efuse.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2010 Realtek Corporation.
  4. *
  5. * Tmis program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * Tmis program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * tmis program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. * Tme full GNU General Public License is included in this distribution in the
  19. * file called LICENSE.
  20. *
  21. * Contact Information:
  22. * wlanfae <wlanfae@realtek.com>
  23. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  24. * Hsinchu 300, Taiwan.
  25. *
  26. * Larry Finger <Larry.Finger@lwfinger.net>
  27. *
  28. *****************************************************************************/
  29. #include <linux/export.h>
  30. #include "wifi.h"
  31. #include "efuse.h"
  32. static const u8 MAX_PGPKT_SIZE = 9;
  33. static const u8 PGPKT_DATA_SIZE = 8;
  34. static const int EFUSE_MAX_SIZE = 512;
  35. static const u8 EFUSE_OOB_PROTECT_BYTES = 15;
  36. static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
  37. {0, 0, 0, 2},
  38. {0, 1, 0, 2},
  39. {0, 2, 0, 2},
  40. {1, 0, 0, 1},
  41. {1, 0, 1, 1},
  42. {1, 1, 0, 1},
  43. {1, 1, 1, 3},
  44. {1, 3, 0, 17},
  45. {3, 3, 1, 48},
  46. {10, 0, 0, 6},
  47. {10, 3, 0, 1},
  48. {10, 3, 1, 1},
  49. {11, 0, 0, 28}
  50. };
  51. static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
  52. u8 *value);
  53. static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
  54. u16 *value);
  55. static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
  56. u32 *value);
  57. static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
  58. u8 value);
  59. static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
  60. u16 value);
  61. static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
  62. u32 value);
  63. static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr,
  64. u8 *data);
  65. static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
  66. u8 data);
  67. static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
  68. static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
  69. u8 *data);
  70. static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
  71. u8 word_en, u8 *data);
  72. static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
  73. u8 *targetdata);
  74. static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
  75. u16 efuse_addr, u8 word_en, u8 *data);
  76. static void efuse_power_switch(struct ieee80211_hw *hw, u8 write,
  77. u8 pwrstate);
  78. static u16 efuse_get_current_size(struct ieee80211_hw *hw);
  79. static u8 efuse_calculate_word_cnts(u8 word_en);
  80. void efuse_initialize(struct ieee80211_hw *hw)
  81. {
  82. struct rtl_priv *rtlpriv = rtl_priv(hw);
  83. u8 bytetemp;
  84. u8 temp;
  85. bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
  86. temp = bytetemp | 0x20;
  87. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
  88. bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
  89. temp = bytetemp & 0xFE;
  90. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
  91. bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
  92. temp = bytetemp | 0x80;
  93. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
  94. rtl_write_byte(rtlpriv, 0x2F8, 0x3);
  95. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
  96. }
  97. u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
  98. {
  99. struct rtl_priv *rtlpriv = rtl_priv(hw);
  100. u8 data;
  101. u8 bytetemp;
  102. u8 temp;
  103. u32 k = 0;
  104. const u32 efuse_len =
  105. rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
  106. if (address < efuse_len) {
  107. temp = address & 0xFF;
  108. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  109. temp);
  110. bytetemp = rtl_read_byte(rtlpriv,
  111. rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
  112. temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
  113. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  114. temp);
  115. bytetemp = rtl_read_byte(rtlpriv,
  116. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  117. temp = bytetemp & 0x7F;
  118. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
  119. temp);
  120. bytetemp = rtl_read_byte(rtlpriv,
  121. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  122. while (!(bytetemp & 0x80)) {
  123. bytetemp = rtl_read_byte(rtlpriv,
  124. rtlpriv->cfg->
  125. maps[EFUSE_CTRL] + 3);
  126. k++;
  127. if (k == 1000) {
  128. k = 0;
  129. break;
  130. }
  131. }
  132. data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  133. return data;
  134. } else
  135. return 0xFF;
  136. }
  137. EXPORT_SYMBOL(efuse_read_1byte);
  138. void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
  139. {
  140. struct rtl_priv *rtlpriv = rtl_priv(hw);
  141. u8 bytetemp;
  142. u8 temp;
  143. u32 k = 0;
  144. const u32 efuse_len =
  145. rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
  146. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  147. ("Addr=%x Data =%x\n", address, value));
  148. if (address < efuse_len) {
  149. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
  150. temp = address & 0xFF;
  151. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  152. temp);
  153. bytetemp = rtl_read_byte(rtlpriv,
  154. rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
  155. temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
  156. rtl_write_byte(rtlpriv,
  157. rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
  158. bytetemp = rtl_read_byte(rtlpriv,
  159. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  160. temp = bytetemp | 0x80;
  161. rtl_write_byte(rtlpriv,
  162. rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
  163. bytetemp = rtl_read_byte(rtlpriv,
  164. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  165. while (bytetemp & 0x80) {
  166. bytetemp = rtl_read_byte(rtlpriv,
  167. rtlpriv->cfg->
  168. maps[EFUSE_CTRL] + 3);
  169. k++;
  170. if (k == 100) {
  171. k = 0;
  172. break;
  173. }
  174. }
  175. }
  176. }
  177. void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
  178. {
  179. struct rtl_priv *rtlpriv = rtl_priv(hw);
  180. u32 value32;
  181. u8 readbyte;
  182. u16 retry;
  183. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  184. (_offset & 0xff));
  185. readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
  186. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  187. ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
  188. readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  189. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
  190. (readbyte & 0x7f));
  191. retry = 0;
  192. value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  193. while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
  194. value32 = rtl_read_dword(rtlpriv,
  195. rtlpriv->cfg->maps[EFUSE_CTRL]);
  196. retry++;
  197. }
  198. udelay(50);
  199. value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  200. *pbuf = (u8) (value32 & 0xff);
  201. }
  202. void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
  203. {
  204. struct rtl_priv *rtlpriv = rtl_priv(hw);
  205. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  206. u8 *efuse_tbl;
  207. u8 rtemp8[1];
  208. u16 efuse_addr = 0;
  209. u8 offset, wren;
  210. u16 i;
  211. u16 j;
  212. const u16 efuse_max_section =
  213. rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
  214. const u32 efuse_len =
  215. rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
  216. u16 **efuse_word;
  217. u16 efuse_utilized = 0;
  218. u8 efuse_usage;
  219. if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
  220. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  221. ("read_efuse(): Invalid offset(%#x) with read "
  222. "bytes(%#x)!!\n", _offset, _size_byte));
  223. return;
  224. }
  225. /* allocate memory for efuse_tbl and efuse_word */
  226. efuse_tbl = kmalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE] *
  227. sizeof(u8), GFP_ATOMIC);
  228. if (!efuse_tbl)
  229. return;
  230. efuse_word = kmalloc(EFUSE_MAX_WORD_UNIT * sizeof(u16 *), GFP_ATOMIC);
  231. if (!efuse_word)
  232. goto done;
  233. for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
  234. efuse_word[i] = kmalloc(efuse_max_section * sizeof(u16),
  235. GFP_ATOMIC);
  236. if (!efuse_word[i])
  237. goto done;
  238. }
  239. for (i = 0; i < efuse_max_section; i++)
  240. for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
  241. efuse_word[j][i] = 0xFFFF;
  242. read_efuse_byte(hw, efuse_addr, rtemp8);
  243. if (*rtemp8 != 0xFF) {
  244. efuse_utilized++;
  245. RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
  246. ("Addr=%d\n", efuse_addr));
  247. efuse_addr++;
  248. }
  249. while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
  250. offset = ((*rtemp8 >> 4) & 0x0f);
  251. if (offset < efuse_max_section) {
  252. wren = (*rtemp8 & 0x0f);
  253. RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
  254. ("offset-%d Worden=%x\n", offset, wren));
  255. for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
  256. if (!(wren & 0x01)) {
  257. RTPRINT(rtlpriv, FEEPROM,
  258. EFUSE_READ_ALL, ("Addr=%d\n",
  259. efuse_addr));
  260. read_efuse_byte(hw, efuse_addr, rtemp8);
  261. efuse_addr++;
  262. efuse_utilized++;
  263. efuse_word[i][offset] =
  264. (*rtemp8 & 0xff);
  265. if (efuse_addr >= efuse_len)
  266. break;
  267. RTPRINT(rtlpriv, FEEPROM,
  268. EFUSE_READ_ALL, ("Addr=%d\n",
  269. efuse_addr));
  270. read_efuse_byte(hw, efuse_addr, rtemp8);
  271. efuse_addr++;
  272. efuse_utilized++;
  273. efuse_word[i][offset] |=
  274. (((u16)*rtemp8 << 8) & 0xff00);
  275. if (efuse_addr >= efuse_len)
  276. break;
  277. }
  278. wren >>= 1;
  279. }
  280. }
  281. RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
  282. ("Addr=%d\n", efuse_addr));
  283. read_efuse_byte(hw, efuse_addr, rtemp8);
  284. if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
  285. efuse_utilized++;
  286. efuse_addr++;
  287. }
  288. }
  289. for (i = 0; i < efuse_max_section; i++) {
  290. for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
  291. efuse_tbl[(i * 8) + (j * 2)] =
  292. (efuse_word[j][i] & 0xff);
  293. efuse_tbl[(i * 8) + ((j * 2) + 1)] =
  294. ((efuse_word[j][i] >> 8) & 0xff);
  295. }
  296. }
  297. for (i = 0; i < _size_byte; i++)
  298. pbuf[i] = efuse_tbl[_offset + i];
  299. rtlefuse->efuse_usedbytes = efuse_utilized;
  300. efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len);
  301. rtlefuse->efuse_usedpercentage = efuse_usage;
  302. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
  303. (u8 *)&efuse_utilized);
  304. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
  305. (u8 *)&efuse_usage);
  306. done:
  307. for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
  308. kfree(efuse_word[i]);
  309. kfree(efuse_word);
  310. kfree(efuse_tbl);
  311. }
  312. bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
  313. {
  314. struct rtl_priv *rtlpriv = rtl_priv(hw);
  315. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  316. u8 section_idx, i, Base;
  317. u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
  318. bool wordchanged, result = true;
  319. for (section_idx = 0; section_idx < 16; section_idx++) {
  320. Base = section_idx * 8;
  321. wordchanged = false;
  322. for (i = 0; i < 8; i = i + 2) {
  323. if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] !=
  324. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) ||
  325. (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] !=
  326. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i +
  327. 1])) {
  328. words_need++;
  329. wordchanged = true;
  330. }
  331. }
  332. if (wordchanged)
  333. hdr_num++;
  334. }
  335. totalbytes = hdr_num + words_need * 2;
  336. efuse_used = rtlefuse->efuse_usedbytes;
  337. if ((totalbytes + efuse_used) >=
  338. (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES))
  339. result = false;
  340. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  341. ("efuse_shadow_update_chk(): totalbytes(%#x), "
  342. "hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
  343. totalbytes, hdr_num, words_need, efuse_used));
  344. return result;
  345. }
  346. void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
  347. u16 offset, u32 *value)
  348. {
  349. if (type == 1)
  350. efuse_shadow_read_1byte(hw, offset, (u8 *) value);
  351. else if (type == 2)
  352. efuse_shadow_read_2byte(hw, offset, (u16 *) value);
  353. else if (type == 4)
  354. efuse_shadow_read_4byte(hw, offset, (u32 *) value);
  355. }
  356. void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
  357. u32 value)
  358. {
  359. if (type == 1)
  360. efuse_shadow_write_1byte(hw, offset, (u8) value);
  361. else if (type == 2)
  362. efuse_shadow_write_2byte(hw, offset, (u16) value);
  363. else if (type == 4)
  364. efuse_shadow_write_4byte(hw, offset, value);
  365. }
  366. bool efuse_shadow_update(struct ieee80211_hw *hw)
  367. {
  368. struct rtl_priv *rtlpriv = rtl_priv(hw);
  369. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  370. u16 i, offset, base;
  371. u8 word_en = 0x0F;
  372. u8 first_pg = false;
  373. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, ("--->\n"));
  374. if (!efuse_shadow_update_chk(hw)) {
  375. efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
  376. memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
  377. &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  378. rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
  379. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  380. ("<---efuse out of capacity!!\n"));
  381. return false;
  382. }
  383. efuse_power_switch(hw, true, true);
  384. for (offset = 0; offset < 16; offset++) {
  385. word_en = 0x0F;
  386. base = offset * 8;
  387. for (i = 0; i < 8; i++) {
  388. if (first_pg) {
  389. word_en &= ~(BIT(i / 2));
  390. rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
  391. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
  392. } else {
  393. if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
  394. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
  395. word_en &= ~(BIT(i / 2));
  396. rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
  397. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
  398. }
  399. }
  400. }
  401. if (word_en != 0x0F) {
  402. u8 tmpdata[8];
  403. memcpy(tmpdata,
  404. &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
  405. 8);
  406. RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
  407. ("U-efuse\n"), tmpdata, 8);
  408. if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
  409. tmpdata)) {
  410. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  411. ("PG section(%#x) fail!!\n", offset));
  412. break;
  413. }
  414. }
  415. }
  416. efuse_power_switch(hw, true, false);
  417. efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
  418. memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
  419. &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  420. rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
  421. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, ("<---\n"));
  422. return true;
  423. }
  424. void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
  425. {
  426. struct rtl_priv *rtlpriv = rtl_priv(hw);
  427. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  428. if (rtlefuse->autoload_failflag)
  429. memset(&rtlefuse->efuse_map[EFUSE_INIT_MAP][0], 0xFF,
  430. rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
  431. else
  432. efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
  433. memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
  434. &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  435. rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
  436. }
  437. EXPORT_SYMBOL(rtl_efuse_shadow_map_update);
  438. void efuse_force_write_vendor_Id(struct ieee80211_hw *hw)
  439. {
  440. u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
  441. efuse_power_switch(hw, true, true);
  442. efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
  443. efuse_power_switch(hw, true, false);
  444. }
  445. void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
  446. {
  447. }
  448. static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
  449. u16 offset, u8 *value)
  450. {
  451. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  452. *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
  453. }
  454. static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
  455. u16 offset, u16 *value)
  456. {
  457. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  458. *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
  459. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
  460. }
  461. static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
  462. u16 offset, u32 *value)
  463. {
  464. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  465. *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
  466. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
  467. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
  468. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
  469. }
  470. static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
  471. u16 offset, u8 value)
  472. {
  473. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  474. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
  475. }
  476. static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
  477. u16 offset, u16 value)
  478. {
  479. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  480. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
  481. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
  482. }
  483. static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
  484. u16 offset, u32 value)
  485. {
  486. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  487. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
  488. (u8) (value & 0x000000FF);
  489. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
  490. (u8) ((value >> 8) & 0x0000FF);
  491. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
  492. (u8) ((value >> 16) & 0x00FF);
  493. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
  494. (u8) ((value >> 24) & 0xFF);
  495. }
  496. static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
  497. {
  498. struct rtl_priv *rtlpriv = rtl_priv(hw);
  499. u8 tmpidx = 0;
  500. int result;
  501. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  502. (u8) (addr & 0xff));
  503. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  504. ((u8) ((addr >> 8) & 0x03)) |
  505. (rtl_read_byte(rtlpriv,
  506. rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
  507. 0xFC));
  508. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
  509. while (!(0x80 & rtl_read_byte(rtlpriv,
  510. rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
  511. && (tmpidx < 100)) {
  512. tmpidx++;
  513. }
  514. if (tmpidx < 100) {
  515. *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  516. result = true;
  517. } else {
  518. *data = 0xff;
  519. result = false;
  520. }
  521. return result;
  522. }
  523. static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
  524. {
  525. struct rtl_priv *rtlpriv = rtl_priv(hw);
  526. u8 tmpidx = 0;
  527. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  528. ("Addr = %x Data=%x\n", addr, data));
  529. rtl_write_byte(rtlpriv,
  530. rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
  531. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  532. (rtl_read_byte(rtlpriv,
  533. rtlpriv->cfg->maps[EFUSE_CTRL] +
  534. 2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
  535. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
  536. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
  537. while ((0x80 & rtl_read_byte(rtlpriv,
  538. rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
  539. && (tmpidx < 100)) {
  540. tmpidx++;
  541. }
  542. if (tmpidx < 100)
  543. return true;
  544. return false;
  545. }
  546. static void efuse_read_all_map(struct ieee80211_hw *hw, u8 * efuse)
  547. {
  548. struct rtl_priv *rtlpriv = rtl_priv(hw);
  549. efuse_power_switch(hw, false, true);
  550. read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
  551. efuse_power_switch(hw, false, false);
  552. }
  553. static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
  554. u8 efuse_data, u8 offset, u8 *tmpdata,
  555. u8 *readstate)
  556. {
  557. bool dataempty = true;
  558. u8 hoffset;
  559. u8 tmpidx;
  560. u8 hworden;
  561. u8 word_cnts;
  562. hoffset = (efuse_data >> 4) & 0x0F;
  563. hworden = efuse_data & 0x0F;
  564. word_cnts = efuse_calculate_word_cnts(hworden);
  565. if (hoffset == offset) {
  566. for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
  567. if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
  568. &efuse_data)) {
  569. tmpdata[tmpidx] = efuse_data;
  570. if (efuse_data != 0xff)
  571. dataempty = true;
  572. }
  573. }
  574. if (dataempty) {
  575. *readstate = PG_STATE_DATA;
  576. } else {
  577. *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
  578. *readstate = PG_STATE_HEADER;
  579. }
  580. } else {
  581. *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
  582. *readstate = PG_STATE_HEADER;
  583. }
  584. }
  585. static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
  586. {
  587. u8 readstate = PG_STATE_HEADER;
  588. bool continual = true;
  589. u8 efuse_data, word_cnts = 0;
  590. u16 efuse_addr = 0;
  591. u8 tmpdata[8];
  592. if (data == NULL)
  593. return false;
  594. if (offset > 15)
  595. return false;
  596. memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
  597. memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
  598. while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
  599. if (readstate & PG_STATE_HEADER) {
  600. if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
  601. && (efuse_data != 0xFF))
  602. efuse_read_data_case1(hw, &efuse_addr,
  603. efuse_data,
  604. offset, tmpdata,
  605. &readstate);
  606. else
  607. continual = false;
  608. } else if (readstate & PG_STATE_DATA) {
  609. efuse_word_enable_data_read(0, tmpdata, data);
  610. efuse_addr = efuse_addr + (word_cnts * 2) + 1;
  611. readstate = PG_STATE_HEADER;
  612. }
  613. }
  614. if ((data[0] == 0xff) && (data[1] == 0xff) &&
  615. (data[2] == 0xff) && (data[3] == 0xff) &&
  616. (data[4] == 0xff) && (data[5] == 0xff) &&
  617. (data[6] == 0xff) && (data[7] == 0xff))
  618. return false;
  619. else
  620. return true;
  621. }
  622. static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
  623. u8 efuse_data, u8 offset, int *continual,
  624. u8 *write_state, struct pgpkt_struct *target_pkt,
  625. int *repeat_times, int *result, u8 word_en)
  626. {
  627. struct rtl_priv *rtlpriv = rtl_priv(hw);
  628. struct pgpkt_struct tmp_pkt;
  629. bool dataempty = true;
  630. u8 originaldata[8 * sizeof(u8)];
  631. u8 badworden = 0x0F;
  632. u8 match_word_en, tmp_word_en;
  633. u8 tmpindex;
  634. u8 tmp_header = efuse_data;
  635. u8 tmp_word_cnts;
  636. tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
  637. tmp_pkt.word_en = tmp_header & 0x0F;
  638. tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
  639. if (tmp_pkt.offset != target_pkt->offset) {
  640. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
  641. *write_state = PG_STATE_HEADER;
  642. } else {
  643. for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
  644. u16 address = *efuse_addr + 1 + tmpindex;
  645. if (efuse_one_byte_read(hw, address,
  646. &efuse_data) && (efuse_data != 0xFF))
  647. dataempty = false;
  648. }
  649. if (dataempty == false) {
  650. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
  651. *write_state = PG_STATE_HEADER;
  652. } else {
  653. match_word_en = 0x0F;
  654. if (!((target_pkt->word_en & BIT(0)) |
  655. (tmp_pkt.word_en & BIT(0))))
  656. match_word_en &= (~BIT(0));
  657. if (!((target_pkt->word_en & BIT(1)) |
  658. (tmp_pkt.word_en & BIT(1))))
  659. match_word_en &= (~BIT(1));
  660. if (!((target_pkt->word_en & BIT(2)) |
  661. (tmp_pkt.word_en & BIT(2))))
  662. match_word_en &= (~BIT(2));
  663. if (!((target_pkt->word_en & BIT(3)) |
  664. (tmp_pkt.word_en & BIT(3))))
  665. match_word_en &= (~BIT(3));
  666. if ((match_word_en & 0x0F) != 0x0F) {
  667. badworden = efuse_word_enable_data_write(
  668. hw, *efuse_addr + 1,
  669. tmp_pkt.word_en,
  670. target_pkt->data);
  671. if (0x0F != (badworden & 0x0F)) {
  672. u8 reorg_offset = offset;
  673. u8 reorg_worden = badworden;
  674. efuse_pg_packet_write(hw, reorg_offset,
  675. reorg_worden,
  676. originaldata);
  677. }
  678. tmp_word_en = 0x0F;
  679. if ((target_pkt->word_en & BIT(0)) ^
  680. (match_word_en & BIT(0)))
  681. tmp_word_en &= (~BIT(0));
  682. if ((target_pkt->word_en & BIT(1)) ^
  683. (match_word_en & BIT(1)))
  684. tmp_word_en &= (~BIT(1));
  685. if ((target_pkt->word_en & BIT(2)) ^
  686. (match_word_en & BIT(2)))
  687. tmp_word_en &= (~BIT(2));
  688. if ((target_pkt->word_en & BIT(3)) ^
  689. (match_word_en & BIT(3)))
  690. tmp_word_en &= (~BIT(3));
  691. if ((tmp_word_en & 0x0F) != 0x0F) {
  692. *efuse_addr = efuse_get_current_size(hw);
  693. target_pkt->offset = offset;
  694. target_pkt->word_en = tmp_word_en;
  695. } else {
  696. *continual = false;
  697. }
  698. *write_state = PG_STATE_HEADER;
  699. *repeat_times += 1;
  700. if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  701. *continual = false;
  702. *result = false;
  703. }
  704. } else {
  705. *efuse_addr += (2 * tmp_word_cnts) + 1;
  706. target_pkt->offset = offset;
  707. target_pkt->word_en = word_en;
  708. *write_state = PG_STATE_HEADER;
  709. }
  710. }
  711. }
  712. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, ("efuse PG_STATE_HEADER-1\n"));
  713. }
  714. static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
  715. int *continual, u8 *write_state,
  716. struct pgpkt_struct target_pkt,
  717. int *repeat_times, int *result)
  718. {
  719. struct rtl_priv *rtlpriv = rtl_priv(hw);
  720. struct pgpkt_struct tmp_pkt;
  721. u8 pg_header;
  722. u8 tmp_header;
  723. u8 originaldata[8 * sizeof(u8)];
  724. u8 tmp_word_cnts;
  725. u8 badworden = 0x0F;
  726. pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
  727. efuse_one_byte_write(hw, *efuse_addr, pg_header);
  728. efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
  729. if (tmp_header == pg_header) {
  730. *write_state = PG_STATE_DATA;
  731. } else if (tmp_header == 0xFF) {
  732. *write_state = PG_STATE_HEADER;
  733. *repeat_times += 1;
  734. if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  735. *continual = false;
  736. *result = false;
  737. }
  738. } else {
  739. tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
  740. tmp_pkt.word_en = tmp_header & 0x0F;
  741. tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
  742. memset(originaldata, 0xff, 8 * sizeof(u8));
  743. if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
  744. badworden = efuse_word_enable_data_write(hw,
  745. *efuse_addr + 1, tmp_pkt.word_en,
  746. originaldata);
  747. if (0x0F != (badworden & 0x0F)) {
  748. u8 reorg_offset = tmp_pkt.offset;
  749. u8 reorg_worden = badworden;
  750. efuse_pg_packet_write(hw, reorg_offset,
  751. reorg_worden,
  752. originaldata);
  753. *efuse_addr = efuse_get_current_size(hw);
  754. } else {
  755. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2)
  756. + 1;
  757. }
  758. } else {
  759. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
  760. }
  761. *write_state = PG_STATE_HEADER;
  762. *repeat_times += 1;
  763. if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  764. *continual = false;
  765. *result = false;
  766. }
  767. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  768. ("efuse PG_STATE_HEADER-2\n"));
  769. }
  770. }
  771. static int efuse_pg_packet_write(struct ieee80211_hw *hw,
  772. u8 offset, u8 word_en, u8 *data)
  773. {
  774. struct rtl_priv *rtlpriv = rtl_priv(hw);
  775. struct pgpkt_struct target_pkt;
  776. u8 write_state = PG_STATE_HEADER;
  777. int continual = true, result = true;
  778. u16 efuse_addr = 0;
  779. u8 efuse_data;
  780. u8 target_word_cnts = 0;
  781. u8 badworden = 0x0F;
  782. static int repeat_times;
  783. if (efuse_get_current_size(hw) >=
  784. (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES)) {
  785. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  786. ("efuse_pg_packet_write error\n"));
  787. return false;
  788. }
  789. target_pkt.offset = offset;
  790. target_pkt.word_en = word_en;
  791. memset(target_pkt.data, 0xFF, 8 * sizeof(u8));
  792. efuse_word_enable_data_read(word_en, data, target_pkt.data);
  793. target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
  794. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, ("efuse Power ON\n"));
  795. while (continual && (efuse_addr <
  796. (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES))) {
  797. if (write_state == PG_STATE_HEADER) {
  798. badworden = 0x0F;
  799. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  800. ("efuse PG_STATE_HEADER\n"));
  801. if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
  802. (efuse_data != 0xFF))
  803. efuse_write_data_case1(hw, &efuse_addr,
  804. efuse_data, offset,
  805. &continual,
  806. &write_state, &target_pkt,
  807. &repeat_times, &result,
  808. word_en);
  809. else
  810. efuse_write_data_case2(hw, &efuse_addr,
  811. &continual,
  812. &write_state,
  813. target_pkt,
  814. &repeat_times,
  815. &result);
  816. } else if (write_state == PG_STATE_DATA) {
  817. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  818. ("efuse PG_STATE_DATA\n"));
  819. badworden =
  820. efuse_word_enable_data_write(hw, efuse_addr + 1,
  821. target_pkt.word_en,
  822. target_pkt.data);
  823. if ((badworden & 0x0F) == 0x0F) {
  824. continual = false;
  825. } else {
  826. efuse_addr += (2 * target_word_cnts) + 1;
  827. target_pkt.offset = offset;
  828. target_pkt.word_en = badworden;
  829. target_word_cnts =
  830. efuse_calculate_word_cnts(target_pkt.
  831. word_en);
  832. write_state = PG_STATE_HEADER;
  833. repeat_times++;
  834. if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  835. continual = false;
  836. result = false;
  837. }
  838. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  839. ("efuse PG_STATE_HEADER-3\n"));
  840. }
  841. }
  842. }
  843. if (efuse_addr >= (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES)) {
  844. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  845. ("efuse_addr(%#x) Out of size!!\n", efuse_addr));
  846. }
  847. return true;
  848. }
  849. static void efuse_word_enable_data_read(u8 word_en,
  850. u8 *sourdata, u8 *targetdata)
  851. {
  852. if (!(word_en & BIT(0))) {
  853. targetdata[0] = sourdata[0];
  854. targetdata[1] = sourdata[1];
  855. }
  856. if (!(word_en & BIT(1))) {
  857. targetdata[2] = sourdata[2];
  858. targetdata[3] = sourdata[3];
  859. }
  860. if (!(word_en & BIT(2))) {
  861. targetdata[4] = sourdata[4];
  862. targetdata[5] = sourdata[5];
  863. }
  864. if (!(word_en & BIT(3))) {
  865. targetdata[6] = sourdata[6];
  866. targetdata[7] = sourdata[7];
  867. }
  868. }
  869. static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
  870. u16 efuse_addr, u8 word_en, u8 *data)
  871. {
  872. struct rtl_priv *rtlpriv = rtl_priv(hw);
  873. u16 tmpaddr;
  874. u16 start_addr = efuse_addr;
  875. u8 badworden = 0x0F;
  876. u8 tmpdata[8];
  877. memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
  878. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  879. ("word_en = %x efuse_addr=%x\n", word_en, efuse_addr));
  880. if (!(word_en & BIT(0))) {
  881. tmpaddr = start_addr;
  882. efuse_one_byte_write(hw, start_addr++, data[0]);
  883. efuse_one_byte_write(hw, start_addr++, data[1]);
  884. efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
  885. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
  886. if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
  887. badworden &= (~BIT(0));
  888. }
  889. if (!(word_en & BIT(1))) {
  890. tmpaddr = start_addr;
  891. efuse_one_byte_write(hw, start_addr++, data[2]);
  892. efuse_one_byte_write(hw, start_addr++, data[3]);
  893. efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
  894. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
  895. if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
  896. badworden &= (~BIT(1));
  897. }
  898. if (!(word_en & BIT(2))) {
  899. tmpaddr = start_addr;
  900. efuse_one_byte_write(hw, start_addr++, data[4]);
  901. efuse_one_byte_write(hw, start_addr++, data[5]);
  902. efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
  903. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
  904. if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
  905. badworden &= (~BIT(2));
  906. }
  907. if (!(word_en & BIT(3))) {
  908. tmpaddr = start_addr;
  909. efuse_one_byte_write(hw, start_addr++, data[6]);
  910. efuse_one_byte_write(hw, start_addr++, data[7]);
  911. efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
  912. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
  913. if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
  914. badworden &= (~BIT(3));
  915. }
  916. return badworden;
  917. }
  918. static void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
  919. {
  920. struct rtl_priv *rtlpriv = rtl_priv(hw);
  921. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  922. u8 tempval;
  923. u16 tmpV16;
  924. if (pwrstate && (rtlhal->hw_type !=
  925. HARDWARE_TYPE_RTL8192SE)) {
  926. tmpV16 = rtl_read_word(rtlpriv,
  927. rtlpriv->cfg->maps[SYS_ISO_CTRL]);
  928. if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
  929. tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
  930. rtl_write_word(rtlpriv,
  931. rtlpriv->cfg->maps[SYS_ISO_CTRL],
  932. tmpV16);
  933. }
  934. tmpV16 = rtl_read_word(rtlpriv,
  935. rtlpriv->cfg->maps[SYS_FUNC_EN]);
  936. if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
  937. tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
  938. rtl_write_word(rtlpriv,
  939. rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16);
  940. }
  941. tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
  942. if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
  943. (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
  944. tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
  945. rtlpriv->cfg->maps[EFUSE_ANA8M]);
  946. rtl_write_word(rtlpriv,
  947. rtlpriv->cfg->maps[SYS_CLK], tmpV16);
  948. }
  949. }
  950. if (pwrstate) {
  951. if (write) {
  952. tempval = rtl_read_byte(rtlpriv,
  953. rtlpriv->cfg->maps[EFUSE_TEST] +
  954. 3);
  955. if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
  956. tempval &= 0x0F;
  957. tempval |= (VOLTAGE_V25 << 4);
  958. }
  959. rtl_write_byte(rtlpriv,
  960. rtlpriv->cfg->maps[EFUSE_TEST] + 3,
  961. (tempval | 0x80));
  962. }
  963. if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
  964. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
  965. 0x03);
  966. }
  967. } else {
  968. if (write) {
  969. tempval = rtl_read_byte(rtlpriv,
  970. rtlpriv->cfg->maps[EFUSE_TEST] +
  971. 3);
  972. rtl_write_byte(rtlpriv,
  973. rtlpriv->cfg->maps[EFUSE_TEST] + 3,
  974. (tempval & 0x7F));
  975. }
  976. if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
  977. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
  978. 0x02);
  979. }
  980. }
  981. }
  982. static u16 efuse_get_current_size(struct ieee80211_hw *hw)
  983. {
  984. int continual = true;
  985. u16 efuse_addr = 0;
  986. u8 hworden;
  987. u8 efuse_data, word_cnts;
  988. while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data)
  989. && (efuse_addr < EFUSE_MAX_SIZE)) {
  990. if (efuse_data != 0xFF) {
  991. hworden = efuse_data & 0x0F;
  992. word_cnts = efuse_calculate_word_cnts(hworden);
  993. efuse_addr = efuse_addr + (word_cnts * 2) + 1;
  994. } else {
  995. continual = false;
  996. }
  997. }
  998. return efuse_addr;
  999. }
  1000. static u8 efuse_calculate_word_cnts(u8 word_en)
  1001. {
  1002. u8 word_cnts = 0;
  1003. if (!(word_en & BIT(0)))
  1004. word_cnts++;
  1005. if (!(word_en & BIT(1)))
  1006. word_cnts++;
  1007. if (!(word_en & BIT(2)))
  1008. word_cnts++;
  1009. if (!(word_en & BIT(3)))
  1010. word_cnts++;
  1011. return word_cnts;
  1012. }