spi-dw.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939
  1. /*
  2. * Designware SPI core controller driver (refer pxa2xx_spi.c)
  3. *
  4. * Copyright (c) 2009, Intel Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. */
  19. #include <linux/dma-mapping.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/module.h>
  22. #include <linux/highmem.h>
  23. #include <linux/delay.h>
  24. #include <linux/slab.h>
  25. #include <linux/spi/spi.h>
  26. #include "spi-dw.h"
  27. #ifdef CONFIG_DEBUG_FS
  28. #include <linux/debugfs.h>
  29. #endif
  30. #define START_STATE ((void *)0)
  31. #define RUNNING_STATE ((void *)1)
  32. #define DONE_STATE ((void *)2)
  33. #define ERROR_STATE ((void *)-1)
  34. #define QUEUE_RUNNING 0
  35. #define QUEUE_STOPPED 1
  36. #define MRST_SPI_DEASSERT 0
  37. #define MRST_SPI_ASSERT 1
  38. /* Slave spi_dev related */
  39. struct chip_data {
  40. u16 cr0;
  41. u8 cs; /* chip select pin */
  42. u8 n_bytes; /* current is a 1/2/4 byte op */
  43. u8 tmode; /* TR/TO/RO/EEPROM */
  44. u8 type; /* SPI/SSP/MicroWire */
  45. u8 poll_mode; /* 1 means use poll mode */
  46. u32 dma_width;
  47. u32 rx_threshold;
  48. u32 tx_threshold;
  49. u8 enable_dma;
  50. u8 bits_per_word;
  51. u16 clk_div; /* baud rate divider */
  52. u32 speed_hz; /* baud rate */
  53. void (*cs_control)(u32 command);
  54. };
  55. #ifdef CONFIG_DEBUG_FS
  56. static int spi_show_regs_open(struct inode *inode, struct file *file)
  57. {
  58. file->private_data = inode->i_private;
  59. return 0;
  60. }
  61. #define SPI_REGS_BUFSIZE 1024
  62. static ssize_t spi_show_regs(struct file *file, char __user *user_buf,
  63. size_t count, loff_t *ppos)
  64. {
  65. struct dw_spi *dws;
  66. char *buf;
  67. u32 len = 0;
  68. ssize_t ret;
  69. dws = file->private_data;
  70. buf = kzalloc(SPI_REGS_BUFSIZE, GFP_KERNEL);
  71. if (!buf)
  72. return 0;
  73. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  74. "MRST SPI0 registers:\n");
  75. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  76. "=================================\n");
  77. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  78. "CTRL0: \t\t0x%08x\n", dw_readl(dws, DW_SPI_CTRL0));
  79. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  80. "CTRL1: \t\t0x%08x\n", dw_readl(dws, DW_SPI_CTRL1));
  81. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  82. "SSIENR: \t0x%08x\n", dw_readl(dws, DW_SPI_SSIENR));
  83. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  84. "SER: \t\t0x%08x\n", dw_readl(dws, DW_SPI_SER));
  85. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  86. "BAUDR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_BAUDR));
  87. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  88. "TXFTLR: \t0x%08x\n", dw_readl(dws, DW_SPI_TXFLTR));
  89. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  90. "RXFTLR: \t0x%08x\n", dw_readl(dws, DW_SPI_RXFLTR));
  91. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  92. "TXFLR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_TXFLR));
  93. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  94. "RXFLR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_RXFLR));
  95. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  96. "SR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_SR));
  97. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  98. "IMR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_IMR));
  99. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  100. "ISR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_ISR));
  101. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  102. "DMACR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_DMACR));
  103. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  104. "DMATDLR: \t0x%08x\n", dw_readl(dws, DW_SPI_DMATDLR));
  105. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  106. "DMARDLR: \t0x%08x\n", dw_readl(dws, DW_SPI_DMARDLR));
  107. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  108. "=================================\n");
  109. ret = simple_read_from_buffer(user_buf, count, ppos, buf, len);
  110. kfree(buf);
  111. return ret;
  112. }
  113. static const struct file_operations mrst_spi_regs_ops = {
  114. .owner = THIS_MODULE,
  115. .open = spi_show_regs_open,
  116. .read = spi_show_regs,
  117. .llseek = default_llseek,
  118. };
  119. static int mrst_spi_debugfs_init(struct dw_spi *dws)
  120. {
  121. dws->debugfs = debugfs_create_dir("mrst_spi", NULL);
  122. if (!dws->debugfs)
  123. return -ENOMEM;
  124. debugfs_create_file("registers", S_IFREG | S_IRUGO,
  125. dws->debugfs, (void *)dws, &mrst_spi_regs_ops);
  126. return 0;
  127. }
  128. static void mrst_spi_debugfs_remove(struct dw_spi *dws)
  129. {
  130. if (dws->debugfs)
  131. debugfs_remove_recursive(dws->debugfs);
  132. }
  133. #else
  134. static inline int mrst_spi_debugfs_init(struct dw_spi *dws)
  135. {
  136. return 0;
  137. }
  138. static inline void mrst_spi_debugfs_remove(struct dw_spi *dws)
  139. {
  140. }
  141. #endif /* CONFIG_DEBUG_FS */
  142. /* Return the max entries we can fill into tx fifo */
  143. static inline u32 tx_max(struct dw_spi *dws)
  144. {
  145. u32 tx_left, tx_room, rxtx_gap;
  146. tx_left = (dws->tx_end - dws->tx) / dws->n_bytes;
  147. tx_room = dws->fifo_len - dw_readw(dws, DW_SPI_TXFLR);
  148. /*
  149. * Another concern is about the tx/rx mismatch, we
  150. * though to use (dws->fifo_len - rxflr - txflr) as
  151. * one maximum value for tx, but it doesn't cover the
  152. * data which is out of tx/rx fifo and inside the
  153. * shift registers. So a control from sw point of
  154. * view is taken.
  155. */
  156. rxtx_gap = ((dws->rx_end - dws->rx) - (dws->tx_end - dws->tx))
  157. / dws->n_bytes;
  158. return min3(tx_left, tx_room, (u32) (dws->fifo_len - rxtx_gap));
  159. }
  160. /* Return the max entries we should read out of rx fifo */
  161. static inline u32 rx_max(struct dw_spi *dws)
  162. {
  163. u32 rx_left = (dws->rx_end - dws->rx) / dws->n_bytes;
  164. return min(rx_left, (u32)dw_readw(dws, DW_SPI_RXFLR));
  165. }
  166. static void dw_writer(struct dw_spi *dws)
  167. {
  168. u32 max = tx_max(dws);
  169. u16 txw = 0;
  170. while (max--) {
  171. /* Set the tx word if the transfer's original "tx" is not null */
  172. if (dws->tx_end - dws->len) {
  173. if (dws->n_bytes == 1)
  174. txw = *(u8 *)(dws->tx);
  175. else
  176. txw = *(u16 *)(dws->tx);
  177. }
  178. dw_writew(dws, DW_SPI_DR, txw);
  179. dws->tx += dws->n_bytes;
  180. }
  181. }
  182. static void dw_reader(struct dw_spi *dws)
  183. {
  184. u32 max = rx_max(dws);
  185. u16 rxw;
  186. while (max--) {
  187. rxw = dw_readw(dws, DW_SPI_DR);
  188. /* Care rx only if the transfer's original "rx" is not null */
  189. if (dws->rx_end - dws->len) {
  190. if (dws->n_bytes == 1)
  191. *(u8 *)(dws->rx) = rxw;
  192. else
  193. *(u16 *)(dws->rx) = rxw;
  194. }
  195. dws->rx += dws->n_bytes;
  196. }
  197. }
  198. static void *next_transfer(struct dw_spi *dws)
  199. {
  200. struct spi_message *msg = dws->cur_msg;
  201. struct spi_transfer *trans = dws->cur_transfer;
  202. /* Move to next transfer */
  203. if (trans->transfer_list.next != &msg->transfers) {
  204. dws->cur_transfer =
  205. list_entry(trans->transfer_list.next,
  206. struct spi_transfer,
  207. transfer_list);
  208. return RUNNING_STATE;
  209. } else
  210. return DONE_STATE;
  211. }
  212. /*
  213. * Note: first step is the protocol driver prepares
  214. * a dma-capable memory, and this func just need translate
  215. * the virt addr to physical
  216. */
  217. static int map_dma_buffers(struct dw_spi *dws)
  218. {
  219. if (!dws->cur_msg->is_dma_mapped
  220. || !dws->dma_inited
  221. || !dws->cur_chip->enable_dma
  222. || !dws->dma_ops)
  223. return 0;
  224. if (dws->cur_transfer->tx_dma)
  225. dws->tx_dma = dws->cur_transfer->tx_dma;
  226. if (dws->cur_transfer->rx_dma)
  227. dws->rx_dma = dws->cur_transfer->rx_dma;
  228. return 1;
  229. }
  230. /* Caller already set message->status; dma and pio irqs are blocked */
  231. static void giveback(struct dw_spi *dws)
  232. {
  233. struct spi_transfer *last_transfer;
  234. unsigned long flags;
  235. struct spi_message *msg;
  236. spin_lock_irqsave(&dws->lock, flags);
  237. msg = dws->cur_msg;
  238. dws->cur_msg = NULL;
  239. dws->cur_transfer = NULL;
  240. dws->prev_chip = dws->cur_chip;
  241. dws->cur_chip = NULL;
  242. dws->dma_mapped = 0;
  243. queue_work(dws->workqueue, &dws->pump_messages);
  244. spin_unlock_irqrestore(&dws->lock, flags);
  245. last_transfer = list_entry(msg->transfers.prev,
  246. struct spi_transfer,
  247. transfer_list);
  248. if (!last_transfer->cs_change && dws->cs_control)
  249. dws->cs_control(MRST_SPI_DEASSERT);
  250. msg->state = NULL;
  251. if (msg->complete)
  252. msg->complete(msg->context);
  253. }
  254. static void int_error_stop(struct dw_spi *dws, const char *msg)
  255. {
  256. /* Stop the hw */
  257. spi_enable_chip(dws, 0);
  258. dev_err(&dws->master->dev, "%s\n", msg);
  259. dws->cur_msg->state = ERROR_STATE;
  260. tasklet_schedule(&dws->pump_transfers);
  261. }
  262. void dw_spi_xfer_done(struct dw_spi *dws)
  263. {
  264. /* Update total byte transferred return count actual bytes read */
  265. dws->cur_msg->actual_length += dws->len;
  266. /* Move to next transfer */
  267. dws->cur_msg->state = next_transfer(dws);
  268. /* Handle end of message */
  269. if (dws->cur_msg->state == DONE_STATE) {
  270. dws->cur_msg->status = 0;
  271. giveback(dws);
  272. } else
  273. tasklet_schedule(&dws->pump_transfers);
  274. }
  275. EXPORT_SYMBOL_GPL(dw_spi_xfer_done);
  276. static irqreturn_t interrupt_transfer(struct dw_spi *dws)
  277. {
  278. u16 irq_status = dw_readw(dws, DW_SPI_ISR);
  279. /* Error handling */
  280. if (irq_status & (SPI_INT_TXOI | SPI_INT_RXOI | SPI_INT_RXUI)) {
  281. dw_readw(dws, DW_SPI_TXOICR);
  282. dw_readw(dws, DW_SPI_RXOICR);
  283. dw_readw(dws, DW_SPI_RXUICR);
  284. int_error_stop(dws, "interrupt_transfer: fifo overrun/underrun");
  285. return IRQ_HANDLED;
  286. }
  287. dw_reader(dws);
  288. if (dws->rx_end == dws->rx) {
  289. spi_mask_intr(dws, SPI_INT_TXEI);
  290. dw_spi_xfer_done(dws);
  291. return IRQ_HANDLED;
  292. }
  293. if (irq_status & SPI_INT_TXEI) {
  294. spi_mask_intr(dws, SPI_INT_TXEI);
  295. dw_writer(dws);
  296. /* Enable TX irq always, it will be disabled when RX finished */
  297. spi_umask_intr(dws, SPI_INT_TXEI);
  298. }
  299. return IRQ_HANDLED;
  300. }
  301. static irqreturn_t dw_spi_irq(int irq, void *dev_id)
  302. {
  303. struct dw_spi *dws = dev_id;
  304. u16 irq_status = dw_readw(dws, DW_SPI_ISR) & 0x3f;
  305. if (!irq_status)
  306. return IRQ_NONE;
  307. if (!dws->cur_msg) {
  308. spi_mask_intr(dws, SPI_INT_TXEI);
  309. return IRQ_HANDLED;
  310. }
  311. return dws->transfer_handler(dws);
  312. }
  313. /* Must be called inside pump_transfers() */
  314. static void poll_transfer(struct dw_spi *dws)
  315. {
  316. do {
  317. dw_writer(dws);
  318. dw_reader(dws);
  319. cpu_relax();
  320. } while (dws->rx_end > dws->rx);
  321. dw_spi_xfer_done(dws);
  322. }
  323. static void pump_transfers(unsigned long data)
  324. {
  325. struct dw_spi *dws = (struct dw_spi *)data;
  326. struct spi_message *message = NULL;
  327. struct spi_transfer *transfer = NULL;
  328. struct spi_transfer *previous = NULL;
  329. struct spi_device *spi = NULL;
  330. struct chip_data *chip = NULL;
  331. u8 bits = 0;
  332. u8 imask = 0;
  333. u8 cs_change = 0;
  334. u16 txint_level = 0;
  335. u16 clk_div = 0;
  336. u32 speed = 0;
  337. u32 cr0 = 0;
  338. /* Get current state information */
  339. message = dws->cur_msg;
  340. transfer = dws->cur_transfer;
  341. chip = dws->cur_chip;
  342. spi = message->spi;
  343. if (unlikely(!chip->clk_div))
  344. chip->clk_div = dws->max_freq / chip->speed_hz;
  345. if (message->state == ERROR_STATE) {
  346. message->status = -EIO;
  347. goto early_exit;
  348. }
  349. /* Handle end of message */
  350. if (message->state == DONE_STATE) {
  351. message->status = 0;
  352. goto early_exit;
  353. }
  354. /* Delay if requested at end of transfer*/
  355. if (message->state == RUNNING_STATE) {
  356. previous = list_entry(transfer->transfer_list.prev,
  357. struct spi_transfer,
  358. transfer_list);
  359. if (previous->delay_usecs)
  360. udelay(previous->delay_usecs);
  361. }
  362. dws->n_bytes = chip->n_bytes;
  363. dws->dma_width = chip->dma_width;
  364. dws->cs_control = chip->cs_control;
  365. dws->rx_dma = transfer->rx_dma;
  366. dws->tx_dma = transfer->tx_dma;
  367. dws->tx = (void *)transfer->tx_buf;
  368. dws->tx_end = dws->tx + transfer->len;
  369. dws->rx = transfer->rx_buf;
  370. dws->rx_end = dws->rx + transfer->len;
  371. dws->cs_change = transfer->cs_change;
  372. dws->len = dws->cur_transfer->len;
  373. if (chip != dws->prev_chip)
  374. cs_change = 1;
  375. cr0 = chip->cr0;
  376. /* Handle per transfer options for bpw and speed */
  377. if (transfer->speed_hz) {
  378. speed = chip->speed_hz;
  379. if (transfer->speed_hz != speed) {
  380. speed = transfer->speed_hz;
  381. if (speed > dws->max_freq) {
  382. printk(KERN_ERR "MRST SPI0: unsupported"
  383. "freq: %dHz\n", speed);
  384. message->status = -EIO;
  385. goto early_exit;
  386. }
  387. /* clk_div doesn't support odd number */
  388. clk_div = dws->max_freq / speed;
  389. clk_div = (clk_div + 1) & 0xfffe;
  390. chip->speed_hz = speed;
  391. chip->clk_div = clk_div;
  392. }
  393. }
  394. if (transfer->bits_per_word) {
  395. bits = transfer->bits_per_word;
  396. switch (bits) {
  397. case 8:
  398. case 16:
  399. dws->n_bytes = dws->dma_width = bits >> 3;
  400. break;
  401. default:
  402. printk(KERN_ERR "MRST SPI0: unsupported bits:"
  403. "%db\n", bits);
  404. message->status = -EIO;
  405. goto early_exit;
  406. }
  407. cr0 = (bits - 1)
  408. | (chip->type << SPI_FRF_OFFSET)
  409. | (spi->mode << SPI_MODE_OFFSET)
  410. | (chip->tmode << SPI_TMOD_OFFSET);
  411. }
  412. message->state = RUNNING_STATE;
  413. /*
  414. * Adjust transfer mode if necessary. Requires platform dependent
  415. * chipselect mechanism.
  416. */
  417. if (dws->cs_control) {
  418. if (dws->rx && dws->tx)
  419. chip->tmode = SPI_TMOD_TR;
  420. else if (dws->rx)
  421. chip->tmode = SPI_TMOD_RO;
  422. else
  423. chip->tmode = SPI_TMOD_TO;
  424. cr0 &= ~SPI_TMOD_MASK;
  425. cr0 |= (chip->tmode << SPI_TMOD_OFFSET);
  426. }
  427. /* Check if current transfer is a DMA transaction */
  428. dws->dma_mapped = map_dma_buffers(dws);
  429. /*
  430. * Interrupt mode
  431. * we only need set the TXEI IRQ, as TX/RX always happen syncronizely
  432. */
  433. if (!dws->dma_mapped && !chip->poll_mode) {
  434. int templen = dws->len / dws->n_bytes;
  435. txint_level = dws->fifo_len / 2;
  436. txint_level = (templen > txint_level) ? txint_level : templen;
  437. imask |= SPI_INT_TXEI | SPI_INT_TXOI | SPI_INT_RXUI | SPI_INT_RXOI;
  438. dws->transfer_handler = interrupt_transfer;
  439. }
  440. /*
  441. * Reprogram registers only if
  442. * 1. chip select changes
  443. * 2. clk_div is changed
  444. * 3. control value changes
  445. */
  446. if (dw_readw(dws, DW_SPI_CTRL0) != cr0 || cs_change || clk_div || imask) {
  447. spi_enable_chip(dws, 0);
  448. if (dw_readw(dws, DW_SPI_CTRL0) != cr0)
  449. dw_writew(dws, DW_SPI_CTRL0, cr0);
  450. spi_set_clk(dws, clk_div ? clk_div : chip->clk_div);
  451. spi_chip_sel(dws, spi->chip_select);
  452. /* Set the interrupt mask, for poll mode just disable all int */
  453. spi_mask_intr(dws, 0xff);
  454. if (imask)
  455. spi_umask_intr(dws, imask);
  456. if (txint_level)
  457. dw_writew(dws, DW_SPI_TXFLTR, txint_level);
  458. spi_enable_chip(dws, 1);
  459. if (cs_change)
  460. dws->prev_chip = chip;
  461. }
  462. if (dws->dma_mapped)
  463. dws->dma_ops->dma_transfer(dws, cs_change);
  464. if (chip->poll_mode)
  465. poll_transfer(dws);
  466. return;
  467. early_exit:
  468. giveback(dws);
  469. return;
  470. }
  471. static void pump_messages(struct work_struct *work)
  472. {
  473. struct dw_spi *dws =
  474. container_of(work, struct dw_spi, pump_messages);
  475. unsigned long flags;
  476. /* Lock queue and check for queue work */
  477. spin_lock_irqsave(&dws->lock, flags);
  478. if (list_empty(&dws->queue) || dws->run == QUEUE_STOPPED) {
  479. dws->busy = 0;
  480. spin_unlock_irqrestore(&dws->lock, flags);
  481. return;
  482. }
  483. /* Make sure we are not already running a message */
  484. if (dws->cur_msg) {
  485. spin_unlock_irqrestore(&dws->lock, flags);
  486. return;
  487. }
  488. /* Extract head of queue */
  489. dws->cur_msg = list_entry(dws->queue.next, struct spi_message, queue);
  490. list_del_init(&dws->cur_msg->queue);
  491. /* Initial message state*/
  492. dws->cur_msg->state = START_STATE;
  493. dws->cur_transfer = list_entry(dws->cur_msg->transfers.next,
  494. struct spi_transfer,
  495. transfer_list);
  496. dws->cur_chip = spi_get_ctldata(dws->cur_msg->spi);
  497. /* Mark as busy and launch transfers */
  498. tasklet_schedule(&dws->pump_transfers);
  499. dws->busy = 1;
  500. spin_unlock_irqrestore(&dws->lock, flags);
  501. }
  502. /* spi_device use this to queue in their spi_msg */
  503. static int dw_spi_transfer(struct spi_device *spi, struct spi_message *msg)
  504. {
  505. struct dw_spi *dws = spi_master_get_devdata(spi->master);
  506. unsigned long flags;
  507. spin_lock_irqsave(&dws->lock, flags);
  508. if (dws->run == QUEUE_STOPPED) {
  509. spin_unlock_irqrestore(&dws->lock, flags);
  510. return -ESHUTDOWN;
  511. }
  512. msg->actual_length = 0;
  513. msg->status = -EINPROGRESS;
  514. msg->state = START_STATE;
  515. list_add_tail(&msg->queue, &dws->queue);
  516. if (dws->run == QUEUE_RUNNING && !dws->busy) {
  517. if (dws->cur_transfer || dws->cur_msg)
  518. queue_work(dws->workqueue,
  519. &dws->pump_messages);
  520. else {
  521. /* If no other data transaction in air, just go */
  522. spin_unlock_irqrestore(&dws->lock, flags);
  523. pump_messages(&dws->pump_messages);
  524. return 0;
  525. }
  526. }
  527. spin_unlock_irqrestore(&dws->lock, flags);
  528. return 0;
  529. }
  530. /* This may be called twice for each spi dev */
  531. static int dw_spi_setup(struct spi_device *spi)
  532. {
  533. struct dw_spi_chip *chip_info = NULL;
  534. struct chip_data *chip;
  535. if (spi->bits_per_word != 8 && spi->bits_per_word != 16)
  536. return -EINVAL;
  537. /* Only alloc on first setup */
  538. chip = spi_get_ctldata(spi);
  539. if (!chip) {
  540. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  541. if (!chip)
  542. return -ENOMEM;
  543. }
  544. /*
  545. * Protocol drivers may change the chip settings, so...
  546. * if chip_info exists, use it
  547. */
  548. chip_info = spi->controller_data;
  549. /* chip_info doesn't always exist */
  550. if (chip_info) {
  551. if (chip_info->cs_control)
  552. chip->cs_control = chip_info->cs_control;
  553. chip->poll_mode = chip_info->poll_mode;
  554. chip->type = chip_info->type;
  555. chip->rx_threshold = 0;
  556. chip->tx_threshold = 0;
  557. chip->enable_dma = chip_info->enable_dma;
  558. }
  559. if (spi->bits_per_word <= 8) {
  560. chip->n_bytes = 1;
  561. chip->dma_width = 1;
  562. } else if (spi->bits_per_word <= 16) {
  563. chip->n_bytes = 2;
  564. chip->dma_width = 2;
  565. } else {
  566. /* Never take >16b case for MRST SPIC */
  567. dev_err(&spi->dev, "invalid wordsize\n");
  568. return -EINVAL;
  569. }
  570. chip->bits_per_word = spi->bits_per_word;
  571. if (!spi->max_speed_hz) {
  572. dev_err(&spi->dev, "No max speed HZ parameter\n");
  573. return -EINVAL;
  574. }
  575. chip->speed_hz = spi->max_speed_hz;
  576. chip->tmode = 0; /* Tx & Rx */
  577. /* Default SPI mode is SCPOL = 0, SCPH = 0 */
  578. chip->cr0 = (chip->bits_per_word - 1)
  579. | (chip->type << SPI_FRF_OFFSET)
  580. | (spi->mode << SPI_MODE_OFFSET)
  581. | (chip->tmode << SPI_TMOD_OFFSET);
  582. spi_set_ctldata(spi, chip);
  583. return 0;
  584. }
  585. static void dw_spi_cleanup(struct spi_device *spi)
  586. {
  587. struct chip_data *chip = spi_get_ctldata(spi);
  588. kfree(chip);
  589. }
  590. static int __devinit init_queue(struct dw_spi *dws)
  591. {
  592. INIT_LIST_HEAD(&dws->queue);
  593. spin_lock_init(&dws->lock);
  594. dws->run = QUEUE_STOPPED;
  595. dws->busy = 0;
  596. tasklet_init(&dws->pump_transfers,
  597. pump_transfers, (unsigned long)dws);
  598. INIT_WORK(&dws->pump_messages, pump_messages);
  599. dws->workqueue = create_singlethread_workqueue(
  600. dev_name(dws->master->dev.parent));
  601. if (dws->workqueue == NULL)
  602. return -EBUSY;
  603. return 0;
  604. }
  605. static int start_queue(struct dw_spi *dws)
  606. {
  607. unsigned long flags;
  608. spin_lock_irqsave(&dws->lock, flags);
  609. if (dws->run == QUEUE_RUNNING || dws->busy) {
  610. spin_unlock_irqrestore(&dws->lock, flags);
  611. return -EBUSY;
  612. }
  613. dws->run = QUEUE_RUNNING;
  614. dws->cur_msg = NULL;
  615. dws->cur_transfer = NULL;
  616. dws->cur_chip = NULL;
  617. dws->prev_chip = NULL;
  618. spin_unlock_irqrestore(&dws->lock, flags);
  619. queue_work(dws->workqueue, &dws->pump_messages);
  620. return 0;
  621. }
  622. static int stop_queue(struct dw_spi *dws)
  623. {
  624. unsigned long flags;
  625. unsigned limit = 50;
  626. int status = 0;
  627. spin_lock_irqsave(&dws->lock, flags);
  628. dws->run = QUEUE_STOPPED;
  629. while ((!list_empty(&dws->queue) || dws->busy) && limit--) {
  630. spin_unlock_irqrestore(&dws->lock, flags);
  631. msleep(10);
  632. spin_lock_irqsave(&dws->lock, flags);
  633. }
  634. if (!list_empty(&dws->queue) || dws->busy)
  635. status = -EBUSY;
  636. spin_unlock_irqrestore(&dws->lock, flags);
  637. return status;
  638. }
  639. static int destroy_queue(struct dw_spi *dws)
  640. {
  641. int status;
  642. status = stop_queue(dws);
  643. if (status != 0)
  644. return status;
  645. destroy_workqueue(dws->workqueue);
  646. return 0;
  647. }
  648. /* Restart the controller, disable all interrupts, clean rx fifo */
  649. static void spi_hw_init(struct dw_spi *dws)
  650. {
  651. spi_enable_chip(dws, 0);
  652. spi_mask_intr(dws, 0xff);
  653. spi_enable_chip(dws, 1);
  654. /*
  655. * Try to detect the FIFO depth if not set by interface driver,
  656. * the depth could be from 2 to 256 from HW spec
  657. */
  658. if (!dws->fifo_len) {
  659. u32 fifo;
  660. for (fifo = 2; fifo <= 257; fifo++) {
  661. dw_writew(dws, DW_SPI_TXFLTR, fifo);
  662. if (fifo != dw_readw(dws, DW_SPI_TXFLTR))
  663. break;
  664. }
  665. dws->fifo_len = (fifo == 257) ? 0 : fifo;
  666. dw_writew(dws, DW_SPI_TXFLTR, 0);
  667. }
  668. }
  669. int __devinit dw_spi_add_host(struct dw_spi *dws)
  670. {
  671. struct spi_master *master;
  672. int ret;
  673. BUG_ON(dws == NULL);
  674. master = spi_alloc_master(dws->parent_dev, 0);
  675. if (!master) {
  676. ret = -ENOMEM;
  677. goto exit;
  678. }
  679. dws->master = master;
  680. dws->type = SSI_MOTO_SPI;
  681. dws->prev_chip = NULL;
  682. dws->dma_inited = 0;
  683. dws->dma_addr = (dma_addr_t)(dws->paddr + 0x60);
  684. snprintf(dws->name, sizeof(dws->name), "dw_spi%d",
  685. dws->bus_num);
  686. ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED,
  687. dws->name, dws);
  688. if (ret < 0) {
  689. dev_err(&master->dev, "can not get IRQ\n");
  690. goto err_free_master;
  691. }
  692. master->mode_bits = SPI_CPOL | SPI_CPHA;
  693. master->bus_num = dws->bus_num;
  694. master->num_chipselect = dws->num_cs;
  695. master->cleanup = dw_spi_cleanup;
  696. master->setup = dw_spi_setup;
  697. master->transfer = dw_spi_transfer;
  698. /* Basic HW init */
  699. spi_hw_init(dws);
  700. if (dws->dma_ops && dws->dma_ops->dma_init) {
  701. ret = dws->dma_ops->dma_init(dws);
  702. if (ret) {
  703. dev_warn(&master->dev, "DMA init failed\n");
  704. dws->dma_inited = 0;
  705. }
  706. }
  707. /* Initial and start queue */
  708. ret = init_queue(dws);
  709. if (ret) {
  710. dev_err(&master->dev, "problem initializing queue\n");
  711. goto err_diable_hw;
  712. }
  713. ret = start_queue(dws);
  714. if (ret) {
  715. dev_err(&master->dev, "problem starting queue\n");
  716. goto err_diable_hw;
  717. }
  718. spi_master_set_devdata(master, dws);
  719. ret = spi_register_master(master);
  720. if (ret) {
  721. dev_err(&master->dev, "problem registering spi master\n");
  722. goto err_queue_alloc;
  723. }
  724. mrst_spi_debugfs_init(dws);
  725. return 0;
  726. err_queue_alloc:
  727. destroy_queue(dws);
  728. if (dws->dma_ops && dws->dma_ops->dma_exit)
  729. dws->dma_ops->dma_exit(dws);
  730. err_diable_hw:
  731. spi_enable_chip(dws, 0);
  732. free_irq(dws->irq, dws);
  733. err_free_master:
  734. spi_master_put(master);
  735. exit:
  736. return ret;
  737. }
  738. EXPORT_SYMBOL_GPL(dw_spi_add_host);
  739. void __devexit dw_spi_remove_host(struct dw_spi *dws)
  740. {
  741. int status = 0;
  742. if (!dws)
  743. return;
  744. mrst_spi_debugfs_remove(dws);
  745. /* Remove the queue */
  746. status = destroy_queue(dws);
  747. if (status != 0)
  748. dev_err(&dws->master->dev, "dw_spi_remove: workqueue will not "
  749. "complete, message memory not freed\n");
  750. if (dws->dma_ops && dws->dma_ops->dma_exit)
  751. dws->dma_ops->dma_exit(dws);
  752. spi_enable_chip(dws, 0);
  753. /* Disable clk */
  754. spi_set_clk(dws, 0);
  755. free_irq(dws->irq, dws);
  756. /* Disconnect from the SPI framework */
  757. spi_unregister_master(dws->master);
  758. }
  759. EXPORT_SYMBOL_GPL(dw_spi_remove_host);
  760. int dw_spi_suspend_host(struct dw_spi *dws)
  761. {
  762. int ret = 0;
  763. ret = stop_queue(dws);
  764. if (ret)
  765. return ret;
  766. spi_enable_chip(dws, 0);
  767. spi_set_clk(dws, 0);
  768. return ret;
  769. }
  770. EXPORT_SYMBOL_GPL(dw_spi_suspend_host);
  771. int dw_spi_resume_host(struct dw_spi *dws)
  772. {
  773. int ret;
  774. spi_hw_init(dws);
  775. ret = start_queue(dws);
  776. if (ret)
  777. dev_err(&dws->master->dev, "fail to start queue (%d)\n", ret);
  778. return ret;
  779. }
  780. EXPORT_SYMBOL_GPL(dw_spi_resume_host);
  781. MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
  782. MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
  783. MODULE_LICENSE("GPL v2");