(&pl022->pump_transfers);
  2050. spi_unregister_master(pl022->master);
  2051. spi_master_put(pl022->master);
  2052. amba_set_drvdata(adev, NULL);
  2053. return 0;
  2054. }
  2055. #ifdef CONFIG_SUSPEND
  2056. static int pl022_suspend(struct device *dev)
  2057. {
  2058. struct pl022 *pl022 = dev_get_drvdata(dev);
  2059. int status = 0;
  2060. status = stop_queue(pl022);
  2061. if (status) {
  2062. dev_warn(dev, "suspend cannot stop queue\n");
  2063. return status;
  2064. }
  2065. amba_vcore_enable(pl022->adev);
  2066. amba_pclk_enable(pl022->adev);
  2067. load_ssp_default_config(pl022);
  2068. amba_pclk_disable(pl022->adev);
  2069. amba_vcore_disable(pl022->adev);
  2070. dev_dbg(dev, "suspended\n");
  2071. return 0;
  2072. }
  2073. static int pl022_resume(struct device *dev)
  2074. {
  2075. struct pl022 *pl022 = dev_get_drvdata(dev);
  2076. int status = 0;
  2077. /* Start the queue running */
  2078. status = start_queue(pl022);
  2079. if (status)
  2080. dev_err(dev, "problem starting queue (%d)\n", status);
  2081. else
  2082. dev_dbg(dev, "resumed\n");
  2083. return status;
  2084. }
  2085. #endif /* CONFIG_PM */
  2086. #ifdef CONFIG_PM_RUNTIME
  2087. static int pl022_runtime_suspend(struct device *dev)
  2088. {
  2089. struct pl022 *pl022 = dev_get_drvdata(dev);
  2090. clk_disable(pl022->clk);
  2091. amba_vcore_disable(pl022->adev);
  2092. return 0;
  2093. }
  2094. static int pl022_runtime_resume(struct device *dev)
  2095. {
  2096. struct pl022 *pl022 = dev_get_drvdata(dev);
  2097. amba_vcore_enable(pl022->adev);
  2098. clk_enable(pl022->clk);
  2099. return 0;
  2100. }
  2101. #endif
  2102. static const struct dev_pm_ops pl022_dev_pm_ops = {
  2103. SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
  2104. SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
  2105. };
  2106. static struct vendor_data vendor_arm = {
  2107. .fifodepth = 8,
  2108. .max_bpw = 16,
  2109. .unidir = false,
  2110. .extended_cr = false,
  2111. .pl023 = false,
  2112. .loopback = true,
  2113. };
  2114. static struct vendor_data vendor_st = {
  2115. .fifodepth = 32,
  2116. .max_bpw = 32,
  2117. .unidir = false,
  2118. .extended_cr = true,
  2119. .pl023 = false,
  2120. .loopback = true,
  2121. };
  2122. static struct vendor_data vendor_st_pl023 = {
  2123. .fifodepth = 32,
  2124. .max_bpw = 32,
  2125. .unidir = false,
  2126. .extended_cr = true,
  2127. .pl023 = true,
  2128. .loopback = false,
  2129. };
  2130. static struct vendor_data vendor_db5500_pl023 = {
  2131. .fifodepth = 32,
  2132. .max_bpw = 32,
  2133. .unidir = false,
  2134. .extended_cr = true,
  2135. .pl023 = true,
  2136. .loopback = true,
  2137. };
  2138. static struct amba_id pl022_ids[] = {
  2139. {
  2140. /*
  2141. * ARM PL022 variant, this has a 16bit wide
  2142. * and 8 locations deep TX/RX FIFO
  2143. */
  2144. .id = 0x00041022,
  2145. .mask = 0x000fffff,
  2146. .data = &vendor_arm,
  2147. },
  2148. {
  2149. /*
  2150. * ST Micro derivative, this has 32bit wide
  2151. * and 32 locations deep TX/RX FIFO
  2152. */
  2153. .id = 0x01080022,
  2154. .mask = 0xffffffff,
  2155. .data = &vendor_st,
  2156. },
  2157. {
  2158. /*
  2159. * ST-Ericsson derivative "PL023" (this is not
  2160. * an official ARM number), this is a PL022 SSP block
  2161. * stripped to SPI mode only, it has 32bit wide
  2162. * and 32 locations deep TX/RX FIFO but no extended
  2163. * CR0/CR1 register
  2164. */
  2165. .id = 0x00080023,
  2166. .mask = 0xffffffff,
  2167. .data = &vendor_st_pl023,
  2168. },
  2169. {
  2170. .id = 0x10080023,
  2171. .mask = 0xffffffff,
  2172. .data = &vendor_db5500_pl023,
  2173. },
  2174. { 0, 0 },
  2175. };
  2176. static struct amba_driver pl022_driver = {
  2177. .drv = {
  2178. .name = "ssp-pl022",
  2179. .pm = &pl022_dev_pm_ops,
  2180. },
  2181. .id_table = pl022_ids,
  2182. .probe = pl022_probe,
  2183. .remove = __devexit_p(pl022_remove),
  2184. };
  2185. static int __init pl022_init(void)
  2186. {
  2187. return amba_driver_register(&pl022_driver);
  2188. }
  2189. subsys_initcall(pl022_init);
  2190. static void __exit pl022_exit(void)
  2191. {
  2192. amba_driver_unregister(&pl022_driver);
  2193. }
  2194. module_exit(pl022_exit);
  2195. MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
  2196. MODULE_DESCRIPTION("PL022 SSP Controller Driver");
  2197. MODULE_LICENSE("GPL");