niu.c 230 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261
  1. /* niu.c: Neptune ethernet driver.
  2. *
  3. * Copyright (C) 2007, 2008 David S. Miller (davem@davemloft.net)
  4. */
  5. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  6. #include <linux/module.h>
  7. #include <linux/init.h>
  8. #include <linux/interrupt.h>
  9. #include <linux/pci.h>
  10. #include <linux/dma-mapping.h>
  11. #include <linux/netdevice.h>
  12. #include <linux/ethtool.h>
  13. #include <linux/etherdevice.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/delay.h>
  16. #include <linux/bitops.h>
  17. #include <linux/mii.h>
  18. #include <linux/if.h>
  19. #include <linux/if_ether.h>
  20. #include <linux/if_vlan.h>
  21. #include <linux/ip.h>
  22. #include <linux/in.h>
  23. #include <linux/ipv6.h>
  24. #include <linux/log2.h>
  25. #include <linux/jiffies.h>
  26. #include <linux/crc32.h>
  27. #include <linux/list.h>
  28. #include <linux/slab.h>
  29. #include <linux/io.h>
  30. #include <linux/of_device.h>
  31. #include "niu.h"
  32. #define DRV_MODULE_NAME "niu"
  33. #define DRV_MODULE_VERSION "1.1"
  34. #define DRV_MODULE_RELDATE "Apr 22, 2010"
  35. static char version[] __devinitdata =
  36. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  37. MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  38. MODULE_DESCRIPTION("NIU ethernet driver");
  39. MODULE_LICENSE("GPL");
  40. MODULE_VERSION(DRV_MODULE_VERSION);
  41. #ifndef readq
  42. static u64 readq(void __iomem *reg)
  43. {
  44. return ((u64) readl(reg)) | (((u64) readl(reg + 4UL)) << 32);
  45. }
  46. static void writeq(u64 val, void __iomem *reg)
  47. {
  48. writel(val & 0xffffffff, reg);
  49. writel(val >> 32, reg + 0x4UL);
  50. }
  51. #endif
  52. static DEFINE_PCI_DEVICE_TABLE(niu_pci_tbl) = {
  53. {PCI_DEVICE(PCI_VENDOR_ID_SUN, 0xabcd)},
  54. {}
  55. };
  56. MODULE_DEVICE_TABLE(pci, niu_pci_tbl);
  57. #define NIU_TX_TIMEOUT (5 * HZ)
  58. #define nr64(reg) readq(np->regs + (reg))
  59. #define nw64(reg, val) writeq((val), np->regs + (reg))
  60. #define nr64_mac(reg) readq(np->mac_regs + (reg))
  61. #define nw64_mac(reg, val) writeq((val), np->mac_regs + (reg))
  62. #define nr64_ipp(reg) readq(np->regs + np->ipp_off + (reg))
  63. #define nw64_ipp(reg, val) writeq((val), np->regs + np->ipp_off + (reg))
  64. #define nr64_pcs(reg) readq(np->regs + np->pcs_off + (reg))
  65. #define nw64_pcs(reg, val) writeq((val), np->regs + np->pcs_off + (reg))
  66. #define nr64_xpcs(reg) readq(np->regs + np->xpcs_off + (reg))
  67. #define nw64_xpcs(reg, val) writeq((val), np->regs + np->xpcs_off + (reg))
  68. #define NIU_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  69. static int niu_debug;
  70. static int debug = -1;
  71. module_param(debug, int, 0);
  72. MODULE_PARM_DESC(debug, "NIU debug level");
  73. #define niu_lock_parent(np, flags) \
  74. spin_lock_irqsave(&np->parent->lock, flags)
  75. #define niu_unlock_parent(np, flags) \
  76. spin_unlock_irqrestore(&np->parent->lock, flags)
  77. static int serdes_init_10g_serdes(struct niu *np);
  78. static int __niu_wait_bits_clear_mac(struct niu *np, unsigned long reg,
  79. u64 bits, int limit, int delay)
  80. {
  81. while (--limit >= 0) {
  82. u64 val = nr64_mac(reg);
  83. if (!(val & bits))
  84. break;
  85. udelay(delay);
  86. }
  87. if (limit < 0)
  88. return -ENODEV;
  89. return 0;
  90. }
  91. static int __niu_set_and_wait_clear_mac(struct niu *np, unsigned long reg,
  92. u64 bits, int limit, int delay,
  93. const char *reg_name)
  94. {
  95. int err;
  96. nw64_mac(reg, bits);
  97. err = __niu_wait_bits_clear_mac(np, reg, bits, limit, delay);
  98. if (err)
  99. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  100. (unsigned long long)bits, reg_name,
  101. (unsigned long long)nr64_mac(reg));
  102. return err;
  103. }
  104. #define niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  105. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  106. __niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  107. })
  108. static int __niu_wait_bits_clear_ipp(struct niu *np, unsigned long reg,
  109. u64 bits, int limit, int delay)
  110. {
  111. while (--limit >= 0) {
  112. u64 val = nr64_ipp(reg);
  113. if (!(val & bits))
  114. break;
  115. udelay(delay);
  116. }
  117. if (limit < 0)
  118. return -ENODEV;
  119. return 0;
  120. }
  121. static int __niu_set_and_wait_clear_ipp(struct niu *np, unsigned long reg,
  122. u64 bits, int limit, int delay,
  123. const char *reg_name)
  124. {
  125. int err;
  126. u64 val;
  127. val = nr64_ipp(reg);
  128. val |= bits;
  129. nw64_ipp(reg, val);
  130. err = __niu_wait_bits_clear_ipp(np, reg, bits, limit, delay);
  131. if (err)
  132. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  133. (unsigned long long)bits, reg_name,
  134. (unsigned long long)nr64_ipp(reg));
  135. return err;
  136. }
  137. #define niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  138. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  139. __niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  140. })
  141. static int __niu_wait_bits_clear(struct niu *np, unsigned long reg,
  142. u64 bits, int limit, int delay)
  143. {
  144. while (--limit >= 0) {
  145. u64 val = nr64(reg);
  146. if (!(val & bits))
  147. break;
  148. udelay(delay);
  149. }
  150. if (limit < 0)
  151. return -ENODEV;
  152. return 0;
  153. }
  154. #define niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY) \
  155. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  156. __niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY); \
  157. })
  158. static int __niu_set_and_wait_clear(struct niu *np, unsigned long reg,
  159. u64 bits, int limit, int delay,
  160. const char *reg_name)
  161. {
  162. int err;
  163. nw64(reg, bits);
  164. err = __niu_wait_bits_clear(np, reg, bits, limit, delay);
  165. if (err)
  166. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  167. (unsigned long long)bits, reg_name,
  168. (unsigned long long)nr64(reg));
  169. return err;
  170. }
  171. #define niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  172. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  173. __niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  174. })
  175. static void niu_ldg_rearm(struct niu *np, struct niu_ldg *lp, int on)
  176. {
  177. u64 val = (u64) lp->timer;
  178. if (on)
  179. val |= LDG_IMGMT_ARM;
  180. nw64(LDG_IMGMT(lp->ldg_num), val);
  181. }
  182. static int niu_ldn_irq_enable(struct niu *np, int ldn, int on)
  183. {
  184. unsigned long mask_reg, bits;
  185. u64 val;
  186. if (ldn < 0 || ldn > LDN_MAX)
  187. return -EINVAL;
  188. if (ldn < 64) {
  189. mask_reg = LD_IM0(ldn);
  190. bits = LD_IM0_MASK;
  191. } else {
  192. mask_reg = LD_IM1(ldn - 64);
  193. bits = LD_IM1_MASK;
  194. }
  195. val = nr64(mask_reg);
  196. if (on)
  197. val &= ~bits;
  198. else
  199. val |= bits;
  200. nw64(mask_reg, val);
  201. return 0;
  202. }
  203. static int niu_enable_ldn_in_ldg(struct niu *np, struct niu_ldg *lp, int on)
  204. {
  205. struct niu_parent *parent = np->parent;
  206. int i;
  207. for (i = 0; i <= LDN_MAX; i++) {
  208. int err;
  209. if (parent->ldg_map[i] != lp->ldg_num)
  210. continue;
  211. err = niu_ldn_irq_enable(np, i, on);
  212. if (err)
  213. return err;
  214. }
  215. return 0;
  216. }
  217. static int niu_enable_interrupts(struct niu *np, int on)
  218. {
  219. int i;
  220. for (i = 0; i < np->num_ldg; i++) {
  221. struct niu_ldg *lp = &np->ldg[i];
  222. int err;
  223. err = niu_enable_ldn_in_ldg(np, lp, on);
  224. if (err)
  225. return err;
  226. }
  227. for (i = 0; i < np->num_ldg; i++)
  228. niu_ldg_rearm(np, &np->ldg[i], on);
  229. return 0;
  230. }
  231. static u32 phy_encode(u32 type, int port)
  232. {
  233. return type << (port * 2);
  234. }
  235. static u32 phy_decode(u32 val, int port)
  236. {
  237. return (val >> (port * 2)) & PORT_TYPE_MASK;
  238. }
  239. static int mdio_wait(struct niu *np)
  240. {
  241. int limit = 1000;
  242. u64 val;
  243. while (--limit > 0) {
  244. val = nr64(MIF_FRAME_OUTPUT);
  245. if ((val >> MIF_FRAME_OUTPUT_TA_SHIFT) & 0x1)
  246. return val & MIF_FRAME_OUTPUT_DATA;
  247. udelay(10);
  248. }
  249. return -ENODEV;
  250. }
  251. static int mdio_read(struct niu *np, int port, int dev, int reg)
  252. {
  253. int err;
  254. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  255. err = mdio_wait(np);
  256. if (err < 0)
  257. return err;
  258. nw64(MIF_FRAME_OUTPUT, MDIO_READ_OP(port, dev));
  259. return mdio_wait(np);
  260. }
  261. static int mdio_write(struct niu *np, int port, int dev, int reg, int data)
  262. {
  263. int err;
  264. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  265. err = mdio_wait(np);
  266. if (err < 0)
  267. return err;
  268. nw64(MIF_FRAME_OUTPUT, MDIO_WRITE_OP(port, dev, data));
  269. err = mdio_wait(np);
  270. if (err < 0)
  271. return err;
  272. return 0;
  273. }
  274. static int mii_read(struct niu *np, int port, int reg)
  275. {
  276. nw64(MIF_FRAME_OUTPUT, MII_READ_OP(port, reg));
  277. return mdio_wait(np);
  278. }
  279. static int mii_write(struct niu *np, int port, int reg, int data)
  280. {
  281. int err;
  282. nw64(MIF_FRAME_OUTPUT, MII_WRITE_OP(port, reg, data));
  283. err = mdio_wait(np);
  284. if (err < 0)
  285. return err;
  286. return 0;
  287. }
  288. static int esr2_set_tx_cfg(struct niu *np, unsigned long channel, u32 val)
  289. {
  290. int err;
  291. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  292. ESR2_TI_PLL_TX_CFG_L(channel),
  293. val & 0xffff);
  294. if (!err)
  295. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  296. ESR2_TI_PLL_TX_CFG_H(channel),
  297. val >> 16);
  298. return err;
  299. }
  300. static int esr2_set_rx_cfg(struct niu *np, unsigned long channel, u32 val)
  301. {
  302. int err;
  303. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  304. ESR2_TI_PLL_RX_CFG_L(channel),
  305. val & 0xffff);
  306. if (!err)
  307. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  308. ESR2_TI_PLL_RX_CFG_H(channel),
  309. val >> 16);
  310. return err;
  311. }
  312. /* Mode is always 10G fiber. */
  313. static int serdes_init_niu_10g_fiber(struct niu *np)
  314. {
  315. struct niu_link_config *lp = &np->link_config;
  316. u32 tx_cfg, rx_cfg;
  317. unsigned long i;
  318. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  319. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  320. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  321. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  322. if (lp->loopback_mode == LOOPBACK_PHY) {
  323. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  324. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  325. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  326. tx_cfg |= PLL_TX_CFG_ENTEST;
  327. rx_cfg |= PLL_RX_CFG_ENTEST;
  328. }
  329. /* Initialize all 4 lanes of the SERDES. */
  330. for (i = 0; i < 4; i++) {
  331. int err = esr2_set_tx_cfg(np, i, tx_cfg);
  332. if (err)
  333. return err;
  334. }
  335. for (i = 0; i < 4; i++) {
  336. int err = esr2_set_rx_cfg(np, i, rx_cfg);
  337. if (err)
  338. return err;
  339. }
  340. return 0;
  341. }
  342. static int serdes_init_niu_1g_serdes(struct niu *np)
  343. {
  344. struct niu_link_config *lp = &np->link_config;
  345. u16 pll_cfg, pll_sts;
  346. int max_retry = 100;
  347. u64 uninitialized_var(sig), mask, val;
  348. u32 tx_cfg, rx_cfg;
  349. unsigned long i;
  350. int err;
  351. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV |
  352. PLL_TX_CFG_RATE_HALF);
  353. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  354. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  355. PLL_RX_CFG_RATE_HALF);
  356. if (np->port == 0)
  357. rx_cfg |= PLL_RX_CFG_EQ_LP_ADAPTIVE;
  358. if (lp->loopback_mode == LOOPBACK_PHY) {
  359. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  360. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  361. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  362. tx_cfg |= PLL_TX_CFG_ENTEST;
  363. rx_cfg |= PLL_RX_CFG_ENTEST;
  364. }
  365. /* Initialize PLL for 1G */
  366. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_8X);
  367. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  368. ESR2_TI_PLL_CFG_L, pll_cfg);
  369. if (err) {
  370. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_CFG_L failed\n",
  371. np->port, __func__);
  372. return err;
  373. }
  374. pll_sts = PLL_CFG_ENPLL;
  375. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  376. ESR2_TI_PLL_STS_L, pll_sts);
  377. if (err) {
  378. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_STS_L failed\n",
  379. np->port, __func__);
  380. return err;
  381. }
  382. udelay(200);
  383. /* Initialize all 4 lanes of the SERDES. */
  384. for (i = 0; i < 4; i++) {
  385. err = esr2_set_tx_cfg(np, i, tx_cfg);
  386. if (err)
  387. return err;
  388. }
  389. for (i = 0; i < 4; i++) {
  390. err = esr2_set_rx_cfg(np, i, rx_cfg);
  391. if (err)
  392. return err;
  393. }
  394. switch (np->port) {
  395. case 0:
  396. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  397. mask = val;
  398. break;
  399. case 1:
  400. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  401. mask = val;
  402. break;
  403. default:
  404. return -EINVAL;
  405. }
  406. while (max_retry--) {
  407. sig = nr64(ESR_INT_SIGNALS);
  408. if ((sig & mask) == val)
  409. break;
  410. mdelay(500);
  411. }
  412. if ((sig & mask) != val) {
  413. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  414. np->port, (int)(sig & mask), (int)val);
  415. return -ENODEV;
  416. }
  417. return 0;
  418. }
  419. static int serdes_init_niu_10g_serdes(struct niu *np)
  420. {
  421. struct niu_link_config *lp = &np->link_config;
  422. u32 tx_cfg, rx_cfg, pll_cfg, pll_sts;
  423. int max_retry = 100;
  424. u64 uninitialized_var(sig), mask, val;
  425. unsigned long i;
  426. int err;
  427. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  428. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  429. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  430. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  431. if (lp->loopback_mode == LOOPBACK_PHY) {
  432. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  433. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  434. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  435. tx_cfg |= PLL_TX_CFG_ENTEST;
  436. rx_cfg |= PLL_RX_CFG_ENTEST;
  437. }
  438. /* Initialize PLL for 10G */
  439. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_10X);
  440. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  441. ESR2_TI_PLL_CFG_L, pll_cfg & 0xffff);
  442. if (err) {
  443. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_CFG_L failed\n",
  444. np->port, __func__);
  445. return err;
  446. }
  447. pll_sts = PLL_CFG_ENPLL;
  448. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  449. ESR2_TI_PLL_STS_L, pll_sts & 0xffff);
  450. if (err) {
  451. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_STS_L failed\n",
  452. np->port, __func__);
  453. return err;
  454. }
  455. udelay(200);
  456. /* Initialize all 4 lanes of the SERDES. */
  457. for (i = 0; i < 4; i++) {
  458. err = esr2_set_tx_cfg(np, i, tx_cfg);
  459. if (err)
  460. return err;
  461. }
  462. for (i = 0; i < 4; i++) {
  463. err = esr2_set_rx_cfg(np, i, rx_cfg);
  464. if (err)
  465. return err;
  466. }
  467. /* check if serdes is ready */
  468. switch (np->port) {
  469. case 0:
  470. mask = ESR_INT_SIGNALS_P0_BITS;
  471. val = (ESR_INT_SRDY0_P0 |
  472. ESR_INT_DET0_P0 |
  473. ESR_INT_XSRDY_P0 |
  474. ESR_INT_XDP_P0_CH3 |
  475. ESR_INT_XDP_P0_CH2 |
  476. ESR_INT_XDP_P0_CH1 |
  477. ESR_INT_XDP_P0_CH0);
  478. break;
  479. case 1:
  480. mask = ESR_INT_SIGNALS_P1_BITS;
  481. val = (ESR_INT_SRDY0_P1 |
  482. ESR_INT_DET0_P1 |
  483. ESR_INT_XSRDY_P1 |
  484. ESR_INT_XDP_P1_CH3 |
  485. ESR_INT_XDP_P1_CH2 |
  486. ESR_INT_XDP_P1_CH1 |
  487. ESR_INT_XDP_P1_CH0);
  488. break;
  489. default:
  490. return -EINVAL;
  491. }
  492. while (max_retry--) {
  493. sig = nr64(ESR_INT_SIGNALS);
  494. if ((sig & mask) == val)
  495. break;
  496. mdelay(500);
  497. }
  498. if ((sig & mask) != val) {
  499. pr_info("NIU Port %u signal bits [%08x] are not [%08x] for 10G...trying 1G\n",
  500. np->port, (int)(sig & mask), (int)val);
  501. /* 10G failed, try initializing at 1G */
  502. err = serdes_init_niu_1g_serdes(np);
  503. if (!err) {
  504. np->flags &= ~NIU_FLAGS_10G;
  505. np->mac_xcvr = MAC_XCVR_PCS;
  506. } else {
  507. netdev_err(np->dev, "Port %u 10G/1G SERDES Link Failed\n",
  508. np->port);
  509. return -ENODEV;
  510. }
  511. }
  512. return 0;
  513. }
  514. static int esr_read_rxtx_ctrl(struct niu *np, unsigned long chan, u32 *val)
  515. {
  516. int err;
  517. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_CTRL_L(chan));
  518. if (err >= 0) {
  519. *val = (err & 0xffff);
  520. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  521. ESR_RXTX_CTRL_H(chan));
  522. if (err >= 0)
  523. *val |= ((err & 0xffff) << 16);
  524. err = 0;
  525. }
  526. return err;
  527. }
  528. static int esr_read_glue0(struct niu *np, unsigned long chan, u32 *val)
  529. {
  530. int err;
  531. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  532. ESR_GLUE_CTRL0_L(chan));
  533. if (err >= 0) {
  534. *val = (err & 0xffff);
  535. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  536. ESR_GLUE_CTRL0_H(chan));
  537. if (err >= 0) {
  538. *val |= ((err & 0xffff) << 16);
  539. err = 0;
  540. }
  541. }
  542. return err;
  543. }
  544. static int esr_read_reset(struct niu *np, u32 *val)
  545. {
  546. int err;
  547. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  548. ESR_RXTX_RESET_CTRL_L);
  549. if (err >= 0) {
  550. *val = (err & 0xffff);
  551. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  552. ESR_RXTX_RESET_CTRL_H);
  553. if (err >= 0) {
  554. *val |= ((err & 0xffff) << 16);
  555. err = 0;
  556. }
  557. }
  558. return err;
  559. }
  560. static int esr_write_rxtx_ctrl(struct niu *np, unsigned long chan, u32 val)
  561. {
  562. int err;
  563. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  564. ESR_RXTX_CTRL_L(chan), val & 0xffff);
  565. if (!err)
  566. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  567. ESR_RXTX_CTRL_H(chan), (val >> 16));
  568. return err;
  569. }
  570. static int esr_write_glue0(struct niu *np, unsigned long chan, u32 val)
  571. {
  572. int err;
  573. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  574. ESR_GLUE_CTRL0_L(chan), val & 0xffff);
  575. if (!err)
  576. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  577. ESR_GLUE_CTRL0_H(chan), (val >> 16));
  578. return err;
  579. }
  580. static int esr_reset(struct niu *np)
  581. {
  582. u32 uninitialized_var(reset);
  583. int err;
  584. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  585. ESR_RXTX_RESET_CTRL_L, 0x0000);
  586. if (err)
  587. return err;
  588. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  589. ESR_RXTX_RESET_CTRL_H, 0xffff);
  590. if (err)
  591. return err;
  592. udelay(200);
  593. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  594. ESR_RXTX_RESET_CTRL_L, 0xffff);
  595. if (err)
  596. return err;
  597. udelay(200);
  598. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  599. ESR_RXTX_RESET_CTRL_H, 0x0000);
  600. if (err)
  601. return err;
  602. udelay(200);
  603. err = esr_read_reset(np, &reset);
  604. if (err)
  605. return err;
  606. if (reset != 0) {
  607. netdev_err(np->dev, "Port %u ESR_RESET did not clear [%08x]\n",
  608. np->port, reset);
  609. return -ENODEV;
  610. }
  611. return 0;
  612. }
  613. static int serdes_init_10g(struct niu *np)
  614. {
  615. struct niu_link_config *lp = &np->link_config;
  616. unsigned long ctrl_reg, test_cfg_reg, i;
  617. u64 ctrl_val, test_cfg_val, sig, mask, val;
  618. int err;
  619. switch (np->port) {
  620. case 0:
  621. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  622. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  623. break;
  624. case 1:
  625. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  626. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  627. break;
  628. default:
  629. return -EINVAL;
  630. }
  631. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  632. ENET_SERDES_CTRL_SDET_1 |
  633. ENET_SERDES_CTRL_SDET_2 |
  634. ENET_SERDES_CTRL_SDET_3 |
  635. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  636. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  637. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  638. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  639. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  640. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  641. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  642. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  643. test_cfg_val = 0;
  644. if (lp->loopback_mode == LOOPBACK_PHY) {
  645. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  646. ENET_SERDES_TEST_MD_0_SHIFT) |
  647. (ENET_TEST_MD_PAD_LOOPBACK <<
  648. ENET_SERDES_TEST_MD_1_SHIFT) |
  649. (ENET_TEST_MD_PAD_LOOPBACK <<
  650. ENET_SERDES_TEST_MD_2_SHIFT) |
  651. (ENET_TEST_MD_PAD_LOOPBACK <<
  652. ENET_SERDES_TEST_MD_3_SHIFT));
  653. }
  654. nw64(ctrl_reg, ctrl_val);
  655. nw64(test_cfg_reg, test_cfg_val);
  656. /* Initialize all 4 lanes of the SERDES. */
  657. for (i = 0; i < 4; i++) {
  658. u32 rxtx_ctrl, glue0;
  659. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  660. if (err)
  661. return err;
  662. err = esr_read_glue0(np, i, &glue0);
  663. if (err)
  664. return err;
  665. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  666. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  667. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  668. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  669. ESR_GLUE_CTRL0_THCNT |
  670. ESR_GLUE_CTRL0_BLTIME);
  671. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  672. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  673. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  674. (BLTIME_300_CYCLES <<
  675. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  676. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  677. if (err)
  678. return err;
  679. err = esr_write_glue0(np, i, glue0);
  680. if (err)
  681. return err;
  682. }
  683. err = esr_reset(np);
  684. if (err)
  685. return err;
  686. sig = nr64(ESR_INT_SIGNALS);
  687. switch (np->port) {
  688. case 0:
  689. mask = ESR_INT_SIGNALS_P0_BITS;
  690. val = (ESR_INT_SRDY0_P0 |
  691. ESR_INT_DET0_P0 |
  692. ESR_INT_XSRDY_P0 |
  693. ESR_INT_XDP_P0_CH3 |
  694. ESR_INT_XDP_P0_CH2 |
  695. ESR_INT_XDP_P0_CH1 |
  696. ESR_INT_XDP_P0_CH0);
  697. break;
  698. case 1:
  699. mask = ESR_INT_SIGNALS_P1_BITS;
  700. val = (ESR_INT_SRDY0_P1 |
  701. ESR_INT_DET0_P1 |
  702. ESR_INT_XSRDY_P1 |
  703. ESR_INT_XDP_P1_CH3 |
  704. ESR_INT_XDP_P1_CH2 |
  705. ESR_INT_XDP_P1_CH1 |
  706. ESR_INT_XDP_P1_CH0);
  707. break;
  708. default:
  709. return -EINVAL;
  710. }
  711. if ((sig & mask) != val) {
  712. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  713. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  714. return 0;
  715. }
  716. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  717. np->port, (int)(sig & mask), (int)val);
  718. return -ENODEV;
  719. }
  720. if (np->flags & NIU_FLAGS_HOTPLUG_PHY)
  721. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  722. return 0;
  723. }
  724. static int serdes_init_1g(struct niu *np)
  725. {
  726. u64 val;
  727. val = nr64(ENET_SERDES_1_PLL_CFG);
  728. val &= ~ENET_SERDES_PLL_FBDIV2;
  729. switch (np->port) {
  730. case 0:
  731. val |= ENET_SERDES_PLL_HRATE0;
  732. break;
  733. case 1:
  734. val |= ENET_SERDES_PLL_HRATE1;
  735. break;
  736. case 2:
  737. val |= ENET_SERDES_PLL_HRATE2;
  738. break;
  739. case 3:
  740. val |= ENET_SERDES_PLL_HRATE3;
  741. break;
  742. default:
  743. return -EINVAL;
  744. }
  745. nw64(ENET_SERDES_1_PLL_CFG, val);
  746. return 0;
  747. }
  748. static int serdes_init_1g_serdes(struct niu *np)
  749. {
  750. struct niu_link_config *lp = &np->link_config;
  751. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  752. u64 ctrl_val, test_cfg_val, sig, mask, val;
  753. int err;
  754. u64 reset_val, val_rd;
  755. val = ENET_SERDES_PLL_HRATE0 | ENET_SERDES_PLL_HRATE1 |
  756. ENET_SERDES_PLL_HRATE2 | ENET_SERDES_PLL_HRATE3 |
  757. ENET_SERDES_PLL_FBDIV0;
  758. switch (np->port) {
  759. case 0:
  760. reset_val = ENET_SERDES_RESET_0;
  761. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  762. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  763. pll_cfg = ENET_SERDES_0_PLL_CFG;
  764. break;
  765. case 1:
  766. reset_val = ENET_SERDES_RESET_1;
  767. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  768. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  769. pll_cfg = ENET_SERDES_1_PLL_CFG;
  770. break;
  771. default:
  772. return -EINVAL;
  773. }
  774. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  775. ENET_SERDES_CTRL_SDET_1 |
  776. ENET_SERDES_CTRL_SDET_2 |
  777. ENET_SERDES_CTRL_SDET_3 |
  778. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  779. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  780. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  781. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  782. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  783. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  784. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  785. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  786. test_cfg_val = 0;
  787. if (lp->loopback_mode == LOOPBACK_PHY) {
  788. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  789. ENET_SERDES_TEST_MD_0_SHIFT) |
  790. (ENET_TEST_MD_PAD_LOOPBACK <<
  791. ENET_SERDES_TEST_MD_1_SHIFT) |
  792. (ENET_TEST_MD_PAD_LOOPBACK <<
  793. ENET_SERDES_TEST_MD_2_SHIFT) |
  794. (ENET_TEST_MD_PAD_LOOPBACK <<
  795. ENET_SERDES_TEST_MD_3_SHIFT));
  796. }
  797. nw64(ENET_SERDES_RESET, reset_val);
  798. mdelay(20);
  799. val_rd = nr64(ENET_SERDES_RESET);
  800. val_rd &= ~reset_val;
  801. nw64(pll_cfg, val);
  802. nw64(ctrl_reg, ctrl_val);
  803. nw64(test_cfg_reg, test_cfg_val);
  804. nw64(ENET_SERDES_RESET, val_rd);
  805. mdelay(2000);
  806. /* Initialize all 4 lanes of the SERDES. */
  807. for (i = 0; i < 4; i++) {
  808. u32 rxtx_ctrl, glue0;
  809. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  810. if (err)
  811. return err;
  812. err = esr_read_glue0(np, i, &glue0);
  813. if (err)
  814. return err;
  815. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  816. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  817. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  818. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  819. ESR_GLUE_CTRL0_THCNT |
  820. ESR_GLUE_CTRL0_BLTIME);
  821. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  822. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  823. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  824. (BLTIME_300_CYCLES <<
  825. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  826. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  827. if (err)
  828. return err;
  829. err = esr_write_glue0(np, i, glue0);
  830. if (err)
  831. return err;
  832. }
  833. sig = nr64(ESR_INT_SIGNALS);
  834. switch (np->port) {
  835. case 0:
  836. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  837. mask = val;
  838. break;
  839. case 1:
  840. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  841. mask = val;
  842. break;
  843. default:
  844. return -EINVAL;
  845. }
  846. if ((sig & mask) != val) {
  847. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  848. np->port, (int)(sig & mask), (int)val);
  849. return -ENODEV;
  850. }
  851. return 0;
  852. }
  853. static int link_status_1g_serdes(struct niu *np, int *link_up_p)
  854. {
  855. struct niu_link_config *lp = &np->link_config;
  856. int link_up;
  857. u64 val;
  858. u16 current_speed;
  859. unsigned long flags;
  860. u8 current_duplex;
  861. link_up = 0;
  862. current_speed = SPEED_INVALID;
  863. current_duplex = DUPLEX_INVALID;
  864. spin_lock_irqsave(&np->lock, flags);
  865. val = nr64_pcs(PCS_MII_STAT);
  866. if (val & PCS_MII_STAT_LINK_STATUS) {
  867. link_up = 1;
  868. current_speed = SPEED_1000;
  869. current_duplex = DUPLEX_FULL;
  870. }
  871. lp->active_speed = current_speed;
  872. lp->active_duplex = current_duplex;
  873. spin_unlock_irqrestore(&np->lock, flags);
  874. *link_up_p = link_up;
  875. return 0;
  876. }
  877. static int link_status_10g_serdes(struct niu *np, int *link_up_p)
  878. {
  879. unsigned long flags;
  880. struct niu_link_config *lp = &np->link_config;
  881. int link_up = 0;
  882. int link_ok = 1;
  883. u64 val, val2;
  884. u16 current_speed;
  885. u8 current_duplex;
  886. if (!(np->flags & NIU_FLAGS_10G))
  887. return link_status_1g_serdes(np, link_up_p);
  888. current_speed = SPEED_INVALID;
  889. current_duplex = DUPLEX_INVALID;
  890. spin_lock_irqsave(&np->lock, flags);
  891. val = nr64_xpcs(XPCS_STATUS(0));
  892. val2 = nr64_mac(XMAC_INTER2);
  893. if (val2 & 0x01000000)
  894. link_ok = 0;
  895. if ((val & 0x1000ULL) && link_ok) {
  896. link_up = 1;
  897. current_speed = SPEED_10000;
  898. current_duplex = DUPLEX_FULL;
  899. }
  900. lp->active_speed = current_speed;
  901. lp->active_duplex = current_duplex;
  902. spin_unlock_irqrestore(&np->lock, flags);
  903. *link_up_p = link_up;
  904. return 0;
  905. }
  906. static int link_status_mii(struct niu *np, int *link_up_p)
  907. {
  908. struct niu_link_config *lp = &np->link_config;
  909. int err;
  910. int bmsr, advert, ctrl1000, stat1000, lpa, bmcr, estatus;
  911. int supported, advertising, active_speed, active_duplex;
  912. err = mii_read(np, np->phy_addr, MII_BMCR);
  913. if (unlikely(err < 0))
  914. return err;
  915. bmcr = err;
  916. err = mii_read(np, np->phy_addr, MII_BMSR);
  917. if (unlikely(err < 0))
  918. return err;
  919. bmsr = err;
  920. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  921. if (unlikely(err < 0))
  922. return err;
  923. advert = err;
  924. err = mii_read(np, np->phy_addr, MII_LPA);
  925. if (unlikely(err < 0))
  926. return err;
  927. lpa = err;
  928. if (likely(bmsr & BMSR_ESTATEN)) {
  929. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  930. if (unlikely(err < 0))
  931. return err;
  932. estatus = err;
  933. err = mii_read(np, np->phy_addr, MII_CTRL1000);
  934. if (unlikely(err < 0))
  935. return err;
  936. ctrl1000 = err;
  937. err = mii_read(np, np->phy_addr, MII_STAT1000);
  938. if (unlikely(err < 0))
  939. return err;
  940. stat1000 = err;
  941. } else
  942. estatus = ctrl1000 = stat1000 = 0;
  943. supported = 0;
  944. if (bmsr & BMSR_ANEGCAPABLE)
  945. supported |= SUPPORTED_Autoneg;
  946. if (bmsr & BMSR_10HALF)
  947. supported |= SUPPORTED_10baseT_Half;
  948. if (bmsr & BMSR_10FULL)
  949. supported |= SUPPORTED_10baseT_Full;
  950. if (bmsr & BMSR_100HALF)
  951. supported |= SUPPORTED_100baseT_Half;
  952. if (bmsr & BMSR_100FULL)
  953. supported |= SUPPORTED_100baseT_Full;
  954. if (estatus & ESTATUS_1000_THALF)
  955. supported |= SUPPORTED_1000baseT_Half;
  956. if (estatus & ESTATUS_1000_TFULL)
  957. supported |= SUPPORTED_1000baseT_Full;
  958. lp->supported = supported;
  959. advertising = 0;
  960. if (advert & ADVERTISE_10HALF)
  961. advertising |= ADVERTISED_10baseT_Half;
  962. if (advert & ADVERTISE_10FULL)
  963. advertising |= ADVERTISED_10baseT_Full;
  964. if (advert & ADVERTISE_100HALF)
  965. advertising |= ADVERTISED_100baseT_Half;
  966. if (advert & ADVERTISE_100FULL)
  967. advertising |= ADVERTISED_100baseT_Full;
  968. if (ctrl1000 & ADVERTISE_1000HALF)
  969. advertising |= ADVERTISED_1000baseT_Half;
  970. if (ctrl1000 & ADVERTISE_1000FULL)
  971. advertising |= ADVERTISED_1000baseT_Full;
  972. if (bmcr & BMCR_ANENABLE) {
  973. int neg, neg1000;
  974. lp->active_autoneg = 1;
  975. advertising |= ADVERTISED_Autoneg;
  976. neg = advert & lpa;
  977. neg1000 = (ctrl1000 << 2) & stat1000;
  978. if (neg1000 & (LPA_1000FULL | LPA_1000HALF))
  979. active_speed = SPEED_1000;
  980. else if (neg & LPA_100)
  981. active_speed = SPEED_100;
  982. else if (neg & (LPA_10HALF | LPA_10FULL))
  983. active_speed = SPEED_10;
  984. else
  985. active_speed = SPEED_INVALID;
  986. if ((neg1000 & LPA_1000FULL) || (neg & LPA_DUPLEX))
  987. active_duplex = DUPLEX_FULL;
  988. else if (active_speed != SPEED_INVALID)
  989. active_duplex = DUPLEX_HALF;
  990. else
  991. active_duplex = DUPLEX_INVALID;
  992. } else {
  993. lp->active_autoneg = 0;
  994. if ((bmcr & BMCR_SPEED1000) && !(bmcr & BMCR_SPEED100))
  995. active_speed = SPEED_1000;
  996. else if (bmcr & BMCR_SPEED100)
  997. active_speed = SPEED_100;
  998. else
  999. active_speed = SPEED_10;
  1000. if (bmcr & BMCR_FULLDPLX)
  1001. active_duplex = DUPLEX_FULL;
  1002. else
  1003. active_duplex = DUPLEX_HALF;
  1004. }
  1005. lp->active_advertising = advertising;
  1006. lp->active_speed = active_speed;
  1007. lp->active_duplex = active_duplex;
  1008. *link_up_p = !!(bmsr & BMSR_LSTATUS);
  1009. return 0;
  1010. }
  1011. static int link_status_1g_rgmii(struct niu *np, int *link_up_p)
  1012. {
  1013. struct niu_link_config *lp = &np->link_config;
  1014. u16 current_speed, bmsr;
  1015. unsigned long flags;
  1016. u8 current_duplex;
  1017. int err, link_up;
  1018. link_up = 0;
  1019. current_speed = SPEED_INVALID;
  1020. current_duplex = DUPLEX_INVALID;
  1021. spin_lock_irqsave(&np->lock, flags);
  1022. err = -EINVAL;
  1023. err = mii_read(np, np->phy_addr, MII_BMSR);
  1024. if (err < 0)
  1025. goto out;
  1026. bmsr = err;
  1027. if (bmsr & BMSR_LSTATUS) {
  1028. u16 adv, lpa;
  1029. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  1030. if (err < 0)
  1031. goto out;
  1032. adv = err;
  1033. err = mii_read(np, np->phy_addr, MII_LPA);
  1034. if (err < 0)
  1035. goto out;
  1036. lpa = err;
  1037. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1038. if (err < 0)
  1039. goto out;
  1040. link_up = 1;
  1041. current_speed = SPEED_1000;
  1042. current_duplex = DUPLEX_FULL;
  1043. }
  1044. lp->active_speed = current_speed;
  1045. lp->active_duplex = current_duplex;
  1046. err = 0;
  1047. out:
  1048. spin_unlock_irqrestore(&np->lock, flags);
  1049. *link_up_p = link_up;
  1050. return err;
  1051. }
  1052. static int link_status_1g(struct niu *np, int *link_up_p)
  1053. {
  1054. struct niu_link_config *lp = &np->link_config;
  1055. unsigned long flags;
  1056. int err;
  1057. spin_lock_irqsave(&np->lock, flags);
  1058. err = link_status_mii(np, link_up_p);
  1059. lp->supported |= SUPPORTED_TP;
  1060. lp->active_advertising |= ADVERTISED_TP;
  1061. spin_unlock_irqrestore(&np->lock, flags);
  1062. return err;
  1063. }
  1064. static int bcm8704_reset(struct niu *np)
  1065. {
  1066. int err, limit;
  1067. err = mdio_read(np, np->phy_addr,
  1068. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1069. if (err < 0 || err == 0xffff)
  1070. return err;
  1071. err |= BMCR_RESET;
  1072. err = mdio_write(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1073. MII_BMCR, err);
  1074. if (err)
  1075. return err;
  1076. limit = 1000;
  1077. while (--limit >= 0) {
  1078. err = mdio_read(np, np->phy_addr,
  1079. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1080. if (err < 0)
  1081. return err;
  1082. if (!(err & BMCR_RESET))
  1083. break;
  1084. }
  1085. if (limit < 0) {
  1086. netdev_err(np->dev, "Port %u PHY will not reset (bmcr=%04x)\n",
  1087. np->port, (err & 0xffff));
  1088. return -ENODEV;
  1089. }
  1090. return 0;
  1091. }
  1092. /* When written, certain PHY registers need to be read back twice
  1093. * in order for the bits to settle properly.
  1094. */
  1095. static int bcm8704_user_dev3_readback(struct niu *np, int reg)
  1096. {
  1097. int err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1098. if (err < 0)
  1099. return err;
  1100. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1101. if (err < 0)
  1102. return err;
  1103. return 0;
  1104. }
  1105. static int bcm8706_init_user_dev3(struct niu *np)
  1106. {
  1107. int err;
  1108. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1109. BCM8704_USER_OPT_DIGITAL_CTRL);
  1110. if (err < 0)
  1111. return err;
  1112. err &= ~USER_ODIG_CTRL_GPIOS;
  1113. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1114. err |= USER_ODIG_CTRL_RESV2;
  1115. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1116. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1117. if (err)
  1118. return err;
  1119. mdelay(1000);
  1120. return 0;
  1121. }
  1122. static int bcm8704_init_user_dev3(struct niu *np)
  1123. {
  1124. int err;
  1125. err = mdio_write(np, np->phy_addr,
  1126. BCM8704_USER_DEV3_ADDR, BCM8704_USER_CONTROL,
  1127. (USER_CONTROL_OPTXRST_LVL |
  1128. USER_CONTROL_OPBIASFLT_LVL |
  1129. USER_CONTROL_OBTMPFLT_LVL |
  1130. USER_CONTROL_OPPRFLT_LVL |
  1131. USER_CONTROL_OPTXFLT_LVL |
  1132. USER_CONTROL_OPRXLOS_LVL |
  1133. USER_CONTROL_OPRXFLT_LVL |
  1134. USER_CONTROL_OPTXON_LVL |
  1135. (0x3f << USER_CONTROL_RES1_SHIFT)));
  1136. if (err)
  1137. return err;
  1138. err = mdio_write(np, np->phy_addr,
  1139. BCM8704_USER_DEV3_ADDR, BCM8704_USER_PMD_TX_CONTROL,
  1140. (USER_PMD_TX_CTL_XFP_CLKEN |
  1141. (1 << USER_PMD_TX_CTL_TX_DAC_TXD_SH) |
  1142. (2 << USER_PMD_TX_CTL_TX_DAC_TXCK_SH) |
  1143. USER_PMD_TX_CTL_TSCK_LPWREN));
  1144. if (err)
  1145. return err;
  1146. err = bcm8704_user_dev3_readback(np, BCM8704_USER_CONTROL);
  1147. if (err)
  1148. return err;
  1149. err = bcm8704_user_dev3_readback(np, BCM8704_USER_PMD_TX_CONTROL);
  1150. if (err)
  1151. return err;
  1152. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1153. BCM8704_USER_OPT_DIGITAL_CTRL);
  1154. if (err < 0)
  1155. return err;
  1156. err &= ~USER_ODIG_CTRL_GPIOS;
  1157. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1158. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1159. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1160. if (err)
  1161. return err;
  1162. mdelay(1000);
  1163. return 0;
  1164. }
  1165. static int mrvl88x2011_act_led(struct niu *np, int val)
  1166. {
  1167. int err;
  1168. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1169. MRVL88X2011_LED_8_TO_11_CTL);
  1170. if (err < 0)
  1171. return err;
  1172. err &= ~MRVL88X2011_LED(MRVL88X2011_LED_ACT,MRVL88X2011_LED_CTL_MASK);
  1173. err |= MRVL88X2011_LED(MRVL88X2011_LED_ACT,val);
  1174. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1175. MRVL88X2011_LED_8_TO_11_CTL, err);
  1176. }
  1177. static int mrvl88x2011_led_blink_rate(struct niu *np, int rate)
  1178. {
  1179. int err;
  1180. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1181. MRVL88X2011_LED_BLINK_CTL);
  1182. if (err >= 0) {
  1183. err &= ~MRVL88X2011_LED_BLKRATE_MASK;
  1184. err |= (rate << 4);
  1185. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1186. MRVL88X2011_LED_BLINK_CTL, err);
  1187. }
  1188. return err;
  1189. }
  1190. static int xcvr_init_10g_mrvl88x2011(struct niu *np)
  1191. {
  1192. int err;
  1193. /* Set LED functions */
  1194. err = mrvl88x2011_led_blink_rate(np, MRVL88X2011_LED_BLKRATE_134MS);
  1195. if (err)
  1196. return err;
  1197. /* led activity */
  1198. err = mrvl88x2011_act_led(np, MRVL88X2011_LED_CTL_OFF);
  1199. if (err)
  1200. return err;
  1201. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1202. MRVL88X2011_GENERAL_CTL);
  1203. if (err < 0)
  1204. return err;
  1205. err |= MRVL88X2011_ENA_XFPREFCLK;
  1206. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1207. MRVL88X2011_GENERAL_CTL, err);
  1208. if (err < 0)
  1209. return err;
  1210. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1211. MRVL88X2011_PMA_PMD_CTL_1);
  1212. if (err < 0)
  1213. return err;
  1214. if (np->link_config.loopback_mode == LOOPBACK_MAC)
  1215. err |= MRVL88X2011_LOOPBACK;
  1216. else
  1217. err &= ~MRVL88X2011_LOOPBACK;
  1218. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1219. MRVL88X2011_PMA_PMD_CTL_1, err);
  1220. if (err < 0)
  1221. return err;
  1222. /* Enable PMD */
  1223. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1224. MRVL88X2011_10G_PMD_TX_DIS, MRVL88X2011_ENA_PMDTX);
  1225. }
  1226. static int xcvr_diag_bcm870x(struct niu *np)
  1227. {
  1228. u16 analog_stat0, tx_alarm_status;
  1229. int err = 0;
  1230. #if 1
  1231. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1232. MII_STAT1000);
  1233. if (err < 0)
  1234. return err;
  1235. pr_info("Port %u PMA_PMD(MII_STAT1000) [%04x]\n", np->port, err);
  1236. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, 0x20);
  1237. if (err < 0)
  1238. return err;
  1239. pr_info("Port %u USER_DEV3(0x20) [%04x]\n", np->port, err);
  1240. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1241. MII_NWAYTEST);
  1242. if (err < 0)
  1243. return err;
  1244. pr_info("Port %u PHYXS(MII_NWAYTEST) [%04x]\n", np->port, err);
  1245. #endif
  1246. /* XXX dig this out it might not be so useful XXX */
  1247. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1248. BCM8704_USER_ANALOG_STATUS0);
  1249. if (err < 0)
  1250. return err;
  1251. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1252. BCM8704_USER_ANALOG_STATUS0);
  1253. if (err < 0)
  1254. return err;
  1255. analog_stat0 = err;
  1256. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1257. BCM8704_USER_TX_ALARM_STATUS);
  1258. if (err < 0)
  1259. return err;
  1260. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1261. BCM8704_USER_TX_ALARM_STATUS);
  1262. if (err < 0)
  1263. return err;
  1264. tx_alarm_status = err;
  1265. if (analog_stat0 != 0x03fc) {
  1266. if ((analog_stat0 == 0x43bc) && (tx_alarm_status != 0)) {
  1267. pr_info("Port %u cable not connected or bad cable\n",
  1268. np->port);
  1269. } else if (analog_stat0 == 0x639c) {
  1270. pr_info("Port %u optical module is bad or missing\n",
  1271. np->port);
  1272. }
  1273. }
  1274. return 0;
  1275. }
  1276. static int xcvr_10g_set_lb_bcm870x(struct niu *np)
  1277. {
  1278. struct niu_link_config *lp = &np->link_config;
  1279. int err;
  1280. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1281. MII_BMCR);
  1282. if (err < 0)
  1283. return err;
  1284. err &= ~BMCR_LOOPBACK;
  1285. if (lp->loopback_mode == LOOPBACK_MAC)
  1286. err |= BMCR_LOOPBACK;
  1287. err = mdio_write(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1288. MII_BMCR, err);
  1289. if (err)
  1290. return err;
  1291. return 0;
  1292. }
  1293. static int xcvr_init_10g_bcm8706(struct niu *np)
  1294. {
  1295. int err = 0;
  1296. u64 val;
  1297. if ((np->flags & NIU_FLAGS_HOTPLUG_PHY) &&
  1298. (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) == 0)
  1299. return err;
  1300. val = nr64_mac(XMAC_CONFIG);
  1301. val &= ~XMAC_CONFIG_LED_POLARITY;
  1302. val |= XMAC_CONFIG_FORCE_LED_ON;
  1303. nw64_mac(XMAC_CONFIG, val);
  1304. val = nr64(MIF_CONFIG);
  1305. val |= MIF_CONFIG_INDIRECT_MODE;
  1306. nw64(MIF_CONFIG, val);
  1307. err = bcm8704_reset(np);
  1308. if (err)
  1309. return err;
  1310. err = xcvr_10g_set_lb_bcm870x(np);
  1311. if (err)
  1312. return err;
  1313. err = bcm8706_init_user_dev3(np);
  1314. if (err)
  1315. return err;
  1316. err = xcvr_diag_bcm870x(np);
  1317. if (err)
  1318. return err;
  1319. return 0;
  1320. }
  1321. static int xcvr_init_10g_bcm8704(struct niu *np)
  1322. {
  1323. int err;
  1324. err = bcm8704_reset(np);
  1325. if (err)
  1326. return err;
  1327. err = bcm8704_init_user_dev3(np);
  1328. if (err)
  1329. return err;
  1330. err = xcvr_10g_set_lb_bcm870x(np);
  1331. if (err)
  1332. return err;
  1333. err = xcvr_diag_bcm870x(np);
  1334. if (err)
  1335. return err;
  1336. return 0;
  1337. }
  1338. static int xcvr_init_10g(struct niu *np)
  1339. {
  1340. int phy_id, err;
  1341. u64 val;
  1342. val = nr64_mac(XMAC_CONFIG);
  1343. val &= ~XMAC_CONFIG_LED_POLARITY;
  1344. val |= XMAC_CONFIG_FORCE_LED_ON;
  1345. nw64_mac(XMAC_CONFIG, val);
  1346. /* XXX shared resource, lock parent XXX */
  1347. val = nr64(MIF_CONFIG);
  1348. val |= MIF_CONFIG_INDIRECT_MODE;
  1349. nw64(MIF_CONFIG, val);
  1350. phy_id = phy_decode(np->parent->port_phy, np->port);
  1351. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1352. /* handle different phy types */
  1353. switch (phy_id & NIU_PHY_ID_MASK) {
  1354. case NIU_PHY_ID_MRVL88X2011:
  1355. err = xcvr_init_10g_mrvl88x2011(np);
  1356. break;
  1357. default: /* bcom 8704 */
  1358. err = xcvr_init_10g_bcm8704(np);
  1359. break;
  1360. }
  1361. return err;
  1362. }
  1363. static int mii_reset(struct niu *np)
  1364. {
  1365. int limit, err;
  1366. err = mii_write(np, np->phy_addr, MII_BMCR, BMCR_RESET);
  1367. if (err)
  1368. return err;
  1369. limit = 1000;
  1370. while (--limit >= 0) {
  1371. udelay(500);
  1372. err = mii_read(np, np->phy_addr, MII_BMCR);
  1373. if (err < 0)
  1374. return err;
  1375. if (!(err & BMCR_RESET))
  1376. break;
  1377. }
  1378. if (limit < 0) {
  1379. netdev_err(np->dev, "Port %u MII would not reset, bmcr[%04x]\n",
  1380. np->port, err);
  1381. return -ENODEV;
  1382. }
  1383. return 0;
  1384. }
  1385. static int xcvr_init_1g_rgmii(struct niu *np)
  1386. {
  1387. int err;
  1388. u64 val;
  1389. u16 bmcr, bmsr, estat;
  1390. val = nr64(MIF_CONFIG);
  1391. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1392. nw64(MIF_CONFIG, val);
  1393. err = mii_reset(np);
  1394. if (err)
  1395. return err;
  1396. err = mii_read(np, np->phy_addr, MII_BMSR);
  1397. if (err < 0)
  1398. return err;
  1399. bmsr = err;
  1400. estat = 0;
  1401. if (bmsr & BMSR_ESTATEN) {
  1402. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1403. if (err < 0)
  1404. return err;
  1405. estat = err;
  1406. }
  1407. bmcr = 0;
  1408. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1409. if (err)
  1410. return err;
  1411. if (bmsr & BMSR_ESTATEN) {
  1412. u16 ctrl1000 = 0;
  1413. if (estat & ESTATUS_1000_TFULL)
  1414. ctrl1000 |= ADVERTISE_1000FULL;
  1415. err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000);
  1416. if (err)
  1417. return err;
  1418. }
  1419. bmcr = (BMCR_SPEED1000 | BMCR_FULLDPLX);
  1420. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1421. if (err)
  1422. return err;
  1423. err = mii_read(np, np->phy_addr, MII_BMCR);
  1424. if (err < 0)
  1425. return err;
  1426. bmcr = mii_read(np, np->phy_addr, MII_BMCR);
  1427. err = mii_read(np, np->phy_addr, MII_BMSR);
  1428. if (err < 0)
  1429. return err;
  1430. return 0;
  1431. }
  1432. static int mii_init_common(struct niu *np)
  1433. {
  1434. struct niu_link_config *lp = &np->link_config;
  1435. u16 bmcr, bmsr, adv, estat;
  1436. int err;
  1437. err = mii_reset(np);
  1438. if (err)
  1439. return err;
  1440. err = mii_read(np, np->phy_addr, MII_BMSR);
  1441. if (err < 0)
  1442. return err;
  1443. bmsr = err;
  1444. estat = 0;
  1445. if (bmsr & BMSR_ESTATEN) {
  1446. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1447. if (err < 0)
  1448. return err;
  1449. estat = err;
  1450. }
  1451. bmcr = 0;
  1452. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1453. if (err)
  1454. return err;
  1455. if (lp->loopback_mode == LOOPBACK_MAC) {
  1456. bmcr |= BMCR_LOOPBACK;
  1457. if (lp->active_speed == SPEED_1000)
  1458. bmcr |= BMCR_SPEED1000;
  1459. if (lp->active_duplex == DUPLEX_FULL)
  1460. bmcr |= BMCR_FULLDPLX;
  1461. }
  1462. if (lp->loopback_mode == LOOPBACK_PHY) {
  1463. u16 aux;
  1464. aux = (BCM5464R_AUX_CTL_EXT_LB |
  1465. BCM5464R_AUX_CTL_WRITE_1);
  1466. err = mii_write(np, np->phy_addr, BCM5464R_AUX_CTL, aux);
  1467. if (err)
  1468. return err;
  1469. }
  1470. if (lp->autoneg) {
  1471. u16 ctrl1000;
  1472. adv = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP;
  1473. if ((bmsr & BMSR_10HALF) &&
  1474. (lp->advertising & ADVERTISED_10baseT_Half))
  1475. adv |= ADVERTISE_10HALF;
  1476. if ((bmsr & BMSR_10FULL) &&
  1477. (lp->advertising & ADVERTISED_10baseT_Full))
  1478. adv |= ADVERTISE_10FULL;
  1479. if ((bmsr & BMSR_100HALF) &&
  1480. (lp->advertising & ADVERTISED_100baseT_Half))
  1481. adv |= ADVERTISE_100HALF;
  1482. if ((bmsr & BMSR_100FULL) &&
  1483. (lp->advertising & ADVERTISED_100baseT_Full))
  1484. adv |= ADVERTISE_100FULL;
  1485. err = mii_write(np, np->phy_addr, MII_ADVERTISE, adv);
  1486. if (err)
  1487. return err;
  1488. if (likely(bmsr & BMSR_ESTATEN)) {
  1489. ctrl1000 = 0;
  1490. if ((estat & ESTATUS_1000_THALF) &&
  1491. (lp->advertising & ADVERTISED_1000baseT_Half))
  1492. ctrl1000 |= ADVERTISE_1000HALF;
  1493. if ((estat & ESTATUS_1000_TFULL) &&
  1494. (lp->advertising & ADVERTISED_1000baseT_Full))
  1495. ctrl1000 |= ADVERTISE_1000FULL;
  1496. err = mii_write(np, np->phy_addr,
  1497. MII_CTRL1000, ctrl1000);
  1498. if (err)
  1499. return err;
  1500. }
  1501. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  1502. } else {
  1503. /* !lp->autoneg */
  1504. int fulldpx;
  1505. if (lp->duplex == DUPLEX_FULL) {
  1506. bmcr |= BMCR_FULLDPLX;
  1507. fulldpx = 1;
  1508. } else if (lp->duplex == DUPLEX_HALF)
  1509. fulldpx = 0;
  1510. else
  1511. return -EINVAL;
  1512. if (lp->speed == SPEED_1000) {
  1513. /* if X-full requested while not supported, or
  1514. X-half requested while not supported... */
  1515. if ((fulldpx && !(estat & ESTATUS_1000_TFULL)) ||
  1516. (!fulldpx && !(estat & ESTATUS_1000_THALF)))
  1517. return -EINVAL;
  1518. bmcr |= BMCR_SPEED1000;
  1519. } else if (lp->speed == SPEED_100) {
  1520. if ((fulldpx && !(bmsr & BMSR_100FULL)) ||
  1521. (!fulldpx && !(bmsr & BMSR_100HALF)))
  1522. return -EINVAL;
  1523. bmcr |= BMCR_SPEED100;
  1524. } else if (lp->speed == SPEED_10) {
  1525. if ((fulldpx && !(bmsr & BMSR_10FULL)) ||
  1526. (!fulldpx && !(bmsr & BMSR_10HALF)))
  1527. return -EINVAL;
  1528. } else
  1529. return -EINVAL;
  1530. }
  1531. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1532. if (err)
  1533. return err;
  1534. #if 0
  1535. err = mii_read(np, np->phy_addr, MII_BMCR);
  1536. if (err < 0)
  1537. return err;
  1538. bmcr = err;
  1539. err = mii_read(np, np->phy_addr, MII_BMSR);
  1540. if (err < 0)
  1541. return err;
  1542. bmsr = err;
  1543. pr_info("Port %u after MII init bmcr[%04x] bmsr[%04x]\n",
  1544. np->port, bmcr, bmsr);
  1545. #endif
  1546. return 0;
  1547. }
  1548. static int xcvr_init_1g(struct niu *np)
  1549. {
  1550. u64 val;
  1551. /* XXX shared resource, lock parent XXX */
  1552. val = nr64(MIF_CONFIG);
  1553. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1554. nw64(MIF_CONFIG, val);
  1555. return mii_init_common(np);
  1556. }
  1557. static int niu_xcvr_init(struct niu *np)
  1558. {
  1559. const struct niu_phy_ops *ops = np->phy_ops;
  1560. int err;
  1561. err = 0;
  1562. if (ops->xcvr_init)
  1563. err = ops->xcvr_init(np);
  1564. return err;
  1565. }
  1566. static int niu_serdes_init(struct niu *np)
  1567. {
  1568. const struct niu_phy_ops *ops = np->phy_ops;
  1569. int err;
  1570. err = 0;
  1571. if (ops->serdes_init)
  1572. err = ops->serdes_init(np);
  1573. return err;
  1574. }
  1575. static void niu_init_xif(struct niu *);
  1576. static void niu_handle_led(struct niu *, int status);
  1577. static int niu_link_status_common(struct niu *np, int link_up)
  1578. {
  1579. struct niu_link_config *lp = &np->link_config;
  1580. struct net_device *dev = np->dev;
  1581. unsigned long flags;
  1582. if (!netif_carrier_ok(dev) && link_up) {
  1583. netif_info(np, link, dev, "Link is up at %s, %s duplex\n",
  1584. lp->active_speed == SPEED_10000 ? "10Gb/sec" :
  1585. lp->active_speed == SPEED_1000 ? "1Gb/sec" :
  1586. lp->active_speed == SPEED_100 ? "100Mbit/sec" :
  1587. "10Mbit/sec",
  1588. lp->active_duplex == DUPLEX_FULL ? "full" : "half");
  1589. spin_lock_irqsave(&np->lock, flags);
  1590. niu_init_xif(np);
  1591. niu_handle_led(np, 1);
  1592. spin_unlock_irqrestore(&np->lock, flags);
  1593. netif_carrier_on(dev);
  1594. } else if (netif_carrier_ok(dev) && !link_up) {
  1595. netif_warn(np, link, dev, "Link is down\n");
  1596. spin_lock_irqsave(&np->lock, flags);
  1597. niu_handle_led(np, 0);
  1598. spin_unlock_irqrestore(&np->lock, flags);
  1599. netif_carrier_off(dev);
  1600. }
  1601. return 0;
  1602. }
  1603. static int link_status_10g_mrvl(struct niu *np, int *link_up_p)
  1604. {
  1605. int err, link_up, pma_status, pcs_status;
  1606. link_up = 0;
  1607. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1608. MRVL88X2011_10G_PMD_STATUS_2);
  1609. if (err < 0)
  1610. goto out;
  1611. /* Check PMA/PMD Register: 1.0001.2 == 1 */
  1612. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1613. MRVL88X2011_PMA_PMD_STATUS_1);
  1614. if (err < 0)
  1615. goto out;
  1616. pma_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1617. /* Check PMC Register : 3.0001.2 == 1: read twice */
  1618. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1619. MRVL88X2011_PMA_PMD_STATUS_1);
  1620. if (err < 0)
  1621. goto out;
  1622. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1623. MRVL88X2011_PMA_PMD_STATUS_1);
  1624. if (err < 0)
  1625. goto out;
  1626. pcs_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1627. /* Check XGXS Register : 4.0018.[0-3,12] */
  1628. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV4_ADDR,
  1629. MRVL88X2011_10G_XGXS_LANE_STAT);
  1630. if (err < 0)
  1631. goto out;
  1632. if (err == (PHYXS_XGXS_LANE_STAT_ALINGED | PHYXS_XGXS_LANE_STAT_LANE3 |
  1633. PHYXS_XGXS_LANE_STAT_LANE2 | PHYXS_XGXS_LANE_STAT_LANE1 |
  1634. PHYXS_XGXS_LANE_STAT_LANE0 | PHYXS_XGXS_LANE_STAT_MAGIC |
  1635. 0x800))
  1636. link_up = (pma_status && pcs_status) ? 1 : 0;
  1637. np->link_config.active_speed = SPEED_10000;
  1638. np->link_config.active_duplex = DUPLEX_FULL;
  1639. err = 0;
  1640. out:
  1641. mrvl88x2011_act_led(np, (link_up ?
  1642. MRVL88X2011_LED_CTL_PCS_ACT :
  1643. MRVL88X2011_LED_CTL_OFF));
  1644. *link_up_p = link_up;
  1645. return err;
  1646. }
  1647. static int link_status_10g_bcm8706(struct niu *np, int *link_up_p)
  1648. {
  1649. int err, link_up;
  1650. link_up = 0;
  1651. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1652. BCM8704_PMD_RCV_SIGDET);
  1653. if (err < 0 || err == 0xffff)
  1654. goto out;
  1655. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1656. err = 0;
  1657. goto out;
  1658. }
  1659. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1660. BCM8704_PCS_10G_R_STATUS);
  1661. if (err < 0)
  1662. goto out;
  1663. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1664. err = 0;
  1665. goto out;
  1666. }
  1667. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1668. BCM8704_PHYXS_XGXS_LANE_STAT);
  1669. if (err < 0)
  1670. goto out;
  1671. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1672. PHYXS_XGXS_LANE_STAT_MAGIC |
  1673. PHYXS_XGXS_LANE_STAT_PATTEST |
  1674. PHYXS_XGXS_LANE_STAT_LANE3 |
  1675. PHYXS_XGXS_LANE_STAT_LANE2 |
  1676. PHYXS_XGXS_LANE_STAT_LANE1 |
  1677. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1678. err = 0;
  1679. np->link_config.active_speed = SPEED_INVALID;
  1680. np->link_config.active_duplex = DUPLEX_INVALID;
  1681. goto out;
  1682. }
  1683. link_up = 1;
  1684. np->link_config.active_speed = SPEED_10000;
  1685. np->link_config.active_duplex = DUPLEX_FULL;
  1686. err = 0;
  1687. out:
  1688. *link_up_p = link_up;
  1689. return err;
  1690. }
  1691. static int link_status_10g_bcom(struct niu *np, int *link_up_p)
  1692. {
  1693. int err, link_up;
  1694. link_up = 0;
  1695. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1696. BCM8704_PMD_RCV_SIGDET);
  1697. if (err < 0)
  1698. goto out;
  1699. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1700. err = 0;
  1701. goto out;
  1702. }
  1703. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1704. BCM8704_PCS_10G_R_STATUS);
  1705. if (err < 0)
  1706. goto out;
  1707. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1708. err = 0;
  1709. goto out;
  1710. }
  1711. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1712. BCM8704_PHYXS_XGXS_LANE_STAT);
  1713. if (err < 0)
  1714. goto out;
  1715. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1716. PHYXS_XGXS_LANE_STAT_MAGIC |
  1717. PHYXS_XGXS_LANE_STAT_LANE3 |
  1718. PHYXS_XGXS_LANE_STAT_LANE2 |
  1719. PHYXS_XGXS_LANE_STAT_LANE1 |
  1720. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1721. err = 0;
  1722. goto out;
  1723. }
  1724. link_up = 1;
  1725. np->link_config.active_speed = SPEED_10000;
  1726. np->link_config.active_duplex = DUPLEX_FULL;
  1727. err = 0;
  1728. out:
  1729. *link_up_p = link_up;
  1730. return err;
  1731. }
  1732. static int link_status_10g(struct niu *np, int *link_up_p)
  1733. {
  1734. unsigned long flags;
  1735. int err = -EINVAL;
  1736. spin_lock_irqsave(&np->lock, flags);
  1737. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1738. int phy_id;
  1739. phy_id = phy_decode(np->parent->port_phy, np->port);
  1740. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1741. /* handle different phy types */
  1742. switch (phy_id & NIU_PHY_ID_MASK) {
  1743. case NIU_PHY_ID_MRVL88X2011:
  1744. err = link_status_10g_mrvl(np, link_up_p);
  1745. break;
  1746. default: /* bcom 8704 */
  1747. err = link_status_10g_bcom(np, link_up_p);
  1748. break;
  1749. }
  1750. }
  1751. spin_unlock_irqrestore(&np->lock, flags);
  1752. return err;
  1753. }
  1754. static int niu_10g_phy_present(struct niu *np)
  1755. {
  1756. u64 sig, mask, val;
  1757. sig = nr64(ESR_INT_SIGNALS);
  1758. switch (np->port) {
  1759. case 0:
  1760. mask = ESR_INT_SIGNALS_P0_BITS;
  1761. val = (ESR_INT_SRDY0_P0 |
  1762. ESR_INT_DET0_P0 |
  1763. ESR_INT_XSRDY_P0 |
  1764. ESR_INT_XDP_P0_CH3 |
  1765. ESR_INT_XDP_P0_CH2 |
  1766. ESR_INT_XDP_P0_CH1 |
  1767. ESR_INT_XDP_P0_CH0);
  1768. break;
  1769. case 1:
  1770. mask = ESR_INT_SIGNALS_P1_BITS;
  1771. val = (ESR_INT_SRDY0_P1 |
  1772. ESR_INT_DET0_P1 |
  1773. ESR_INT_XSRDY_P1 |
  1774. ESR_INT_XDP_P1_CH3 |
  1775. ESR_INT_XDP_P1_CH2 |
  1776. ESR_INT_XDP_P1_CH1 |
  1777. ESR_INT_XDP_P1_CH0);
  1778. break;
  1779. default:
  1780. return 0;
  1781. }
  1782. if ((sig & mask) != val)
  1783. return 0;
  1784. return 1;
  1785. }
  1786. static int link_status_10g_hotplug(struct niu *np, int *link_up_p)
  1787. {
  1788. unsigned long flags;
  1789. int err = 0;
  1790. int phy_present;
  1791. int phy_present_prev;
  1792. spin_lock_irqsave(&np->lock, flags);
  1793. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1794. phy_present_prev = (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) ?
  1795. 1 : 0;
  1796. phy_present = niu_10g_phy_present(np);
  1797. if (phy_present != phy_present_prev) {
  1798. /* state change */
  1799. if (phy_present) {
  1800. /* A NEM was just plugged in */
  1801. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1802. if (np->phy_ops->xcvr_init)
  1803. err = np->phy_ops->xcvr_init(np);
  1804. if (err) {
  1805. err = mdio_read(np, np->phy_addr,
  1806. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1807. if (err == 0xffff) {
  1808. /* No mdio, back-to-back XAUI */
  1809. goto out;
  1810. }
  1811. /* debounce */
  1812. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1813. }
  1814. } else {
  1815. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1816. *link_up_p = 0;
  1817. netif_warn(np, link, np->dev,
  1818. "Hotplug PHY Removed\n");
  1819. }
  1820. }
  1821. out:
  1822. if (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) {
  1823. err = link_status_10g_bcm8706(np, link_up_p);
  1824. if (err == 0xffff) {
  1825. /* No mdio, back-to-back XAUI: it is C10NEM */
  1826. *link_up_p = 1;
  1827. np->link_config.active_speed = SPEED_10000;
  1828. np->link_config.active_duplex = DUPLEX_FULL;
  1829. }
  1830. }
  1831. }
  1832. spin_unlock_irqrestore(&np->lock, flags);
  1833. return 0;
  1834. }
  1835. static int niu_link_status(struct niu *np, int *link_up_p)
  1836. {
  1837. const struct niu_phy_ops *ops = np->phy_ops;
  1838. int err;
  1839. err = 0;
  1840. if (ops->link_status)
  1841. err = ops->link_status(np, link_up_p);
  1842. return err;
  1843. }
  1844. static void niu_timer(unsigned long __opaque)
  1845. {
  1846. struct niu *np = (struct niu *) __opaque;
  1847. unsigned long off;
  1848. int err, link_up;
  1849. err = niu_link_status(np, &link_up);
  1850. if (!err)
  1851. niu_link_status_common(np, link_up);
  1852. if (netif_carrier_ok(np->dev))
  1853. off = 5 * HZ;
  1854. else
  1855. off = 1 * HZ;
  1856. np->timer.expires = jiffies + off;
  1857. add_timer(&np->timer);
  1858. }
  1859. static const struct niu_phy_ops phy_ops_10g_serdes = {
  1860. .serdes_init = serdes_init_10g_serdes,
  1861. .link_status = link_status_10g_serdes,
  1862. };
  1863. static const struct niu_phy_ops phy_ops_10g_serdes_niu = {
  1864. .serdes_init = serdes_init_niu_10g_serdes,
  1865. .link_status = link_status_10g_serdes,
  1866. };
  1867. static const struct niu_phy_ops phy_ops_1g_serdes_niu = {
  1868. .serdes_init = serdes_init_niu_1g_serdes,
  1869. .link_status = link_status_1g_serdes,
  1870. };
  1871. static const struct niu_phy_ops phy_ops_1g_rgmii = {
  1872. .xcvr_init = xcvr_init_1g_rgmii,
  1873. .link_status = link_status_1g_rgmii,
  1874. };
  1875. static const struct niu_phy_ops phy_ops_10g_fiber_niu = {
  1876. .serdes_init = serdes_init_niu_10g_fiber,
  1877. .xcvr_init = xcvr_init_10g,
  1878. .link_status = link_status_10g,
  1879. };
  1880. static const struct niu_phy_ops phy_ops_10g_fiber = {
  1881. .serdes_init = serdes_init_10g,
  1882. .xcvr_init = xcvr_init_10g,
  1883. .link_status = link_status_10g,
  1884. };
  1885. static const struct niu_phy_ops phy_ops_10g_fiber_hotplug = {
  1886. .serdes_init = serdes_init_10g,
  1887. .xcvr_init = xcvr_init_10g_bcm8706,
  1888. .link_status = link_status_10g_hotplug,
  1889. };
  1890. static const struct niu_phy_ops phy_ops_niu_10g_hotplug = {
  1891. .serdes_init = serdes_init_niu_10g_fiber,
  1892. .xcvr_init = xcvr_init_10g_bcm8706,
  1893. .link_status = link_status_10g_hotplug,
  1894. };
  1895. static const struct niu_phy_ops phy_ops_10g_copper = {
  1896. .serdes_init = serdes_init_10g,
  1897. .link_status = link_status_10g, /* XXX */
  1898. };
  1899. static const struct niu_phy_ops phy_ops_1g_fiber = {
  1900. .serdes_init = serdes_init_1g,
  1901. .xcvr_init = xcvr_init_1g,
  1902. .link_status = link_status_1g,
  1903. };
  1904. static const struct niu_phy_ops phy_ops_1g_copper = {
  1905. .xcvr_init = xcvr_init_1g,
  1906. .link_status = link_status_1g,
  1907. };
  1908. struct niu_phy_template {
  1909. const struct niu_phy_ops *ops;
  1910. u32 phy_addr_base;
  1911. };
  1912. static const struct niu_phy_template phy_template_niu_10g_fiber = {
  1913. .ops = &phy_ops_10g_fiber_niu,
  1914. .phy_addr_base = 16,
  1915. };
  1916. static const struct niu_phy_template phy_template_niu_10g_serdes = {
  1917. .ops = &phy_ops_10g_serdes_niu,
  1918. .phy_addr_base = 0,
  1919. };
  1920. static const struct niu_phy_template phy_template_niu_1g_serdes = {
  1921. .ops = &phy_ops_1g_serdes_niu,
  1922. .phy_addr_base = 0,
  1923. };
  1924. static const struct niu_phy_template phy_template_10g_fiber = {
  1925. .ops = &phy_ops_10g_fiber,
  1926. .phy_addr_base = 8,
  1927. };
  1928. static const struct niu_phy_template phy_template_10g_fiber_hotplug = {
  1929. .ops = &phy_ops_10g_fiber_hotplug,
  1930. .phy_addr_base = 8,
  1931. };
  1932. static const struct niu_phy_template phy_template_niu_10g_hotplug = {
  1933. .ops = &phy_ops_niu_10g_hotplug,
  1934. .phy_addr_base = 8,
  1935. };
  1936. static const struct niu_phy_template phy_template_10g_copper = {
  1937. .ops = &phy_ops_10g_copper,
  1938. .phy_addr_base = 10,
  1939. };
  1940. static const struct niu_phy_template phy_template_1g_fiber = {
  1941. .ops = &phy_ops_1g_fiber,
  1942. .phy_addr_base = 0,
  1943. };
  1944. static const struct niu_phy_template phy_template_1g_copper = {
  1945. .ops = &phy_ops_1g_copper,
  1946. .phy_addr_base = 0,
  1947. };
  1948. static const struct niu_phy_template phy_template_1g_rgmii = {
  1949. .ops = &phy_ops_1g_rgmii,
  1950. .phy_addr_base = 0,
  1951. };
  1952. static const struct niu_phy_template phy_template_10g_serdes = {
  1953. .ops = &phy_ops_10g_serdes,
  1954. .phy_addr_base = 0,
  1955. };
  1956. static int niu_atca_port_num[4] = {
  1957. 0, 0, 11, 10
  1958. };
  1959. static int serdes_init_10g_serdes(struct niu *np)
  1960. {
  1961. struct niu_link_config *lp = &np->link_config;
  1962. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  1963. u64 ctrl_val, test_cfg_val, sig, mask, val;
  1964. switch (np->port) {
  1965. case 0:
  1966. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  1967. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  1968. pll_cfg = ENET_SERDES_0_PLL_CFG;
  1969. break;
  1970. case 1:
  1971. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  1972. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  1973. pll_cfg = ENET_SERDES_1_PLL_CFG;
  1974. break;
  1975. default:
  1976. return -EINVAL;
  1977. }
  1978. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  1979. ENET_SERDES_CTRL_SDET_1 |
  1980. ENET_SERDES_CTRL_SDET_2 |
  1981. ENET_SERDES_CTRL_SDET_3 |
  1982. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  1983. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  1984. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  1985. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  1986. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  1987. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  1988. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  1989. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  1990. test_cfg_val = 0;
  1991. if (lp->loopback_mode == LOOPBACK_PHY) {
  1992. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  1993. ENET_SERDES_TEST_MD_0_SHIFT) |
  1994. (ENET_TEST_MD_PAD_LOOPBACK <<
  1995. ENET_SERDES_TEST_MD_1_SHIFT) |
  1996. (ENET_TEST_MD_PAD_LOOPBACK <<
  1997. ENET_SERDES_TEST_MD_2_SHIFT) |
  1998. (ENET_TEST_MD_PAD_LOOPBACK <<
  1999. ENET_SERDES_TEST_MD_3_SHIFT));
  2000. }
  2001. esr_reset(np);
  2002. nw64(pll_cfg, ENET_SERDES_PLL_FBDIV2);
  2003. nw64(ctrl_reg, ctrl_val);
  2004. nw64(test_cfg_reg, test_cfg_val);
  2005. /* Initialize all 4 lanes of the SERDES. */
  2006. for (i = 0; i < 4; i++) {
  2007. u32 rxtx_ctrl, glue0;
  2008. int err;
  2009. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  2010. if (err)
  2011. return err;
  2012. err = esr_read_glue0(np, i, &glue0);
  2013. if (err)
  2014. return err;
  2015. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  2016. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  2017. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  2018. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  2019. ESR_GLUE_CTRL0_THCNT |
  2020. ESR_GLUE_CTRL0_BLTIME);
  2021. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  2022. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  2023. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  2024. (BLTIME_300_CYCLES <<
  2025. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  2026. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  2027. if (err)
  2028. return err;
  2029. err = esr_write_glue0(np, i, glue0);
  2030. if (err)
  2031. return err;
  2032. }
  2033. sig = nr64(ESR_INT_SIGNALS);
  2034. switch (np->port) {
  2035. case 0:
  2036. mask = ESR_INT_SIGNALS_P0_BITS;
  2037. val = (ESR_INT_SRDY0_P0 |
  2038. ESR_INT_DET0_P0 |
  2039. ESR_INT_XSRDY_P0 |
  2040. ESR_INT_XDP_P0_CH3 |
  2041. ESR_INT_XDP_P0_CH2 |
  2042. ESR_INT_XDP_P0_CH1 |
  2043. ESR_INT_XDP_P0_CH0);
  2044. break;
  2045. case 1:
  2046. mask = ESR_INT_SIGNALS_P1_BITS;
  2047. val = (ESR_INT_SRDY0_P1 |
  2048. ESR_INT_DET0_P1 |
  2049. ESR_INT_XSRDY_P1 |
  2050. ESR_INT_XDP_P1_CH3 |
  2051. ESR_INT_XDP_P1_CH2 |
  2052. ESR_INT_XDP_P1_CH1 |
  2053. ESR_INT_XDP_P1_CH0);
  2054. break;
  2055. default:
  2056. return -EINVAL;
  2057. }
  2058. if ((sig & mask) != val) {
  2059. int err;
  2060. err = serdes_init_1g_serdes(np);
  2061. if (!err) {
  2062. np->flags &= ~NIU_FLAGS_10G;
  2063. np->mac_xcvr = MAC_XCVR_PCS;
  2064. } else {
  2065. netdev_err(np->dev, "Port %u 10G/1G SERDES Link Failed\n",
  2066. np->port);
  2067. return -ENODEV;
  2068. }
  2069. }
  2070. return 0;
  2071. }
  2072. static int niu_determine_phy_disposition(struct niu *np)
  2073. {
  2074. struct niu_parent *parent = np->parent;
  2075. u8 plat_type = parent->plat_type;
  2076. const struct niu_phy_template *tp;
  2077. u32 phy_addr_off = 0;
  2078. if (plat_type == PLAT_TYPE_NIU) {
  2079. switch (np->flags &
  2080. (NIU_FLAGS_10G |
  2081. NIU_FLAGS_FIBER |
  2082. NIU_FLAGS_XCVR_SERDES)) {
  2083. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2084. /* 10G Serdes */
  2085. tp = &phy_template_niu_10g_serdes;
  2086. break;
  2087. case NIU_FLAGS_XCVR_SERDES:
  2088. /* 1G Serdes */
  2089. tp = &phy_template_niu_1g_serdes;
  2090. break;
  2091. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2092. /* 10G Fiber */
  2093. default:
  2094. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2095. tp = &phy_template_niu_10g_hotplug;
  2096. if (np->port == 0)
  2097. phy_addr_off = 8;
  2098. if (np->port == 1)
  2099. phy_addr_off = 12;
  2100. } else {
  2101. tp = &phy_template_niu_10g_fiber;
  2102. phy_addr_off += np->port;
  2103. }
  2104. break;
  2105. }
  2106. } else {
  2107. switch (np->flags &
  2108. (NIU_FLAGS_10G |
  2109. NIU_FLAGS_FIBER |
  2110. NIU_FLAGS_XCVR_SERDES)) {
  2111. case 0:
  2112. /* 1G copper */
  2113. tp = &phy_template_1g_copper;
  2114. if (plat_type == PLAT_TYPE_VF_P0)
  2115. phy_addr_off = 10;
  2116. else if (plat_type == PLAT_TYPE_VF_P1)
  2117. phy_addr_off = 26;
  2118. phy_addr_off += (np->port ^ 0x3);
  2119. break;
  2120. case NIU_FLAGS_10G:
  2121. /* 10G copper */
  2122. tp = &phy_template_10g_copper;
  2123. break;
  2124. case NIU_FLAGS_FIBER:
  2125. /* 1G fiber */
  2126. tp = &phy_template_1g_fiber;
  2127. break;
  2128. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2129. /* 10G fiber */
  2130. tp = &phy_template_10g_fiber;
  2131. if (plat_type == PLAT_TYPE_VF_P0 ||
  2132. plat_type == PLAT_TYPE_VF_P1)
  2133. phy_addr_off = 8;
  2134. phy_addr_off += np->port;
  2135. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2136. tp = &phy_template_10g_fiber_hotplug;
  2137. if (np->port == 0)
  2138. phy_addr_off = 8;
  2139. if (np->port == 1)
  2140. phy_addr_off = 12;
  2141. }
  2142. break;
  2143. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2144. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  2145. case NIU_FLAGS_XCVR_SERDES:
  2146. switch(np->port) {
  2147. case 0:
  2148. case 1:
  2149. tp = &phy_template_10g_serdes;
  2150. break;
  2151. case 2:
  2152. case 3:
  2153. tp = &phy_template_1g_rgmii;
  2154. break;
  2155. default:
  2156. return -EINVAL;
  2157. break;
  2158. }
  2159. phy_addr_off = niu_atca_port_num[np->port];
  2160. break;
  2161. default:
  2162. return -EINVAL;
  2163. }
  2164. }
  2165. np->phy_ops = tp->ops;
  2166. np->phy_addr = tp->phy_addr_base + phy_addr_off;
  2167. return 0;
  2168. }
  2169. static int niu_init_link(struct niu *np)
  2170. {
  2171. struct niu_parent *parent = np->parent;
  2172. int err, ignore;
  2173. if (parent->plat_type == PLAT_TYPE_NIU) {
  2174. err = niu_xcvr_init(np);
  2175. if (err)
  2176. return err;
  2177. msleep(200);
  2178. }
  2179. err = niu_serdes_init(np);
  2180. if (err && !(np->flags & NIU_FLAGS_HOTPLUG_PHY))
  2181. return err;
  2182. msleep(200);
  2183. err = niu_xcvr_init(np);
  2184. if (!err || (np->flags & NIU_FLAGS_HOTPLUG_PHY))
  2185. niu_link_status(np, &ignore);
  2186. return 0;
  2187. }
  2188. static void niu_set_primary_mac(struct niu *np, unsigned char *addr)
  2189. {
  2190. u16 reg0 = addr[4] << 8 | addr[5];
  2191. u16 reg1 = addr[2] << 8 | addr[3];
  2192. u16 reg2 = addr[0] << 8 | addr[1];
  2193. if (np->flags & NIU_FLAGS_XMAC) {
  2194. nw64_mac(XMAC_ADDR0, reg0);
  2195. nw64_mac(XMAC_ADDR1, reg1);
  2196. nw64_mac(XMAC_ADDR2, reg2);
  2197. } else {
  2198. nw64_mac(BMAC_ADDR0, reg0);
  2199. nw64_mac(BMAC_ADDR1, reg1);
  2200. nw64_mac(BMAC_ADDR2, reg2);
  2201. }
  2202. }
  2203. static int niu_num_alt_addr(struct niu *np)
  2204. {
  2205. if (np->flags & NIU_FLAGS_XMAC)
  2206. return XMAC_NUM_ALT_ADDR;
  2207. else
  2208. return BMAC_NUM_ALT_ADDR;
  2209. }
  2210. static int niu_set_alt_mac(struct niu *np, int index, unsigned char *addr)
  2211. {
  2212. u16 reg0 = addr[4] << 8 | addr[5];
  2213. u16 reg1 = addr[2] << 8 | addr[3];
  2214. u16 reg2 = addr[0] << 8 | addr[1];
  2215. if (index >= niu_num_alt_addr(np))
  2216. return -EINVAL;
  2217. if (np->flags & NIU_FLAGS_XMAC) {
  2218. nw64_mac(XMAC_ALT_ADDR0(index), reg0);
  2219. nw64_mac(XMAC_ALT_ADDR1(index), reg1);
  2220. nw64_mac(XMAC_ALT_ADDR2(index), reg2);
  2221. } else {
  2222. nw64_mac(BMAC_ALT_ADDR0(index), reg0);
  2223. nw64_mac(BMAC_ALT_ADDR1(index), reg1);
  2224. nw64_mac(BMAC_ALT_ADDR2(index), reg2);
  2225. }
  2226. return 0;
  2227. }
  2228. static int niu_enable_alt_mac(struct niu *np, int index, int on)
  2229. {
  2230. unsigned long reg;
  2231. u64 val, mask;
  2232. if (index >= niu_num_alt_addr(np))
  2233. return -EINVAL;
  2234. if (np->flags & NIU_FLAGS_XMAC) {
  2235. reg = XMAC_ADDR_CMPEN;
  2236. mask = 1 << index;
  2237. } else {
  2238. reg = BMAC_ADDR_CMPEN;
  2239. mask = 1 << (index + 1);
  2240. }
  2241. val = nr64_mac(reg);
  2242. if (on)
  2243. val |= mask;
  2244. else
  2245. val &= ~mask;
  2246. nw64_mac(reg, val);
  2247. return 0;
  2248. }
  2249. static void __set_rdc_table_num_hw(struct niu *np, unsigned long reg,
  2250. int num, int mac_pref)
  2251. {
  2252. u64 val = nr64_mac(reg);
  2253. val &= ~(HOST_INFO_MACRDCTBLN | HOST_INFO_MPR);
  2254. val |= num;
  2255. if (mac_pref)
  2256. val |= HOST_INFO_MPR;
  2257. nw64_mac(reg, val);
  2258. }
  2259. static int __set_rdc_table_num(struct niu *np,
  2260. int xmac_index, int bmac_index,
  2261. int rdc_table_num, int mac_pref)
  2262. {
  2263. unsigned long reg;
  2264. if (rdc_table_num & ~HOST_INFO_MACRDCTBLN)
  2265. return -EINVAL;
  2266. if (np->flags & NIU_FLAGS_XMAC)
  2267. reg = XMAC_HOST_INFO(xmac_index);
  2268. else
  2269. reg = BMAC_HOST_INFO(bmac_index);
  2270. __set_rdc_table_num_hw(np, reg, rdc_table_num, mac_pref);
  2271. return 0;
  2272. }
  2273. static int niu_set_primary_mac_rdc_table(struct niu *np, int table_num,
  2274. int mac_pref)
  2275. {
  2276. return __set_rdc_table_num(np, 17, 0, table_num, mac_pref);
  2277. }
  2278. static int niu_set_multicast_mac_rdc_table(struct niu *np, int table_num,
  2279. int mac_pref)
  2280. {
  2281. return __set_rdc_table_num(np, 16, 8, table_num, mac_pref);
  2282. }
  2283. static int niu_set_alt_mac_rdc_table(struct niu *np, int idx,
  2284. int table_num, int mac_pref)
  2285. {
  2286. if (idx >= niu_num_alt_addr(np))
  2287. return -EINVAL;
  2288. return __set_rdc_table_num(np, idx, idx + 1, table_num, mac_pref);
  2289. }
  2290. static u64 vlan_entry_set_parity(u64 reg_val)
  2291. {
  2292. u64 port01_mask;
  2293. u64 port23_mask;
  2294. port01_mask = 0x00ff;
  2295. port23_mask = 0xff00;
  2296. if (hweight64(reg_val & port01_mask) & 1)
  2297. reg_val |= ENET_VLAN_TBL_PARITY0;
  2298. else
  2299. reg_val &= ~ENET_VLAN_TBL_PARITY0;
  2300. if (hweight64(reg_val & port23_mask) & 1)
  2301. reg_val |= ENET_VLAN_TBL_PARITY1;
  2302. else
  2303. reg_val &= ~ENET_VLAN_TBL_PARITY1;
  2304. return reg_val;
  2305. }
  2306. static void vlan_tbl_write(struct niu *np, unsigned long index,
  2307. int port, int vpr, int rdc_table)
  2308. {
  2309. u64 reg_val = nr64(ENET_VLAN_TBL(index));
  2310. reg_val &= ~((ENET_VLAN_TBL_VPR |
  2311. ENET_VLAN_TBL_VLANRDCTBLN) <<
  2312. ENET_VLAN_TBL_SHIFT(port));
  2313. if (vpr)
  2314. reg_val |= (ENET_VLAN_TBL_VPR <<
  2315. ENET_VLAN_TBL_SHIFT(port));
  2316. reg_val |= (rdc_table << ENET_VLAN_TBL_SHIFT(port));
  2317. reg_val = vlan_entry_set_parity(reg_val);
  2318. nw64(ENET_VLAN_TBL(index), reg_val);
  2319. }
  2320. static void vlan_tbl_clear(struct niu *np)
  2321. {
  2322. int i;
  2323. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++)
  2324. nw64(ENET_VLAN_TBL(i), 0);
  2325. }
  2326. static int tcam_wait_bit(struct niu *np, u64 bit)
  2327. {
  2328. int limit = 1000;
  2329. while (--limit > 0) {
  2330. if (nr64(TCAM_CTL) & bit)
  2331. break;
  2332. udelay(1);
  2333. }
  2334. if (limit <= 0)
  2335. return -ENODEV;
  2336. return 0;
  2337. }
  2338. static int tcam_flush(struct niu *np, int index)
  2339. {
  2340. nw64(TCAM_KEY_0, 0x00);
  2341. nw64(TCAM_KEY_MASK_0, 0xff);
  2342. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2343. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2344. }
  2345. #if 0
  2346. static int tcam_read(struct niu *np, int index,
  2347. u64 *key, u64 *mask)
  2348. {
  2349. int err;
  2350. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_READ | index));
  2351. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2352. if (!err) {
  2353. key[0] = nr64(TCAM_KEY_0);
  2354. key[1] = nr64(TCAM_KEY_1);
  2355. key[2] = nr64(TCAM_KEY_2);
  2356. key[3] = nr64(TCAM_KEY_3);
  2357. mask[0] = nr64(TCAM_KEY_MASK_0);
  2358. mask[1] = nr64(TCAM_KEY_MASK_1);
  2359. mask[2] = nr64(TCAM_KEY_MASK_2);
  2360. mask[3] = nr64(TCAM_KEY_MASK_3);
  2361. }
  2362. return err;
  2363. }
  2364. #endif
  2365. static int tcam_write(struct niu *np, int index,
  2366. u64 *key, u64 *mask)
  2367. {
  2368. nw64(TCAM_KEY_0, key[0]);
  2369. nw64(TCAM_KEY_1, key[1]);
  2370. nw64(TCAM_KEY_2, key[2]);
  2371. nw64(TCAM_KEY_3, key[3]);
  2372. nw64(TCAM_KEY_MASK_0, mask[0]);
  2373. nw64(TCAM_KEY_MASK_1, mask[1]);
  2374. nw64(TCAM_KEY_MASK_2, mask[2]);
  2375. nw64(TCAM_KEY_MASK_3, mask[3]);
  2376. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2377. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2378. }
  2379. #if 0
  2380. static int tcam_assoc_read(struct niu *np, int index, u64 *data)
  2381. {
  2382. int err;
  2383. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_READ | index));
  2384. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2385. if (!err)
  2386. *data = nr64(TCAM_KEY_1);
  2387. return err;
  2388. }
  2389. #endif
  2390. static int tcam_assoc_write(struct niu *np, int index, u64 assoc_data)
  2391. {
  2392. nw64(TCAM_KEY_1, assoc_data);
  2393. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_WRITE | index));
  2394. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2395. }
  2396. static void tcam_enable(struct niu *np, int on)
  2397. {
  2398. u64 val = nr64(FFLP_CFG_1);
  2399. if (on)
  2400. val &= ~FFLP_CFG_1_TCAM_DIS;
  2401. else
  2402. val |= FFLP_CFG_1_TCAM_DIS;
  2403. nw64(FFLP_CFG_1, val);
  2404. }
  2405. static void tcam_set_lat_and_ratio(struct niu *np, u64 latency, u64 ratio)
  2406. {
  2407. u64 val = nr64(FFLP_CFG_1);
  2408. val &= ~(FFLP_CFG_1_FFLPINITDONE |
  2409. FFLP_CFG_1_CAMLAT |
  2410. FFLP_CFG_1_CAMRATIO);
  2411. val |= (latency << FFLP_CFG_1_CAMLAT_SHIFT);
  2412. val |= (ratio << FFLP_CFG_1_CAMRATIO_SHIFT);
  2413. nw64(FFLP_CFG_1, val);
  2414. val = nr64(FFLP_CFG_1);
  2415. val |= FFLP_CFG_1_FFLPINITDONE;
  2416. nw64(FFLP_CFG_1, val);
  2417. }
  2418. static int tcam_user_eth_class_enable(struct niu *np, unsigned long class,
  2419. int on)
  2420. {
  2421. unsigned long reg;
  2422. u64 val;
  2423. if (class < CLASS_CODE_ETHERTYPE1 ||
  2424. class > CLASS_CODE_ETHERTYPE2)
  2425. return -EINVAL;
  2426. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2427. val = nr64(reg);
  2428. if (on)
  2429. val |= L2_CLS_VLD;
  2430. else
  2431. val &= ~L2_CLS_VLD;
  2432. nw64(reg, val);
  2433. return 0;
  2434. }
  2435. #if 0
  2436. static int tcam_user_eth_class_set(struct niu *np, unsigned long class,
  2437. u64 ether_type)
  2438. {
  2439. unsigned long reg;
  2440. u64 val;
  2441. if (class < CLASS_CODE_ETHERTYPE1 ||
  2442. class > CLASS_CODE_ETHERTYPE2 ||
  2443. (ether_type & ~(u64)0xffff) != 0)
  2444. return -EINVAL;
  2445. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2446. val = nr64(reg);
  2447. val &= ~L2_CLS_ETYPE;
  2448. val |= (ether_type << L2_CLS_ETYPE_SHIFT);
  2449. nw64(reg, val);
  2450. return 0;
  2451. }
  2452. #endif
  2453. static int tcam_user_ip_class_enable(struct niu *np, unsigned long class,
  2454. int on)
  2455. {
  2456. unsigned long reg;
  2457. u64 val;
  2458. if (class < CLASS_CODE_USER_PROG1 ||
  2459. class > CLASS_CODE_USER_PROG4)
  2460. return -EINVAL;
  2461. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2462. val = nr64(reg);
  2463. if (on)
  2464. val |= L3_CLS_VALID;
  2465. else
  2466. val &= ~L3_CLS_VALID;
  2467. nw64(reg, val);
  2468. return 0;
  2469. }
  2470. static int tcam_user_ip_class_set(struct niu *np, unsigned long class,
  2471. int ipv6, u64 protocol_id,
  2472. u64 tos_mask, u64 tos_val)
  2473. {
  2474. unsigned long reg;
  2475. u64 val;
  2476. if (class < CLASS_CODE_USER_PROG1 ||
  2477. class > CLASS_CODE_USER_PROG4 ||
  2478. (protocol_id & ~(u64)0xff) != 0 ||
  2479. (tos_mask & ~(u64)0xff) != 0 ||
  2480. (tos_val & ~(u64)0xff) != 0)
  2481. return -EINVAL;
  2482. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2483. val = nr64(reg);
  2484. val &= ~(L3_CLS_IPVER | L3_CLS_PID |
  2485. L3_CLS_TOSMASK | L3_CLS_TOS);
  2486. if (ipv6)
  2487. val |= L3_CLS_IPVER;
  2488. val |= (protocol_id << L3_CLS_PID_SHIFT);
  2489. val |= (tos_mask << L3_CLS_TOSMASK_SHIFT);
  2490. val |= (tos_val << L3_CLS_TOS_SHIFT);
  2491. nw64(reg, val);
  2492. return 0;
  2493. }
  2494. static int tcam_early_init(struct niu *np)
  2495. {
  2496. unsigned long i;
  2497. int err;
  2498. tcam_enable(np, 0);
  2499. tcam_set_lat_and_ratio(np,
  2500. DEFAULT_TCAM_LATENCY,
  2501. DEFAULT_TCAM_ACCESS_RATIO);
  2502. for (i = CLASS_CODE_ETHERTYPE1; i <= CLASS_CODE_ETHERTYPE2; i++) {
  2503. err = tcam_user_eth_class_enable(np, i, 0);
  2504. if (err)
  2505. return err;
  2506. }
  2507. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_USER_PROG4; i++) {
  2508. err = tcam_user_ip_class_enable(np, i, 0);
  2509. if (err)
  2510. return err;
  2511. }
  2512. return 0;
  2513. }
  2514. static int tcam_flush_all(struct niu *np)
  2515. {
  2516. unsigned long i;
  2517. for (i = 0; i < np->parent->tcam_num_entries; i++) {
  2518. int err = tcam_flush(np, i);
  2519. if (err)
  2520. return err;
  2521. }
  2522. return 0;
  2523. }
  2524. static u64 hash_addr_regval(unsigned long index, unsigned long num_entries)
  2525. {
  2526. return (u64)index | (num_entries == 1 ? HASH_TBL_ADDR_AUTOINC : 0);
  2527. }
  2528. #if 0
  2529. static int hash_read(struct niu *np, unsigned long partition,
  2530. unsigned long index, unsigned long num_entries,
  2531. u64 *data)
  2532. {
  2533. u64 val = hash_addr_regval(index, num_entries);
  2534. unsigned long i;
  2535. if (partition >= FCRAM_NUM_PARTITIONS ||
  2536. index + num_entries > FCRAM_SIZE)
  2537. return -EINVAL;
  2538. nw64(HASH_TBL_ADDR(partition), val);
  2539. for (i = 0; i < num_entries; i++)
  2540. data[i] = nr64(HASH_TBL_DATA(partition));
  2541. return 0;
  2542. }
  2543. #endif
  2544. static int hash_write(struct niu *np, unsigned long partition,
  2545. unsigned long index, unsigned long num_entries,
  2546. u64 *data)
  2547. {
  2548. u64 val = hash_addr_regval(index, num_entries);
  2549. unsigned long i;
  2550. if (partition >= FCRAM_NUM_PARTITIONS ||
  2551. index + (num_entries * 8) > FCRAM_SIZE)
  2552. return -EINVAL;
  2553. nw64(HASH_TBL_ADDR(partition), val);
  2554. for (i = 0; i < num_entries; i++)
  2555. nw64(HASH_TBL_DATA(partition), data[i]);
  2556. return 0;
  2557. }
  2558. static void fflp_reset(struct niu *np)
  2559. {
  2560. u64 val;
  2561. nw64(FFLP_CFG_1, FFLP_CFG_1_PIO_FIO_RST);
  2562. udelay(10);
  2563. nw64(FFLP_CFG_1, 0);
  2564. val = FFLP_CFG_1_FCRAMOUTDR_NORMAL | FFLP_CFG_1_FFLPINITDONE;
  2565. nw64(FFLP_CFG_1, val);
  2566. }
  2567. static void fflp_set_timings(struct niu *np)
  2568. {
  2569. u64 val = nr64(FFLP_CFG_1);
  2570. val &= ~FFLP_CFG_1_FFLPINITDONE;
  2571. val |= (DEFAULT_FCRAMRATIO << FFLP_CFG_1_FCRAMRATIO_SHIFT);
  2572. nw64(FFLP_CFG_1, val);
  2573. val = nr64(FFLP_CFG_1);
  2574. val |= FFLP_CFG_1_FFLPINITDONE;
  2575. nw64(FFLP_CFG_1, val);
  2576. val = nr64(FCRAM_REF_TMR);
  2577. val &= ~(FCRAM_REF_TMR_MAX | FCRAM_REF_TMR_MIN);
  2578. val |= (DEFAULT_FCRAM_REFRESH_MAX << FCRAM_REF_TMR_MAX_SHIFT);
  2579. val |= (DEFAULT_FCRAM_REFRESH_MIN << FCRAM_REF_TMR_MIN_SHIFT);
  2580. nw64(FCRAM_REF_TMR, val);
  2581. }
  2582. static int fflp_set_partition(struct niu *np, u64 partition,
  2583. u64 mask, u64 base, int enable)
  2584. {
  2585. unsigned long reg;
  2586. u64 val;
  2587. if (partition >= FCRAM_NUM_PARTITIONS ||
  2588. (mask & ~(u64)0x1f) != 0 ||
  2589. (base & ~(u64)0x1f) != 0)
  2590. return -EINVAL;
  2591. reg = FLW_PRT_SEL(partition);
  2592. val = nr64(reg);
  2593. val &= ~(FLW_PRT_SEL_EXT | FLW_PRT_SEL_MASK | FLW_PRT_SEL_BASE);
  2594. val |= (mask << FLW_PRT_SEL_MASK_SHIFT);
  2595. val |= (base << FLW_PRT_SEL_BASE_SHIFT);
  2596. if (enable)
  2597. val |= FLW_PRT_SEL_EXT;
  2598. nw64(reg, val);
  2599. return 0;
  2600. }
  2601. static int fflp_disable_all_partitions(struct niu *np)
  2602. {
  2603. unsigned long i;
  2604. for (i = 0; i < FCRAM_NUM_PARTITIONS; i++) {
  2605. int err = fflp_set_partition(np, 0, 0, 0, 0);
  2606. if (err)
  2607. return err;
  2608. }
  2609. return 0;
  2610. }
  2611. static void fflp_llcsnap_enable(struct niu *np, int on)
  2612. {
  2613. u64 val = nr64(FFLP_CFG_1);
  2614. if (on)
  2615. val |= FFLP_CFG_1_LLCSNAP;
  2616. else
  2617. val &= ~FFLP_CFG_1_LLCSNAP;
  2618. nw64(FFLP_CFG_1, val);
  2619. }
  2620. static void fflp_errors_enable(struct niu *np, int on)
  2621. {
  2622. u64 val = nr64(FFLP_CFG_1);
  2623. if (on)
  2624. val &= ~FFLP_CFG_1_ERRORDIS;
  2625. else
  2626. val |= FFLP_CFG_1_ERRORDIS;
  2627. nw64(FFLP_CFG_1, val);
  2628. }
  2629. static int fflp_hash_clear(struct niu *np)
  2630. {
  2631. struct fcram_hash_ipv4 ent;
  2632. unsigned long i;
  2633. /* IPV4 hash entry with valid bit clear, rest is don't care. */
  2634. memset(&ent, 0, sizeof(ent));
  2635. ent.header = HASH_HEADER_EXT;
  2636. for (i = 0; i < FCRAM_SIZE; i += sizeof(ent)) {
  2637. int err = hash_write(np, 0, i, 1, (u64 *) &ent);
  2638. if (err)
  2639. return err;
  2640. }
  2641. return 0;
  2642. }
  2643. static int fflp_early_init(struct niu *np)
  2644. {
  2645. struct niu_parent *parent;
  2646. unsigned long flags;
  2647. int err;
  2648. niu_lock_parent(np, flags);
  2649. parent = np->parent;
  2650. err = 0;
  2651. if (!(parent->flags & PARENT_FLGS_CLS_HWINIT)) {
  2652. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2653. fflp_reset(np);
  2654. fflp_set_timings(np);
  2655. err = fflp_disable_all_partitions(np);
  2656. if (err) {
  2657. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2658. "fflp_disable_all_partitions failed, err=%d\n",
  2659. err);
  2660. goto out;
  2661. }
  2662. }
  2663. err = tcam_early_init(np);
  2664. if (err) {
  2665. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2666. "tcam_early_init failed, err=%d\n", err);
  2667. goto out;
  2668. }
  2669. fflp_llcsnap_enable(np, 1);
  2670. fflp_errors_enable(np, 0);
  2671. nw64(H1POLY, 0);
  2672. nw64(H2POLY, 0);
  2673. err = tcam_flush_all(np);
  2674. if (err) {
  2675. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2676. "tcam_flush_all failed, err=%d\n", err);
  2677. goto out;
  2678. }
  2679. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2680. err = fflp_hash_clear(np);
  2681. if (err) {
  2682. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2683. "fflp_hash_clear failed, err=%d\n",
  2684. err);
  2685. goto out;
  2686. }
  2687. }
  2688. vlan_tbl_clear(np);
  2689. parent->flags |= PARENT_FLGS_CLS_HWINIT;
  2690. }
  2691. out:
  2692. niu_unlock_parent(np, flags);
  2693. return err;
  2694. }
  2695. static int niu_set_flow_key(struct niu *np, unsigned long class_code, u64 key)
  2696. {
  2697. if (class_code < CLASS_CODE_USER_PROG1 ||
  2698. class_code > CLASS_CODE_SCTP_IPV6)
  2699. return -EINVAL;
  2700. nw64(FLOW_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2701. return 0;
  2702. }
  2703. static int niu_set_tcam_key(struct niu *np, unsigned long class_code, u64 key)
  2704. {
  2705. if (class_code < CLASS_CODE_USER_PROG1 ||
  2706. class_code > CLASS_CODE_SCTP_IPV6)
  2707. return -EINVAL;
  2708. nw64(TCAM_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2709. return 0;
  2710. }
  2711. /* Entries for the ports are interleaved in the TCAM */
  2712. static u16 tcam_get_index(struct niu *np, u16 idx)
  2713. {
  2714. /* One entry reserved for IP fragment rule */
  2715. if (idx >= (np->clas.tcam_sz - 1))
  2716. idx = 0;
  2717. return np->clas.tcam_top + ((idx+1) * np->parent->num_ports);
  2718. }
  2719. static u16 tcam_get_size(struct niu *np)
  2720. {
  2721. /* One entry reserved for IP fragment rule */
  2722. return np->clas.tcam_sz - 1;
  2723. }
  2724. static u16 tcam_get_valid_entry_cnt(struct niu *np)
  2725. {
  2726. /* One entry reserved for IP fragment rule */
  2727. return np->clas.tcam_valid_entries - 1;
  2728. }
  2729. static void niu_rx_skb_append(struct sk_buff *skb, struct page *page,
  2730. u32 offset, u32 size, u32 truesize)
  2731. {
  2732. skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, page, offset, size);
  2733. skb->len += size;
  2734. skb->data_len += size;
  2735. skb->truesize += truesize;
  2736. }
  2737. static unsigned int niu_hash_rxaddr(struct rx_ring_info *rp, u64 a)
  2738. {
  2739. a >>= PAGE_SHIFT;
  2740. a ^= (a >> ilog2(MAX_RBR_RING_SIZE));
  2741. return a & (MAX_RBR_RING_SIZE - 1);
  2742. }
  2743. static struct page *niu_find_rxpage(struct rx_ring_info *rp, u64 addr,
  2744. struct page ***link)
  2745. {
  2746. unsigned int h = niu_hash_rxaddr(rp, addr);
  2747. struct page *p, **pp;
  2748. addr &= PAGE_MASK;
  2749. pp = &rp->rxhash[h];
  2750. for (; (p = *pp) != NULL; pp = (struct page **) &p->mapping) {
  2751. if (p->index == addr) {
  2752. *link = pp;
  2753. goto found;
  2754. }
  2755. }
  2756. BUG();
  2757. found:
  2758. return p;
  2759. }
  2760. static void niu_hash_page(struct rx_ring_info *rp, struct page *page, u64 base)
  2761. {
  2762. unsigned int h = niu_hash_rxaddr(rp, base);
  2763. page->index = base;
  2764. page->mapping = (struct address_space *) rp->rxhash[h];
  2765. rp->rxhash[h] = page;
  2766. }
  2767. static int niu_rbr_add_page(struct niu *np, struct rx_ring_info *rp,
  2768. gfp_t mask, int start_index)
  2769. {
  2770. struct page *page;
  2771. u64 addr;
  2772. int i;
  2773. page = alloc_page(mask);
  2774. if (!page)
  2775. return -ENOMEM;
  2776. addr = np->ops->map_page(np->device, page, 0,
  2777. PAGE_SIZE, DMA_FROM_DEVICE);
  2778. niu_hash_page(rp, page, addr);
  2779. if (rp->rbr_blocks_per_page > 1)
  2780. atomic_add(rp->rbr_blocks_per_page - 1,
  2781. &compound_head(page)->_count);
  2782. for (i = 0; i < rp->rbr_blocks_per_page; i++) {
  2783. __le32 *rbr = &rp->rbr[start_index + i];
  2784. *rbr = cpu_to_le32(addr >> RBR_DESCR_ADDR_SHIFT);
  2785. addr += rp->rbr_block_size;
  2786. }
  2787. return 0;
  2788. }
  2789. static void niu_rbr_refill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2790. {
  2791. int index = rp->rbr_index;
  2792. rp->rbr_pending++;
  2793. if ((rp->rbr_pending % rp->rbr_blocks_per_page) == 0) {
  2794. int err = niu_rbr_add_page(np, rp, mask, index);
  2795. if (unlikely(err)) {
  2796. rp->rbr_pending--;
  2797. return;
  2798. }
  2799. rp->rbr_index += rp->rbr_blocks_per_page;
  2800. BUG_ON(rp->rbr_index > rp->rbr_table_size);
  2801. if (rp->rbr_index == rp->rbr_table_size)
  2802. rp->rbr_index = 0;
  2803. if (rp->rbr_pending >= rp->rbr_kick_thresh) {
  2804. nw64(RBR_KICK(rp->rx_channel), rp->rbr_pending);
  2805. rp->rbr_pending = 0;
  2806. }
  2807. }
  2808. }
  2809. static int niu_rx_pkt_ignore(struct niu *np, struct rx_ring_info *rp)
  2810. {
  2811. unsigned int index = rp->rcr_index;
  2812. int num_rcr = 0;
  2813. rp->rx_dropped++;
  2814. while (1) {
  2815. struct page *page, **link;
  2816. u64 addr, val;
  2817. u32 rcr_size;
  2818. num_rcr++;
  2819. val = le64_to_cpup(&rp->rcr[index]);
  2820. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2821. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2822. page = niu_find_rxpage(rp, addr, &link);
  2823. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2824. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2825. if ((page->index + PAGE_SIZE) - rcr_size == addr) {
  2826. *link = (struct page *) page->mapping;
  2827. np->ops->unmap_page(np->device, page->index,
  2828. PAGE_SIZE, DMA_FROM_DEVICE);
  2829. page->index = 0;
  2830. page->mapping = NULL;
  2831. __free_page(page);
  2832. rp->rbr_refill_pending++;
  2833. }
  2834. index = NEXT_RCR(rp, index);
  2835. if (!(val & RCR_ENTRY_MULTI))
  2836. break;
  2837. }
  2838. rp->rcr_index = index;
  2839. return num_rcr;
  2840. }
  2841. static int niu_process_rx_pkt(struct napi_struct *napi, struct niu *np,
  2842. struct rx_ring_info *rp)
  2843. {
  2844. unsigned int index = rp->rcr_index;
  2845. struct rx_pkt_hdr1 *rh;
  2846. struct sk_buff *skb;
  2847. int len, num_rcr;
  2848. skb = netdev_alloc_skb(np->dev, RX_SKB_ALLOC_SIZE);
  2849. if (unlikely(!skb))
  2850. return niu_rx_pkt_ignore(np, rp);
  2851. num_rcr = 0;
  2852. while (1) {
  2853. struct page *page, **link;
  2854. u32 rcr_size, append_size;
  2855. u64 addr, val, off;
  2856. num_rcr++;
  2857. val = le64_to_cpup(&rp->rcr[index]);
  2858. len = (val & RCR_ENTRY_L2_LEN) >>
  2859. RCR_ENTRY_L2_LEN_SHIFT;
  2860. len -= ETH_FCS_LEN;
  2861. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2862. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2863. page = niu_find_rxpage(rp, addr, &link);
  2864. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2865. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2866. off = addr & ~PAGE_MASK;
  2867. append_size = rcr_size;
  2868. if (num_rcr == 1) {
  2869. int ptype;
  2870. ptype = (val >> RCR_ENTRY_PKT_TYPE_SHIFT);
  2871. if ((ptype == RCR_PKT_TYPE_TCP ||
  2872. ptype == RCR_PKT_TYPE_UDP) &&
  2873. !(val & (RCR_ENTRY_NOPORT |
  2874. RCR_ENTRY_ERROR)))
  2875. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2876. else
  2877. skb_checksum_none_assert(skb);
  2878. } else if (!(val & RCR_ENTRY_MULTI))
  2879. append_size = len - skb->len;
  2880. niu_rx_skb_append(skb, page, off, append_size, rcr_size);
  2881. if ((page->index + rp->rbr_block_size) - rcr_size == addr) {
  2882. *link = (struct page *) page->mapping;
  2883. np->ops->unmap_page(np->device, page->index,
  2884. PAGE_SIZE, DMA_FROM_DEVICE);
  2885. page->index = 0;
  2886. page->mapping = NULL;
  2887. rp->rbr_refill_pending++;
  2888. } else
  2889. get_page(page);
  2890. index = NEXT_RCR(rp, index);
  2891. if (!(val & RCR_ENTRY_MULTI))
  2892. break;
  2893. }
  2894. rp->rcr_index = index;
  2895. len += sizeof(*rh);
  2896. len = min_t(int, len, sizeof(*rh) + VLAN_ETH_HLEN);
  2897. __pskb_pull_tail(skb, len);
  2898. rh = (struct rx_pkt_hdr1 *) skb->data;
  2899. if (np->dev->features & NETIF_F_RXHASH)
  2900. skb->rxhash = ((u32)rh->hashval2_0 << 24 |
  2901. (u32)rh->hashval2_1 << 16 |
  2902. (u32)rh->hashval1_1 << 8 |
  2903. (u32)rh->hashval1_2 << 0);
  2904. skb_pull(skb, sizeof(*rh));
  2905. rp->rx_packets++;
  2906. rp->rx_bytes += skb->len;
  2907. skb->protocol = eth_type_trans(skb, np->dev);
  2908. skb_record_rx_queue(skb, rp->rx_channel);
  2909. napi_gro_receive(napi, skb);
  2910. return num_rcr;
  2911. }
  2912. static int niu_rbr_fill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2913. {
  2914. int blocks_per_page = rp->rbr_blocks_per_page;
  2915. int err, index = rp->rbr_index;
  2916. err = 0;
  2917. while (index < (rp->rbr_table_size - blocks_per_page)) {
  2918. err = niu_rbr_add_page(np, rp, mask, index);
  2919. if (err)
  2920. break;
  2921. index += blocks_per_page;
  2922. }
  2923. rp->rbr_index = index;
  2924. return err;
  2925. }
  2926. static void niu_rbr_free(struct niu *np, struct rx_ring_info *rp)
  2927. {
  2928. int i;
  2929. for (i = 0; i < MAX_RBR_RING_SIZE; i++) {
  2930. struct page *page;
  2931. page = rp->rxhash[i];
  2932. while (page) {
  2933. struct page *next = (struct page *) page->mapping;
  2934. u64 base = page->index;
  2935. np->ops->unmap_page(np->device, base, PAGE_SIZE,
  2936. DMA_FROM_DEVICE);
  2937. page->index = 0;
  2938. page->mapping = NULL;
  2939. __free_page(page);
  2940. page = next;
  2941. }
  2942. }
  2943. for (i = 0; i < rp->rbr_table_size; i++)
  2944. rp->rbr[i] = cpu_to_le32(0);
  2945. rp->rbr_index = 0;
  2946. }
  2947. static int release_tx_packet(struct niu *np, struct tx_ring_info *rp, int idx)
  2948. {
  2949. struct tx_buff_info *tb = &rp->tx_buffs[idx];
  2950. struct sk_buff *skb = tb->skb;
  2951. struct tx_pkt_hdr *tp;
  2952. u64 tx_flags;
  2953. int i, len;
  2954. tp = (struct tx_pkt_hdr *) skb->data;
  2955. tx_flags = le64_to_cpup(&tp->flags);
  2956. rp->tx_packets++;
  2957. rp->tx_bytes += (((tx_flags & TXHDR_LEN) >> TXHDR_LEN_SHIFT) -
  2958. ((tx_flags & TXHDR_PAD) / 2));
  2959. len = skb_headlen(skb);
  2960. np->ops->unmap_single(np->device, tb->mapping,
  2961. len, DMA_TO_DEVICE);
  2962. if (le64_to_cpu(rp->descr[idx]) & TX_DESC_MARK)
  2963. rp->mark_pending--;
  2964. tb->skb = NULL;
  2965. do {
  2966. idx = NEXT_TX(rp, idx);
  2967. len -= MAX_TX_DESC_LEN;
  2968. } while (len > 0);
  2969. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2970. tb = &rp->tx_buffs[idx];
  2971. BUG_ON(tb->skb != NULL);
  2972. np->ops->unmap_page(np->device, tb->mapping,
  2973. skb_frag_size(&skb_shinfo(skb)->frags[i]),
  2974. DMA_TO_DEVICE);
  2975. idx = NEXT_TX(rp, idx);
  2976. }
  2977. dev_kfree_skb(skb);
  2978. return idx;
  2979. }
  2980. #define NIU_TX_WAKEUP_THRESH(rp) ((rp)->pending / 4)
  2981. static void niu_tx_work(struct niu *np, struct tx_ring_info *rp)
  2982. {
  2983. struct netdev_queue *txq;
  2984. u16 pkt_cnt, tmp;
  2985. int cons, index;
  2986. u64 cs;
  2987. index = (rp - np->tx_rings);
  2988. txq = netdev_get_tx_queue(np->dev, index);
  2989. cs = rp->tx_cs;
  2990. if (unlikely(!(cs & (TX_CS_MK | TX_CS_MMK))))
  2991. goto out;
  2992. tmp = pkt_cnt = (cs & TX_CS_PKT_CNT) >> TX_CS_PKT_CNT_SHIFT;
  2993. pkt_cnt = (pkt_cnt - rp->last_pkt_cnt) &
  2994. (TX_CS_PKT_CNT >> TX_CS_PKT_CNT_SHIFT);
  2995. rp->last_pkt_cnt = tmp;
  2996. cons = rp->cons;
  2997. netif_printk(np, tx_done, KERN_DEBUG, np->dev,
  2998. "%s() pkt_cnt[%u] cons[%d]\n", __func__, pkt_cnt, cons);
  2999. while (pkt_cnt--)
  3000. cons = release_tx_packet(np, rp, cons);
  3001. rp->cons = cons;
  3002. smp_mb();
  3003. out:
  3004. if (unlikely(netif_tx_queue_stopped(txq) &&
  3005. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))) {
  3006. __netif_tx_lock(txq, smp_processor_id());
  3007. if (netif_tx_queue_stopped(txq) &&
  3008. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))
  3009. netif_tx_wake_queue(txq);
  3010. __netif_tx_unlock(txq);
  3011. }
  3012. }
  3013. static inline void niu_sync_rx_discard_stats(struct niu *np,
  3014. struct rx_ring_info *rp,
  3015. const int limit)
  3016. {
  3017. /* This elaborate scheme is needed for reading the RX discard
  3018. * counters, as they are only 16-bit and can overflow quickly,
  3019. * and because the overflow indication bit is not usable as
  3020. * the counter value does not wrap, but remains at max value
  3021. * 0xFFFF.
  3022. *
  3023. * In theory and in practice counters can be lost in between
  3024. * reading nr64() and clearing the counter nw64(). For this
  3025. * reason, the number of counter clearings nw64() is
  3026. * limited/reduced though the limit parameter.
  3027. */
  3028. int rx_channel = rp->rx_channel;
  3029. u32 misc, wred;
  3030. /* RXMISC (Receive Miscellaneous Discard Count), covers the
  3031. * following discard events: IPP (Input Port Process),
  3032. * FFLP/TCAM, Full RCR (Receive Completion Ring) RBR (Receive
  3033. * Block Ring) prefetch buffer is empty.
  3034. */
  3035. misc = nr64(RXMISC(rx_channel));
  3036. if (unlikely((misc & RXMISC_COUNT) > limit)) {
  3037. nw64(RXMISC(rx_channel), 0);
  3038. rp->rx_errors += misc & RXMISC_COUNT;
  3039. if (unlikely(misc & RXMISC_OFLOW))
  3040. dev_err(np->device, "rx-%d: Counter overflow RXMISC discard\n",
  3041. rx_channel);
  3042. netif_printk(np, rx_err, KERN_DEBUG, np->dev,
  3043. "rx-%d: MISC drop=%u over=%u\n",
  3044. rx_channel, misc, misc-limit);
  3045. }
  3046. /* WRED (Weighted Random Early Discard) by hardware */
  3047. wred = nr64(RED_DIS_CNT(rx_channel));
  3048. if (unlikely((wred & RED_DIS_CNT_COUNT) > limit)) {
  3049. nw64(RED_DIS_CNT(rx_channel), 0);
  3050. rp->rx_dropped += wred & RED_DIS_CNT_COUNT;
  3051. if (unlikely(wred & RED_DIS_CNT_OFLOW))
  3052. dev_err(np->device, "rx-%d: Counter overflow WRED discard\n", rx_channel);
  3053. netif_printk(np, rx_err, KERN_DEBUG, np->dev,
  3054. "rx-%d: WRED drop=%u over=%u\n",
  3055. rx_channel, wred, wred-limit);
  3056. }
  3057. }
  3058. static int niu_rx_work(struct napi_struct *napi, struct niu *np,
  3059. struct rx_ring_info *rp, int budget)
  3060. {
  3061. int qlen, rcr_done = 0, work_done = 0;
  3062. struct rxdma_mailbox *mbox = rp->mbox;
  3063. u64 stat;
  3064. #if 1
  3065. stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3066. qlen = nr64(RCRSTAT_A(rp->rx_channel)) & RCRSTAT_A_QLEN;
  3067. #else
  3068. stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3069. qlen = (le64_to_cpup(&mbox->rcrstat_a) & RCRSTAT_A_QLEN);
  3070. #endif
  3071. mbox->rx_dma_ctl_stat = 0;
  3072. mbox->rcrstat_a = 0;
  3073. netif_printk(np, rx_status, KERN_DEBUG, np->dev,
  3074. "%s(chan[%d]), stat[%llx] qlen=%d\n",
  3075. __func__, rp->rx_channel, (unsigned long long)stat, qlen);
  3076. rcr_done = work_done = 0;
  3077. qlen = min(qlen, budget);
  3078. while (work_done < qlen) {
  3079. rcr_done += niu_process_rx_pkt(napi, np, rp);
  3080. work_done++;
  3081. }
  3082. if (rp->rbr_refill_pending >= rp->rbr_kick_thresh) {
  3083. unsigned int i;
  3084. for (i = 0; i < rp->rbr_refill_pending; i++)
  3085. niu_rbr_refill(np, rp, GFP_ATOMIC);
  3086. rp->rbr_refill_pending = 0;
  3087. }
  3088. stat = (RX_DMA_CTL_STAT_MEX |
  3089. ((u64)work_done << RX_DMA_CTL_STAT_PKTREAD_SHIFT) |
  3090. ((u64)rcr_done << RX_DMA_CTL_STAT_PTRREAD_SHIFT));
  3091. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat);
  3092. /* Only sync discards stats when qlen indicate potential for drops */
  3093. if (qlen > 10)
  3094. niu_sync_rx_discard_stats(np, rp, 0x7FFF);
  3095. return work_done;
  3096. }
  3097. static int niu_poll_core(struct niu *np, struct niu_ldg *lp, int budget)
  3098. {
  3099. u64 v0 = lp->v0;
  3100. u32 tx_vec = (v0 >> 32);
  3101. u32 rx_vec = (v0 & 0xffffffff);
  3102. int i, work_done = 0;
  3103. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3104. "%s() v0[%016llx]\n", __func__, (unsigned long long)v0);
  3105. for (i = 0; i < np->num_tx_rings; i++) {
  3106. struct tx_ring_info *rp = &np->tx_rings[i];
  3107. if (tx_vec & (1 << rp->tx_channel))
  3108. niu_tx_work(np, rp);
  3109. nw64(LD_IM0(LDN_TXDMA(rp->tx_channel)), 0);
  3110. }
  3111. for (i = 0; i < np->num_rx_rings; i++) {
  3112. struct rx_ring_info *rp = &np->rx_rings[i];
  3113. if (rx_vec & (1 << rp->rx_channel)) {
  3114. int this_work_done;
  3115. this_work_done = niu_rx_work(&lp->napi, np, rp,
  3116. budget);
  3117. budget -= this_work_done;
  3118. work_done += this_work_done;
  3119. }
  3120. nw64(LD_IM0(LDN_RXDMA(rp->rx_channel)), 0);
  3121. }
  3122. return work_done;
  3123. }
  3124. static int niu_poll(struct napi_struct *napi, int budget)
  3125. {
  3126. struct niu_ldg *lp = container_of(napi, struct niu_ldg, napi);
  3127. struct niu *np = lp->np;
  3128. int work_done;
  3129. work_done = niu_poll_core(np, lp, budget);
  3130. if (work_done < budget) {
  3131. napi_complete(napi);
  3132. niu_ldg_rearm(np, lp, 1);
  3133. }
  3134. return work_done;
  3135. }
  3136. static void niu_log_rxchan_errors(struct niu *np, struct rx_ring_info *rp,
  3137. u64 stat)
  3138. {
  3139. netdev_err(np->dev, "RX channel %u errors ( ", rp->rx_channel);
  3140. if (stat & RX_DMA_CTL_STAT_RBR_TMOUT)
  3141. pr_cont("RBR_TMOUT ");
  3142. if (stat & RX_DMA_CTL_STAT_RSP_CNT_ERR)
  3143. pr_cont("RSP_CNT ");
  3144. if (stat & RX_DMA_CTL_STAT_BYTE_EN_BUS)
  3145. pr_cont("BYTE_EN_BUS ");
  3146. if (stat & RX_DMA_CTL_STAT_RSP_DAT_ERR)
  3147. pr_cont("RSP_DAT ");
  3148. if (stat & RX_DMA_CTL_STAT_RCR_ACK_ERR)
  3149. pr_cont("RCR_ACK ");
  3150. if (stat & RX_DMA_CTL_STAT_RCR_SHA_PAR)
  3151. pr_cont("RCR_SHA_PAR ");
  3152. if (stat & RX_DMA_CTL_STAT_RBR_PRE_PAR)
  3153. pr_cont("RBR_PRE_PAR ");
  3154. if (stat & RX_DMA_CTL_STAT_CONFIG_ERR)
  3155. pr_cont("CONFIG ");
  3156. if (stat & RX_DMA_CTL_STAT_RCRINCON)
  3157. pr_cont("RCRINCON ");
  3158. if (stat & RX_DMA_CTL_STAT_RCRFULL)
  3159. pr_cont("RCRFULL ");
  3160. if (stat & RX_DMA_CTL_STAT_RBRFULL)
  3161. pr_cont("RBRFULL ");
  3162. if (stat & RX_DMA_CTL_STAT_RBRLOGPAGE)
  3163. pr_cont("RBRLOGPAGE ");
  3164. if (stat & RX_DMA_CTL_STAT_CFIGLOGPAGE)
  3165. pr_cont("CFIGLOGPAGE ");
  3166. if (stat & RX_DMA_CTL_STAT_DC_FIFO_ERR)
  3167. pr_cont("DC_FIDO ");
  3168. pr_cont(")\n");
  3169. }
  3170. static int niu_rx_error(struct niu *np, struct rx_ring_info *rp)
  3171. {
  3172. u64 stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3173. int err = 0;
  3174. if (stat & (RX_DMA_CTL_STAT_CHAN_FATAL |
  3175. RX_DMA_CTL_STAT_PORT_FATAL))
  3176. err = -EINVAL;
  3177. if (err) {
  3178. netdev_err(np->dev, "RX channel %u error, stat[%llx]\n",
  3179. rp->rx_channel,
  3180. (unsigned long long) stat);
  3181. niu_log_rxchan_errors(np, rp, stat);
  3182. }
  3183. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3184. stat & RX_DMA_CTL_WRITE_CLEAR_ERRS);
  3185. return err;
  3186. }
  3187. static void niu_log_txchan_errors(struct niu *np, struct tx_ring_info *rp,
  3188. u64 cs)
  3189. {
  3190. netdev_err(np->dev, "TX channel %u errors ( ", rp->tx_channel);
  3191. if (cs & TX_CS_MBOX_ERR)
  3192. pr_cont("MBOX ");
  3193. if (cs & TX_CS_PKT_SIZE_ERR)
  3194. pr_cont("PKT_SIZE ");
  3195. if (cs & TX_CS_TX_RING_OFLOW)
  3196. pr_cont("TX_RING_OFLOW ");
  3197. if (cs & TX_CS_PREF_BUF_PAR_ERR)
  3198. pr_cont("PREF_BUF_PAR ");
  3199. if (cs & TX_CS_NACK_PREF)
  3200. pr_cont("NACK_PREF ");
  3201. if (cs & TX_CS_NACK_PKT_RD)
  3202. pr_cont("NACK_PKT_RD ");
  3203. if (cs & TX_CS_CONF_PART_ERR)
  3204. pr_cont("CONF_PART ");
  3205. if (cs & TX_CS_PKT_PRT_ERR)
  3206. pr_cont("PKT_PTR ");
  3207. pr_cont(")\n");
  3208. }
  3209. static int niu_tx_error(struct niu *np, struct tx_ring_info *rp)
  3210. {
  3211. u64 cs, logh, logl;
  3212. cs = nr64(TX_CS(rp->tx_channel));
  3213. logh = nr64(TX_RNG_ERR_LOGH(rp->tx_channel));
  3214. logl = nr64(TX_RNG_ERR_LOGL(rp->tx_channel));
  3215. netdev_err(np->dev, "TX channel %u error, cs[%llx] logh[%llx] logl[%llx]\n",
  3216. rp->tx_channel,
  3217. (unsigned long long)cs,
  3218. (unsigned long long)logh,
  3219. (unsigned long long)logl);
  3220. niu_log_txchan_errors(np, rp, cs);
  3221. return -ENODEV;
  3222. }
  3223. static int niu_mif_interrupt(struct niu *np)
  3224. {
  3225. u64 mif_status = nr64(MIF_STATUS);
  3226. int phy_mdint = 0;
  3227. if (np->flags & NIU_FLAGS_XMAC) {
  3228. u64 xrxmac_stat = nr64_mac(XRXMAC_STATUS);
  3229. if (xrxmac_stat & XRXMAC_STATUS_PHY_MDINT)
  3230. phy_mdint = 1;
  3231. }
  3232. netdev_err(np->dev, "MIF interrupt, stat[%llx] phy_mdint(%d)\n",
  3233. (unsigned long long)mif_status, phy_mdint);
  3234. return -ENODEV;
  3235. }
  3236. static void niu_xmac_interrupt(struct niu *np)
  3237. {
  3238. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  3239. u64 val;
  3240. val = nr64_mac(XTXMAC_STATUS);
  3241. if (val & XTXMAC_STATUS_FRAME_CNT_EXP)
  3242. mp->tx_frames += TXMAC_FRM_CNT_COUNT;
  3243. if (val & XTXMAC_STATUS_BYTE_CNT_EXP)
  3244. mp->tx_bytes += TXMAC_BYTE_CNT_COUNT;
  3245. if (val & XTXMAC_STATUS_TXFIFO_XFR_ERR)
  3246. mp->tx_fifo_errors++;
  3247. if (val & XTXMAC_STATUS_TXMAC_OFLOW)
  3248. mp->tx_overflow_errors++;
  3249. if (val & XTXMAC_STATUS_MAX_PSIZE_ERR)
  3250. mp->tx_max_pkt_size_errors++;
  3251. if (val & XTXMAC_STATUS_TXMAC_UFLOW)
  3252. mp->tx_underflow_errors++;
  3253. val = nr64_mac(XRXMAC_STATUS);
  3254. if (val & XRXMAC_STATUS_LCL_FLT_STATUS)
  3255. mp->rx_local_faults++;
  3256. if (val & XRXMAC_STATUS_RFLT_DET)
  3257. mp->rx_remote_faults++;
  3258. if (val & XRXMAC_STATUS_LFLT_CNT_EXP)
  3259. mp->rx_link_faults += LINK_FAULT_CNT_COUNT;
  3260. if (val & XRXMAC_STATUS_ALIGNERR_CNT_EXP)
  3261. mp->rx_align_errors += RXMAC_ALIGN_ERR_CNT_COUNT;
  3262. if (val & XRXMAC_STATUS_RXFRAG_CNT_EXP)
  3263. mp->rx_frags += RXMAC_FRAG_CNT_COUNT;
  3264. if (val & XRXMAC_STATUS_RXMULTF_CNT_EXP)
  3265. mp->rx_mcasts += RXMAC_MC_FRM_CNT_COUNT;
  3266. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3267. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3268. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3269. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3270. if (val & XRXMAC_STATUS_RXHIST1_CNT_EXP)
  3271. mp->rx_hist_cnt1 += RXMAC_HIST_CNT1_COUNT;
  3272. if (val & XRXMAC_STATUS_RXHIST2_CNT_EXP)
  3273. mp->rx_hist_cnt2 += RXMAC_HIST_CNT2_COUNT;
  3274. if (val & XRXMAC_STATUS_RXHIST3_CNT_EXP)
  3275. mp->rx_hist_cnt3 += RXMAC_HIST_CNT3_COUNT;
  3276. if (val & XRXMAC_STATUS_RXHIST4_CNT_EXP)
  3277. mp->rx_hist_cnt4 += RXMAC_HIST_CNT4_COUNT;
  3278. if (val & XRXMAC_STATUS_RXHIST5_CNT_EXP)
  3279. mp->rx_hist_cnt5 += RXMAC_HIST_CNT5_COUNT;
  3280. if (val & XRXMAC_STATUS_RXHIST6_CNT_EXP)
  3281. mp->rx_hist_cnt6 += RXMAC_HIST_CNT6_COUNT;
  3282. if (val & XRXMAC_STATUS_RXHIST7_CNT_EXP)
  3283. mp->rx_hist_cnt7 += RXMAC_HIST_CNT7_COUNT;
  3284. if (val & XRXMAC_STATUS_RXOCTET_CNT_EXP)
  3285. mp->rx_octets += RXMAC_BT_CNT_COUNT;
  3286. if (val & XRXMAC_STATUS_CVIOLERR_CNT_EXP)
  3287. mp->rx_code_violations += RXMAC_CD_VIO_CNT_COUNT;
  3288. if (val & XRXMAC_STATUS_LENERR_CNT_EXP)
  3289. mp->rx_len_errors += RXMAC_MPSZER_CNT_COUNT;
  3290. if (val & XRXMAC_STATUS_CRCERR_CNT_EXP)
  3291. mp->rx_crc_errors += RXMAC_CRC_ER_CNT_COUNT;
  3292. if (val & XRXMAC_STATUS_RXUFLOW)
  3293. mp->rx_underflows++;
  3294. if (val & XRXMAC_STATUS_RXOFLOW)
  3295. mp->rx_overflows++;
  3296. val = nr64_mac(XMAC_FC_STAT);
  3297. if (val & XMAC_FC_STAT_TX_MAC_NPAUSE)
  3298. mp->pause_off_state++;
  3299. if (val & XMAC_FC_STAT_TX_MAC_PAUSE)
  3300. mp->pause_on_state++;
  3301. if (val & XMAC_FC_STAT_RX_MAC_RPAUSE)
  3302. mp->pause_received++;
  3303. }
  3304. static void niu_bmac_interrupt(struct niu *np)
  3305. {
  3306. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  3307. u64 val;
  3308. val = nr64_mac(BTXMAC_STATUS);
  3309. if (val & BTXMAC_STATUS_UNDERRUN)
  3310. mp->tx_underflow_errors++;
  3311. if (val & BTXMAC_STATUS_MAX_PKT_ERR)
  3312. mp->tx_max_pkt_size_errors++;
  3313. if (val & BTXMAC_STATUS_BYTE_CNT_EXP)
  3314. mp->tx_bytes += BTXMAC_BYTE_CNT_COUNT;
  3315. if (val & BTXMAC_STATUS_FRAME_CNT_EXP)
  3316. mp->tx_frames += BTXMAC_FRM_CNT_COUNT;
  3317. val = nr64_mac(BRXMAC_STATUS);
  3318. if (val & BRXMAC_STATUS_OVERFLOW)
  3319. mp->rx_overflows++;
  3320. if (val & BRXMAC_STATUS_FRAME_CNT_EXP)
  3321. mp->rx_frames += BRXMAC_FRAME_CNT_COUNT;
  3322. if (val & BRXMAC_STATUS_ALIGN_ERR_EXP)
  3323. mp->rx_align_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3324. if (val & BRXMAC_STATUS_CRC_ERR_EXP)
  3325. mp->rx_crc_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3326. if (val & BRXMAC_STATUS_LEN_ERR_EXP)
  3327. mp->rx_len_errors += BRXMAC_CODE_VIOL_ERR_CNT_COUNT;
  3328. val = nr64_mac(BMAC_CTRL_STATUS);
  3329. if (val & BMAC_CTRL_STATUS_NOPAUSE)
  3330. mp->pause_off_state++;
  3331. if (val & BMAC_CTRL_STATUS_PAUSE)
  3332. mp->pause_on_state++;
  3333. if (val & BMAC_CTRL_STATUS_PAUSE_RECV)
  3334. mp->pause_received++;
  3335. }
  3336. static int niu_mac_interrupt(struct niu *np)
  3337. {
  3338. if (np->flags & NIU_FLAGS_XMAC)
  3339. niu_xmac_interrupt(np);
  3340. else
  3341. niu_bmac_interrupt(np);
  3342. return 0;
  3343. }
  3344. static void niu_log_device_error(struct niu *np, u64 stat)
  3345. {
  3346. netdev_err(np->dev, "Core device errors ( ");
  3347. if (stat & SYS_ERR_MASK_META2)
  3348. pr_cont("META2 ");
  3349. if (stat & SYS_ERR_MASK_META1)
  3350. pr_cont("META1 ");
  3351. if (stat & SYS_ERR_MASK_PEU)
  3352. pr_cont("PEU ");
  3353. if (stat & SYS_ERR_MASK_TXC)
  3354. pr_cont("TXC ");
  3355. if (stat & SYS_ERR_MASK_RDMC)
  3356. pr_cont("RDMC ");
  3357. if (stat & SYS_ERR_MASK_TDMC)
  3358. pr_cont("TDMC ");
  3359. if (stat & SYS_ERR_MASK_ZCP)
  3360. pr_cont("ZCP ");
  3361. if (stat & SYS_ERR_MASK_FFLP)
  3362. pr_cont("FFLP ");
  3363. if (stat & SYS_ERR_MASK_IPP)
  3364. pr_cont("IPP ");
  3365. if (stat & SYS_ERR_MASK_MAC)
  3366. pr_cont("MAC ");
  3367. if (stat & SYS_ERR_MASK_SMX)
  3368. pr_cont("SMX ");
  3369. pr_cont(")\n");
  3370. }
  3371. static int niu_device_error(struct niu *np)
  3372. {
  3373. u64 stat = nr64(SYS_ERR_STAT);
  3374. netdev_err(np->dev, "Core device error, stat[%llx]\n",
  3375. (unsigned long long)stat);
  3376. niu_log_device_error(np, stat);
  3377. return -ENODEV;
  3378. }
  3379. static int niu_slowpath_interrupt(struct niu *np, struct niu_ldg *lp,
  3380. u64 v0, u64 v1, u64 v2)
  3381. {
  3382. int i, err = 0;
  3383. lp->v0 = v0;
  3384. lp->v1 = v1;
  3385. lp->v2 = v2;
  3386. if (v1 & 0x00000000ffffffffULL) {
  3387. u32 rx_vec = (v1 & 0xffffffff);
  3388. for (i = 0; i < np->num_rx_rings; i++) {
  3389. struct rx_ring_info *rp = &np->rx_rings[i];
  3390. if (rx_vec & (1 << rp->rx_channel)) {
  3391. int r = niu_rx_error(np, rp);
  3392. if (r) {
  3393. err = r;
  3394. } else {
  3395. if (!v0)
  3396. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3397. RX_DMA_CTL_STAT_MEX);
  3398. }
  3399. }
  3400. }
  3401. }
  3402. if (v1 & 0x7fffffff00000000ULL) {
  3403. u32 tx_vec = (v1 >> 32) & 0x7fffffff;
  3404. for (i = 0; i < np->num_tx_rings; i++) {
  3405. struct tx_ring_info *rp = &np->tx_rings[i];
  3406. if (tx_vec & (1 << rp->tx_channel)) {
  3407. int r = niu_tx_error(np, rp);
  3408. if (r)
  3409. err = r;
  3410. }
  3411. }
  3412. }
  3413. if ((v0 | v1) & 0x8000000000000000ULL) {
  3414. int r = niu_mif_interrupt(np);
  3415. if (r)
  3416. err = r;
  3417. }
  3418. if (v2) {
  3419. if (v2 & 0x01ef) {
  3420. int r = niu_mac_interrupt(np);
  3421. if (r)
  3422. err = r;
  3423. }
  3424. if (v2 & 0x0210) {
  3425. int r = niu_device_error(np);
  3426. if (r)
  3427. err = r;
  3428. }
  3429. }
  3430. if (err)
  3431. niu_enable_interrupts(np, 0);
  3432. return err;
  3433. }
  3434. static void niu_rxchan_intr(struct niu *np, struct rx_ring_info *rp,
  3435. int ldn)
  3436. {
  3437. struct rxdma_mailbox *mbox = rp->mbox;
  3438. u64 stat_write, stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3439. stat_write = (RX_DMA_CTL_STAT_RCRTHRES |
  3440. RX_DMA_CTL_STAT_RCRTO);
  3441. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat_write);
  3442. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3443. "%s() stat[%llx]\n", __func__, (unsigned long long)stat);
  3444. }
  3445. static void niu_txchan_intr(struct niu *np, struct tx_ring_info *rp,
  3446. int ldn)
  3447. {
  3448. rp->tx_cs = nr64(TX_CS(rp->tx_channel));
  3449. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3450. "%s() cs[%llx]\n", __func__, (unsigned long long)rp->tx_cs);
  3451. }
  3452. static void __niu_fastpath_interrupt(struct niu *np, int ldg, u64 v0)
  3453. {
  3454. struct niu_parent *parent = np->parent;
  3455. u32 rx_vec, tx_vec;
  3456. int i;
  3457. tx_vec = (v0 >> 32);
  3458. rx_vec = (v0 & 0xffffffff);
  3459. for (i = 0; i < np->num_rx_rings; i++) {
  3460. struct rx_ring_info *rp = &np->rx_rings[i];
  3461. int ldn = LDN_RXDMA(rp->rx_channel);
  3462. if (parent->ldg_map[ldn] != ldg)
  3463. continue;
  3464. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3465. if (rx_vec & (1 << rp->rx_channel))
  3466. niu_rxchan_intr(np, rp, ldn);
  3467. }
  3468. for (i = 0; i < np->num_tx_rings; i++) {
  3469. struct tx_ring_info *rp = &np->tx_rings[i];
  3470. int ldn = LDN_TXDMA(rp->tx_channel);
  3471. if (parent->ldg_map[ldn] != ldg)
  3472. continue;
  3473. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3474. if (tx_vec & (1 << rp->tx_channel))
  3475. niu_txchan_intr(np, rp, ldn);
  3476. }
  3477. }
  3478. static void niu_schedule_napi(struct niu *np, struct niu_ldg *lp,
  3479. u64 v0, u64 v1, u64 v2)
  3480. {
  3481. if (likely(napi_schedule_prep(&lp->napi))) {
  3482. lp->v0 = v0;
  3483. lp->v1 = v1;
  3484. lp->v2 = v2;
  3485. __niu_fastpath_interrupt(np, lp->ldg_num, v0);
  3486. __napi_schedule(&lp->napi);
  3487. }
  3488. }
  3489. static irqreturn_t niu_interrupt(int irq, void *dev_id)
  3490. {
  3491. struct niu_ldg *lp = dev_id;
  3492. struct niu *np = lp->np;
  3493. int ldg = lp->ldg_num;
  3494. unsigned long flags;
  3495. u64 v0, v1, v2;
  3496. if (netif_msg_intr(np))
  3497. printk(KERN_DEBUG KBUILD_MODNAME ": " "%s() ldg[%p](%d)",
  3498. __func__, lp, ldg);
  3499. spin_lock_irqsave(&np->lock, flags);
  3500. v0 = nr64(LDSV0(ldg));
  3501. v1 = nr64(LDSV1(ldg));
  3502. v2 = nr64(LDSV2(ldg));
  3503. if (netif_msg_intr(np))
  3504. pr_cont(" v0[%llx] v1[%llx] v2[%llx]\n",
  3505. (unsigned long long) v0,
  3506. (unsigned long long) v1,
  3507. (unsigned long long) v2);
  3508. if (unlikely(!v0 && !v1 && !v2)) {
  3509. spin_unlock_irqrestore(&np->lock, flags);
  3510. return IRQ_NONE;
  3511. }
  3512. if (unlikely((v0 & ((u64)1 << LDN_MIF)) || v1 || v2)) {
  3513. int err = niu_slowpath_interrupt(np, lp, v0, v1, v2);
  3514. if (err)
  3515. goto out;
  3516. }
  3517. if (likely(v0 & ~((u64)1 << LDN_MIF)))
  3518. niu_schedule_napi(np, lp, v0, v1, v2);
  3519. else
  3520. niu_ldg_rearm(np, lp, 1);
  3521. out:
  3522. spin_unlock_irqrestore(&np->lock, flags);
  3523. return IRQ_HANDLED;
  3524. }
  3525. static void niu_free_rx_ring_info(struct niu *np, struct rx_ring_info *rp)
  3526. {
  3527. if (rp->mbox) {
  3528. np->ops->free_coherent(np->device,
  3529. sizeof(struct rxdma_mailbox),
  3530. rp->mbox, rp->mbox_dma);
  3531. rp->mbox = NULL;
  3532. }
  3533. if (rp->rcr) {
  3534. np->ops->free_coherent(np->device,
  3535. MAX_RCR_RING_SIZE * sizeof(__le64),
  3536. rp->rcr, rp->rcr_dma);
  3537. rp->rcr = NULL;
  3538. rp->rcr_table_size = 0;
  3539. rp->rcr_index = 0;
  3540. }
  3541. if (rp->rbr) {
  3542. niu_rbr_free(np, rp);
  3543. np->ops->free_coherent(np->device,
  3544. MAX_RBR_RING_SIZE * sizeof(__le32),
  3545. rp->rbr, rp->rbr_dma);
  3546. rp->rbr = NULL;
  3547. rp->rbr_table_size = 0;
  3548. rp->rbr_index = 0;
  3549. }
  3550. kfree(rp->rxhash);
  3551. rp->rxhash = NULL;
  3552. }
  3553. static void niu_free_tx_ring_info(struct niu *np, struct tx_ring_info *rp)
  3554. {
  3555. if (rp->mbox) {
  3556. np->ops->free_coherent(np->device,
  3557. sizeof(struct txdma_mailbox),
  3558. rp->mbox, rp->mbox_dma);
  3559. rp->mbox = NULL;
  3560. }
  3561. if (rp->descr) {
  3562. int i;
  3563. for (i = 0; i < MAX_TX_RING_SIZE; i++) {
  3564. if (rp->tx_buffs[i].skb)
  3565. (void) release_tx_packet(np, rp, i);
  3566. }
  3567. np->ops->free_coherent(np->device,
  3568. MAX_TX_RING_SIZE * sizeof(__le64),
  3569. rp->descr, rp->descr_dma);
  3570. rp->descr = NULL;
  3571. rp->pending = 0;
  3572. rp->prod = 0;
  3573. rp->cons = 0;
  3574. rp->wrap_bit = 0;
  3575. }
  3576. }
  3577. static void niu_free_channels(struct niu *np)
  3578. {
  3579. int i;
  3580. if (np->rx_rings) {
  3581. for (i = 0; i < np->num_rx_rings; i++) {
  3582. struct rx_ring_info *rp = &np->rx_rings[i];
  3583. niu_free_rx_ring_info(np, rp);
  3584. }
  3585. kfree(np->rx_rings);
  3586. np->rx_rings = NULL;
  3587. np->num_rx_rings = 0;
  3588. }
  3589. if (np->tx_rings) {
  3590. for (i = 0; i < np->num_tx_rings; i++) {
  3591. struct tx_ring_info *rp = &np->tx_rings[i];
  3592. niu_free_tx_ring_info(np, rp);
  3593. }
  3594. kfree(np->tx_rings);
  3595. np->tx_rings = NULL;
  3596. np->num_tx_rings = 0;
  3597. }
  3598. }
  3599. static int niu_alloc_rx_ring_info(struct niu *np,
  3600. struct rx_ring_info *rp)
  3601. {
  3602. BUILD_BUG_ON(sizeof(struct rxdma_mailbox) != 64);
  3603. rp->rxhash = kzalloc(MAX_RBR_RING_SIZE * sizeof(struct page *),
  3604. GFP_KERNEL);
  3605. if (!rp->rxhash)
  3606. return -ENOMEM;
  3607. rp->mbox = np->ops->alloc_coherent(np->device,
  3608. sizeof(struct rxdma_mailbox),
  3609. &rp->mbox_dma, GFP_KERNEL);
  3610. if (!rp->mbox)
  3611. return -ENOMEM;
  3612. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3613. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA mailbox %p\n",
  3614. rp->mbox);
  3615. return -EINVAL;
  3616. }
  3617. rp->rcr = np->ops->alloc_coherent(np->device,
  3618. MAX_RCR_RING_SIZE * sizeof(__le64),
  3619. &rp->rcr_dma, GFP_KERNEL);
  3620. if (!rp->rcr)
  3621. return -ENOMEM;
  3622. if ((unsigned long)rp->rcr & (64UL - 1)) {
  3623. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA RCR table %p\n",
  3624. rp->rcr);
  3625. return -EINVAL;
  3626. }
  3627. rp->rcr_table_size = MAX_RCR_RING_SIZE;
  3628. rp->rcr_index = 0;
  3629. rp->rbr = np->ops->alloc_coherent(np->device,
  3630. MAX_RBR_RING_SIZE * sizeof(__le32),
  3631. &rp->rbr_dma, GFP_KERNEL);
  3632. if (!rp->rbr)
  3633. return -ENOMEM;
  3634. if ((unsigned long)rp->rbr & (64UL - 1)) {
  3635. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA RBR table %p\n",
  3636. rp->rbr);
  3637. return -EINVAL;
  3638. }
  3639. rp->rbr_table_size = MAX_RBR_RING_SIZE;
  3640. rp->rbr_index = 0;
  3641. rp->rbr_pending = 0;
  3642. return 0;
  3643. }
  3644. static void niu_set_max_burst(struct niu *np, struct tx_ring_info *rp)
  3645. {
  3646. int mtu = np->dev->mtu;
  3647. /* These values are recommended by the HW designers for fair
  3648. * utilization of DRR amongst the rings.
  3649. */
  3650. rp->max_burst = mtu + 32;
  3651. if (rp->max_burst > 4096)
  3652. rp->max_burst = 4096;
  3653. }
  3654. static int niu_alloc_tx_ring_info(struct niu *np,
  3655. struct tx_ring_info *rp)
  3656. {
  3657. BUILD_BUG_ON(sizeof(struct txdma_mailbox) != 64);
  3658. rp->mbox = np->ops->alloc_coherent(np->device,
  3659. sizeof(struct txdma_mailbox),
  3660. &rp->mbox_dma, GFP_KERNEL);
  3661. if (!rp->mbox)
  3662. return -ENOMEM;
  3663. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3664. netdev_err(np->dev, "Coherent alloc gives misaligned TXDMA mailbox %p\n",
  3665. rp->mbox);
  3666. return -EINVAL;
  3667. }
  3668. rp->descr = np->ops->alloc_coherent(np->device,
  3669. MAX_TX_RING_SIZE * sizeof(__le64),
  3670. &rp->descr_dma, GFP_KERNEL);
  3671. if (!rp->descr)
  3672. return -ENOMEM;
  3673. if ((unsigned long)rp->descr & (64UL - 1)) {
  3674. netdev_err(np->dev, "Coherent alloc gives misaligned TXDMA descr table %p\n",
  3675. rp->descr);
  3676. return -EINVAL;
  3677. }
  3678. rp->pending = MAX_TX_RING_SIZE;
  3679. rp->prod = 0;
  3680. rp->cons = 0;
  3681. rp->wrap_bit = 0;
  3682. /* XXX make these configurable... XXX */
  3683. rp->mark_freq = rp->pending / 4;
  3684. niu_set_max_burst(np, rp);
  3685. return 0;
  3686. }
  3687. static void niu_size_rbr(struct niu *np, struct rx_ring_info *rp)
  3688. {
  3689. u16 bss;
  3690. bss = min(PAGE_SHIFT, 15);
  3691. rp->rbr_block_size = 1 << bss;
  3692. rp->rbr_blocks_per_page = 1 << (PAGE_SHIFT-bss);
  3693. rp->rbr_sizes[0] = 256;
  3694. rp->rbr_sizes[1] = 1024;
  3695. if (np->dev->mtu > ETH_DATA_LEN) {
  3696. switch (PAGE_SIZE) {
  3697. case 4 * 1024:
  3698. rp->rbr_sizes[2] = 4096;
  3699. break;
  3700. default:
  3701. rp->rbr_sizes[2] = 8192;
  3702. break;
  3703. }
  3704. } else {
  3705. rp->rbr_sizes[2] = 2048;
  3706. }
  3707. rp->rbr_sizes[3] = rp->rbr_block_size;
  3708. }
  3709. static int niu_alloc_channels(struct niu *np)
  3710. {
  3711. struct niu_parent *parent = np->parent;
  3712. int first_rx_channel, first_tx_channel;
  3713. int num_rx_rings, num_tx_rings;
  3714. struct rx_ring_info *rx_rings;
  3715. struct tx_ring_info *tx_rings;
  3716. int i, port, err;
  3717. port = np->port;
  3718. first_rx_channel = first_tx_channel = 0;
  3719. for (i = 0; i < port; i++) {
  3720. first_rx_channel += parent->rxchan_per_port[i];
  3721. first_tx_channel += parent->txchan_per_port[i];
  3722. }
  3723. num_rx_rings = parent->rxchan_per_port[port];
  3724. num_tx_rings = parent->txchan_per_port[port];
  3725. rx_rings = kcalloc(num_rx_rings, sizeof(struct rx_ring_info),
  3726. GFP_KERNEL);
  3727. err = -ENOMEM;
  3728. if (!rx_rings)
  3729. goto out_err;
  3730. np->num_rx_rings = num_rx_rings;
  3731. smp_wmb();
  3732. np->rx_rings = rx_rings;
  3733. netif_set_real_num_rx_queues(np->dev, num_rx_rings);
  3734. for (i = 0; i < np->num_rx_rings; i++) {
  3735. struct rx_ring_info *rp = &np->rx_rings[i];
  3736. rp->np = np;
  3737. rp->rx_channel = first_rx_channel + i;
  3738. err = niu_alloc_rx_ring_info(np, rp);
  3739. if (err)
  3740. goto out_err;
  3741. niu_size_rbr(np, rp);
  3742. /* XXX better defaults, configurable, etc... XXX */
  3743. rp->nonsyn_window = 64;
  3744. rp->nonsyn_threshold = rp->rcr_table_size - 64;
  3745. rp->syn_window = 64;
  3746. rp->syn_threshold = rp->rcr_table_size - 64;
  3747. rp->rcr_pkt_threshold = 16;
  3748. rp->rcr_timeout = 8;
  3749. rp->rbr_kick_thresh = RBR_REFILL_MIN;
  3750. if (rp->rbr_kick_thresh < rp->rbr_blocks_per_page)
  3751. rp->rbr_kick_thresh = rp->rbr_blocks_per_page;
  3752. err = niu_rbr_fill(np, rp, GFP_KERNEL);
  3753. if (err)
  3754. return err;
  3755. }
  3756. tx_rings = kcalloc(num_tx_rings, sizeof(struct tx_ring_info),
  3757. GFP_KERNEL);
  3758. err = -ENOMEM;
  3759. if (!tx_rings)
  3760. goto out_err;
  3761. np->num_tx_rings = num_tx_rings;
  3762. smp_wmb();
  3763. np->tx_rings = tx_rings;
  3764. netif_set_real_num_tx_queues(np->dev, num_tx_rings);
  3765. for (i = 0; i < np->num_tx_rings; i++) {
  3766. struct tx_ring_info *rp = &np->tx_rings[i];
  3767. rp->np = np;
  3768. rp->tx_channel = first_tx_channel + i;
  3769. err = niu_alloc_tx_ring_info(np, rp);
  3770. if (err)
  3771. goto out_err;
  3772. }
  3773. return 0;
  3774. out_err:
  3775. niu_free_channels(np);
  3776. return err;
  3777. }
  3778. static int niu_tx_cs_sng_poll(struct niu *np, int channel)
  3779. {
  3780. int limit = 1000;
  3781. while (--limit > 0) {
  3782. u64 val = nr64(TX_CS(channel));
  3783. if (val & TX_CS_SNG_STATE)
  3784. return 0;
  3785. }
  3786. return -ENODEV;
  3787. }
  3788. static int niu_tx_channel_stop(struct niu *np, int channel)
  3789. {
  3790. u64 val = nr64(TX_CS(channel));
  3791. val |= TX_CS_STOP_N_GO;
  3792. nw64(TX_CS(channel), val);
  3793. return niu_tx_cs_sng_poll(np, channel);
  3794. }
  3795. static int niu_tx_cs_reset_poll(struct niu *np, int channel)
  3796. {
  3797. int limit = 1000;
  3798. while (--limit > 0) {
  3799. u64 val = nr64(TX_CS(channel));
  3800. if (!(val & TX_CS_RST))
  3801. return 0;
  3802. }
  3803. return -ENODEV;
  3804. }
  3805. static int niu_tx_channel_reset(struct niu *np, int channel)
  3806. {
  3807. u64 val = nr64(TX_CS(channel));
  3808. int err;
  3809. val |= TX_CS_RST;
  3810. nw64(TX_CS(channel), val);
  3811. err = niu_tx_cs_reset_poll(np, channel);
  3812. if (!err)
  3813. nw64(TX_RING_KICK(channel), 0);
  3814. return err;
  3815. }
  3816. static int niu_tx_channel_lpage_init(struct niu *np, int channel)
  3817. {
  3818. u64 val;
  3819. nw64(TX_LOG_MASK1(channel), 0);
  3820. nw64(TX_LOG_VAL1(channel), 0);
  3821. nw64(TX_LOG_MASK2(channel), 0);
  3822. nw64(TX_LOG_VAL2(channel), 0);
  3823. nw64(TX_LOG_PAGE_RELO1(channel), 0);
  3824. nw64(TX_LOG_PAGE_RELO2(channel), 0);
  3825. nw64(TX_LOG_PAGE_HDL(channel), 0);
  3826. val = (u64)np->port << TX_LOG_PAGE_VLD_FUNC_SHIFT;
  3827. val |= (TX_LOG_PAGE_VLD_PAGE0 | TX_LOG_PAGE_VLD_PAGE1);
  3828. nw64(TX_LOG_PAGE_VLD(channel), val);
  3829. /* XXX TXDMA 32bit mode? XXX */
  3830. return 0;
  3831. }
  3832. static void niu_txc_enable_port(struct niu *np, int on)
  3833. {
  3834. unsigned long flags;
  3835. u64 val, mask;
  3836. niu_lock_parent(np, flags);
  3837. val = nr64(TXC_CONTROL);
  3838. mask = (u64)1 << np->port;
  3839. if (on) {
  3840. val |= TXC_CONTROL_ENABLE | mask;
  3841. } else {
  3842. val &= ~mask;
  3843. if ((val & ~TXC_CONTROL_ENABLE) == 0)
  3844. val &= ~TXC_CONTROL_ENABLE;
  3845. }
  3846. nw64(TXC_CONTROL, val);
  3847. niu_unlock_parent(np, flags);
  3848. }
  3849. static void niu_txc_set_imask(struct niu *np, u64 imask)
  3850. {
  3851. unsigned long flags;
  3852. u64 val;
  3853. niu_lock_parent(np, flags);
  3854. val = nr64(TXC_INT_MASK);
  3855. val &= ~TXC_INT_MASK_VAL(np->port);
  3856. val |= (imask << TXC_INT_MASK_VAL_SHIFT(np->port));
  3857. niu_unlock_parent(np, flags);
  3858. }
  3859. static void niu_txc_port_dma_enable(struct niu *np, int on)
  3860. {
  3861. u64 val = 0;
  3862. if (on) {
  3863. int i;
  3864. for (i = 0; i < np->num_tx_rings; i++)
  3865. val |= (1 << np->tx_rings[i].tx_channel);
  3866. }
  3867. nw64(TXC_PORT_DMA(np->port), val);
  3868. }
  3869. static int niu_init_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  3870. {
  3871. int err, channel = rp->tx_channel;
  3872. u64 val, ring_len;
  3873. err = niu_tx_channel_stop(np, channel);
  3874. if (err)
  3875. return err;
  3876. err = niu_tx_channel_reset(np, channel);
  3877. if (err)
  3878. return err;
  3879. err = niu_tx_channel_lpage_init(np, channel);
  3880. if (err)
  3881. return err;
  3882. nw64(TXC_DMA_MAX(channel), rp->max_burst);
  3883. nw64(TX_ENT_MSK(channel), 0);
  3884. if (rp->descr_dma & ~(TX_RNG_CFIG_STADDR_BASE |
  3885. TX_RNG_CFIG_STADDR)) {
  3886. netdev_err(np->dev, "TX ring channel %d DMA addr (%llx) is not aligned\n",
  3887. channel, (unsigned long long)rp->descr_dma);
  3888. return -EINVAL;
  3889. }
  3890. /* The length field in TX_RNG_CFIG is measured in 64-byte
  3891. * blocks. rp->pending is the number of TX descriptors in
  3892. * our ring, 8 bytes each, thus we divide by 8 bytes more
  3893. * to get the proper value the chip wants.
  3894. */
  3895. ring_len = (rp->pending / 8);
  3896. val = ((ring_len << TX_RNG_CFIG_LEN_SHIFT) |
  3897. rp->descr_dma);
  3898. nw64(TX_RNG_CFIG(channel), val);
  3899. if (((rp->mbox_dma >> 32) & ~TXDMA_MBH_MBADDR) ||
  3900. ((u32)rp->mbox_dma & ~TXDMA_MBL_MBADDR)) {
  3901. netdev_err(np->dev, "TX ring channel %d MBOX addr (%llx) has invalid bits\n",
  3902. channel, (unsigned long long)rp->mbox_dma);
  3903. return -EINVAL;
  3904. }
  3905. nw64(TXDMA_MBH(channel), rp->mbox_dma >> 32);
  3906. nw64(TXDMA_MBL(channel), rp->mbox_dma & TXDMA_MBL_MBADDR);
  3907. nw64(TX_CS(channel), 0);
  3908. rp->last_pkt_cnt = 0;
  3909. return 0;
  3910. }
  3911. static void niu_init_rdc_groups(struct niu *np)
  3912. {
  3913. struct niu_rdc_tables *tp = &np->parent->rdc_group_cfg[np->port];
  3914. int i, first_table_num = tp->first_table_num;
  3915. for (i = 0; i < tp->num_tables; i++) {
  3916. struct rdc_table *tbl = &tp->tables[i];
  3917. int this_table = first_table_num + i;
  3918. int slot;
  3919. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++)
  3920. nw64(RDC_TBL(this_table, slot),
  3921. tbl->rxdma_channel[slot]);
  3922. }
  3923. nw64(DEF_RDC(np->port), np->parent->rdc_default[np->port]);
  3924. }
  3925. static void niu_init_drr_weight(struct niu *np)
  3926. {
  3927. int type = phy_decode(np->parent->port_phy, np->port);
  3928. u64 val;
  3929. switch (type) {
  3930. case PORT_TYPE_10G:
  3931. val = PT_DRR_WEIGHT_DEFAULT_10G;
  3932. break;
  3933. case PORT_TYPE_1G:
  3934. default:
  3935. val = PT_DRR_WEIGHT_DEFAULT_1G;
  3936. break;
  3937. }
  3938. nw64(PT_DRR_WT(np->port), val);
  3939. }
  3940. static int niu_init_hostinfo(struct niu *np)
  3941. {
  3942. struct niu_parent *parent = np->parent;
  3943. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  3944. int i, err, num_alt = niu_num_alt_addr(np);
  3945. int first_rdc_table = tp->first_table_num;
  3946. err = niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  3947. if (err)
  3948. return err;
  3949. err = niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  3950. if (err)
  3951. return err;
  3952. for (i = 0; i < num_alt; i++) {
  3953. err = niu_set_alt_mac_rdc_table(np, i, first_rdc_table, 1);
  3954. if (err)
  3955. return err;
  3956. }
  3957. return 0;
  3958. }
  3959. static int niu_rx_channel_reset(struct niu *np, int channel)
  3960. {
  3961. return niu_set_and_wait_clear(np, RXDMA_CFIG1(channel),
  3962. RXDMA_CFIG1_RST, 1000, 10,
  3963. "RXDMA_CFIG1");
  3964. }
  3965. static int niu_rx_channel_lpage_init(struct niu *np, int channel)
  3966. {
  3967. u64 val;
  3968. nw64(RX_LOG_MASK1(channel), 0);
  3969. nw64(RX_LOG_VAL1(channel), 0);
  3970. nw64(RX_LOG_MASK2(channel), 0);
  3971. nw64(RX_LOG_VAL2(channel), 0);
  3972. nw64(RX_LOG_PAGE_RELO1(channel), 0);
  3973. nw64(RX_LOG_PAGE_RELO2(channel), 0);
  3974. nw64(RX_LOG_PAGE_HDL(channel), 0);
  3975. val = (u64)np->port << RX_LOG_PAGE_VLD_FUNC_SHIFT;
  3976. val |= (RX_LOG_PAGE_VLD_PAGE0 | RX_LOG_PAGE_VLD_PAGE1);
  3977. nw64(RX_LOG_PAGE_VLD(channel), val);
  3978. return 0;
  3979. }
  3980. static void niu_rx_channel_wred_init(struct niu *np, struct rx_ring_info *rp)
  3981. {
  3982. u64 val;
  3983. val = (((u64)rp->nonsyn_window << RDC_RED_PARA_WIN_SHIFT) |
  3984. ((u64)rp->nonsyn_threshold << RDC_RED_PARA_THRE_SHIFT) |
  3985. ((u64)rp->syn_window << RDC_RED_PARA_WIN_SYN_SHIFT) |
  3986. ((u64)rp->syn_threshold << RDC_RED_PARA_THRE_SYN_SHIFT));
  3987. nw64(RDC_RED_PARA(rp->rx_channel), val);
  3988. }
  3989. static int niu_compute_rbr_cfig_b(struct rx_ring_info *rp, u64 *ret)
  3990. {
  3991. u64 val = 0;
  3992. *ret = 0;
  3993. switch (rp->rbr_block_size) {
  3994. case 4 * 1024:
  3995. val |= (RBR_BLKSIZE_4K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3996. break;
  3997. case 8 * 1024:
  3998. val |= (RBR_BLKSIZE_8K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3999. break;
  4000. case 16 * 1024:
  4001. val |= (RBR_BLKSIZE_16K << RBR_CFIG_B_BLKSIZE_SHIFT);
  4002. break;
  4003. case 32 * 1024:
  4004. val |= (RBR_BLKSIZE_32K << RBR_CFIG_B_BLKSIZE_SHIFT);
  4005. break;
  4006. default:
  4007. return -EINVAL;
  4008. }
  4009. val |= RBR_CFIG_B_VLD2;
  4010. switch (rp->rbr_sizes[2]) {
  4011. case 2 * 1024:
  4012. val |= (RBR_BUFSZ2_2K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4013. break;
  4014. case 4 * 1024:
  4015. val |= (RBR_BUFSZ2_4K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4016. break;
  4017. case 8 * 1024:
  4018. val |= (RBR_BUFSZ2_8K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4019. break;
  4020. case 16 * 1024:
  4021. val |= (RBR_BUFSZ2_16K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4022. break;
  4023. default:
  4024. return -EINVAL;
  4025. }
  4026. val |= RBR_CFIG_B_VLD1;
  4027. switch (rp->rbr_sizes[1]) {
  4028. case 1 * 1024:
  4029. val |= (RBR_BUFSZ1_1K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4030. break;
  4031. case 2 * 1024:
  4032. val |= (RBR_BUFSZ1_2K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4033. break;
  4034. case 4 * 1024:
  4035. val |= (RBR_BUFSZ1_4K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4036. break;
  4037. case 8 * 1024:
  4038. val |= (RBR_BUFSZ1_8K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4039. break;
  4040. default:
  4041. return -EINVAL;
  4042. }
  4043. val |= RBR_CFIG_B_VLD0;
  4044. switch (rp->rbr_sizes[0]) {
  4045. case 256:
  4046. val |= (RBR_BUFSZ0_256 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4047. break;
  4048. case 512:
  4049. val |= (RBR_BUFSZ0_512 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4050. break;
  4051. case 1 * 1024:
  4052. val |= (RBR_BUFSZ0_1K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4053. break;
  4054. case 2 * 1024:
  4055. val |= (RBR_BUFSZ0_2K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4056. break;
  4057. default:
  4058. return -EINVAL;
  4059. }
  4060. *ret = val;
  4061. return 0;
  4062. }
  4063. static int niu_enable_rx_channel(struct niu *np, int channel, int on)
  4064. {
  4065. u64 val = nr64(RXDMA_CFIG1(channel));
  4066. int limit;
  4067. if (on)
  4068. val |= RXDMA_CFIG1_EN;
  4069. else
  4070. val &= ~RXDMA_CFIG1_EN;
  4071. nw64(RXDMA_CFIG1(channel), val);
  4072. limit = 1000;
  4073. while (--limit > 0) {
  4074. if (nr64(RXDMA_CFIG1(channel)) & RXDMA_CFIG1_QST)
  4075. break;
  4076. udelay(10);
  4077. }
  4078. if (limit <= 0)
  4079. return -ENODEV;
  4080. return 0;
  4081. }
  4082. static int niu_init_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4083. {
  4084. int err, channel = rp->rx_channel;
  4085. u64 val;
  4086. err = niu_rx_channel_reset(np, channel);
  4087. if (err)
  4088. return err;
  4089. err = niu_rx_channel_lpage_init(np, channel);
  4090. if (err)
  4091. return err;
  4092. niu_rx_channel_wred_init(np, rp);
  4093. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_RBR_EMPTY);
  4094. nw64(RX_DMA_CTL_STAT(channel),
  4095. (RX_DMA_CTL_STAT_MEX |
  4096. RX_DMA_CTL_STAT_RCRTHRES |
  4097. RX_DMA_CTL_STAT_RCRTO |
  4098. RX_DMA_CTL_STAT_RBR_EMPTY));
  4099. nw64(RXDMA_CFIG1(channel), rp->mbox_dma >> 32);
  4100. nw64(RXDMA_CFIG2(channel),
  4101. ((rp->mbox_dma & RXDMA_CFIG2_MBADDR_L) |
  4102. RXDMA_CFIG2_FULL_HDR));
  4103. nw64(RBR_CFIG_A(channel),
  4104. ((u64)rp->rbr_table_size << RBR_CFIG_A_LEN_SHIFT) |
  4105. (rp->rbr_dma & (RBR_CFIG_A_STADDR_BASE | RBR_CFIG_A_STADDR)));
  4106. err = niu_compute_rbr_cfig_b(rp, &val);
  4107. if (err)
  4108. return err;
  4109. nw64(RBR_CFIG_B(channel), val);
  4110. nw64(RCRCFIG_A(channel),
  4111. ((u64)rp->rcr_table_size << RCRCFIG_A_LEN_SHIFT) |
  4112. (rp->rcr_dma & (RCRCFIG_A_STADDR_BASE | RCRCFIG_A_STADDR)));
  4113. nw64(RCRCFIG_B(channel),
  4114. ((u64)rp->rcr_pkt_threshold << RCRCFIG_B_PTHRES_SHIFT) |
  4115. RCRCFIG_B_ENTOUT |
  4116. ((u64)rp->rcr_timeout << RCRCFIG_B_TIMEOUT_SHIFT));
  4117. err = niu_enable_rx_channel(np, channel, 1);
  4118. if (err)
  4119. return err;
  4120. nw64(RBR_KICK(channel), rp->rbr_index);
  4121. val = nr64(RX_DMA_CTL_STAT(channel));
  4122. val |= RX_DMA_CTL_STAT_RBR_EMPTY;
  4123. nw64(RX_DMA_CTL_STAT(channel), val);
  4124. return 0;
  4125. }
  4126. static int niu_init_rx_channels(struct niu *np)
  4127. {
  4128. unsigned long flags;
  4129. u64 seed = jiffies_64;
  4130. int err, i;
  4131. niu_lock_parent(np, flags);
  4132. nw64(RX_DMA_CK_DIV, np->parent->rxdma_clock_divider);
  4133. nw64(RED_RAN_INIT, RED_RAN_INIT_OPMODE | (seed & RED_RAN_INIT_VAL));
  4134. niu_unlock_parent(np, flags);
  4135. /* XXX RXDMA 32bit mode? XXX */
  4136. niu_init_rdc_groups(np);
  4137. niu_init_drr_weight(np);
  4138. err = niu_init_hostinfo(np);
  4139. if (err)
  4140. return err;
  4141. for (i = 0; i < np->num_rx_rings; i++) {
  4142. struct rx_ring_info *rp = &np->rx_rings[i];
  4143. err = niu_init_one_rx_channel(np, rp);
  4144. if (err)
  4145. return err;
  4146. }
  4147. return 0;
  4148. }
  4149. static int niu_set_ip_frag_rule(struct niu *np)
  4150. {
  4151. struct niu_parent *parent = np->parent;
  4152. struct niu_classifier *cp = &np->clas;
  4153. struct niu_tcam_entry *tp;
  4154. int index, err;
  4155. index = cp->tcam_top;
  4156. tp = &parent->tcam[index];
  4157. /* Note that the noport bit is the same in both ipv4 and
  4158. * ipv6 format TCAM entries.
  4159. */
  4160. memset(tp, 0, sizeof(*tp));
  4161. tp->key[1] = TCAM_V4KEY1_NOPORT;
  4162. tp->key_mask[1] = TCAM_V4KEY1_NOPORT;
  4163. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  4164. ((u64)0 << TCAM_ASSOCDATA_OFFSET_SHIFT));
  4165. err = tcam_write(np, index, tp->key, tp->key_mask);
  4166. if (err)
  4167. return err;
  4168. err = tcam_assoc_write(np, index, tp->assoc_data);
  4169. if (err)
  4170. return err;
  4171. tp->valid = 1;
  4172. cp->tcam_valid_entries++;
  4173. return 0;
  4174. }
  4175. static int niu_init_classifier_hw(struct niu *np)
  4176. {
  4177. struct niu_parent *parent = np->parent;
  4178. struct niu_classifier *cp = &np->clas;
  4179. int i, err;
  4180. nw64(H1POLY, cp->h1_init);
  4181. nw64(H2POLY, cp->h2_init);
  4182. err = niu_init_hostinfo(np);
  4183. if (err)
  4184. return err;
  4185. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++) {
  4186. struct niu_vlan_rdc *vp = &cp->vlan_mappings[i];
  4187. vlan_tbl_write(np, i, np->port,
  4188. vp->vlan_pref, vp->rdc_num);
  4189. }
  4190. for (i = 0; i < cp->num_alt_mac_mappings; i++) {
  4191. struct niu_altmac_rdc *ap = &cp->alt_mac_mappings[i];
  4192. err = niu_set_alt_mac_rdc_table(np, ap->alt_mac_num,
  4193. ap->rdc_num, ap->mac_pref);
  4194. if (err)
  4195. return err;
  4196. }
  4197. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  4198. int index = i - CLASS_CODE_USER_PROG1;
  4199. err = niu_set_tcam_key(np, i, parent->tcam_key[index]);
  4200. if (err)
  4201. return err;
  4202. err = niu_set_flow_key(np, i, parent->flow_key[index]);
  4203. if (err)
  4204. return err;
  4205. }
  4206. err = niu_set_ip_frag_rule(np);
  4207. if (err)
  4208. return err;
  4209. tcam_enable(np, 1);
  4210. return 0;
  4211. }
  4212. static int niu_zcp_write(struct niu *np, int index, u64 *data)
  4213. {
  4214. nw64(ZCP_RAM_DATA0, data[0]);
  4215. nw64(ZCP_RAM_DATA1, data[1]);
  4216. nw64(ZCP_RAM_DATA2, data[2]);
  4217. nw64(ZCP_RAM_DATA3, data[3]);
  4218. nw64(ZCP_RAM_DATA4, data[4]);
  4219. nw64(ZCP_RAM_BE, ZCP_RAM_BE_VAL);
  4220. nw64(ZCP_RAM_ACC,
  4221. (ZCP_RAM_ACC_WRITE |
  4222. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4223. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4224. return niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4225. 1000, 100);
  4226. }
  4227. static int niu_zcp_read(struct niu *np, int index, u64 *data)
  4228. {
  4229. int err;
  4230. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4231. 1000, 100);
  4232. if (err) {
  4233. netdev_err(np->dev, "ZCP read busy won't clear, ZCP_RAM_ACC[%llx]\n",
  4234. (unsigned long long)nr64(ZCP_RAM_ACC));
  4235. return err;
  4236. }
  4237. nw64(ZCP_RAM_ACC,
  4238. (ZCP_RAM_ACC_READ |
  4239. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4240. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4241. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4242. 1000, 100);
  4243. if (err) {
  4244. netdev_err(np->dev, "ZCP read busy2 won't clear, ZCP_RAM_ACC[%llx]\n",
  4245. (unsigned long long)nr64(ZCP_RAM_ACC));
  4246. return err;
  4247. }
  4248. data[0] = nr64(ZCP_RAM_DATA0);
  4249. data[1] = nr64(ZCP_RAM_DATA1);
  4250. data[2] = nr64(ZCP_RAM_DATA2);
  4251. data[3] = nr64(ZCP_RAM_DATA3);
  4252. data[4] = nr64(ZCP_RAM_DATA4);
  4253. return 0;
  4254. }
  4255. static void niu_zcp_cfifo_reset(struct niu *np)
  4256. {
  4257. u64 val = nr64(RESET_CFIFO);
  4258. val |= RESET_CFIFO_RST(np->port);
  4259. nw64(RESET_CFIFO, val);
  4260. udelay(10);
  4261. val &= ~RESET_CFIFO_RST(np->port);
  4262. nw64(RESET_CFIFO, val);
  4263. }
  4264. static int niu_init_zcp(struct niu *np)
  4265. {
  4266. u64 data[5], rbuf[5];
  4267. int i, max, err;
  4268. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4269. if (np->port == 0 || np->port == 1)
  4270. max = ATLAS_P0_P1_CFIFO_ENTRIES;
  4271. else
  4272. max = ATLAS_P2_P3_CFIFO_ENTRIES;
  4273. } else
  4274. max = NIU_CFIFO_ENTRIES;
  4275. data[0] = 0;
  4276. data[1] = 0;
  4277. data[2] = 0;
  4278. data[3] = 0;
  4279. data[4] = 0;
  4280. for (i = 0; i < max; i++) {
  4281. err = niu_zcp_write(np, i, data);
  4282. if (err)
  4283. return err;
  4284. err = niu_zcp_read(np, i, rbuf);
  4285. if (err)
  4286. return err;
  4287. }
  4288. niu_zcp_cfifo_reset(np);
  4289. nw64(CFIFO_ECC(np->port), 0);
  4290. nw64(ZCP_INT_STAT, ZCP_INT_STAT_ALL);
  4291. (void) nr64(ZCP_INT_STAT);
  4292. nw64(ZCP_INT_MASK, ZCP_INT_MASK_ALL);
  4293. return 0;
  4294. }
  4295. static void niu_ipp_write(struct niu *np, int index, u64 *data)
  4296. {
  4297. u64 val = nr64_ipp(IPP_CFIG);
  4298. nw64_ipp(IPP_CFIG, val | IPP_CFIG_DFIFO_PIO_W);
  4299. nw64_ipp(IPP_DFIFO_WR_PTR, index);
  4300. nw64_ipp(IPP_DFIFO_WR0, data[0]);
  4301. nw64_ipp(IPP_DFIFO_WR1, data[1]);
  4302. nw64_ipp(IPP_DFIFO_WR2, data[2]);
  4303. nw64_ipp(IPP_DFIFO_WR3, data[3]);
  4304. nw64_ipp(IPP_DFIFO_WR4, data[4]);
  4305. nw64_ipp(IPP_CFIG, val & ~IPP_CFIG_DFIFO_PIO_W);
  4306. }
  4307. static void niu_ipp_read(struct niu *np, int index, u64 *data)
  4308. {
  4309. nw64_ipp(IPP_DFIFO_RD_PTR, index);
  4310. data[0] = nr64_ipp(IPP_DFIFO_RD0);
  4311. data[1] = nr64_ipp(IPP_DFIFO_RD1);
  4312. data[2] = nr64_ipp(IPP_DFIFO_RD2);
  4313. data[3] = nr64_ipp(IPP_DFIFO_RD3);
  4314. data[4] = nr64_ipp(IPP_DFIFO_RD4);
  4315. }
  4316. static int niu_ipp_reset(struct niu *np)
  4317. {
  4318. return niu_set_and_wait_clear_ipp(np, IPP_CFIG, IPP_CFIG_SOFT_RST,
  4319. 1000, 100, "IPP_CFIG");
  4320. }
  4321. static int niu_init_ipp(struct niu *np)
  4322. {
  4323. u64 data[5], rbuf[5], val;
  4324. int i, max, err;
  4325. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4326. if (np->port == 0 || np->port == 1)
  4327. max = ATLAS_P0_P1_DFIFO_ENTRIES;
  4328. else
  4329. max = ATLAS_P2_P3_DFIFO_ENTRIES;
  4330. } else
  4331. max = NIU_DFIFO_ENTRIES;
  4332. data[0] = 0;
  4333. data[1] = 0;
  4334. data[2] = 0;
  4335. data[3] = 0;
  4336. data[4] = 0;
  4337. for (i = 0; i < max; i++) {
  4338. niu_ipp_write(np, i, data);
  4339. niu_ipp_read(np, i, rbuf);
  4340. }
  4341. (void) nr64_ipp(IPP_INT_STAT);
  4342. (void) nr64_ipp(IPP_INT_STAT);
  4343. err = niu_ipp_reset(np);
  4344. if (err)
  4345. return err;
  4346. (void) nr64_ipp(IPP_PKT_DIS);
  4347. (void) nr64_ipp(IPP_BAD_CS_CNT);
  4348. (void) nr64_ipp(IPP_ECC);
  4349. (void) nr64_ipp(IPP_INT_STAT);
  4350. nw64_ipp(IPP_MSK, ~IPP_MSK_ALL);
  4351. val = nr64_ipp(IPP_CFIG);
  4352. val &= ~IPP_CFIG_IP_MAX_PKT;
  4353. val |= (IPP_CFIG_IPP_ENABLE |
  4354. IPP_CFIG_DFIFO_ECC_EN |
  4355. IPP_CFIG_DROP_BAD_CRC |
  4356. IPP_CFIG_CKSUM_EN |
  4357. (0x1ffff << IPP_CFIG_IP_MAX_PKT_SHIFT));
  4358. nw64_ipp(IPP_CFIG, val);
  4359. return 0;
  4360. }
  4361. static void niu_handle_led(struct niu *np, int status)
  4362. {
  4363. u64 val;
  4364. val = nr64_mac(XMAC_CONFIG);
  4365. if ((np->flags & NIU_FLAGS_10G) != 0 &&
  4366. (np->flags & NIU_FLAGS_FIBER) != 0) {
  4367. if (status) {
  4368. val |= XMAC_CONFIG_LED_POLARITY;
  4369. val &= ~XMAC_CONFIG_FORCE_LED_ON;
  4370. } else {
  4371. val |= XMAC_CONFIG_FORCE_LED_ON;
  4372. val &= ~XMAC_CONFIG_LED_POLARITY;
  4373. }
  4374. }
  4375. nw64_mac(XMAC_CONFIG, val);
  4376. }
  4377. static void niu_init_xif_xmac(struct niu *np)
  4378. {
  4379. struct niu_link_config *lp = &np->link_config;
  4380. u64 val;
  4381. if (np->flags & NIU_FLAGS_XCVR_SERDES) {
  4382. val = nr64(MIF_CONFIG);
  4383. val |= MIF_CONFIG_ATCA_GE;
  4384. nw64(MIF_CONFIG, val);
  4385. }
  4386. val = nr64_mac(XMAC_CONFIG);
  4387. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4388. val |= XMAC_CONFIG_TX_OUTPUT_EN;
  4389. if (lp->loopback_mode == LOOPBACK_MAC) {
  4390. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4391. val |= XMAC_CONFIG_LOOPBACK;
  4392. } else {
  4393. val &= ~XMAC_CONFIG_LOOPBACK;
  4394. }
  4395. if (np->flags & NIU_FLAGS_10G) {
  4396. val &= ~XMAC_CONFIG_LFS_DISABLE;
  4397. } else {
  4398. val |= XMAC_CONFIG_LFS_DISABLE;
  4399. if (!(np->flags & NIU_FLAGS_FIBER) &&
  4400. !(np->flags & NIU_FLAGS_XCVR_SERDES))
  4401. val |= XMAC_CONFIG_1G_PCS_BYPASS;
  4402. else
  4403. val &= ~XMAC_CONFIG_1G_PCS_BYPASS;
  4404. }
  4405. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4406. if (lp->active_speed == SPEED_100)
  4407. val |= XMAC_CONFIG_SEL_CLK_25MHZ;
  4408. else
  4409. val &= ~XMAC_CONFIG_SEL_CLK_25MHZ;
  4410. nw64_mac(XMAC_CONFIG, val);
  4411. val = nr64_mac(XMAC_CONFIG);
  4412. val &= ~XMAC_CONFIG_MODE_MASK;
  4413. if (np->flags & NIU_FLAGS_10G) {
  4414. val |= XMAC_CONFIG_MODE_XGMII;
  4415. } else {
  4416. if (lp->active_speed == SPEED_1000)
  4417. val |= XMAC_CONFIG_MODE_GMII;
  4418. else
  4419. val |= XMAC_CONFIG_MODE_MII;
  4420. }
  4421. nw64_mac(XMAC_CONFIG, val);
  4422. }
  4423. static void niu_init_xif_bmac(struct niu *np)
  4424. {
  4425. struct niu_link_config *lp = &np->link_config;
  4426. u64 val;
  4427. val = BMAC_XIF_CONFIG_TX_OUTPUT_EN;
  4428. if (lp->loopback_mode == LOOPBACK_MAC)
  4429. val |= BMAC_XIF_CONFIG_MII_LOOPBACK;
  4430. else
  4431. val &= ~BMAC_XIF_CONFIG_MII_LOOPBACK;
  4432. if (lp->active_speed == SPEED_1000)
  4433. val |= BMAC_XIF_CONFIG_GMII_MODE;
  4434. else
  4435. val &= ~BMAC_XIF_CONFIG_GMII_MODE;
  4436. val &= ~(BMAC_XIF_CONFIG_LINK_LED |
  4437. BMAC_XIF_CONFIG_LED_POLARITY);
  4438. if (!(np->flags & NIU_FLAGS_10G) &&
  4439. !(np->flags & NIU_FLAGS_FIBER) &&
  4440. lp->active_speed == SPEED_100)
  4441. val |= BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4442. else
  4443. val &= ~BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4444. nw64_mac(BMAC_XIF_CONFIG, val);
  4445. }
  4446. static void niu_init_xif(struct niu *np)
  4447. {
  4448. if (np->flags & NIU_FLAGS_XMAC)
  4449. niu_init_xif_xmac(np);
  4450. else
  4451. niu_init_xif_bmac(np);
  4452. }
  4453. static void niu_pcs_mii_reset(struct niu *np)
  4454. {
  4455. int limit = 1000;
  4456. u64 val = nr64_pcs(PCS_MII_CTL);
  4457. val |= PCS_MII_CTL_RST;
  4458. nw64_pcs(PCS_MII_CTL, val);
  4459. while ((--limit >= 0) && (val & PCS_MII_CTL_RST)) {
  4460. udelay(100);
  4461. val = nr64_pcs(PCS_MII_CTL);
  4462. }
  4463. }
  4464. static void niu_xpcs_reset(struct niu *np)
  4465. {
  4466. int limit = 1000;
  4467. u64 val = nr64_xpcs(XPCS_CONTROL1);
  4468. val |= XPCS_CONTROL1_RESET;
  4469. nw64_xpcs(XPCS_CONTROL1, val);
  4470. while ((--limit >= 0) && (val & XPCS_CONTROL1_RESET)) {
  4471. udelay(100);
  4472. val = nr64_xpcs(XPCS_CONTROL1);
  4473. }
  4474. }
  4475. static int niu_init_pcs(struct niu *np)
  4476. {
  4477. struct niu_link_config *lp = &np->link_config;
  4478. u64 val;
  4479. switch (np->flags & (NIU_FLAGS_10G |
  4480. NIU_FLAGS_FIBER |
  4481. NIU_FLAGS_XCVR_SERDES)) {
  4482. case NIU_FLAGS_FIBER:
  4483. /* 1G fiber */
  4484. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4485. nw64_pcs(PCS_DPATH_MODE, 0);
  4486. niu_pcs_mii_reset(np);
  4487. break;
  4488. case NIU_FLAGS_10G:
  4489. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  4490. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  4491. /* 10G SERDES */
  4492. if (!(np->flags & NIU_FLAGS_XMAC))
  4493. return -EINVAL;
  4494. /* 10G copper or fiber */
  4495. val = nr64_mac(XMAC_CONFIG);
  4496. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4497. nw64_mac(XMAC_CONFIG, val);
  4498. niu_xpcs_reset(np);
  4499. val = nr64_xpcs(XPCS_CONTROL1);
  4500. if (lp->loopback_mode == LOOPBACK_PHY)
  4501. val |= XPCS_CONTROL1_LOOPBACK;
  4502. else
  4503. val &= ~XPCS_CONTROL1_LOOPBACK;
  4504. nw64_xpcs(XPCS_CONTROL1, val);
  4505. nw64_xpcs(XPCS_DESKEW_ERR_CNT, 0);
  4506. (void) nr64_xpcs(XPCS_SYMERR_CNT01);
  4507. (void) nr64_xpcs(XPCS_SYMERR_CNT23);
  4508. break;
  4509. case NIU_FLAGS_XCVR_SERDES:
  4510. /* 1G SERDES */
  4511. niu_pcs_mii_reset(np);
  4512. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4513. nw64_pcs(PCS_DPATH_MODE, 0);
  4514. break;
  4515. case 0:
  4516. /* 1G copper */
  4517. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  4518. /* 1G RGMII FIBER */
  4519. nw64_pcs(PCS_DPATH_MODE, PCS_DPATH_MODE_MII);
  4520. niu_pcs_mii_reset(np);
  4521. break;
  4522. default:
  4523. return -EINVAL;
  4524. }
  4525. return 0;
  4526. }
  4527. static int niu_reset_tx_xmac(struct niu *np)
  4528. {
  4529. return niu_set_and_wait_clear_mac(np, XTXMAC_SW_RST,
  4530. (XTXMAC_SW_RST_REG_RS |
  4531. XTXMAC_SW_RST_SOFT_RST),
  4532. 1000, 100, "XTXMAC_SW_RST");
  4533. }
  4534. static int niu_reset_tx_bmac(struct niu *np)
  4535. {
  4536. int limit;
  4537. nw64_mac(BTXMAC_SW_RST, BTXMAC_SW_RST_RESET);
  4538. limit = 1000;
  4539. while (--limit >= 0) {
  4540. if (!(nr64_mac(BTXMAC_SW_RST) & BTXMAC_SW_RST_RESET))
  4541. break;
  4542. udelay(100);
  4543. }
  4544. if (limit < 0) {
  4545. dev_err(np->device, "Port %u TX BMAC would not reset, BTXMAC_SW_RST[%llx]\n",
  4546. np->port,
  4547. (unsigned long long) nr64_mac(BTXMAC_SW_RST));
  4548. return -ENODEV;
  4549. }
  4550. return 0;
  4551. }
  4552. static int niu_reset_tx_mac(struct niu *np)
  4553. {
  4554. if (np->flags & NIU_FLAGS_XMAC)
  4555. return niu_reset_tx_xmac(np);
  4556. else
  4557. return niu_reset_tx_bmac(np);
  4558. }
  4559. static void niu_init_tx_xmac(struct niu *np, u64 min, u64 max)
  4560. {
  4561. u64 val;
  4562. val = nr64_mac(XMAC_MIN);
  4563. val &= ~(XMAC_MIN_TX_MIN_PKT_SIZE |
  4564. XMAC_MIN_RX_MIN_PKT_SIZE);
  4565. val |= (min << XMAC_MIN_RX_MIN_PKT_SIZE_SHFT);
  4566. val |= (min << XMAC_MIN_TX_MIN_PKT_SIZE_SHFT);
  4567. nw64_mac(XMAC_MIN, val);
  4568. nw64_mac(XMAC_MAX, max);
  4569. nw64_mac(XTXMAC_STAT_MSK, ~(u64)0);
  4570. val = nr64_mac(XMAC_IPG);
  4571. if (np->flags & NIU_FLAGS_10G) {
  4572. val &= ~XMAC_IPG_IPG_XGMII;
  4573. val |= (IPG_12_15_XGMII << XMAC_IPG_IPG_XGMII_SHIFT);
  4574. } else {
  4575. val &= ~XMAC_IPG_IPG_MII_GMII;
  4576. val |= (IPG_12_MII_GMII << XMAC_IPG_IPG_MII_GMII_SHIFT);
  4577. }
  4578. nw64_mac(XMAC_IPG, val);
  4579. val = nr64_mac(XMAC_CONFIG);
  4580. val &= ~(XMAC_CONFIG_ALWAYS_NO_CRC |
  4581. XMAC_CONFIG_STRETCH_MODE |
  4582. XMAC_CONFIG_VAR_MIN_IPG_EN |
  4583. XMAC_CONFIG_TX_ENABLE);
  4584. nw64_mac(XMAC_CONFIG, val);
  4585. nw64_mac(TXMAC_FRM_CNT, 0);
  4586. nw64_mac(TXMAC_BYTE_CNT, 0);
  4587. }
  4588. static void niu_init_tx_bmac(struct niu *np, u64 min, u64 max)
  4589. {
  4590. u64 val;
  4591. nw64_mac(BMAC_MIN_FRAME, min);
  4592. nw64_mac(BMAC_MAX_FRAME, max);
  4593. nw64_mac(BTXMAC_STATUS_MASK, ~(u64)0);
  4594. nw64_mac(BMAC_CTRL_TYPE, 0x8808);
  4595. nw64_mac(BMAC_PREAMBLE_SIZE, 7);
  4596. val = nr64_mac(BTXMAC_CONFIG);
  4597. val &= ~(BTXMAC_CONFIG_FCS_DISABLE |
  4598. BTXMAC_CONFIG_ENABLE);
  4599. nw64_mac(BTXMAC_CONFIG, val);
  4600. }
  4601. static void niu_init_tx_mac(struct niu *np)
  4602. {
  4603. u64 min, max;
  4604. min = 64;
  4605. if (np->dev->mtu > ETH_DATA_LEN)
  4606. max = 9216;
  4607. else
  4608. max = 1522;
  4609. /* The XMAC_MIN register only accepts values for TX min which
  4610. * have the low 3 bits cleared.
  4611. */
  4612. BUG_ON(min & 0x7);
  4613. if (np->flags & NIU_FLAGS_XMAC)
  4614. niu_init_tx_xmac(np, min, max);
  4615. else
  4616. niu_init_tx_bmac(np, min, max);
  4617. }
  4618. static int niu_reset_rx_xmac(struct niu *np)
  4619. {
  4620. int limit;
  4621. nw64_mac(XRXMAC_SW_RST,
  4622. XRXMAC_SW_RST_REG_RS | XRXMAC_SW_RST_SOFT_RST);
  4623. limit = 1000;
  4624. while (--limit >= 0) {
  4625. if (!(nr64_mac(XRXMAC_SW_RST) & (XRXMAC_SW_RST_REG_RS |
  4626. XRXMAC_SW_RST_SOFT_RST)))
  4627. break;
  4628. udelay(100);
  4629. }
  4630. if (limit < 0) {
  4631. dev_err(np->device, "Port %u RX XMAC would not reset, XRXMAC_SW_RST[%llx]\n",
  4632. np->port,
  4633. (unsigned long long) nr64_mac(XRXMAC_SW_RST));
  4634. return -ENODEV;
  4635. }
  4636. return 0;
  4637. }
  4638. static int niu_reset_rx_bmac(struct niu *np)
  4639. {
  4640. int limit;
  4641. nw64_mac(BRXMAC_SW_RST, BRXMAC_SW_RST_RESET);
  4642. limit = 1000;
  4643. while (--limit >= 0) {
  4644. if (!(nr64_mac(BRXMAC_SW_RST) & BRXMAC_SW_RST_RESET))
  4645. break;
  4646. udelay(100);
  4647. }
  4648. if (limit < 0) {
  4649. dev_err(np->device, "Port %u RX BMAC would not reset, BRXMAC_SW_RST[%llx]\n",
  4650. np->port,
  4651. (unsigned long long) nr64_mac(BRXMAC_SW_RST));
  4652. return -ENODEV;
  4653. }
  4654. return 0;
  4655. }
  4656. static int niu_reset_rx_mac(struct niu *np)
  4657. {
  4658. if (np->flags & NIU_FLAGS_XMAC)
  4659. return niu_reset_rx_xmac(np);
  4660. else
  4661. return niu_reset_rx_bmac(np);
  4662. }
  4663. static void niu_init_rx_xmac(struct niu *np)
  4664. {
  4665. struct niu_parent *parent = np->parent;
  4666. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4667. int first_rdc_table = tp->first_table_num;
  4668. unsigned long i;
  4669. u64 val;
  4670. nw64_mac(XMAC_ADD_FILT0, 0);
  4671. nw64_mac(XMAC_ADD_FILT1, 0);
  4672. nw64_mac(XMAC_ADD_FILT2, 0);
  4673. nw64_mac(XMAC_ADD_FILT12_MASK, 0);
  4674. nw64_mac(XMAC_ADD_FILT00_MASK, 0);
  4675. for (i = 0; i < MAC_NUM_HASH; i++)
  4676. nw64_mac(XMAC_HASH_TBL(i), 0);
  4677. nw64_mac(XRXMAC_STAT_MSK, ~(u64)0);
  4678. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4679. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4680. val = nr64_mac(XMAC_CONFIG);
  4681. val &= ~(XMAC_CONFIG_RX_MAC_ENABLE |
  4682. XMAC_CONFIG_PROMISCUOUS |
  4683. XMAC_CONFIG_PROMISC_GROUP |
  4684. XMAC_CONFIG_ERR_CHK_DIS |
  4685. XMAC_CONFIG_RX_CRC_CHK_DIS |
  4686. XMAC_CONFIG_RESERVED_MULTICAST |
  4687. XMAC_CONFIG_RX_CODEV_CHK_DIS |
  4688. XMAC_CONFIG_ADDR_FILTER_EN |
  4689. XMAC_CONFIG_RCV_PAUSE_ENABLE |
  4690. XMAC_CONFIG_STRIP_CRC |
  4691. XMAC_CONFIG_PASS_FLOW_CTRL |
  4692. XMAC_CONFIG_MAC2IPP_PKT_CNT_EN);
  4693. val |= (XMAC_CONFIG_HASH_FILTER_EN);
  4694. nw64_mac(XMAC_CONFIG, val);
  4695. nw64_mac(RXMAC_BT_CNT, 0);
  4696. nw64_mac(RXMAC_BC_FRM_CNT, 0);
  4697. nw64_mac(RXMAC_MC_FRM_CNT, 0);
  4698. nw64_mac(RXMAC_FRAG_CNT, 0);
  4699. nw64_mac(RXMAC_HIST_CNT1, 0);
  4700. nw64_mac(RXMAC_HIST_CNT2, 0);
  4701. nw64_mac(RXMAC_HIST_CNT3, 0);
  4702. nw64_mac(RXMAC_HIST_CNT4, 0);
  4703. nw64_mac(RXMAC_HIST_CNT5, 0);
  4704. nw64_mac(RXMAC_HIST_CNT6, 0);
  4705. nw64_mac(RXMAC_HIST_CNT7, 0);
  4706. nw64_mac(RXMAC_MPSZER_CNT, 0);
  4707. nw64_mac(RXMAC_CRC_ER_CNT, 0);
  4708. nw64_mac(RXMAC_CD_VIO_CNT, 0);
  4709. nw64_mac(LINK_FAULT_CNT, 0);
  4710. }
  4711. static void niu_init_rx_bmac(struct niu *np)
  4712. {
  4713. struct niu_parent *parent = np->parent;
  4714. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4715. int first_rdc_table = tp->first_table_num;
  4716. unsigned long i;
  4717. u64 val;
  4718. nw64_mac(BMAC_ADD_FILT0, 0);
  4719. nw64_mac(BMAC_ADD_FILT1, 0);
  4720. nw64_mac(BMAC_ADD_FILT2, 0);
  4721. nw64_mac(BMAC_ADD_FILT12_MASK, 0);
  4722. nw64_mac(BMAC_ADD_FILT00_MASK, 0);
  4723. for (i = 0; i < MAC_NUM_HASH; i++)
  4724. nw64_mac(BMAC_HASH_TBL(i), 0);
  4725. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4726. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4727. nw64_mac(BRXMAC_STATUS_MASK, ~(u64)0);
  4728. val = nr64_mac(BRXMAC_CONFIG);
  4729. val &= ~(BRXMAC_CONFIG_ENABLE |
  4730. BRXMAC_CONFIG_STRIP_PAD |
  4731. BRXMAC_CONFIG_STRIP_FCS |
  4732. BRXMAC_CONFIG_PROMISC |
  4733. BRXMAC_CONFIG_PROMISC_GRP |
  4734. BRXMAC_CONFIG_ADDR_FILT_EN |
  4735. BRXMAC_CONFIG_DISCARD_DIS);
  4736. val |= (BRXMAC_CONFIG_HASH_FILT_EN);
  4737. nw64_mac(BRXMAC_CONFIG, val);
  4738. val = nr64_mac(BMAC_ADDR_CMPEN);
  4739. val |= BMAC_ADDR_CMPEN_EN0;
  4740. nw64_mac(BMAC_ADDR_CMPEN, val);
  4741. }
  4742. static void niu_init_rx_mac(struct niu *np)
  4743. {
  4744. niu_set_primary_mac(np, np->dev->dev_addr);
  4745. if (np->flags & NIU_FLAGS_XMAC)
  4746. niu_init_rx_xmac(np);
  4747. else
  4748. niu_init_rx_bmac(np);
  4749. }
  4750. static void niu_enable_tx_xmac(struct niu *np, int on)
  4751. {
  4752. u64 val = nr64_mac(XMAC_CONFIG);
  4753. if (on)
  4754. val |= XMAC_CONFIG_TX_ENABLE;
  4755. else
  4756. val &= ~XMAC_CONFIG_TX_ENABLE;
  4757. nw64_mac(XMAC_CONFIG, val);
  4758. }
  4759. static void niu_enable_tx_bmac(struct niu *np, int on)
  4760. {
  4761. u64 val = nr64_mac(BTXMAC_CONFIG);
  4762. if (on)
  4763. val |= BTXMAC_CONFIG_ENABLE;
  4764. else
  4765. val &= ~BTXMAC_CONFIG_ENABLE;
  4766. nw64_mac(BTXMAC_CONFIG, val);
  4767. }
  4768. static void niu_enable_tx_mac(struct niu *np, int on)
  4769. {
  4770. if (np->flags & NIU_FLAGS_XMAC)
  4771. niu_enable_tx_xmac(np, on);
  4772. else
  4773. niu_enable_tx_bmac(np, on);
  4774. }
  4775. static void niu_enable_rx_xmac(struct niu *np, int on)
  4776. {
  4777. u64 val = nr64_mac(XMAC_CONFIG);
  4778. val &= ~(XMAC_CONFIG_HASH_FILTER_EN |
  4779. XMAC_CONFIG_PROMISCUOUS);
  4780. if (np->flags & NIU_FLAGS_MCAST)
  4781. val |= XMAC_CONFIG_HASH_FILTER_EN;
  4782. if (np->flags & NIU_FLAGS_PROMISC)
  4783. val |= XMAC_CONFIG_PROMISCUOUS;
  4784. if (on)
  4785. val |= XMAC_CONFIG_RX_MAC_ENABLE;
  4786. else
  4787. val &= ~XMAC_CONFIG_RX_MAC_ENABLE;
  4788. nw64_mac(XMAC_CONFIG, val);
  4789. }
  4790. static void niu_enable_rx_bmac(struct niu *np, int on)
  4791. {
  4792. u64 val = nr64_mac(BRXMAC_CONFIG);
  4793. val &= ~(BRXMAC_CONFIG_HASH_FILT_EN |
  4794. BRXMAC_CONFIG_PROMISC);
  4795. if (np->flags & NIU_FLAGS_MCAST)
  4796. val |= BRXMAC_CONFIG_HASH_FILT_EN;
  4797. if (np->flags & NIU_FLAGS_PROMISC)
  4798. val |= BRXMAC_CONFIG_PROMISC;
  4799. if (on)
  4800. val |= BRXMAC_CONFIG_ENABLE;
  4801. else
  4802. val &= ~BRXMAC_CONFIG_ENABLE;
  4803. nw64_mac(BRXMAC_CONFIG, val);
  4804. }
  4805. static void niu_enable_rx_mac(struct niu *np, int on)
  4806. {
  4807. if (np->flags & NIU_FLAGS_XMAC)
  4808. niu_enable_rx_xmac(np, on);
  4809. else
  4810. niu_enable_rx_bmac(np, on);
  4811. }
  4812. static int niu_init_mac(struct niu *np)
  4813. {
  4814. int err;
  4815. niu_init_xif(np);
  4816. err = niu_init_pcs(np);
  4817. if (err)
  4818. return err;
  4819. err = niu_reset_tx_mac(np);
  4820. if (err)
  4821. return err;
  4822. niu_init_tx_mac(np);
  4823. err = niu_reset_rx_mac(np);
  4824. if (err)
  4825. return err;
  4826. niu_init_rx_mac(np);
  4827. /* This looks hookey but the RX MAC reset we just did will
  4828. * undo some of the state we setup in niu_init_tx_mac() so we
  4829. * have to call it again. In particular, the RX MAC reset will
  4830. * set the XMAC_MAX register back to it's default value.
  4831. */
  4832. niu_init_tx_mac(np);
  4833. niu_enable_tx_mac(np, 1);
  4834. niu_enable_rx_mac(np, 1);
  4835. return 0;
  4836. }
  4837. static void niu_stop_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4838. {
  4839. (void) niu_tx_channel_stop(np, rp->tx_channel);
  4840. }
  4841. static void niu_stop_tx_channels(struct niu *np)
  4842. {
  4843. int i;
  4844. for (i = 0; i < np->num_tx_rings; i++) {
  4845. struct tx_ring_info *rp = &np->tx_rings[i];
  4846. niu_stop_one_tx_channel(np, rp);
  4847. }
  4848. }
  4849. static void niu_reset_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4850. {
  4851. (void) niu_tx_channel_reset(np, rp->tx_channel);
  4852. }
  4853. static void niu_reset_tx_channels(struct niu *np)
  4854. {
  4855. int i;
  4856. for (i = 0; i < np->num_tx_rings; i++) {
  4857. struct tx_ring_info *rp = &np->tx_rings[i];
  4858. niu_reset_one_tx_channel(np, rp);
  4859. }
  4860. }
  4861. static void niu_stop_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4862. {
  4863. (void) niu_enable_rx_channel(np, rp->rx_channel, 0);
  4864. }
  4865. static void niu_stop_rx_channels(struct niu *np)
  4866. {
  4867. int i;
  4868. for (i = 0; i < np->num_rx_rings; i++) {
  4869. struct rx_ring_info *rp = &np->rx_rings[i];
  4870. niu_stop_one_rx_channel(np, rp);
  4871. }
  4872. }
  4873. static void niu_reset_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4874. {
  4875. int channel = rp->rx_channel;
  4876. (void) niu_rx_channel_reset(np, channel);
  4877. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_ALL);
  4878. nw64(RX_DMA_CTL_STAT(channel), 0);
  4879. (void) niu_enable_rx_channel(np, channel, 0);
  4880. }
  4881. static void niu_reset_rx_channels(struct niu *np)
  4882. {
  4883. int i;
  4884. for (i = 0; i < np->num_rx_rings; i++) {
  4885. struct rx_ring_info *rp = &np->rx_rings[i];
  4886. niu_reset_one_rx_channel(np, rp);
  4887. }
  4888. }
  4889. static void niu_disable_ipp(struct niu *np)
  4890. {
  4891. u64 rd, wr, val;
  4892. int limit;
  4893. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4894. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4895. limit = 100;
  4896. while (--limit >= 0 && (rd != wr)) {
  4897. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4898. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4899. }
  4900. if (limit < 0 &&
  4901. (rd != 0 && wr != 1)) {
  4902. netdev_err(np->dev, "IPP would not quiesce, rd_ptr[%llx] wr_ptr[%llx]\n",
  4903. (unsigned long long)nr64_ipp(IPP_DFIFO_RD_PTR),
  4904. (unsigned long long)nr64_ipp(IPP_DFIFO_WR_PTR));
  4905. }
  4906. val = nr64_ipp(IPP_CFIG);
  4907. val &= ~(IPP_CFIG_IPP_ENABLE |
  4908. IPP_CFIG_DFIFO_ECC_EN |
  4909. IPP_CFIG_DROP_BAD_CRC |
  4910. IPP_CFIG_CKSUM_EN);
  4911. nw64_ipp(IPP_CFIG, val);
  4912. (void) niu_ipp_reset(np);
  4913. }
  4914. static int niu_init_hw(struct niu *np)
  4915. {
  4916. int i, err;
  4917. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize TXC\n");
  4918. niu_txc_enable_port(np, 1);
  4919. niu_txc_port_dma_enable(np, 1);
  4920. niu_txc_set_imask(np, 0);
  4921. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize TX channels\n");
  4922. for (i = 0; i < np->num_tx_rings; i++) {
  4923. struct tx_ring_info *rp = &np->tx_rings[i];
  4924. err = niu_init_one_tx_channel(np, rp);
  4925. if (err)
  4926. return err;
  4927. }
  4928. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize RX channels\n");
  4929. err = niu_init_rx_channels(np);
  4930. if (err)
  4931. goto out_uninit_tx_channels;
  4932. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize classifier\n");
  4933. err = niu_init_classifier_hw(np);
  4934. if (err)
  4935. goto out_uninit_rx_channels;
  4936. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize ZCP\n");
  4937. err = niu_init_zcp(np);
  4938. if (err)
  4939. goto out_uninit_rx_channels;
  4940. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize IPP\n");
  4941. err = niu_init_ipp(np);
  4942. if (err)
  4943. goto out_uninit_rx_channels;
  4944. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize MAC\n");
  4945. err = niu_init_mac(np);
  4946. if (err)
  4947. goto out_uninit_ipp;
  4948. return 0;
  4949. out_uninit_ipp:
  4950. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit IPP\n");
  4951. niu_disable_ipp(np);
  4952. out_uninit_rx_channels:
  4953. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit RX channels\n");
  4954. niu_stop_rx_channels(np);
  4955. niu_reset_rx_channels(np);
  4956. out_uninit_tx_channels:
  4957. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit TX channels\n");
  4958. niu_stop_tx_channels(np);
  4959. niu_reset_tx_channels(np);
  4960. return err;
  4961. }
  4962. static void niu_stop_hw(struct niu *np)
  4963. {
  4964. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable interrupts\n");
  4965. niu_enable_interrupts(np, 0);
  4966. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable RX MAC\n");
  4967. niu_enable_rx_mac(np, 0);
  4968. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable IPP\n");
  4969. niu_disable_ipp(np);
  4970. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Stop TX channels\n");
  4971. niu_stop_tx_channels(np);
  4972. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Stop RX channels\n");
  4973. niu_stop_rx_channels(np);
  4974. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Reset TX channels\n");
  4975. niu_reset_tx_channels(np);
  4976. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Reset RX channels\n");
  4977. niu_reset_rx_channels(np);
  4978. }
  4979. static void niu_set_irq_name(struct niu *np)
  4980. {
  4981. int port = np->port;
  4982. int i, j = 1;
  4983. sprintf(np->irq_name[0], "%s:MAC", np->dev->name);
  4984. if (port == 0) {
  4985. sprintf(np->irq_name[1], "%s:MIF", np->dev->name);
  4986. sprintf(np->irq_name[2], "%s:SYSERR", np->dev->name);
  4987. j = 3;
  4988. }
  4989. for (i = 0; i < np->num_ldg - j; i++) {
  4990. if (i < np->num_rx_rings)
  4991. sprintf(np->irq_name[i+j], "%s-rx-%d",
  4992. np->dev->name, i);
  4993. else if (i < np->num_tx_rings + np->num_rx_rings)
  4994. sprintf(np->irq_name[i+j], "%s-tx-%d", np->dev->name,
  4995. i - np->num_rx_rings);
  4996. }
  4997. }
  4998. static int niu_request_irq(struct niu *np)
  4999. {
  5000. int i, j, err;
  5001. niu_set_irq_name(np);
  5002. err = 0;
  5003. for (i = 0; i < np->num_ldg; i++) {
  5004. struct niu_ldg *lp = &np->ldg[i];
  5005. err = request_irq(lp->irq, niu_interrupt, IRQF_SHARED,
  5006. np->irq_name[i], lp);
  5007. if (err)
  5008. goto out_free_irqs;
  5009. }
  5010. return 0;
  5011. out_free_irqs:
  5012. for (j = 0; j < i; j++) {
  5013. struct niu_ldg *lp = &np->ldg[j];
  5014. free_irq(lp->irq, lp);
  5015. }
  5016. return err;
  5017. }
  5018. static void niu_free_irq(struct niu *np)
  5019. {
  5020. int i;
  5021. for (i = 0; i < np->num_ldg; i++) {
  5022. struct niu_ldg *lp = &np->ldg[i];
  5023. free_irq(lp->irq, lp);
  5024. }
  5025. }
  5026. static void niu_enable_napi(struct niu *np)
  5027. {
  5028. int i;
  5029. for (i = 0; i < np->num_ldg; i++)
  5030. napi_enable(&np->ldg[i].napi);
  5031. }
  5032. static void niu_disable_napi(struct niu *np)
  5033. {
  5034. int i;
  5035. for (i = 0; i < np->num_ldg; i++)
  5036. napi_disable(&np->ldg[i].napi);
  5037. }
  5038. static int niu_open(struct net_device *dev)
  5039. {
  5040. struct niu *np = netdev_priv(dev);
  5041. int err;
  5042. netif_carrier_off(dev);
  5043. err = niu_alloc_channels(np);
  5044. if (err)
  5045. goto out_err;
  5046. err = niu_enable_interrupts(np, 0);
  5047. if (err)
  5048. goto out_free_channels;
  5049. err = niu_request_irq(np);
  5050. if (err)
  5051. goto out_free_channels;
  5052. niu_enable_napi(np);
  5053. spin_lock_irq(&np->lock);
  5054. err = niu_init_hw(np);
  5055. if (!err) {
  5056. init_timer(&np->timer);
  5057. np->timer.expires = jiffies + HZ;
  5058. np->timer.data = (unsigned long) np;
  5059. np->timer.function = niu_timer;
  5060. err = niu_enable_interrupts(np, 1);
  5061. if (err)
  5062. niu_stop_hw(np);
  5063. }
  5064. spin_unlock_irq(&np->lock);
  5065. if (err) {
  5066. niu_disable_napi(np);
  5067. goto out_free_irq;
  5068. }
  5069. netif_tx_start_all_queues(dev);
  5070. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5071. netif_carrier_on(dev);
  5072. add_timer(&np->timer);
  5073. return 0;
  5074. out_free_irq:
  5075. niu_free_irq(np);
  5076. out_free_channels:
  5077. niu_free_channels(np);
  5078. out_err:
  5079. return err;
  5080. }
  5081. static void niu_full_shutdown(struct niu *np, struct net_device *dev)
  5082. {
  5083. cancel_work_sync(&np->reset_task);
  5084. niu_disable_napi(np);
  5085. netif_tx_stop_all_queues(dev);
  5086. del_timer_sync(&np->timer);
  5087. spin_lock_irq(&np->lock);
  5088. niu_stop_hw(np);
  5089. spin_unlock_irq(&np->lock);
  5090. }
  5091. static int niu_close(struct net_device *dev)
  5092. {
  5093. struct niu *np = netdev_priv(dev);
  5094. niu_full_shutdown(np, dev);
  5095. niu_free_irq(np);
  5096. niu_free_channels(np);
  5097. niu_handle_led(np, 0);
  5098. return 0;
  5099. }
  5100. static void niu_sync_xmac_stats(struct niu *np)
  5101. {
  5102. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  5103. mp->tx_frames += nr64_mac(TXMAC_FRM_CNT);
  5104. mp->tx_bytes += nr64_mac(TXMAC_BYTE_CNT);
  5105. mp->rx_link_faults += nr64_mac(LINK_FAULT_CNT);
  5106. mp->rx_align_errors += nr64_mac(RXMAC_ALIGN_ERR_CNT);
  5107. mp->rx_frags += nr64_mac(RXMAC_FRAG_CNT);
  5108. mp->rx_mcasts += nr64_mac(RXMAC_MC_FRM_CNT);
  5109. mp->rx_bcasts += nr64_mac(RXMAC_BC_FRM_CNT);
  5110. mp->rx_hist_cnt1 += nr64_mac(RXMAC_HIST_CNT1);
  5111. mp->rx_hist_cnt2 += nr64_mac(RXMAC_HIST_CNT2);
  5112. mp->rx_hist_cnt3 += nr64_mac(RXMAC_HIST_CNT3);
  5113. mp->rx_hist_cnt4 += nr64_mac(RXMAC_HIST_CNT4);
  5114. mp->rx_hist_cnt5 += nr64_mac(RXMAC_HIST_CNT5);
  5115. mp->rx_hist_cnt6 += nr64_mac(RXMAC_HIST_CNT6);
  5116. mp->rx_hist_cnt7 += nr64_mac(RXMAC_HIST_CNT7);
  5117. mp->rx_octets += nr64_mac(RXMAC_BT_CNT);
  5118. mp->rx_code_violations += nr64_mac(RXMAC_CD_VIO_CNT);
  5119. mp->rx_len_errors += nr64_mac(RXMAC_MPSZER_CNT);
  5120. mp->rx_crc_errors += nr64_mac(RXMAC_CRC_ER_CNT);
  5121. }
  5122. static void niu_sync_bmac_stats(struct niu *np)
  5123. {
  5124. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  5125. mp->tx_bytes += nr64_mac(BTXMAC_BYTE_CNT);
  5126. mp->tx_frames += nr64_mac(BTXMAC_FRM_CNT);
  5127. mp->rx_frames += nr64_mac(BRXMAC_FRAME_CNT);
  5128. mp->rx_align_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5129. mp->rx_crc_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5130. mp->rx_len_errors += nr64_mac(BRXMAC_CODE_VIOL_ERR_CNT);
  5131. }
  5132. static void niu_sync_mac_stats(struct niu *np)
  5133. {
  5134. if (np->flags & NIU_FLAGS_XMAC)
  5135. niu_sync_xmac_stats(np);
  5136. else
  5137. niu_sync_bmac_stats(np);
  5138. }
  5139. static void niu_get_rx_stats(struct niu *np,
  5140. struct rtnl_link_stats64 *stats)
  5141. {
  5142. u64 pkts, dropped, errors, bytes;
  5143. struct rx_ring_info *rx_rings;
  5144. int i;
  5145. pkts = dropped = errors = bytes = 0;
  5146. rx_rings = ACCESS_ONCE(np->rx_rings);
  5147. if (!rx_rings)
  5148. goto no_rings;
  5149. for (i = 0; i < np->num_rx_rings; i++) {
  5150. struct rx_ring_info *rp = &rx_rings[i];
  5151. niu_sync_rx_discard_stats(np, rp, 0);
  5152. pkts += rp->rx_packets;
  5153. bytes += rp->rx_bytes;
  5154. dropped += rp->rx_dropped;
  5155. errors += rp->rx_errors;
  5156. }
  5157. no_rings:
  5158. stats->rx_packets = pkts;
  5159. stats->rx_bytes = bytes;
  5160. stats->rx_dropped = dropped;
  5161. stats->rx_errors = errors;
  5162. }
  5163. static void niu_get_tx_stats(struct niu *np,
  5164. struct rtnl_link_stats64 *stats)
  5165. {
  5166. u64 pkts, errors, bytes;
  5167. struct tx_ring_info *tx_rings;
  5168. int i;
  5169. pkts = errors = bytes = 0;
  5170. tx_rings = ACCESS_ONCE(np->tx_rings);
  5171. if (!tx_rings)
  5172. goto no_rings;
  5173. for (i = 0; i < np->num_tx_rings; i++) {
  5174. struct tx_ring_info *rp = &tx_rings[i];
  5175. pkts += rp->tx_packets;
  5176. bytes += rp->tx_bytes;
  5177. errors += rp->tx_errors;
  5178. }
  5179. no_rings:
  5180. stats->tx_packets = pkts;
  5181. stats->tx_bytes = bytes;
  5182. stats->tx_errors = errors;
  5183. }
  5184. static struct rtnl_link_stats64 *niu_get_stats(struct net_device *dev,
  5185. struct rtnl_link_stats64 *stats)
  5186. {
  5187. struct niu *np = netdev_priv(dev);
  5188. if (netif_running(dev)) {
  5189. niu_get_rx_stats(np, stats);
  5190. niu_get_tx_stats(np, stats);
  5191. }
  5192. return stats;
  5193. }
  5194. static void niu_load_hash_xmac(struct niu *np, u16 *hash)
  5195. {
  5196. int i;
  5197. for (i = 0; i < 16; i++)
  5198. nw64_mac(XMAC_HASH_TBL(i), hash[i]);
  5199. }
  5200. static void niu_load_hash_bmac(struct niu *np, u16 *hash)
  5201. {
  5202. int i;
  5203. for (i = 0; i < 16; i++)
  5204. nw64_mac(BMAC_HASH_TBL(i), hash[i]);
  5205. }
  5206. static void niu_load_hash(struct niu *np, u16 *hash)
  5207. {
  5208. if (np->flags & NIU_FLAGS_XMAC)
  5209. niu_load_hash_xmac(np, hash);
  5210. else
  5211. niu_load_hash_bmac(np, hash);
  5212. }
  5213. static void niu_set_rx_mode(struct net_device *dev)
  5214. {
  5215. struct niu *np = netdev_priv(dev);
  5216. int i, alt_cnt, err;
  5217. struct netdev_hw_addr *ha;
  5218. unsigned long flags;
  5219. u16 hash[16] = { 0, };
  5220. spin_lock_irqsave(&np->lock, flags);
  5221. niu_enable_rx_mac(np, 0);
  5222. np->flags &= ~(NIU_FLAGS_MCAST | NIU_FLAGS_PROMISC);
  5223. if (dev->flags & IFF_PROMISC)
  5224. np->flags |= NIU_FLAGS_PROMISC;
  5225. if ((dev->flags & IFF_ALLMULTI) || (!netdev_mc_empty(dev)))
  5226. np->flags |= NIU_FLAGS_MCAST;
  5227. alt_cnt = netdev_uc_count(dev);
  5228. if (alt_cnt > niu_num_alt_addr(np)) {
  5229. alt_cnt = 0;
  5230. np->flags |= NIU_FLAGS_PROMISC;
  5231. }
  5232. if (alt_cnt) {
  5233. int index = 0;
  5234. netdev_for_each_uc_addr(ha, dev) {
  5235. err = niu_set_alt_mac(np, index, ha->addr);
  5236. if (err)
  5237. netdev_warn(dev, "Error %d adding alt mac %d\n",
  5238. err, index);
  5239. err = niu_enable_alt_mac(np, index, 1);
  5240. if (err)
  5241. netdev_warn(dev, "Error %d enabling alt mac %d\n",
  5242. err, index);
  5243. index++;
  5244. }
  5245. } else {
  5246. int alt_start;
  5247. if (np->flags & NIU_FLAGS_XMAC)
  5248. alt_start = 0;
  5249. else
  5250. alt_start = 1;
  5251. for (i = alt_start; i < niu_num_alt_addr(np); i++) {
  5252. err = niu_enable_alt_mac(np, i, 0);
  5253. if (err)
  5254. netdev_warn(dev, "Error %d disabling alt mac %d\n",
  5255. err, i);
  5256. }
  5257. }
  5258. if (dev->flags & IFF_ALLMULTI) {
  5259. for (i = 0; i < 16; i++)
  5260. hash[i] = 0xffff;
  5261. } else if (!netdev_mc_empty(dev)) {
  5262. netdev_for_each_mc_addr(ha, dev) {
  5263. u32 crc = ether_crc_le(ETH_ALEN, ha->addr);
  5264. crc >>= 24;
  5265. hash[crc >> 4] |= (1 << (15 - (crc & 0xf)));
  5266. }
  5267. }
  5268. if (np->flags & NIU_FLAGS_MCAST)
  5269. niu_load_hash(np, hash);
  5270. niu_enable_rx_mac(np, 1);
  5271. spin_unlock_irqrestore(&np->lock, flags);
  5272. }
  5273. static int niu_set_mac_addr(struct net_device *dev, void *p)
  5274. {
  5275. struct niu *np = netdev_priv(dev);
  5276. struct sockaddr *addr = p;
  5277. unsigned long flags;
  5278. if (!is_valid_ether_addr(addr->sa_data))
  5279. return -EINVAL;
  5280. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  5281. if (!netif_running(dev))
  5282. return 0;
  5283. spin_lock_irqsave(&np->lock, flags);
  5284. niu_enable_rx_mac(np, 0);
  5285. niu_set_primary_mac(np, dev->dev_addr);
  5286. niu_enable_rx_mac(np, 1);
  5287. spin_unlock_irqrestore(&np->lock, flags);
  5288. return 0;
  5289. }
  5290. static int niu_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  5291. {
  5292. return -EOPNOTSUPP;
  5293. }
  5294. static void niu_netif_stop(struct niu *np)
  5295. {
  5296. np->dev->trans_start = jiffies; /* prevent tx timeout */
  5297. niu_disable_napi(np);
  5298. netif_tx_disable(np->dev);
  5299. }
  5300. static void niu_netif_start(struct niu *np)
  5301. {
  5302. /* NOTE: unconditional netif_wake_queue is only appropriate
  5303. * so long as all callers are assured to have free tx slots
  5304. * (such as after niu_init_hw).
  5305. */
  5306. netif_tx_wake_all_queues(np->dev);
  5307. niu_enable_napi(np);
  5308. niu_enable_interrupts(np, 1);
  5309. }
  5310. static void niu_reset_buffers(struct niu *np)
  5311. {
  5312. int i, j, k, err;
  5313. if (np->rx_rings) {
  5314. for (i = 0; i < np->num_rx_rings; i++) {
  5315. struct rx_ring_info *rp = &np->rx_rings[i];
  5316. for (j = 0, k = 0; j < MAX_RBR_RING_SIZE; j++) {
  5317. struct page *page;
  5318. page = rp->rxhash[j];
  5319. while (page) {
  5320. struct page *next =
  5321. (struct page *) page->mapping;
  5322. u64 base = page->index;
  5323. base = base >> RBR_DESCR_ADDR_SHIFT;
  5324. rp->rbr[k++] = cpu_to_le32(base);
  5325. page = next;
  5326. }
  5327. }
  5328. for (; k < MAX_RBR_RING_SIZE; k++) {
  5329. err = niu_rbr_add_page(np, rp, GFP_ATOMIC, k);
  5330. if (unlikely(err))
  5331. break;
  5332. }
  5333. rp->rbr_index = rp->rbr_table_size - 1;
  5334. rp->rcr_index = 0;
  5335. rp->rbr_pending = 0;
  5336. rp->rbr_refill_pending = 0;
  5337. }
  5338. }
  5339. if (np->tx_rings) {
  5340. for (i = 0; i < np->num_tx_rings; i++) {
  5341. struct tx_ring_info *rp = &np->tx_rings[i];
  5342. for (j = 0; j < MAX_TX_RING_SIZE; j++) {
  5343. if (rp->tx_buffs[j].skb)
  5344. (void) release_tx_packet(np, rp, j);
  5345. }
  5346. rp->pending = MAX_TX_RING_SIZE;
  5347. rp->prod = 0;
  5348. rp->cons = 0;
  5349. rp->wrap_bit = 0;
  5350. }
  5351. }
  5352. }
  5353. static void niu_reset_task(struct work_struct *work)
  5354. {
  5355. struct niu *np = container_of(work, struct niu, reset_task);
  5356. unsigned long flags;
  5357. int err;
  5358. spin_lock_irqsave(&np->lock, flags);
  5359. if (!netif_running(np->dev)) {
  5360. spin_unlock_irqrestore(&np->lock, flags);
  5361. return;
  5362. }
  5363. spin_unlock_irqrestore(&np->lock, flags);
  5364. del_timer_sync(&np->timer);
  5365. niu_netif_stop(np);
  5366. spin_lock_irqsave(&np->lock, flags);
  5367. niu_stop_hw(np);
  5368. spin_unlock_irqrestore(&np->lock, flags);
  5369. niu_reset_buffers(np);
  5370. spin_lock_irqsave(&np->lock, flags);
  5371. err = niu_init_hw(np);
  5372. if (!err) {
  5373. np->timer.expires = jiffies + HZ;
  5374. add_timer(&np->timer);
  5375. niu_netif_start(np);
  5376. }
  5377. spin_unlock_irqrestore(&np->lock, flags);
  5378. }
  5379. static void niu_tx_timeout(struct net_device *dev)
  5380. {
  5381. struct niu *np = netdev_priv(dev);
  5382. dev_err(np->device, "%s: Transmit timed out, resetting\n",
  5383. dev->name);
  5384. schedule_work(&np->reset_task);
  5385. }
  5386. static void niu_set_txd(struct tx_ring_info *rp, int index,
  5387. u64 mapping, u64 len, u64 mark,
  5388. u64 n_frags)
  5389. {
  5390. __le64 *desc = &rp->descr[index];
  5391. *desc = cpu_to_le64(mark |
  5392. (n_frags << TX_DESC_NUM_PTR_SHIFT) |
  5393. (len << TX_DESC_TR_LEN_SHIFT) |
  5394. (mapping & TX_DESC_SAD));
  5395. }
  5396. static u64 niu_compute_tx_flags(struct sk_buff *skb, struct ethhdr *ehdr,
  5397. u64 pad_bytes, u64 len)
  5398. {
  5399. u16 eth_proto, eth_proto_inner;
  5400. u64 csum_bits, l3off, ihl, ret;
  5401. u8 ip_proto;
  5402. int ipv6;
  5403. eth_proto = be16_to_cpu(ehdr->h_proto);
  5404. eth_proto_inner = eth_proto;
  5405. if (eth_proto == ETH_P_8021Q) {
  5406. struct vlan_ethhdr *vp = (struct vlan_ethhdr *) ehdr;
  5407. __be16 val = vp->h_vlan_encapsulated_proto;
  5408. eth_proto_inner = be16_to_cpu(val);
  5409. }
  5410. ipv6 = ihl = 0;
  5411. switch (skb->protocol) {
  5412. case cpu_to_be16(ETH_P_IP):
  5413. ip_proto = ip_hdr(skb)->protocol;
  5414. ihl = ip_hdr(skb)->ihl;
  5415. break;
  5416. case cpu_to_be16(ETH_P_IPV6):
  5417. ip_proto = ipv6_hdr(skb)->nexthdr;
  5418. ihl = (40 >> 2);
  5419. ipv6 = 1;
  5420. break;
  5421. default:
  5422. ip_proto = ihl = 0;
  5423. break;
  5424. }
  5425. csum_bits = TXHDR_CSUM_NONE;
  5426. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5427. u64 start, stuff;
  5428. csum_bits = (ip_proto == IPPROTO_TCP ?
  5429. TXHDR_CSUM_TCP :
  5430. (ip_proto == IPPROTO_UDP ?
  5431. TXHDR_CSUM_UDP : TXHDR_CSUM_SCTP));
  5432. start = skb_checksum_start_offset(skb) -
  5433. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5434. stuff = start + skb->csum_offset;
  5435. csum_bits |= (start / 2) << TXHDR_L4START_SHIFT;
  5436. csum_bits |= (stuff / 2) << TXHDR_L4STUFF_SHIFT;
  5437. }
  5438. l3off = skb_network_offset(skb) -
  5439. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5440. ret = (((pad_bytes / 2) << TXHDR_PAD_SHIFT) |
  5441. (len << TXHDR_LEN_SHIFT) |
  5442. ((l3off / 2) << TXHDR_L3START_SHIFT) |
  5443. (ihl << TXHDR_IHL_SHIFT) |
  5444. ((eth_proto_inner < 1536) ? TXHDR_LLC : 0) |
  5445. ((eth_proto == ETH_P_8021Q) ? TXHDR_VLAN : 0) |
  5446. (ipv6 ? TXHDR_IP_VER : 0) |
  5447. csum_bits);
  5448. return ret;
  5449. }
  5450. static netdev_tx_t niu_start_xmit(struct sk_buff *skb,
  5451. struct net_device *dev)
  5452. {
  5453. struct niu *np = netdev_priv(dev);
  5454. unsigned long align, headroom;
  5455. struct netdev_queue *txq;
  5456. struct tx_ring_info *rp;
  5457. struct tx_pkt_hdr *tp;
  5458. unsigned int len, nfg;
  5459. struct ethhdr *ehdr;
  5460. int prod, i, tlen;
  5461. u64 mapping, mrk;
  5462. i = skb_get_queue_mapping(skb);
  5463. rp = &np->tx_rings[i];
  5464. txq = netdev_get_tx_queue(dev, i);
  5465. if (niu_tx_avail(rp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  5466. netif_tx_stop_queue(txq);
  5467. dev_err(np->device, "%s: BUG! Tx ring full when queue awake!\n", dev->name);
  5468. rp->tx_errors++;
  5469. return NETDEV_TX_BUSY;
  5470. }
  5471. if (skb->len < ETH_ZLEN) {
  5472. unsigned int pad_bytes = ETH_ZLEN - skb->len;
  5473. if (skb_pad(skb, pad_bytes))
  5474. goto out;
  5475. skb_put(skb, pad_bytes);
  5476. }
  5477. len = sizeof(struct tx_pkt_hdr) + 15;
  5478. if (skb_headroom(skb) < len) {
  5479. struct sk_buff *skb_new;
  5480. skb_new = skb_realloc_headroom(skb, len);
  5481. if (!skb_new) {
  5482. rp->tx_errors++;
  5483. goto out_drop;
  5484. }
  5485. kfree_skb(skb);
  5486. skb = skb_new;
  5487. } else
  5488. skb_orphan(skb);
  5489. align = ((unsigned long) skb->data & (16 - 1));
  5490. headroom = align + sizeof(struct tx_pkt_hdr);
  5491. ehdr = (struct ethhdr *) skb->data;
  5492. tp = (struct tx_pkt_hdr *) skb_push(skb, headroom);
  5493. len = skb->len - sizeof(struct tx_pkt_hdr);
  5494. tp->flags = cpu_to_le64(niu_compute_tx_flags(skb, ehdr, align, len));
  5495. tp->resv = 0;
  5496. len = skb_headlen(skb);
  5497. mapping = np->ops->map_single(np->device, skb->data,
  5498. len, DMA_TO_DEVICE);
  5499. prod = rp->prod;
  5500. rp->tx_buffs[prod].skb = skb;
  5501. rp->tx_buffs[prod].mapping = mapping;
  5502. mrk = TX_DESC_SOP;
  5503. if (++rp->mark_counter == rp->mark_freq) {
  5504. rp->mark_counter = 0;
  5505. mrk |= TX_DESC_MARK;
  5506. rp->mark_pending++;
  5507. }
  5508. tlen = len;
  5509. nfg = skb_shinfo(skb)->nr_frags;
  5510. while (tlen > 0) {
  5511. tlen -= MAX_TX_DESC_LEN;
  5512. nfg++;
  5513. }
  5514. while (len > 0) {
  5515. unsigned int this_len = len;
  5516. if (this_len > MAX_TX_DESC_LEN)
  5517. this_len = MAX_TX_DESC_LEN;
  5518. niu_set_txd(rp, prod, mapping, this_len, mrk, nfg);
  5519. mrk = nfg = 0;
  5520. prod = NEXT_TX(rp, prod);
  5521. mapping += this_len;
  5522. len -= this_len;
  5523. }
  5524. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  5525. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5526. len = skb_frag_size(frag);
  5527. mapping = np->ops->map_page(np->device, skb_frag_page(frag),
  5528. frag->page_offset, len,
  5529. DMA_TO_DEVICE);
  5530. rp->tx_buffs[prod].skb = NULL;
  5531. rp->tx_buffs[prod].mapping = mapping;
  5532. niu_set_txd(rp, prod, mapping, len, 0, 0);
  5533. prod = NEXT_TX(rp, prod);
  5534. }
  5535. if (prod < rp->prod)
  5536. rp->wrap_bit ^= TX_RING_KICK_WRAP;
  5537. rp->prod = prod;
  5538. nw64(TX_RING_KICK(rp->tx_channel), rp->wrap_bit | (prod << 3));
  5539. if (unlikely(niu_tx_avail(rp) <= (MAX_SKB_FRAGS + 1))) {
  5540. netif_tx_stop_queue(txq);
  5541. if (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp))
  5542. netif_tx_wake_queue(txq);
  5543. }
  5544. out:
  5545. return NETDEV_TX_OK;
  5546. out_drop:
  5547. rp->tx_errors++;
  5548. kfree_skb(skb);
  5549. goto out;
  5550. }
  5551. static int niu_change_mtu(struct net_device *dev, int new_mtu)
  5552. {
  5553. struct niu *np = netdev_priv(dev);
  5554. int err, orig_jumbo, new_jumbo;
  5555. if (new_mtu < 68 || new_mtu > NIU_MAX_MTU)
  5556. return -EINVAL;
  5557. orig_jumbo = (dev->mtu > ETH_DATA_LEN);
  5558. new_jumbo = (new_mtu > ETH_DATA_LEN);
  5559. dev->mtu = new_mtu;
  5560. if (!netif_running(dev) ||
  5561. (orig_jumbo == new_jumbo))
  5562. return 0;
  5563. niu_full_shutdown(np, dev);
  5564. niu_free_channels(np);
  5565. niu_enable_napi(np);
  5566. err = niu_alloc_channels(np);
  5567. if (err)
  5568. return err;
  5569. spin_lock_irq(&np->lock);
  5570. err = niu_init_hw(np);
  5571. if (!err) {
  5572. init_timer(&np->timer);
  5573. np->timer.expires = jiffies + HZ;
  5574. np->timer.data = (unsigned long) np;
  5575. np->timer.function = niu_timer;
  5576. err = niu_enable_interrupts(np, 1);
  5577. if (err)
  5578. niu_stop_hw(np);
  5579. }
  5580. spin_unlock_irq(&np->lock);
  5581. if (!err) {
  5582. netif_tx_start_all_queues(dev);
  5583. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5584. netif_carrier_on(dev);
  5585. add_timer(&np->timer);
  5586. }
  5587. return err;
  5588. }
  5589. static void niu_get_drvinfo(struct net_device *dev,
  5590. struct ethtool_drvinfo *info)
  5591. {
  5592. struct niu *np = netdev_priv(dev);
  5593. struct niu_vpd *vpd = &np->vpd;
  5594. strcpy(info->driver, DRV_MODULE_NAME);
  5595. strcpy(info->version, DRV_MODULE_VERSION);
  5596. sprintf(info->fw_version, "%d.%d",
  5597. vpd->fcode_major, vpd->fcode_minor);
  5598. if (np->parent->plat_type != PLAT_TYPE_NIU)
  5599. strcpy(info->bus_info, pci_name(np->pdev));
  5600. }
  5601. static int niu_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5602. {
  5603. struct niu *np = netdev_priv(dev);
  5604. struct niu_link_config *lp;
  5605. lp = &np->link_config;
  5606. memset(cmd, 0, sizeof(*cmd));
  5607. cmd->phy_address = np->phy_addr;
  5608. cmd->supported = lp->supported;
  5609. cmd->advertising = lp->active_advertising;
  5610. cmd->autoneg = lp->active_autoneg;
  5611. ethtool_cmd_speed_set(cmd, lp->active_speed);
  5612. cmd->duplex = lp->active_duplex;
  5613. cmd->port = (np->flags & NIU_FLAGS_FIBER) ? PORT_FIBRE : PORT_TP;
  5614. cmd->transceiver = (np->flags & NIU_FLAGS_XCVR_SERDES) ?
  5615. XCVR_EXTERNAL : XCVR_INTERNAL;
  5616. return 0;
  5617. }
  5618. static int niu_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5619. {
  5620. struct niu *np = netdev_priv(dev);
  5621. struct niu_link_config *lp = &np->link_config;
  5622. lp->advertising = cmd->advertising;
  5623. lp->speed = ethtool_cmd_speed(cmd);
  5624. lp->duplex = cmd->duplex;
  5625. lp->autoneg = cmd->autoneg;
  5626. return niu_init_link(np);
  5627. }
  5628. static u32 niu_get_msglevel(struct net_device *dev)
  5629. {
  5630. struct niu *np = netdev_priv(dev);
  5631. return np->msg_enable;
  5632. }
  5633. static void niu_set_msglevel(struct net_device *dev, u32 value)
  5634. {
  5635. struct niu *np = netdev_priv(dev);
  5636. np->msg_enable = value;
  5637. }
  5638. static int niu_nway_reset(struct net_device *dev)
  5639. {
  5640. struct niu *np = netdev_priv(dev);
  5641. if (np->link_config.autoneg)
  5642. return niu_init_link(np);
  5643. return 0;
  5644. }
  5645. static int niu_get_eeprom_len(struct net_device *dev)
  5646. {
  5647. struct niu *np = netdev_priv(dev);
  5648. return np->eeprom_len;
  5649. }
  5650. static int niu_get_eeprom(struct net_device *dev,
  5651. struct ethtool_eeprom *eeprom, u8 *data)
  5652. {
  5653. struct niu *np = netdev_priv(dev);
  5654. u32 offset, len, val;
  5655. offset = eeprom->offset;
  5656. len = eeprom->len;
  5657. if (offset + len < offset)
  5658. return -EINVAL;
  5659. if (offset >= np->eeprom_len)
  5660. return -EINVAL;
  5661. if (offset + len > np->eeprom_len)
  5662. len = eeprom->len = np->eeprom_len - offset;
  5663. if (offset & 3) {
  5664. u32 b_offset, b_count;
  5665. b_offset = offset & 3;
  5666. b_count = 4 - b_offset;
  5667. if (b_count > len)
  5668. b_count = len;
  5669. val = nr64(ESPC_NCR((offset - b_offset) / 4));
  5670. memcpy(data, ((char *)&val) + b_offset, b_count);
  5671. data += b_count;
  5672. len -= b_count;
  5673. offset += b_count;
  5674. }
  5675. while (len >= 4) {
  5676. val = nr64(ESPC_NCR(offset / 4));
  5677. memcpy(data, &val, 4);
  5678. data += 4;
  5679. len -= 4;
  5680. offset += 4;
  5681. }
  5682. if (len) {
  5683. val = nr64(ESPC_NCR(offset / 4));
  5684. memcpy(data, &val, len);
  5685. }
  5686. return 0;
  5687. }
  5688. static void niu_ethflow_to_l3proto(int flow_type, u8 *pid)
  5689. {
  5690. switch (flow_type) {
  5691. case TCP_V4_FLOW:
  5692. case TCP_V6_FLOW:
  5693. *pid = IPPROTO_TCP;
  5694. break;
  5695. case UDP_V4_FLOW:
  5696. case UDP_V6_FLOW:
  5697. *pid = IPPROTO_UDP;
  5698. break;
  5699. case SCTP_V4_FLOW:
  5700. case SCTP_V6_FLOW:
  5701. *pid = IPPROTO_SCTP;
  5702. break;
  5703. case AH_V4_FLOW:
  5704. case AH_V6_FLOW:
  5705. *pid = IPPROTO_AH;
  5706. break;
  5707. case ESP_V4_FLOW:
  5708. case ESP_V6_FLOW:
  5709. *pid = IPPROTO_ESP;
  5710. break;
  5711. default:
  5712. *pid = 0;
  5713. break;
  5714. }
  5715. }
  5716. static int niu_class_to_ethflow(u64 class, int *flow_type)
  5717. {
  5718. switch (class) {
  5719. case CLASS_CODE_TCP_IPV4:
  5720. *flow_type = TCP_V4_FLOW;
  5721. break;
  5722. case CLASS_CODE_UDP_IPV4:
  5723. *flow_type = UDP_V4_FLOW;
  5724. break;
  5725. case CLASS_CODE_AH_ESP_IPV4:
  5726. *flow_type = AH_V4_FLOW;
  5727. break;
  5728. case CLASS_CODE_SCTP_IPV4:
  5729. *flow_type = SCTP_V4_FLOW;
  5730. break;
  5731. case CLASS_CODE_TCP_IPV6:
  5732. *flow_type = TCP_V6_FLOW;
  5733. break;
  5734. case CLASS_CODE_UDP_IPV6:
  5735. *flow_type = UDP_V6_FLOW;
  5736. break;
  5737. case CLASS_CODE_AH_ESP_IPV6:
  5738. *flow_type = AH_V6_FLOW;
  5739. break;
  5740. case CLASS_CODE_SCTP_IPV6:
  5741. *flow_type = SCTP_V6_FLOW;
  5742. break;
  5743. case CLASS_CODE_USER_PROG1:
  5744. case CLASS_CODE_USER_PROG2:
  5745. case CLASS_CODE_USER_PROG3:
  5746. case CLASS_CODE_USER_PROG4:
  5747. *flow_type = IP_USER_FLOW;
  5748. break;
  5749. default:
  5750. return 0;
  5751. }
  5752. return 1;
  5753. }
  5754. static int niu_ethflow_to_class(int flow_type, u64 *class)
  5755. {
  5756. switch (flow_type) {
  5757. case TCP_V4_FLOW:
  5758. *class = CLASS_CODE_TCP_IPV4;
  5759. break;
  5760. case UDP_V4_FLOW:
  5761. *class = CLASS_CODE_UDP_IPV4;
  5762. break;
  5763. case AH_ESP_V4_FLOW:
  5764. case AH_V4_FLOW:
  5765. case ESP_V4_FLOW:
  5766. *class = CLASS_CODE_AH_ESP_IPV4;
  5767. break;
  5768. case SCTP_V4_FLOW:
  5769. *class = CLASS_CODE_SCTP_IPV4;
  5770. break;
  5771. case TCP_V6_FLOW:
  5772. *class = CLASS_CODE_TCP_IPV6;
  5773. break;
  5774. case UDP_V6_FLOW:
  5775. *class = CLASS_CODE_UDP_IPV6;
  5776. break;
  5777. case AH_ESP_V6_FLOW:
  5778. case AH_V6_FLOW:
  5779. case ESP_V6_FLOW:
  5780. *class = CLASS_CODE_AH_ESP_IPV6;
  5781. break;
  5782. case SCTP_V6_FLOW:
  5783. *class = CLASS_CODE_SCTP_IPV6;
  5784. break;
  5785. default:
  5786. return 0;
  5787. }
  5788. return 1;
  5789. }
  5790. static u64 niu_flowkey_to_ethflow(u64 flow_key)
  5791. {
  5792. u64 ethflow = 0;
  5793. if (flow_key & FLOW_KEY_L2DA)
  5794. ethflow |= RXH_L2DA;
  5795. if (flow_key & FLOW_KEY_VLAN)
  5796. ethflow |= RXH_VLAN;
  5797. if (flow_key & FLOW_KEY_IPSA)
  5798. ethflow |= RXH_IP_SRC;
  5799. if (flow_key & FLOW_KEY_IPDA)
  5800. ethflow |= RXH_IP_DST;
  5801. if (flow_key & FLOW_KEY_PROTO)
  5802. ethflow |= RXH_L3_PROTO;
  5803. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT))
  5804. ethflow |= RXH_L4_B_0_1;
  5805. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT))
  5806. ethflow |= RXH_L4_B_2_3;
  5807. return ethflow;
  5808. }
  5809. static int niu_ethflow_to_flowkey(u64 ethflow, u64 *flow_key)
  5810. {
  5811. u64 key = 0;
  5812. if (ethflow & RXH_L2DA)
  5813. key |= FLOW_KEY_L2DA;
  5814. if (ethflow & RXH_VLAN)
  5815. key |= FLOW_KEY_VLAN;
  5816. if (ethflow & RXH_IP_SRC)
  5817. key |= FLOW_KEY_IPSA;
  5818. if (ethflow & RXH_IP_DST)
  5819. key |= FLOW_KEY_IPDA;
  5820. if (ethflow & RXH_L3_PROTO)
  5821. key |= FLOW_KEY_PROTO;
  5822. if (ethflow & RXH_L4_B_0_1)
  5823. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT);
  5824. if (ethflow & RXH_L4_B_2_3)
  5825. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT);
  5826. *flow_key = key;
  5827. return 1;
  5828. }
  5829. static int niu_get_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  5830. {
  5831. u64 class;
  5832. nfc->data = 0;
  5833. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  5834. return -EINVAL;
  5835. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  5836. TCAM_KEY_DISC)
  5837. nfc->data = RXH_DISCARD;
  5838. else
  5839. nfc->data = niu_flowkey_to_ethflow(np->parent->flow_key[class -
  5840. CLASS_CODE_USER_PROG1]);
  5841. return 0;
  5842. }
  5843. static void niu_get_ip4fs_from_tcam_key(struct niu_tcam_entry *tp,
  5844. struct ethtool_rx_flow_spec *fsp)
  5845. {
  5846. u32 tmp;
  5847. u16 prt;
  5848. tmp = (tp->key[3] & TCAM_V4KEY3_SADDR) >> TCAM_V4KEY3_SADDR_SHIFT;
  5849. fsp->h_u.tcp_ip4_spec.ip4src = cpu_to_be32(tmp);
  5850. tmp = (tp->key[3] & TCAM_V4KEY3_DADDR) >> TCAM_V4KEY3_DADDR_SHIFT;
  5851. fsp->h_u.tcp_ip4_spec.ip4dst = cpu_to_be32(tmp);
  5852. tmp = (tp->key_mask[3] & TCAM_V4KEY3_SADDR) >> TCAM_V4KEY3_SADDR_SHIFT;
  5853. fsp->m_u.tcp_ip4_spec.ip4src = cpu_to_be32(tmp);
  5854. tmp = (tp->key_mask[3] & TCAM_V4KEY3_DADDR) >> TCAM_V4KEY3_DADDR_SHIFT;
  5855. fsp->m_u.tcp_ip4_spec.ip4dst = cpu_to_be32(tmp);
  5856. fsp->h_u.tcp_ip4_spec.tos = (tp->key[2] & TCAM_V4KEY2_TOS) >>
  5857. TCAM_V4KEY2_TOS_SHIFT;
  5858. fsp->m_u.tcp_ip4_spec.tos = (tp->key_mask[2] & TCAM_V4KEY2_TOS) >>
  5859. TCAM_V4KEY2_TOS_SHIFT;
  5860. switch (fsp->flow_type) {
  5861. case TCP_V4_FLOW:
  5862. case UDP_V4_FLOW:
  5863. case SCTP_V4_FLOW:
  5864. prt = ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5865. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5866. fsp->h_u.tcp_ip4_spec.psrc = cpu_to_be16(prt);
  5867. prt = ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5868. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5869. fsp->h_u.tcp_ip4_spec.pdst = cpu_to_be16(prt);
  5870. prt = ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5871. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5872. fsp->m_u.tcp_ip4_spec.psrc = cpu_to_be16(prt);
  5873. prt = ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5874. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5875. fsp->m_u.tcp_ip4_spec.pdst = cpu_to_be16(prt);
  5876. break;
  5877. case AH_V4_FLOW:
  5878. case ESP_V4_FLOW:
  5879. tmp = (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5880. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5881. fsp->h_u.ah_ip4_spec.spi = cpu_to_be32(tmp);
  5882. tmp = (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5883. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5884. fsp->m_u.ah_ip4_spec.spi = cpu_to_be32(tmp);
  5885. break;
  5886. case IP_USER_FLOW:
  5887. tmp = (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5888. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5889. fsp->h_u.usr_ip4_spec.l4_4_bytes = cpu_to_be32(tmp);
  5890. tmp = (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5891. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5892. fsp->m_u.usr_ip4_spec.l4_4_bytes = cpu_to_be32(tmp);
  5893. fsp->h_u.usr_ip4_spec.proto =
  5894. (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5895. TCAM_V4KEY2_PROTO_SHIFT;
  5896. fsp->m_u.usr_ip4_spec.proto =
  5897. (tp->key_mask[2] & TCAM_V4KEY2_PROTO) >>
  5898. TCAM_V4KEY2_PROTO_SHIFT;
  5899. fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4;
  5900. break;
  5901. default:
  5902. break;
  5903. }
  5904. }
  5905. static int niu_get_ethtool_tcam_entry(struct niu *np,
  5906. struct ethtool_rxnfc *nfc)
  5907. {
  5908. struct niu_parent *parent = np->parent;
  5909. struct niu_tcam_entry *tp;
  5910. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  5911. u16 idx;
  5912. u64 class;
  5913. int ret = 0;
  5914. idx = tcam_get_index(np, (u16)nfc->fs.location);
  5915. tp = &parent->tcam[idx];
  5916. if (!tp->valid) {
  5917. netdev_info(np->dev, "niu%d: entry [%d] invalid for idx[%d]\n",
  5918. parent->index, (u16)nfc->fs.location, idx);
  5919. return -EINVAL;
  5920. }
  5921. /* fill the flow spec entry */
  5922. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  5923. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  5924. ret = niu_class_to_ethflow(class, &fsp->flow_type);
  5925. if (ret < 0) {
  5926. netdev_info(np->dev, "niu%d: niu_class_to_ethflow failed\n",
  5927. parent->index);
  5928. ret = -EINVAL;
  5929. goto out;
  5930. }
  5931. if (fsp->flow_type == AH_V4_FLOW || fsp->flow_type == AH_V6_FLOW) {
  5932. u32 proto = (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5933. TCAM_V4KEY2_PROTO_SHIFT;
  5934. if (proto == IPPROTO_ESP) {
  5935. if (fsp->flow_type == AH_V4_FLOW)
  5936. fsp->flow_type = ESP_V4_FLOW;
  5937. else
  5938. fsp->flow_type = ESP_V6_FLOW;
  5939. }
  5940. }
  5941. switch (fsp->flow_type) {
  5942. case TCP_V4_FLOW:
  5943. case UDP_V4_FLOW:
  5944. case SCTP_V4_FLOW:
  5945. case AH_V4_FLOW:
  5946. case ESP_V4_FLOW:
  5947. niu_get_ip4fs_from_tcam_key(tp, fsp);
  5948. break;
  5949. case TCP_V6_FLOW:
  5950. case UDP_V6_FLOW:
  5951. case SCTP_V6_FLOW:
  5952. case AH_V6_FLOW:
  5953. case ESP_V6_FLOW:
  5954. /* Not yet implemented */
  5955. ret = -EINVAL;
  5956. break;
  5957. case IP_USER_FLOW:
  5958. niu_get_ip4fs_from_tcam_key(tp, fsp);
  5959. break;
  5960. default:
  5961. ret = -EINVAL;
  5962. break;
  5963. }
  5964. if (ret < 0)
  5965. goto out;
  5966. if (tp->assoc_data & TCAM_ASSOCDATA_DISC)
  5967. fsp->ring_cookie = RX_CLS_FLOW_DISC;
  5968. else
  5969. fsp->ring_cookie = (tp->assoc_data & TCAM_ASSOCDATA_OFFSET) >>
  5970. TCAM_ASSOCDATA_OFFSET_SHIFT;
  5971. /* put the tcam size here */
  5972. nfc->data = tcam_get_size(np);
  5973. out:
  5974. return ret;
  5975. }
  5976. static int niu_get_ethtool_tcam_all(struct niu *np,
  5977. struct ethtool_rxnfc *nfc,
  5978. u32 *rule_locs)
  5979. {
  5980. struct niu_parent *parent = np->parent;
  5981. struct niu_tcam_entry *tp;
  5982. int i, idx, cnt;
  5983. unsigned long flags;
  5984. int ret = 0;
  5985. /* put the tcam size here */
  5986. nfc->data = tcam_get_size(np);
  5987. niu_lock_parent(np, flags);
  5988. for (cnt = 0, i = 0; i < nfc->data; i++) {
  5989. idx = tcam_get_index(np, i);
  5990. tp = &parent->tcam[idx];
  5991. if (!tp->valid)
  5992. continue;
  5993. if (cnt == nfc->rule_cnt) {
  5994. ret = -EMSGSIZE;
  5995. break;
  5996. }
  5997. rule_locs[cnt] = i;
  5998. cnt++;
  5999. }
  6000. niu_unlock_parent(np, flags);
  6001. nfc->rule_cnt = cnt;
  6002. return ret;
  6003. }
  6004. static int niu_get_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
  6005. u32 *rule_locs)
  6006. {
  6007. struct niu *np = netdev_priv(dev);
  6008. int ret = 0;
  6009. switch (cmd->cmd) {
  6010. case ETHTOOL_GRXFH:
  6011. ret = niu_get_hash_opts(np, cmd);
  6012. break;
  6013. case ETHTOOL_GRXRINGS:
  6014. cmd->data = np->num_rx_rings;
  6015. break;
  6016. case ETHTOOL_GRXCLSRLCNT:
  6017. cmd->rule_cnt = tcam_get_valid_entry_cnt(np);
  6018. break;
  6019. case ETHTOOL_GRXCLSRULE:
  6020. ret = niu_get_ethtool_tcam_entry(np, cmd);
  6021. break;
  6022. case ETHTOOL_GRXCLSRLALL:
  6023. ret = niu_get_ethtool_tcam_all(np, cmd, rule_locs);
  6024. break;
  6025. default:
  6026. ret = -EINVAL;
  6027. break;
  6028. }
  6029. return ret;
  6030. }
  6031. static int niu_set_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  6032. {
  6033. u64 class;
  6034. u64 flow_key = 0;
  6035. unsigned long flags;
  6036. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  6037. return -EINVAL;
  6038. if (class < CLASS_CODE_USER_PROG1 ||
  6039. class > CLASS_CODE_SCTP_IPV6)
  6040. return -EINVAL;
  6041. if (nfc->data & RXH_DISCARD) {
  6042. niu_lock_parent(np, flags);
  6043. flow_key = np->parent->tcam_key[class -
  6044. CLASS_CODE_USER_PROG1];
  6045. flow_key |= TCAM_KEY_DISC;
  6046. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6047. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6048. niu_unlock_parent(np, flags);
  6049. return 0;
  6050. } else {
  6051. /* Discard was set before, but is not set now */
  6052. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  6053. TCAM_KEY_DISC) {
  6054. niu_lock_parent(np, flags);
  6055. flow_key = np->parent->tcam_key[class -
  6056. CLASS_CODE_USER_PROG1];
  6057. flow_key &= ~TCAM_KEY_DISC;
  6058. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1),
  6059. flow_key);
  6060. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] =
  6061. flow_key;
  6062. niu_unlock_parent(np, flags);
  6063. }
  6064. }
  6065. if (!niu_ethflow_to_flowkey(nfc->data, &flow_key))
  6066. return -EINVAL;
  6067. niu_lock_parent(np, flags);
  6068. nw64(FLOW_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6069. np->parent->flow_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6070. niu_unlock_parent(np, flags);
  6071. return 0;
  6072. }
  6073. static void niu_get_tcamkey_from_ip4fs(struct ethtool_rx_flow_spec *fsp,
  6074. struct niu_tcam_entry *tp,
  6075. int l2_rdc_tab, u64 class)
  6076. {
  6077. u8 pid = 0;
  6078. u32 sip, dip, sipm, dipm, spi, spim;
  6079. u16 sport, dport, spm, dpm;
  6080. sip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4src);
  6081. sipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4src);
  6082. dip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4dst);
  6083. dipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4dst);
  6084. tp->key[0] = class << TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6085. tp->key_mask[0] = TCAM_V4KEY0_CLASS_CODE;
  6086. tp->key[1] = (u64)l2_rdc_tab << TCAM_V4KEY1_L2RDCNUM_SHIFT;
  6087. tp->key_mask[1] = TCAM_V4KEY1_L2RDCNUM;
  6088. tp->key[3] = (u64)sip << TCAM_V4KEY3_SADDR_SHIFT;
  6089. tp->key[3] |= dip;
  6090. tp->key_mask[3] = (u64)sipm << TCAM_V4KEY3_SADDR_SHIFT;
  6091. tp->key_mask[3] |= dipm;
  6092. tp->key[2] |= ((u64)fsp->h_u.tcp_ip4_spec.tos <<
  6093. TCAM_V4KEY2_TOS_SHIFT);
  6094. tp->key_mask[2] |= ((u64)fsp->m_u.tcp_ip4_spec.tos <<
  6095. TCAM_V4KEY2_TOS_SHIFT);
  6096. switch (fsp->flow_type) {
  6097. case TCP_V4_FLOW:
  6098. case UDP_V4_FLOW:
  6099. case SCTP_V4_FLOW:
  6100. sport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.psrc);
  6101. spm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.psrc);
  6102. dport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.pdst);
  6103. dpm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.pdst);
  6104. tp->key[2] |= (((u64)sport << 16) | dport);
  6105. tp->key_mask[2] |= (((u64)spm << 16) | dpm);
  6106. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6107. break;
  6108. case AH_V4_FLOW:
  6109. case ESP_V4_FLOW:
  6110. spi = be32_to_cpu(fsp->h_u.ah_ip4_spec.spi);
  6111. spim = be32_to_cpu(fsp->m_u.ah_ip4_spec.spi);
  6112. tp->key[2] |= spi;
  6113. tp->key_mask[2] |= spim;
  6114. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6115. break;
  6116. case IP_USER_FLOW:
  6117. spi = be32_to_cpu(fsp->h_u.usr_ip4_spec.l4_4_bytes);
  6118. spim = be32_to_cpu(fsp->m_u.usr_ip4_spec.l4_4_bytes);
  6119. tp->key[2] |= spi;
  6120. tp->key_mask[2] |= spim;
  6121. pid = fsp->h_u.usr_ip4_spec.proto;
  6122. break;
  6123. default:
  6124. break;
  6125. }
  6126. tp->key[2] |= ((u64)pid << TCAM_V4KEY2_PROTO_SHIFT);
  6127. if (pid) {
  6128. tp->key_mask[2] |= TCAM_V4KEY2_PROTO;
  6129. }
  6130. }
  6131. static int niu_add_ethtool_tcam_entry(struct niu *np,
  6132. struct ethtool_rxnfc *nfc)
  6133. {
  6134. struct niu_parent *parent = np->parent;
  6135. struct niu_tcam_entry *tp;
  6136. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  6137. struct niu_rdc_tables *rdc_table = &parent->rdc_group_cfg[np->port];
  6138. int l2_rdc_table = rdc_table->first_table_num;
  6139. u16 idx;
  6140. u64 class;
  6141. unsigned long flags;
  6142. int err, ret;
  6143. ret = 0;
  6144. idx = nfc->fs.location;
  6145. if (idx >= tcam_get_size(np))
  6146. return -EINVAL;
  6147. if (fsp->flow_type == IP_USER_FLOW) {
  6148. int i;
  6149. int add_usr_cls = 0;
  6150. struct ethtool_usrip4_spec *uspec = &fsp->h_u.usr_ip4_spec;
  6151. struct ethtool_usrip4_spec *umask = &fsp->m_u.usr_ip4_spec;
  6152. if (uspec->ip_ver != ETH_RX_NFC_IP4)
  6153. return -EINVAL;
  6154. niu_lock_parent(np, flags);
  6155. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6156. if (parent->l3_cls[i]) {
  6157. if (uspec->proto == parent->l3_cls_pid[i]) {
  6158. class = parent->l3_cls[i];
  6159. parent->l3_cls_refcnt[i]++;
  6160. add_usr_cls = 1;
  6161. break;
  6162. }
  6163. } else {
  6164. /* Program new user IP class */
  6165. switch (i) {
  6166. case 0:
  6167. class = CLASS_CODE_USER_PROG1;
  6168. break;
  6169. case 1:
  6170. class = CLASS_CODE_USER_PROG2;
  6171. break;
  6172. case 2:
  6173. class = CLASS_CODE_USER_PROG3;
  6174. break;
  6175. case 3:
  6176. class = CLASS_CODE_USER_PROG4;
  6177. break;
  6178. default:
  6179. break;
  6180. }
  6181. ret = tcam_user_ip_class_set(np, class, 0,
  6182. uspec->proto,
  6183. uspec->tos,
  6184. umask->tos);
  6185. if (ret)
  6186. goto out;
  6187. ret = tcam_user_ip_class_enable(np, class, 1);
  6188. if (ret)
  6189. goto out;
  6190. parent->l3_cls[i] = class;
  6191. parent->l3_cls_pid[i] = uspec->proto;
  6192. parent->l3_cls_refcnt[i]++;
  6193. add_usr_cls = 1;
  6194. break;
  6195. }
  6196. }
  6197. if (!add_usr_cls) {
  6198. netdev_info(np->dev, "niu%d: %s(): Could not find/insert class for pid %d\n",
  6199. parent->index, __func__, uspec->proto);
  6200. ret = -EINVAL;
  6201. goto out;
  6202. }
  6203. niu_unlock_parent(np, flags);
  6204. } else {
  6205. if (!niu_ethflow_to_class(fsp->flow_type, &class)) {
  6206. return -EINVAL;
  6207. }
  6208. }
  6209. niu_lock_parent(np, flags);
  6210. idx = tcam_get_index(np, idx);
  6211. tp = &parent->tcam[idx];
  6212. memset(tp, 0, sizeof(*tp));
  6213. /* fill in the tcam key and mask */
  6214. switch (fsp->flow_type) {
  6215. case TCP_V4_FLOW:
  6216. case UDP_V4_FLOW:
  6217. case SCTP_V4_FLOW:
  6218. case AH_V4_FLOW:
  6219. case ESP_V4_FLOW:
  6220. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class);
  6221. break;
  6222. case TCP_V6_FLOW:
  6223. case UDP_V6_FLOW:
  6224. case SCTP_V6_FLOW:
  6225. case AH_V6_FLOW:
  6226. case ESP_V6_FLOW:
  6227. /* Not yet implemented */
  6228. netdev_info(np->dev, "niu%d: In %s(): flow %d for IPv6 not implemented\n",
  6229. parent->index, __func__, fsp->flow_type);
  6230. ret = -EINVAL;
  6231. goto out;
  6232. case IP_USER_FLOW:
  6233. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class);
  6234. break;
  6235. default:
  6236. netdev_info(np->dev, "niu%d: In %s(): Unknown flow type %d\n",
  6237. parent->index, __func__, fsp->flow_type);
  6238. ret = -EINVAL;
  6239. goto out;
  6240. }
  6241. /* fill in the assoc data */
  6242. if (fsp->ring_cookie == RX_CLS_FLOW_DISC) {
  6243. tp->assoc_data = TCAM_ASSOCDATA_DISC;
  6244. } else {
  6245. if (fsp->ring_cookie >= np->num_rx_rings) {
  6246. netdev_info(np->dev, "niu%d: In %s(): Invalid RX ring %lld\n",
  6247. parent->index, __func__,
  6248. (long long)fsp->ring_cookie);
  6249. ret = -EINVAL;
  6250. goto out;
  6251. }
  6252. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  6253. (fsp->ring_cookie <<
  6254. TCAM_ASSOCDATA_OFFSET_SHIFT));
  6255. }
  6256. err = tcam_write(np, idx, tp->key, tp->key_mask);
  6257. if (err) {
  6258. ret = -EINVAL;
  6259. goto out;
  6260. }
  6261. err = tcam_assoc_write(np, idx, tp->assoc_data);
  6262. if (err) {
  6263. ret = -EINVAL;
  6264. goto out;
  6265. }
  6266. /* validate the entry */
  6267. tp->valid = 1;
  6268. np->clas.tcam_valid_entries++;
  6269. out:
  6270. niu_unlock_parent(np, flags);
  6271. return ret;
  6272. }
  6273. static int niu_del_ethtool_tcam_entry(struct niu *np, u32 loc)
  6274. {
  6275. struct niu_parent *parent = np->parent;
  6276. struct niu_tcam_entry *tp;
  6277. u16 idx;
  6278. unsigned long flags;
  6279. u64 class;
  6280. int ret = 0;
  6281. if (loc >= tcam_get_size(np))
  6282. return -EINVAL;
  6283. niu_lock_parent(np, flags);
  6284. idx = tcam_get_index(np, loc);
  6285. tp = &parent->tcam[idx];
  6286. /* if the entry is of a user defined class, then update*/
  6287. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  6288. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6289. if (class >= CLASS_CODE_USER_PROG1 && class <= CLASS_CODE_USER_PROG4) {
  6290. int i;
  6291. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6292. if (parent->l3_cls[i] == class) {
  6293. parent->l3_cls_refcnt[i]--;
  6294. if (!parent->l3_cls_refcnt[i]) {
  6295. /* disable class */
  6296. ret = tcam_user_ip_class_enable(np,
  6297. class,
  6298. 0);
  6299. if (ret)
  6300. goto out;
  6301. parent->l3_cls[i] = 0;
  6302. parent->l3_cls_pid[i] = 0;
  6303. }
  6304. break;
  6305. }
  6306. }
  6307. if (i == NIU_L3_PROG_CLS) {
  6308. netdev_info(np->dev, "niu%d: In %s(): Usr class 0x%llx not found\n",
  6309. parent->index, __func__,
  6310. (unsigned long long)class);
  6311. ret = -EINVAL;
  6312. goto out;
  6313. }
  6314. }
  6315. ret = tcam_flush(np, idx);
  6316. if (ret)
  6317. goto out;
  6318. /* invalidate the entry */
  6319. tp->valid = 0;
  6320. np->clas.tcam_valid_entries--;
  6321. out:
  6322. niu_unlock_parent(np, flags);
  6323. return ret;
  6324. }
  6325. static int niu_set_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
  6326. {
  6327. struct niu *np = netdev_priv(dev);
  6328. int ret = 0;
  6329. switch (cmd->cmd) {
  6330. case ETHTOOL_SRXFH:
  6331. ret = niu_set_hash_opts(np, cmd);
  6332. break;
  6333. case ETHTOOL_SRXCLSRLINS:
  6334. ret = niu_add_ethtool_tcam_entry(np, cmd);
  6335. break;
  6336. case ETHTOOL_SRXCLSRLDEL:
  6337. ret = niu_del_ethtool_tcam_entry(np, cmd->fs.location);
  6338. break;
  6339. default:
  6340. ret = -EINVAL;
  6341. break;
  6342. }
  6343. return ret;
  6344. }
  6345. static const struct {
  6346. const char string[ETH_GSTRING_LEN];
  6347. } niu_xmac_stat_keys[] = {
  6348. { "tx_frames" },
  6349. { "tx_bytes" },
  6350. { "tx_fifo_errors" },
  6351. { "tx_overflow_errors" },
  6352. { "tx_max_pkt_size_errors" },
  6353. { "tx_underflow_errors" },
  6354. { "rx_local_faults" },
  6355. { "rx_remote_faults" },
  6356. { "rx_link_faults" },
  6357. { "rx_align_errors" },
  6358. { "rx_frags" },
  6359. { "rx_mcasts" },
  6360. { "rx_bcasts" },
  6361. { "rx_hist_cnt1" },
  6362. { "rx_hist_cnt2" },
  6363. { "rx_hist_cnt3" },
  6364. { "rx_hist_cnt4" },
  6365. { "rx_hist_cnt5" },
  6366. { "rx_hist_cnt6" },
  6367. { "rx_hist_cnt7" },
  6368. { "rx_octets" },
  6369. { "rx_code_violations" },
  6370. { "rx_len_errors" },
  6371. { "rx_crc_errors" },
  6372. { "rx_underflows" },
  6373. { "rx_overflows" },
  6374. { "pause_off_state" },
  6375. { "pause_on_state" },
  6376. { "pause_received" },
  6377. };
  6378. #define NUM_XMAC_STAT_KEYS ARRAY_SIZE(niu_xmac_stat_keys)
  6379. static const struct {
  6380. const char string[ETH_GSTRING_LEN];
  6381. } niu_bmac_stat_keys[] = {
  6382. { "tx_underflow_errors" },
  6383. { "tx_max_pkt_size_errors" },
  6384. { "tx_bytes" },
  6385. { "tx_frames" },
  6386. { "rx_overflows" },
  6387. { "rx_frames" },
  6388. { "rx_align_errors" },
  6389. { "rx_crc_errors" },
  6390. { "rx_len_errors" },
  6391. { "pause_off_state" },
  6392. { "pause_on_state" },
  6393. { "pause_received" },
  6394. };
  6395. #define NUM_BMAC_STAT_KEYS ARRAY_SIZE(niu_bmac_stat_keys)
  6396. static const struct {
  6397. const char string[ETH_GSTRING_LEN];
  6398. } niu_rxchan_stat_keys[] = {
  6399. { "rx_channel" },
  6400. { "rx_packets" },
  6401. { "rx_bytes" },
  6402. { "rx_dropped" },
  6403. { "rx_errors" },
  6404. };
  6405. #define NUM_RXCHAN_STAT_KEYS ARRAY_SIZE(niu_rxchan_stat_keys)
  6406. static const struct {
  6407. const char string[ETH_GSTRING_LEN];
  6408. } niu_txchan_stat_keys[] = {
  6409. { "tx_channel" },
  6410. { "tx_packets" },
  6411. { "tx_bytes" },
  6412. { "tx_errors" },
  6413. };
  6414. #define NUM_TXCHAN_STAT_KEYS ARRAY_SIZE(niu_txchan_stat_keys)
  6415. static void niu_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  6416. {
  6417. struct niu *np = netdev_priv(dev);
  6418. int i;
  6419. if (stringset != ETH_SS_STATS)
  6420. return;
  6421. if (np->flags & NIU_FLAGS_XMAC) {
  6422. memcpy(data, niu_xmac_stat_keys,
  6423. sizeof(niu_xmac_stat_keys));
  6424. data += sizeof(niu_xmac_stat_keys);
  6425. } else {
  6426. memcpy(data, niu_bmac_stat_keys,
  6427. sizeof(niu_bmac_stat_keys));
  6428. data += sizeof(niu_bmac_stat_keys);
  6429. }
  6430. for (i = 0; i < np->num_rx_rings; i++) {
  6431. memcpy(data, niu_rxchan_stat_keys,
  6432. sizeof(niu_rxchan_stat_keys));
  6433. data += sizeof(niu_rxchan_stat_keys);
  6434. }
  6435. for (i = 0; i < np->num_tx_rings; i++) {
  6436. memcpy(data, niu_txchan_stat_keys,
  6437. sizeof(niu_txchan_stat_keys));
  6438. data += sizeof(niu_txchan_stat_keys);
  6439. }
  6440. }
  6441. static int niu_get_sset_count(struct net_device *dev, int stringset)
  6442. {
  6443. struct niu *np = netdev_priv(dev);
  6444. if (stringset != ETH_SS_STATS)
  6445. return -EINVAL;
  6446. return (np->flags & NIU_FLAGS_XMAC ?
  6447. NUM_XMAC_STAT_KEYS :
  6448. NUM_BMAC_STAT_KEYS) +
  6449. (np->num_rx_rings * NUM_RXCHAN_STAT_KEYS) +
  6450. (np->num_tx_rings * NUM_TXCHAN_STAT_KEYS);
  6451. }
  6452. static void niu_get_ethtool_stats(struct net_device *dev,
  6453. struct ethtool_stats *stats, u64 *data)
  6454. {
  6455. struct niu *np = netdev_priv(dev);
  6456. int i;
  6457. niu_sync_mac_stats(np);
  6458. if (np->flags & NIU_FLAGS_XMAC) {
  6459. memcpy(data, &np->mac_stats.xmac,
  6460. sizeof(struct niu_xmac_stats));
  6461. data += (sizeof(struct niu_xmac_stats) / sizeof(u64));
  6462. } else {
  6463. memcpy(data, &np->mac_stats.bmac,
  6464. sizeof(struct niu_bmac_stats));
  6465. data += (sizeof(struct niu_bmac_stats) / sizeof(u64));
  6466. }
  6467. for (i = 0; i < np->num_rx_rings; i++) {
  6468. struct rx_ring_info *rp = &np->rx_rings[i];
  6469. niu_sync_rx_discard_stats(np, rp, 0);
  6470. data[0] = rp->rx_channel;
  6471. data[1] = rp->rx_packets;
  6472. data[2] = rp->rx_bytes;
  6473. data[3] = rp->rx_dropped;
  6474. data[4] = rp->rx_errors;
  6475. data += 5;
  6476. }
  6477. for (i = 0; i < np->num_tx_rings; i++) {
  6478. struct tx_ring_info *rp = &np->tx_rings[i];
  6479. data[0] = rp->tx_channel;
  6480. data[1] = rp->tx_packets;
  6481. data[2] = rp->tx_bytes;
  6482. data[3] = rp->tx_errors;
  6483. data += 4;
  6484. }
  6485. }
  6486. static u64 niu_led_state_save(struct niu *np)
  6487. {
  6488. if (np->flags & NIU_FLAGS_XMAC)
  6489. return nr64_mac(XMAC_CONFIG);
  6490. else
  6491. return nr64_mac(BMAC_XIF_CONFIG);
  6492. }
  6493. static void niu_led_state_restore(struct niu *np, u64 val)
  6494. {
  6495. if (np->flags & NIU_FLAGS_XMAC)
  6496. nw64_mac(XMAC_CONFIG, val);
  6497. else
  6498. nw64_mac(BMAC_XIF_CONFIG, val);
  6499. }
  6500. static void niu_force_led(struct niu *np, int on)
  6501. {
  6502. u64 val, reg, bit;
  6503. if (np->flags & NIU_FLAGS_XMAC) {
  6504. reg = XMAC_CONFIG;
  6505. bit = XMAC_CONFIG_FORCE_LED_ON;
  6506. } else {
  6507. reg = BMAC_XIF_CONFIG;
  6508. bit = BMAC_XIF_CONFIG_LINK_LED;
  6509. }
  6510. val = nr64_mac(reg);
  6511. if (on)
  6512. val |= bit;
  6513. else
  6514. val &= ~bit;
  6515. nw64_mac(reg, val);
  6516. }
  6517. static int niu_set_phys_id(struct net_device *dev,
  6518. enum ethtool_phys_id_state state)
  6519. {
  6520. struct niu *np = netdev_priv(dev);
  6521. if (!netif_running(dev))
  6522. return -EAGAIN;
  6523. switch (state) {
  6524. case ETHTOOL_ID_ACTIVE:
  6525. np->orig_led_state = niu_led_state_save(np);
  6526. return 1; /* cycle on/off once per second */
  6527. case ETHTOOL_ID_ON:
  6528. niu_force_led(np, 1);
  6529. break;
  6530. case ETHTOOL_ID_OFF:
  6531. niu_force_led(np, 0);
  6532. break;
  6533. case ETHTOOL_ID_INACTIVE:
  6534. niu_led_state_restore(np, np->orig_led_state);
  6535. }
  6536. return 0;
  6537. }
  6538. static const struct ethtool_ops niu_ethtool_ops = {
  6539. .get_drvinfo = niu_get_drvinfo,
  6540. .get_link = ethtool_op_get_link,
  6541. .get_msglevel = niu_get_msglevel,
  6542. .set_msglevel = niu_set_msglevel,
  6543. .nway_reset = niu_nway_reset,
  6544. .get_eeprom_len = niu_get_eeprom_len,
  6545. .get_eeprom = niu_get_eeprom,
  6546. .get_settings = niu_get_settings,
  6547. .set_settings = niu_set_settings,
  6548. .get_strings = niu_get_strings,
  6549. .get_sset_count = niu_get_sset_count,
  6550. .get_ethtool_stats = niu_get_ethtool_stats,
  6551. .set_phys_id = niu_set_phys_id,
  6552. .get_rxnfc = niu_get_nfc,
  6553. .set_rxnfc = niu_set_nfc,
  6554. };
  6555. static int niu_ldg_assign_ldn(struct niu *np, struct niu_parent *parent,
  6556. int ldg, int ldn)
  6557. {
  6558. if (ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX)
  6559. return -EINVAL;
  6560. if (ldn < 0 || ldn > LDN_MAX)
  6561. return -EINVAL;
  6562. parent->ldg_map[ldn] = ldg;
  6563. if (np->parent->plat_type == PLAT_TYPE_NIU) {
  6564. /* On N2 NIU, the ldn-->ldg assignments are setup and fixed by
  6565. * the firmware, and we're not supposed to change them.
  6566. * Validate the mapping, because if it's wrong we probably
  6567. * won't get any interrupts and that's painful to debug.
  6568. */
  6569. if (nr64(LDG_NUM(ldn)) != ldg) {
  6570. dev_err(np->device, "Port %u, mis-matched LDG assignment for ldn %d, should be %d is %llu\n",
  6571. np->port, ldn, ldg,
  6572. (unsigned long long) nr64(LDG_NUM(ldn)));
  6573. return -EINVAL;
  6574. }
  6575. } else
  6576. nw64(LDG_NUM(ldn), ldg);
  6577. return 0;
  6578. }
  6579. static int niu_set_ldg_timer_res(struct niu *np, int res)
  6580. {
  6581. if (res < 0 || res > LDG_TIMER_RES_VAL)
  6582. return -EINVAL;
  6583. nw64(LDG_TIMER_RES, res);
  6584. return 0;
  6585. }
  6586. static int niu_set_ldg_sid(struct niu *np, int ldg, int func, int vector)
  6587. {
  6588. if ((ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX) ||
  6589. (func < 0 || func > 3) ||
  6590. (vector < 0 || vector > 0x1f))
  6591. return -EINVAL;
  6592. nw64(SID(ldg), (func << SID_FUNC_SHIFT) | vector);
  6593. return 0;
  6594. }
  6595. static int __devinit niu_pci_eeprom_read(struct niu *np, u32 addr)
  6596. {
  6597. u64 frame, frame_base = (ESPC_PIO_STAT_READ_START |
  6598. (addr << ESPC_PIO_STAT_ADDR_SHIFT));
  6599. int limit;
  6600. if (addr > (ESPC_PIO_STAT_ADDR >> ESPC_PIO_STAT_ADDR_SHIFT))
  6601. return -EINVAL;
  6602. frame = frame_base;
  6603. nw64(ESPC_PIO_STAT, frame);
  6604. limit = 64;
  6605. do {
  6606. udelay(5);
  6607. frame = nr64(ESPC_PIO_STAT);
  6608. if (frame & ESPC_PIO_STAT_READ_END)
  6609. break;
  6610. } while (limit--);
  6611. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6612. dev_err(np->device, "EEPROM read timeout frame[%llx]\n",
  6613. (unsigned long long) frame);
  6614. return -ENODEV;
  6615. }
  6616. frame = frame_base;
  6617. nw64(ESPC_PIO_STAT, frame);
  6618. limit = 64;
  6619. do {
  6620. udelay(5);
  6621. frame = nr64(ESPC_PIO_STAT);
  6622. if (frame & ESPC_PIO_STAT_READ_END)
  6623. break;
  6624. } while (limit--);
  6625. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6626. dev_err(np->device, "EEPROM read timeout frame[%llx]\n",
  6627. (unsigned long long) frame);
  6628. return -ENODEV;
  6629. }
  6630. frame = nr64(ESPC_PIO_STAT);
  6631. return (frame & ESPC_PIO_STAT_DATA) >> ESPC_PIO_STAT_DATA_SHIFT;
  6632. }
  6633. static int __devinit niu_pci_eeprom_read16(struct niu *np, u32 off)
  6634. {
  6635. int err = niu_pci_eeprom_read(np, off);
  6636. u16 val;
  6637. if (err < 0)
  6638. return err;
  6639. val = (err << 8);
  6640. err = niu_pci_eeprom_read(np, off + 1);
  6641. if (err < 0)
  6642. return err;
  6643. val |= (err & 0xff);
  6644. return val;
  6645. }
  6646. static int __devinit niu_pci_eeprom_read16_swp(struct niu *np, u32 off)
  6647. {
  6648. int err = niu_pci_eeprom_read(np, off);
  6649. u16 val;
  6650. if (err < 0)
  6651. return err;
  6652. val = (err & 0xff);
  6653. err = niu_pci_eeprom_read(np, off + 1);
  6654. if (err < 0)
  6655. return err;
  6656. val |= (err & 0xff) << 8;
  6657. return val;
  6658. }
  6659. static int __devinit niu_pci_vpd_get_propname(struct niu *np,
  6660. u32 off,
  6661. char *namebuf,
  6662. int namebuf_len)
  6663. {
  6664. int i;
  6665. for (i = 0; i < namebuf_len; i++) {
  6666. int err = niu_pci_eeprom_read(np, off + i);
  6667. if (err < 0)
  6668. return err;
  6669. *namebuf++ = err;
  6670. if (!err)
  6671. break;
  6672. }
  6673. if (i >= namebuf_len)
  6674. return -EINVAL;
  6675. return i + 1;
  6676. }
  6677. static void __devinit niu_vpd_parse_version(struct niu *np)
  6678. {
  6679. struct niu_vpd *vpd = &np->vpd;
  6680. int len = strlen(vpd->version) + 1;
  6681. const char *s = vpd->version;
  6682. int i;
  6683. for (i = 0; i < len - 5; i++) {
  6684. if (!strncmp(s + i, "FCode ", 6))
  6685. break;
  6686. }
  6687. if (i >= len - 5)
  6688. return;
  6689. s += i + 5;
  6690. sscanf(s, "%d.%d", &vpd->fcode_major, &vpd->fcode_minor);
  6691. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6692. "VPD_SCAN: FCODE major(%d) minor(%d)\n",
  6693. vpd->fcode_major, vpd->fcode_minor);
  6694. if (vpd->fcode_major > NIU_VPD_MIN_MAJOR ||
  6695. (vpd->fcode_major == NIU_VPD_MIN_MAJOR &&
  6696. vpd->fcode_minor >= NIU_VPD_MIN_MINOR))
  6697. np->flags |= NIU_FLAGS_VPD_VALID;
  6698. }
  6699. /* ESPC_PIO_EN_ENABLE must be set */
  6700. static int __devinit niu_pci_vpd_scan_props(struct niu *np,
  6701. u32 start, u32 end)
  6702. {
  6703. unsigned int found_mask = 0;
  6704. #define FOUND_MASK_MODEL 0x00000001
  6705. #define FOUND_MASK_BMODEL 0x00000002
  6706. #define FOUND_MASK_VERS 0x00000004
  6707. #define FOUND_MASK_MAC 0x00000008
  6708. #define FOUND_MASK_NMAC 0x00000010
  6709. #define FOUND_MASK_PHY 0x00000020
  6710. #define FOUND_MASK_ALL 0x0000003f
  6711. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6712. "VPD_SCAN: start[%x] end[%x]\n", start, end);
  6713. while (start < end) {
  6714. int len, err, prop_len;
  6715. char namebuf[64];
  6716. u8 *prop_buf;
  6717. int max_len;
  6718. if (found_mask == FOUND_MASK_ALL) {
  6719. niu_vpd_parse_version(np);
  6720. return 1;
  6721. }
  6722. err = niu_pci_eeprom_read(np, start + 2);
  6723. if (err < 0)
  6724. return err;
  6725. len = err;
  6726. start += 3;
  6727. prop_len = niu_pci_eeprom_read(np, start + 4);
  6728. err = niu_pci_vpd_get_propname(np, start + 5, namebuf, 64);
  6729. if (err < 0)
  6730. return err;
  6731. prop_buf = NULL;
  6732. max_len = 0;
  6733. if (!strcmp(namebuf, "model")) {
  6734. prop_buf = np->vpd.model;
  6735. max_len = NIU_VPD_MODEL_MAX;
  6736. found_mask |= FOUND_MASK_MODEL;
  6737. } else if (!strcmp(namebuf, "board-model")) {
  6738. prop_buf = np->vpd.board_model;
  6739. max_len = NIU_VPD_BD_MODEL_MAX;
  6740. found_mask |= FOUND_MASK_BMODEL;
  6741. } else if (!strcmp(namebuf, "version")) {
  6742. prop_buf = np->vpd.version;
  6743. max_len = NIU_VPD_VERSION_MAX;
  6744. found_mask |= FOUND_MASK_VERS;
  6745. } else if (!strcmp(namebuf, "local-mac-address")) {
  6746. prop_buf = np->vpd.local_mac;
  6747. max_len = ETH_ALEN;
  6748. found_mask |= FOUND_MASK_MAC;
  6749. } else if (!strcmp(namebuf, "num-mac-addresses")) {
  6750. prop_buf = &np->vpd.mac_num;
  6751. max_len = 1;
  6752. found_mask |= FOUND_MASK_NMAC;
  6753. } else if (!strcmp(namebuf, "phy-type")) {
  6754. prop_buf = np->vpd.phy_type;
  6755. max_len = NIU_VPD_PHY_TYPE_MAX;
  6756. found_mask |= FOUND_MASK_PHY;
  6757. }
  6758. if (max_len && prop_len > max_len) {
  6759. dev_err(np->device, "Property '%s' length (%d) is too long\n", namebuf, prop_len);
  6760. return -EINVAL;
  6761. }
  6762. if (prop_buf) {
  6763. u32 off = start + 5 + err;
  6764. int i;
  6765. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6766. "VPD_SCAN: Reading in property [%s] len[%d]\n",
  6767. namebuf, prop_len);
  6768. for (i = 0; i < prop_len; i++)
  6769. *prop_buf++ = niu_pci_eeprom_read(np, off + i);
  6770. }
  6771. start += len;
  6772. }
  6773. return 0;
  6774. }
  6775. /* ESPC_PIO_EN_ENABLE must be set */
  6776. static void __devinit niu_pci_vpd_fetch(struct niu *np, u32 start)
  6777. {
  6778. u32 offset;
  6779. int err;
  6780. err = niu_pci_eeprom_read16_swp(np, start + 1);
  6781. if (err < 0)
  6782. return;
  6783. offset = err + 3;
  6784. while (start + offset < ESPC_EEPROM_SIZE) {
  6785. u32 here = start + offset;
  6786. u32 end;
  6787. err = niu_pci_eeprom_read(np, here);
  6788. if (err != 0x90)
  6789. return;
  6790. err = niu_pci_eeprom_read16_swp(np, here + 1);
  6791. if (err < 0)
  6792. return;
  6793. here = start + offset + 3;
  6794. end = start + offset + err;
  6795. offset += err;
  6796. err = niu_pci_vpd_scan_props(np, here, end);
  6797. if (err < 0 || err == 1)
  6798. return;
  6799. }
  6800. }
  6801. /* ESPC_PIO_EN_ENABLE must be set */
  6802. static u32 __devinit niu_pci_vpd_offset(struct niu *np)
  6803. {
  6804. u32 start = 0, end = ESPC_EEPROM_SIZE, ret;
  6805. int err;
  6806. while (start < end) {
  6807. ret = start;
  6808. /* ROM header signature? */
  6809. err = niu_pci_eeprom_read16(np, start + 0);
  6810. if (err != 0x55aa)
  6811. return 0;
  6812. /* Apply offset to PCI data structure. */
  6813. err = niu_pci_eeprom_read16(np, start + 23);
  6814. if (err < 0)
  6815. return 0;
  6816. start += err;
  6817. /* Check for "PCIR" signature. */
  6818. err = niu_pci_eeprom_read16(np, start + 0);
  6819. if (err != 0x5043)
  6820. return 0;
  6821. err = niu_pci_eeprom_read16(np, start + 2);
  6822. if (err != 0x4952)
  6823. return 0;
  6824. /* Check for OBP image type. */
  6825. err = niu_pci_eeprom_read(np, start + 20);
  6826. if (err < 0)
  6827. return 0;
  6828. if (err != 0x01) {
  6829. err = niu_pci_eeprom_read(np, ret + 2);
  6830. if (err < 0)
  6831. return 0;
  6832. start = ret + (err * 512);
  6833. continue;
  6834. }
  6835. err = niu_pci_eeprom_read16_swp(np, start + 8);
  6836. if (err < 0)
  6837. return err;
  6838. ret += err;
  6839. err = niu_pci_eeprom_read(np, ret + 0);
  6840. if (err != 0x82)
  6841. return 0;
  6842. return ret;
  6843. }
  6844. return 0;
  6845. }
  6846. static int __devinit niu_phy_type_prop_decode(struct niu *np,
  6847. const char *phy_prop)
  6848. {
  6849. if (!strcmp(phy_prop, "mif")) {
  6850. /* 1G copper, MII */
  6851. np->flags &= ~(NIU_FLAGS_FIBER |
  6852. NIU_FLAGS_10G);
  6853. np->mac_xcvr = MAC_XCVR_MII;
  6854. } else if (!strcmp(phy_prop, "xgf")) {
  6855. /* 10G fiber, XPCS */
  6856. np->flags |= (NIU_FLAGS_10G |
  6857. NIU_FLAGS_FIBER);
  6858. np->mac_xcvr = MAC_XCVR_XPCS;
  6859. } else if (!strcmp(phy_prop, "pcs")) {
  6860. /* 1G fiber, PCS */
  6861. np->flags &= ~NIU_FLAGS_10G;
  6862. np->flags |= NIU_FLAGS_FIBER;
  6863. np->mac_xcvr = MAC_XCVR_PCS;
  6864. } else if (!strcmp(phy_prop, "xgc")) {
  6865. /* 10G copper, XPCS */
  6866. np->flags |= NIU_FLAGS_10G;
  6867. np->flags &= ~NIU_FLAGS_FIBER;
  6868. np->mac_xcvr = MAC_XCVR_XPCS;
  6869. } else if (!strcmp(phy_prop, "xgsd") || !strcmp(phy_prop, "gsd")) {
  6870. /* 10G Serdes or 1G Serdes, default to 10G */
  6871. np->flags |= NIU_FLAGS_10G;
  6872. np->flags &= ~NIU_FLAGS_FIBER;
  6873. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6874. np->mac_xcvr = MAC_XCVR_XPCS;
  6875. } else {
  6876. return -EINVAL;
  6877. }
  6878. return 0;
  6879. }
  6880. static int niu_pci_vpd_get_nports(struct niu *np)
  6881. {
  6882. int ports = 0;
  6883. if ((!strcmp(np->vpd.model, NIU_QGC_LP_MDL_STR)) ||
  6884. (!strcmp(np->vpd.model, NIU_QGC_PEM_MDL_STR)) ||
  6885. (!strcmp(np->vpd.model, NIU_MARAMBA_MDL_STR)) ||
  6886. (!strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) ||
  6887. (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR))) {
  6888. ports = 4;
  6889. } else if ((!strcmp(np->vpd.model, NIU_2XGF_LP_MDL_STR)) ||
  6890. (!strcmp(np->vpd.model, NIU_2XGF_PEM_MDL_STR)) ||
  6891. (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) ||
  6892. (!strcmp(np->vpd.model, NIU_2XGF_MRVL_MDL_STR))) {
  6893. ports = 2;
  6894. }
  6895. return ports;
  6896. }
  6897. static void __devinit niu_pci_vpd_validate(struct niu *np)
  6898. {
  6899. struct net_device *dev = np->dev;
  6900. struct niu_vpd *vpd = &np->vpd;
  6901. u8 val8;
  6902. if (!is_valid_ether_addr(&vpd->local_mac[0])) {
  6903. dev_err(np->device, "VPD MAC invalid, falling back to SPROM\n");
  6904. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6905. return;
  6906. }
  6907. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  6908. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  6909. np->flags |= NIU_FLAGS_10G;
  6910. np->flags &= ~NIU_FLAGS_FIBER;
  6911. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6912. np->mac_xcvr = MAC_XCVR_PCS;
  6913. if (np->port > 1) {
  6914. np->flags |= NIU_FLAGS_FIBER;
  6915. np->flags &= ~NIU_FLAGS_10G;
  6916. }
  6917. if (np->flags & NIU_FLAGS_10G)
  6918. np->mac_xcvr = MAC_XCVR_XPCS;
  6919. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  6920. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  6921. NIU_FLAGS_HOTPLUG_PHY);
  6922. } else if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  6923. dev_err(np->device, "Illegal phy string [%s]\n",
  6924. np->vpd.phy_type);
  6925. dev_err(np->device, "Falling back to SPROM\n");
  6926. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6927. return;
  6928. }
  6929. memcpy(dev->perm_addr, vpd->local_mac, ETH_ALEN);
  6930. val8 = dev->perm_addr[5];
  6931. dev->perm_addr[5] += np->port;
  6932. if (dev->perm_addr[5] < val8)
  6933. dev->perm_addr[4]++;
  6934. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  6935. }
  6936. static int __devinit niu_pci_probe_sprom(struct niu *np)
  6937. {
  6938. struct net_device *dev = np->dev;
  6939. int len, i;
  6940. u64 val, sum;
  6941. u8 val8;
  6942. val = (nr64(ESPC_VER_IMGSZ) & ESPC_VER_IMGSZ_IMGSZ);
  6943. val >>= ESPC_VER_IMGSZ_IMGSZ_SHIFT;
  6944. len = val / 4;
  6945. np->eeprom_len = len;
  6946. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6947. "SPROM: Image size %llu\n", (unsigned long long)val);
  6948. sum = 0;
  6949. for (i = 0; i < len; i++) {
  6950. val = nr64(ESPC_NCR(i));
  6951. sum += (val >> 0) & 0xff;
  6952. sum += (val >> 8) & 0xff;
  6953. sum += (val >> 16) & 0xff;
  6954. sum += (val >> 24) & 0xff;
  6955. }
  6956. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6957. "SPROM: Checksum %x\n", (int)(sum & 0xff));
  6958. if ((sum & 0xff) != 0xab) {
  6959. dev_err(np->device, "Bad SPROM checksum (%x, should be 0xab)\n", (int)(sum & 0xff));
  6960. return -EINVAL;
  6961. }
  6962. val = nr64(ESPC_PHY_TYPE);
  6963. switch (np->port) {
  6964. case 0:
  6965. val8 = (val & ESPC_PHY_TYPE_PORT0) >>
  6966. ESPC_PHY_TYPE_PORT0_SHIFT;
  6967. break;
  6968. case 1:
  6969. val8 = (val & ESPC_PHY_TYPE_PORT1) >>
  6970. ESPC_PHY_TYPE_PORT1_SHIFT;
  6971. break;
  6972. case 2:
  6973. val8 = (val & ESPC_PHY_TYPE_PORT2) >>
  6974. ESPC_PHY_TYPE_PORT2_SHIFT;
  6975. break;
  6976. case 3:
  6977. val8 = (val & ESPC_PHY_TYPE_PORT3) >>
  6978. ESPC_PHY_TYPE_PORT3_SHIFT;
  6979. break;
  6980. default:
  6981. dev_err(np->device, "Bogus port number %u\n",
  6982. np->port);
  6983. return -EINVAL;
  6984. }
  6985. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6986. "SPROM: PHY type %x\n", val8);
  6987. switch (val8) {
  6988. case ESPC_PHY_TYPE_1G_COPPER:
  6989. /* 1G copper, MII */
  6990. np->flags &= ~(NIU_FLAGS_FIBER |
  6991. NIU_FLAGS_10G);
  6992. np->mac_xcvr = MAC_XCVR_MII;
  6993. break;
  6994. case ESPC_PHY_TYPE_1G_FIBER:
  6995. /* 1G fiber, PCS */
  6996. np->flags &= ~NIU_FLAGS_10G;
  6997. np->flags |= NIU_FLAGS_FIBER;
  6998. np->mac_xcvr = MAC_XCVR_PCS;
  6999. break;
  7000. case ESPC_PHY_TYPE_10G_COPPER:
  7001. /* 10G copper, XPCS */
  7002. np->flags |= NIU_FLAGS_10G;
  7003. np->flags &= ~NIU_FLAGS_FIBER;
  7004. np->mac_xcvr = MAC_XCVR_XPCS;
  7005. break;
  7006. case ESPC_PHY_TYPE_10G_FIBER:
  7007. /* 10G fiber, XPCS */
  7008. np->flags |= (NIU_FLAGS_10G |
  7009. NIU_FLAGS_FIBER);
  7010. np->mac_xcvr = MAC_XCVR_XPCS;
  7011. break;
  7012. default:
  7013. dev_err(np->device, "Bogus SPROM phy type %u\n", val8);
  7014. return -EINVAL;
  7015. }
  7016. val = nr64(ESPC_MAC_ADDR0);
  7017. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7018. "SPROM: MAC_ADDR0[%08llx]\n", (unsigned long long)val);
  7019. dev->perm_addr[0] = (val >> 0) & 0xff;
  7020. dev->perm_addr[1] = (val >> 8) & 0xff;
  7021. dev->perm_addr[2] = (val >> 16) & 0xff;
  7022. dev->perm_addr[3] = (val >> 24) & 0xff;
  7023. val = nr64(ESPC_MAC_ADDR1);
  7024. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7025. "SPROM: MAC_ADDR1[%08llx]\n", (unsigned long long)val);
  7026. dev->perm_addr[4] = (val >> 0) & 0xff;
  7027. dev->perm_addr[5] = (val >> 8) & 0xff;
  7028. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  7029. dev_err(np->device, "SPROM MAC address invalid [ %pM ]\n",
  7030. dev->perm_addr);
  7031. return -EINVAL;
  7032. }
  7033. val8 = dev->perm_addr[5];
  7034. dev->perm_addr[5] += np->port;
  7035. if (dev->perm_addr[5] < val8)
  7036. dev->perm_addr[4]++;
  7037. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  7038. val = nr64(ESPC_MOD_STR_LEN);
  7039. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7040. "SPROM: MOD_STR_LEN[%llu]\n", (unsigned long long)val);
  7041. if (val >= 8 * 4)
  7042. return -EINVAL;
  7043. for (i = 0; i < val; i += 4) {
  7044. u64 tmp = nr64(ESPC_NCR(5 + (i / 4)));
  7045. np->vpd.model[i + 3] = (tmp >> 0) & 0xff;
  7046. np->vpd.model[i + 2] = (tmp >> 8) & 0xff;
  7047. np->vpd.model[i + 1] = (tmp >> 16) & 0xff;
  7048. np->vpd.model[i + 0] = (tmp >> 24) & 0xff;
  7049. }
  7050. np->vpd.model[val] = '\0';
  7051. val = nr64(ESPC_BD_MOD_STR_LEN);
  7052. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7053. "SPROM: BD_MOD_STR_LEN[%llu]\n", (unsigned long long)val);
  7054. if (val >= 4 * 4)
  7055. return -EINVAL;
  7056. for (i = 0; i < val; i += 4) {
  7057. u64 tmp = nr64(ESPC_NCR(14 + (i / 4)));
  7058. np->vpd.board_model[i + 3] = (tmp >> 0) & 0xff;
  7059. np->vpd.board_model[i + 2] = (tmp >> 8) & 0xff;
  7060. np->vpd.board_model[i + 1] = (tmp >> 16) & 0xff;
  7061. np->vpd.board_model[i + 0] = (tmp >> 24) & 0xff;
  7062. }
  7063. np->vpd.board_model[val] = '\0';
  7064. np->vpd.mac_num =
  7065. nr64(ESPC_NUM_PORTS_MACS) & ESPC_NUM_PORTS_MACS_VAL;
  7066. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7067. "SPROM: NUM_PORTS_MACS[%d]\n", np->vpd.mac_num);
  7068. return 0;
  7069. }
  7070. static int __devinit niu_get_and_validate_port(struct niu *np)
  7071. {
  7072. struct niu_parent *parent = np->parent;
  7073. if (np->port <= 1)
  7074. np->flags |= NIU_FLAGS_XMAC;
  7075. if (!parent->num_ports) {
  7076. if (parent->plat_type == PLAT_TYPE_NIU) {
  7077. parent->num_ports = 2;
  7078. } else {
  7079. parent->num_ports = niu_pci_vpd_get_nports(np);
  7080. if (!parent->num_ports) {
  7081. /* Fall back to SPROM as last resort.
  7082. * This will fail on most cards.
  7083. */
  7084. parent->num_ports = nr64(ESPC_NUM_PORTS_MACS) &
  7085. ESPC_NUM_PORTS_MACS_VAL;
  7086. /* All of the current probing methods fail on
  7087. * Maramba on-board parts.
  7088. */
  7089. if (!parent->num_ports)
  7090. parent->num_ports = 4;
  7091. }
  7092. }
  7093. }
  7094. if (np->port >= parent->num_ports)
  7095. return -ENODEV;
  7096. return 0;
  7097. }
  7098. static int __devinit phy_record(struct niu_parent *parent,
  7099. struct phy_probe_info *p,
  7100. int dev_id_1, int dev_id_2, u8 phy_port,
  7101. int type)
  7102. {
  7103. u32 id = (dev_id_1 << 16) | dev_id_2;
  7104. u8 idx;
  7105. if (dev_id_1 < 0 || dev_id_2 < 0)
  7106. return 0;
  7107. if (type == PHY_TYPE_PMA_PMD || type == PHY_TYPE_PCS) {
  7108. if (((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8704) &&
  7109. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_MRVL88X2011) &&
  7110. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8706))
  7111. return 0;
  7112. } else {
  7113. if ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM5464R)
  7114. return 0;
  7115. }
  7116. pr_info("niu%d: Found PHY %08x type %s at phy_port %u\n",
  7117. parent->index, id,
  7118. type == PHY_TYPE_PMA_PMD ? "PMA/PMD" :
  7119. type == PHY_TYPE_PCS ? "PCS" : "MII",
  7120. phy_port);
  7121. if (p->cur[type] >= NIU_MAX_PORTS) {
  7122. pr_err("Too many PHY ports\n");
  7123. return -EINVAL;
  7124. }
  7125. idx = p->cur[type];
  7126. p->phy_id[type][idx] = id;
  7127. p->phy_port[type][idx] = phy_port;
  7128. p->cur[type] = idx + 1;
  7129. return 0;
  7130. }
  7131. static int __devinit port_has_10g(struct phy_probe_info *p, int port)
  7132. {
  7133. int i;
  7134. for (i = 0; i < p->cur[PHY_TYPE_PMA_PMD]; i++) {
  7135. if (p->phy_port[PHY_TYPE_PMA_PMD][i] == port)
  7136. return 1;
  7137. }
  7138. for (i = 0; i < p->cur[PHY_TYPE_PCS]; i++) {
  7139. if (p->phy_port[PHY_TYPE_PCS][i] == port)
  7140. return 1;
  7141. }
  7142. return 0;
  7143. }
  7144. static int __devinit count_10g_ports(struct phy_probe_info *p, int *lowest)
  7145. {
  7146. int port, cnt;
  7147. cnt = 0;
  7148. *lowest = 32;
  7149. for (port = 8; port < 32; port++) {
  7150. if (port_has_10g(p, port)) {
  7151. if (!cnt)
  7152. *lowest = port;
  7153. cnt++;
  7154. }
  7155. }
  7156. return cnt;
  7157. }
  7158. static int __devinit count_1g_ports(struct phy_probe_info *p, int *lowest)
  7159. {
  7160. *lowest = 32;
  7161. if (p->cur[PHY_TYPE_MII])
  7162. *lowest = p->phy_port[PHY_TYPE_MII][0];
  7163. return p->cur[PHY_TYPE_MII];
  7164. }
  7165. static void __devinit niu_n2_divide_channels(struct niu_parent *parent)
  7166. {
  7167. int num_ports = parent->num_ports;
  7168. int i;
  7169. for (i = 0; i < num_ports; i++) {
  7170. parent->rxchan_per_port[i] = (16 / num_ports);
  7171. parent->txchan_per_port[i] = (16 / num_ports);
  7172. pr_info("niu%d: Port %u [%u RX chans] [%u TX chans]\n",
  7173. parent->index, i,
  7174. parent->rxchan_per_port[i],
  7175. parent->txchan_per_port[i]);
  7176. }
  7177. }
  7178. static void __devinit niu_divide_channels(struct niu_parent *parent,
  7179. int num_10g, int num_1g)
  7180. {
  7181. int num_ports = parent->num_ports;
  7182. int rx_chans_per_10g, rx_chans_per_1g;
  7183. int tx_chans_per_10g, tx_chans_per_1g;
  7184. int i, tot_rx, tot_tx;
  7185. if (!num_10g || !num_1g) {
  7186. rx_chans_per_10g = rx_chans_per_1g =
  7187. (NIU_NUM_RXCHAN / num_ports);
  7188. tx_chans_per_10g = tx_chans_per_1g =
  7189. (NIU_NUM_TXCHAN / num_ports);
  7190. } else {
  7191. rx_chans_per_1g = NIU_NUM_RXCHAN / 8;
  7192. rx_chans_per_10g = (NIU_NUM_RXCHAN -
  7193. (rx_chans_per_1g * num_1g)) /
  7194. num_10g;
  7195. tx_chans_per_1g = NIU_NUM_TXCHAN / 6;
  7196. tx_chans_per_10g = (NIU_NUM_TXCHAN -
  7197. (tx_chans_per_1g * num_1g)) /
  7198. num_10g;
  7199. }
  7200. tot_rx = tot_tx = 0;
  7201. for (i = 0; i < num_ports; i++) {
  7202. int type = phy_decode(parent->port_phy, i);
  7203. if (type == PORT_TYPE_10G) {
  7204. parent->rxchan_per_port[i] = rx_chans_per_10g;
  7205. parent->txchan_per_port[i] = tx_chans_per_10g;
  7206. } else {
  7207. parent->rxchan_per_port[i] = rx_chans_per_1g;
  7208. parent->txchan_per_port[i] = tx_chans_per_1g;
  7209. }
  7210. pr_info("niu%d: Port %u [%u RX chans] [%u TX chans]\n",
  7211. parent->index, i,
  7212. parent->rxchan_per_port[i],
  7213. parent->txchan_per_port[i]);
  7214. tot_rx += parent->rxchan_per_port[i];
  7215. tot_tx += parent->txchan_per_port[i];
  7216. }
  7217. if (tot_rx > NIU_NUM_RXCHAN) {
  7218. pr_err("niu%d: Too many RX channels (%d), resetting to one per port\n",
  7219. parent->index, tot_rx);
  7220. for (i = 0; i < num_ports; i++)
  7221. parent->rxchan_per_port[i] = 1;
  7222. }
  7223. if (tot_tx > NIU_NUM_TXCHAN) {
  7224. pr_err("niu%d: Too many TX channels (%d), resetting to one per port\n",
  7225. parent->index, tot_tx);
  7226. for (i = 0; i < num_ports; i++)
  7227. parent->txchan_per_port[i] = 1;
  7228. }
  7229. if (tot_rx < NIU_NUM_RXCHAN || tot_tx < NIU_NUM_TXCHAN) {
  7230. pr_warning("niu%d: Driver bug, wasted channels, RX[%d] TX[%d]\n",
  7231. parent->index, tot_rx, tot_tx);
  7232. }
  7233. }
  7234. static void __devinit niu_divide_rdc_groups(struct niu_parent *parent,
  7235. int num_10g, int num_1g)
  7236. {
  7237. int i, num_ports = parent->num_ports;
  7238. int rdc_group, rdc_groups_per_port;
  7239. int rdc_channel_base;
  7240. rdc_group = 0;
  7241. rdc_groups_per_port = NIU_NUM_RDC_TABLES / num_ports;
  7242. rdc_channel_base = 0;
  7243. for (i = 0; i < num_ports; i++) {
  7244. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[i];
  7245. int grp, num_channels = parent->rxchan_per_port[i];
  7246. int this_channel_offset;
  7247. tp->first_table_num = rdc_group;
  7248. tp->num_tables = rdc_groups_per_port;
  7249. this_channel_offset = 0;
  7250. for (grp = 0; grp < tp->num_tables; grp++) {
  7251. struct rdc_table *rt = &tp->tables[grp];
  7252. int slot;
  7253. pr_info("niu%d: Port %d RDC tbl(%d) [ ",
  7254. parent->index, i, tp->first_table_num + grp);
  7255. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++) {
  7256. rt->rxdma_channel[slot] =
  7257. rdc_channel_base + this_channel_offset;
  7258. pr_cont("%d ", rt->rxdma_channel[slot]);
  7259. if (++this_channel_offset == num_channels)
  7260. this_channel_offset = 0;
  7261. }
  7262. pr_cont("]\n");
  7263. }
  7264. parent->rdc_default[i] = rdc_channel_base;
  7265. rdc_channel_base += num_channels;
  7266. rdc_group += rdc_groups_per_port;
  7267. }
  7268. }
  7269. static int __devinit fill_phy_probe_info(struct niu *np,
  7270. struct niu_parent *parent,
  7271. struct phy_probe_info *info)
  7272. {
  7273. unsigned long flags;
  7274. int port, err;
  7275. memset(info, 0, sizeof(*info));
  7276. /* Port 0 to 7 are reserved for onboard Serdes, probe the rest. */
  7277. niu_lock_parent(np, flags);
  7278. err = 0;
  7279. for (port = 8; port < 32; port++) {
  7280. int dev_id_1, dev_id_2;
  7281. dev_id_1 = mdio_read(np, port,
  7282. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID1);
  7283. dev_id_2 = mdio_read(np, port,
  7284. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID2);
  7285. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7286. PHY_TYPE_PMA_PMD);
  7287. if (err)
  7288. break;
  7289. dev_id_1 = mdio_read(np, port,
  7290. NIU_PCS_DEV_ADDR, MII_PHYSID1);
  7291. dev_id_2 = mdio_read(np, port,
  7292. NIU_PCS_DEV_ADDR, MII_PHYSID2);
  7293. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7294. PHY_TYPE_PCS);
  7295. if (err)
  7296. break;
  7297. dev_id_1 = mii_read(np, port, MII_PHYSID1);
  7298. dev_id_2 = mii_read(np, port, MII_PHYSID2);
  7299. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7300. PHY_TYPE_MII);
  7301. if (err)
  7302. break;
  7303. }
  7304. niu_unlock_parent(np, flags);
  7305. return err;
  7306. }
  7307. static int __devinit walk_phys(struct niu *np, struct niu_parent *parent)
  7308. {
  7309. struct phy_probe_info *info = &parent->phy_probe_info;
  7310. int lowest_10g, lowest_1g;
  7311. int num_10g, num_1g;
  7312. u32 val;
  7313. int err;
  7314. num_10g = num_1g = 0;
  7315. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  7316. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  7317. num_10g = 0;
  7318. num_1g = 2;
  7319. parent->plat_type = PLAT_TYPE_ATCA_CP3220;
  7320. parent->num_ports = 4;
  7321. val = (phy_encode(PORT_TYPE_1G, 0) |
  7322. phy_encode(PORT_TYPE_1G, 1) |
  7323. phy_encode(PORT_TYPE_1G, 2) |
  7324. phy_encode(PORT_TYPE_1G, 3));
  7325. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  7326. num_10g = 2;
  7327. num_1g = 0;
  7328. parent->num_ports = 2;
  7329. val = (phy_encode(PORT_TYPE_10G, 0) |
  7330. phy_encode(PORT_TYPE_10G, 1));
  7331. } else if ((np->flags & NIU_FLAGS_XCVR_SERDES) &&
  7332. (parent->plat_type == PLAT_TYPE_NIU)) {
  7333. /* this is the Monza case */
  7334. if (np->flags & NIU_FLAGS_10G) {
  7335. val = (phy_encode(PORT_TYPE_10G, 0) |
  7336. phy_encode(PORT_TYPE_10G, 1));
  7337. } else {
  7338. val = (phy_encode(PORT_TYPE_1G, 0) |
  7339. phy_encode(PORT_TYPE_1G, 1));
  7340. }
  7341. } else {
  7342. err = fill_phy_probe_info(np, parent, info);
  7343. if (err)
  7344. return err;
  7345. num_10g = count_10g_ports(info, &lowest_10g);
  7346. num_1g = count_1g_ports(info, &lowest_1g);
  7347. switch ((num_10g << 4) | num_1g) {
  7348. case 0x24:
  7349. if (lowest_1g == 10)
  7350. parent->plat_type = PLAT_TYPE_VF_P0;
  7351. else if (lowest_1g == 26)
  7352. parent->plat_type = PLAT_TYPE_VF_P1;
  7353. else
  7354. goto unknown_vg_1g_port;
  7355. /* fallthru */
  7356. case 0x22:
  7357. val = (phy_encode(PORT_TYPE_10G, 0) |
  7358. phy_encode(PORT_TYPE_10G, 1) |
  7359. phy_encode(PORT_TYPE_1G, 2) |
  7360. phy_encode(PORT_TYPE_1G, 3));
  7361. break;
  7362. case 0x20:
  7363. val = (phy_encode(PORT_TYPE_10G, 0) |
  7364. phy_encode(PORT_TYPE_10G, 1));
  7365. break;
  7366. case 0x10:
  7367. val = phy_encode(PORT_TYPE_10G, np->port);
  7368. break;
  7369. case 0x14:
  7370. if (lowest_1g == 10)
  7371. parent->plat_type = PLAT_TYPE_VF_P0;
  7372. else if (lowest_1g == 26)
  7373. parent->plat_type = PLAT_TYPE_VF_P1;
  7374. else
  7375. goto unknown_vg_1g_port;
  7376. /* fallthru */
  7377. case 0x13:
  7378. if ((lowest_10g & 0x7) == 0)
  7379. val = (phy_encode(PORT_TYPE_10G, 0) |
  7380. phy_encode(PORT_TYPE_1G, 1) |
  7381. phy_encode(PORT_TYPE_1G, 2) |
  7382. phy_encode(PORT_TYPE_1G, 3));
  7383. else
  7384. val = (phy_encode(PORT_TYPE_1G, 0) |
  7385. phy_encode(PORT_TYPE_10G, 1) |
  7386. phy_encode(PORT_TYPE_1G, 2) |
  7387. phy_encode(PORT_TYPE_1G, 3));
  7388. break;
  7389. case 0x04:
  7390. if (lowest_1g == 10)
  7391. parent->plat_type = PLAT_TYPE_VF_P0;
  7392. else if (lowest_1g == 26)
  7393. parent->plat_type = PLAT_TYPE_VF_P1;
  7394. else
  7395. goto unknown_vg_1g_port;
  7396. val = (phy_encode(PORT_TYPE_1G, 0) |
  7397. phy_encode(PORT_TYPE_1G, 1) |
  7398. phy_encode(PORT_TYPE_1G, 2) |
  7399. phy_encode(PORT_TYPE_1G, 3));
  7400. break;
  7401. default:
  7402. pr_err("Unsupported port config 10G[%d] 1G[%d]\n",
  7403. num_10g, num_1g);
  7404. return -EINVAL;
  7405. }
  7406. }
  7407. parent->port_phy = val;
  7408. if (parent->plat_type == PLAT_TYPE_NIU)
  7409. niu_n2_divide_channels(parent);
  7410. else
  7411. niu_divide_channels(parent, num_10g, num_1g);
  7412. niu_divide_rdc_groups(parent, num_10g, num_1g);
  7413. return 0;
  7414. unknown_vg_1g_port:
  7415. pr_err("Cannot identify platform type, 1gport=%d\n", lowest_1g);
  7416. return -EINVAL;
  7417. }
  7418. static int __devinit niu_probe_ports(struct niu *np)
  7419. {
  7420. struct niu_parent *parent = np->parent;
  7421. int err, i;
  7422. if (parent->port_phy == PORT_PHY_UNKNOWN) {
  7423. err = walk_phys(np, parent);
  7424. if (err)
  7425. return err;
  7426. niu_set_ldg_timer_res(np, 2);
  7427. for (i = 0; i <= LDN_MAX; i++)
  7428. niu_ldn_irq_enable(np, i, 0);
  7429. }
  7430. if (parent->port_phy == PORT_PHY_INVALID)
  7431. return -EINVAL;
  7432. return 0;
  7433. }
  7434. static int __devinit niu_classifier_swstate_init(struct niu *np)
  7435. {
  7436. struct niu_classifier *cp = &np->clas;
  7437. cp->tcam_top = (u16) np->port;
  7438. cp->tcam_sz = np->parent->tcam_num_entries / np->parent->num_ports;
  7439. cp->h1_init = 0xffffffff;
  7440. cp->h2_init = 0xffff;
  7441. return fflp_early_init(np);
  7442. }
  7443. static void __devinit niu_link_config_init(struct niu *np)
  7444. {
  7445. struct niu_link_config *lp = &np->link_config;
  7446. lp->advertising = (ADVERTISED_10baseT_Half |
  7447. ADVERTISED_10baseT_Full |
  7448. ADVERTISED_100baseT_Half |
  7449. ADVERTISED_100baseT_Full |
  7450. ADVERTISED_1000baseT_Half |
  7451. ADVERTISED_1000baseT_Full |
  7452. ADVERTISED_10000baseT_Full |
  7453. ADVERTISED_Autoneg);
  7454. lp->speed = lp->active_speed = SPEED_INVALID;
  7455. lp->duplex = DUPLEX_FULL;
  7456. lp->active_duplex = DUPLEX_INVALID;
  7457. lp->autoneg = 1;
  7458. #if 0
  7459. lp->loopback_mode = LOOPBACK_MAC;
  7460. lp->active_speed = SPEED_10000;
  7461. lp->active_duplex = DUPLEX_FULL;
  7462. #else
  7463. lp->loopback_mode = LOOPBACK_DISABLED;
  7464. #endif
  7465. }
  7466. static int __devinit niu_init_mac_ipp_pcs_base(struct niu *np)
  7467. {
  7468. switch (np->port) {
  7469. case 0:
  7470. np->mac_regs = np->regs + XMAC_PORT0_OFF;
  7471. np->ipp_off = 0x00000;
  7472. np->pcs_off = 0x04000;
  7473. np->xpcs_off = 0x02000;
  7474. break;
  7475. case 1:
  7476. np->mac_regs = np->regs + XMAC_PORT1_OFF;
  7477. np->ipp_off = 0x08000;
  7478. np->pcs_off = 0x0a000;
  7479. np->xpcs_off = 0x08000;
  7480. break;
  7481. case 2:
  7482. np->mac_regs = np->regs + BMAC_PORT2_OFF;
  7483. np->ipp_off = 0x04000;
  7484. np->pcs_off = 0x0e000;
  7485. np->xpcs_off = ~0UL;
  7486. break;
  7487. case 3:
  7488. np->mac_regs = np->regs + BMAC_PORT3_OFF;
  7489. np->ipp_off = 0x0c000;
  7490. np->pcs_off = 0x12000;
  7491. np->xpcs_off = ~0UL;
  7492. break;
  7493. default:
  7494. dev_err(np->device, "Port %u is invalid, cannot compute MAC block offset\n", np->port);
  7495. return -EINVAL;
  7496. }
  7497. return 0;
  7498. }
  7499. static void __devinit niu_try_msix(struct niu *np, u8 *ldg_num_map)
  7500. {
  7501. struct msix_entry msi_vec[NIU_NUM_LDG];
  7502. struct niu_parent *parent = np->parent;
  7503. struct pci_dev *pdev = np->pdev;
  7504. int i, num_irqs, err;
  7505. u8 first_ldg;
  7506. first_ldg = (NIU_NUM_LDG / parent->num_ports) * np->port;
  7507. for (i = 0; i < (NIU_NUM_LDG / parent->num_ports); i++)
  7508. ldg_num_map[i] = first_ldg + i;
  7509. num_irqs = (parent->rxchan_per_port[np->port] +
  7510. parent->txchan_per_port[np->port] +
  7511. (np->port == 0 ? 3 : 1));
  7512. BUG_ON(num_irqs > (NIU_NUM_LDG / parent->num_ports));
  7513. retry:
  7514. for (i = 0; i < num_irqs; i++) {
  7515. msi_vec[i].vector = 0;
  7516. msi_vec[i].entry = i;
  7517. }
  7518. err = pci_enable_msix(pdev, msi_vec, num_irqs);
  7519. if (err < 0) {
  7520. np->flags &= ~NIU_FLAGS_MSIX;
  7521. return;
  7522. }
  7523. if (err > 0) {
  7524. num_irqs = err;
  7525. goto retry;
  7526. }
  7527. np->flags |= NIU_FLAGS_MSIX;
  7528. for (i = 0; i < num_irqs; i++)
  7529. np->ldg[i].irq = msi_vec[i].vector;
  7530. np->num_ldg = num_irqs;
  7531. }
  7532. static int __devinit niu_n2_irq_init(struct niu *np, u8 *ldg_num_map)
  7533. {
  7534. #ifdef CONFIG_SPARC64
  7535. struct platform_device *op = np->op;
  7536. const u32 *int_prop;
  7537. int i;
  7538. int_prop = of_get_property(op->dev.of_node, "interrupts", NULL);
  7539. if (!int_prop)
  7540. return -ENODEV;
  7541. for (i = 0; i < op->archdata.num_irqs; i++) {
  7542. ldg_num_map[i] = int_prop[i];
  7543. np->ldg[i].irq = op->archdata.irqs[i];
  7544. }
  7545. np->num_ldg = op->archdata.num_irqs;
  7546. return 0;
  7547. #else
  7548. return -EINVAL;
  7549. #endif
  7550. }
  7551. static int __devinit niu_ldg_init(struct niu *np)
  7552. {
  7553. struct niu_parent *parent = np->parent;
  7554. u8 ldg_num_map[NIU_NUM_LDG];
  7555. int first_chan, num_chan;
  7556. int i, err, ldg_rotor;
  7557. u8 port;
  7558. np->num_ldg = 1;
  7559. np->ldg[0].irq = np->dev->irq;
  7560. if (parent->plat_type == PLAT_TYPE_NIU) {
  7561. err = niu_n2_irq_init(np, ldg_num_map);
  7562. if (err)
  7563. return err;
  7564. } else
  7565. niu_try_msix(np, ldg_num_map);
  7566. port = np->port;
  7567. for (i = 0; i < np->num_ldg; i++) {
  7568. struct niu_ldg *lp = &np->ldg[i];
  7569. netif_napi_add(np->dev, &lp->napi, niu_poll, 64);
  7570. lp->np = np;
  7571. lp->ldg_num = ldg_num_map[i];
  7572. lp->timer = 2; /* XXX */
  7573. /* On N2 NIU the firmware has setup the SID mappings so they go
  7574. * to the correct values that will route the LDG to the proper
  7575. * interrupt in the NCU interrupt table.
  7576. */
  7577. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  7578. err = niu_set_ldg_sid(np, lp->ldg_num, port, i);
  7579. if (err)
  7580. return err;
  7581. }
  7582. }
  7583. /* We adopt the LDG assignment ordering used by the N2 NIU
  7584. * 'interrupt' properties because that simplifies a lot of
  7585. * things. This ordering is:
  7586. *
  7587. * MAC
  7588. * MIF (if port zero)
  7589. * SYSERR (if port zero)
  7590. * RX channels
  7591. * TX channels
  7592. */
  7593. ldg_rotor = 0;
  7594. err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor],
  7595. LDN_MAC(port));
  7596. if (err)
  7597. return err;
  7598. ldg_rotor++;
  7599. if (ldg_rotor == np->num_ldg)
  7600. ldg_rotor = 0;
  7601. if (port == 0) {
  7602. err = niu_ldg_assign_ldn(np, parent,
  7603. ldg_num_map[ldg_rotor],
  7604. LDN_MIF);
  7605. if (err)
  7606. return err;
  7607. ldg_rotor++;
  7608. if (ldg_rotor == np->num_ldg)
  7609. ldg_rotor = 0;
  7610. err = niu_ldg_assign_ldn(np, parent,
  7611. ldg_num_map[ldg_rotor],
  7612. LDN_DEVICE_ERROR);
  7613. if (err)
  7614. return err;
  7615. ldg_rotor++;
  7616. if (ldg_rotor == np->num_ldg)
  7617. ldg_rotor = 0;
  7618. }
  7619. first_chan = 0;
  7620. for (i = 0; i < port; i++)
  7621. first_chan += parent->rxchan_per_port[i];
  7622. num_chan = parent->rxchan_per_port[port];
  7623. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7624. err = niu_ldg_assign_ldn(np, parent,
  7625. ldg_num_map[ldg_rotor],
  7626. LDN_RXDMA(i));
  7627. if (err)
  7628. return err;
  7629. ldg_rotor++;
  7630. if (ldg_rotor == np->num_ldg)
  7631. ldg_rotor = 0;
  7632. }
  7633. first_chan = 0;
  7634. for (i = 0; i < port; i++)
  7635. first_chan += parent->txchan_per_port[i];
  7636. num_chan = parent->txchan_per_port[port];
  7637. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7638. err = niu_ldg_assign_ldn(np, parent,
  7639. ldg_num_map[ldg_rotor],
  7640. LDN_TXDMA(i));
  7641. if (err)
  7642. return err;
  7643. ldg_rotor++;
  7644. if (ldg_rotor == np->num_ldg)
  7645. ldg_rotor = 0;
  7646. }
  7647. return 0;
  7648. }
  7649. static void __devexit niu_ldg_free(struct niu *np)
  7650. {
  7651. if (np->flags & NIU_FLAGS_MSIX)
  7652. pci_disable_msix(np->pdev);
  7653. }
  7654. static int __devinit niu_get_of_props(struct niu *np)
  7655. {
  7656. #ifdef CONFIG_SPARC64
  7657. struct net_device *dev = np->dev;
  7658. struct device_node *dp;
  7659. const char *phy_type;
  7660. const u8 *mac_addr;
  7661. const char *model;
  7662. int prop_len;
  7663. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7664. dp = np->op->dev.of_node;
  7665. else
  7666. dp = pci_device_to_OF_node(np->pdev);
  7667. phy_type = of_get_property(dp, "phy-type", &prop_len);
  7668. if (!phy_type) {
  7669. netdev_err(dev, "%s: OF node lacks phy-type property\n",
  7670. dp->full_name);
  7671. return -EINVAL;
  7672. }
  7673. if (!strcmp(phy_type, "none"))
  7674. return -ENODEV;
  7675. strcpy(np->vpd.phy_type, phy_type);
  7676. if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  7677. netdev_err(dev, "%s: Illegal phy string [%s]\n",
  7678. dp->full_name, np->vpd.phy_type);
  7679. return -EINVAL;
  7680. }
  7681. mac_addr = of_get_property(dp, "local-mac-address", &prop_len);
  7682. if (!mac_addr) {
  7683. netdev_err(dev, "%s: OF node lacks local-mac-address property\n",
  7684. dp->full_name);
  7685. return -EINVAL;
  7686. }
  7687. if (prop_len != dev->addr_len) {
  7688. netdev_err(dev, "%s: OF MAC address prop len (%d) is wrong\n",
  7689. dp->full_name, prop_len);
  7690. }
  7691. memcpy(dev->perm_addr, mac_addr, dev->addr_len);
  7692. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  7693. netdev_err(dev, "%s: OF MAC address is invalid\n",
  7694. dp->full_name);
  7695. netdev_err(dev, "%s: [ %pM ]\n", dp->full_name, dev->perm_addr);
  7696. return -EINVAL;
  7697. }
  7698. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  7699. model = of_get_property(dp, "model", &prop_len);
  7700. if (model)
  7701. strcpy(np->vpd.model, model);
  7702. if (of_find_property(dp, "hot-swappable-phy", &prop_len)) {
  7703. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  7704. NIU_FLAGS_HOTPLUG_PHY);
  7705. }
  7706. return 0;
  7707. #else
  7708. return -EINVAL;
  7709. #endif
  7710. }
  7711. static int __devinit niu_get_invariants(struct niu *np)
  7712. {
  7713. int err, have_props;
  7714. u32 offset;
  7715. err = niu_get_of_props(np);
  7716. if (err == -ENODEV)
  7717. return err;
  7718. have_props = !err;
  7719. err = niu_init_mac_ipp_pcs_base(np);
  7720. if (err)
  7721. return err;
  7722. if (have_props) {
  7723. err = niu_get_and_validate_port(np);
  7724. if (err)
  7725. return err;
  7726. } else {
  7727. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7728. return -EINVAL;
  7729. nw64(ESPC_PIO_EN, ESPC_PIO_EN_ENABLE);
  7730. offset = niu_pci_vpd_offset(np);
  7731. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7732. "%s() VPD offset [%08x]\n", __func__, offset);
  7733. if (offset)
  7734. niu_pci_vpd_fetch(np, offset);
  7735. nw64(ESPC_PIO_EN, 0);
  7736. if (np->flags & NIU_FLAGS_VPD_VALID) {
  7737. niu_pci_vpd_validate(np);
  7738. err = niu_get_and_validate_port(np);
  7739. if (err)
  7740. return err;
  7741. }
  7742. if (!(np->flags & NIU_FLAGS_VPD_VALID)) {
  7743. err = niu_get_and_validate_port(np);
  7744. if (err)
  7745. return err;
  7746. err = niu_pci_probe_sprom(np);
  7747. if (err)
  7748. return err;
  7749. }
  7750. }
  7751. err = niu_probe_ports(np);
  7752. if (err)
  7753. return err;
  7754. niu_ldg_init(np);
  7755. niu_classifier_swstate_init(np);
  7756. niu_link_config_init(np);
  7757. err = niu_determine_phy_disposition(np);
  7758. if (!err)
  7759. err = niu_init_link(np);
  7760. return err;
  7761. }
  7762. static LIST_HEAD(niu_parent_list);
  7763. static DEFINE_MUTEX(niu_parent_lock);
  7764. static int niu_parent_index;
  7765. static ssize_t show_port_phy(struct device *dev,
  7766. struct device_attribute *attr, char *buf)
  7767. {
  7768. struct platform_device *plat_dev = to_platform_device(dev);
  7769. struct niu_parent *p = plat_dev->dev.platform_data;
  7770. u32 port_phy = p->port_phy;
  7771. char *orig_buf = buf;
  7772. int i;
  7773. if (port_phy == PORT_PHY_UNKNOWN ||
  7774. port_phy == PORT_PHY_INVALID)
  7775. return 0;
  7776. for (i = 0; i < p->num_ports; i++) {
  7777. const char *type_str;
  7778. int type;
  7779. type = phy_decode(port_phy, i);
  7780. if (type == PORT_TYPE_10G)
  7781. type_str = "10G";
  7782. else
  7783. type_str = "1G";
  7784. buf += sprintf(buf,
  7785. (i == 0) ? "%s" : " %s",
  7786. type_str);
  7787. }
  7788. buf += sprintf(buf, "\n");
  7789. return buf - orig_buf;
  7790. }
  7791. static ssize_t show_plat_type(struct device *dev,
  7792. struct device_attribute *attr, char *buf)
  7793. {
  7794. struct platform_device *plat_dev = to_platform_device(dev);
  7795. struct niu_parent *p = plat_dev->dev.platform_data;
  7796. const char *type_str;
  7797. switch (p->plat_type) {
  7798. case PLAT_TYPE_ATLAS:
  7799. type_str = "atlas";
  7800. break;
  7801. case PLAT_TYPE_NIU:
  7802. type_str = "niu";
  7803. break;
  7804. case PLAT_TYPE_VF_P0:
  7805. type_str = "vf_p0";
  7806. break;
  7807. case PLAT_TYPE_VF_P1:
  7808. type_str = "vf_p1";
  7809. break;
  7810. default:
  7811. type_str = "unknown";
  7812. break;
  7813. }
  7814. return sprintf(buf, "%s\n", type_str);
  7815. }
  7816. static ssize_t __show_chan_per_port(struct device *dev,
  7817. struct device_attribute *attr, char *buf,
  7818. int rx)
  7819. {
  7820. struct platform_device *plat_dev = to_platform_device(dev);
  7821. struct niu_parent *p = plat_dev->dev.platform_data;
  7822. char *orig_buf = buf;
  7823. u8 *arr;
  7824. int i;
  7825. arr = (rx ? p->rxchan_per_port : p->txchan_per_port);
  7826. for (i = 0; i < p->num_ports; i++) {
  7827. buf += sprintf(buf,
  7828. (i == 0) ? "%d" : " %d",
  7829. arr[i]);
  7830. }
  7831. buf += sprintf(buf, "\n");
  7832. return buf - orig_buf;
  7833. }
  7834. static ssize_t show_rxchan_per_port(struct device *dev,
  7835. struct device_attribute *attr, char *buf)
  7836. {
  7837. return __show_chan_per_port(dev, attr, buf, 1);
  7838. }
  7839. static ssize_t show_txchan_per_port(struct device *dev,
  7840. struct device_attribute *attr, char *buf)
  7841. {
  7842. return __show_chan_per_port(dev, attr, buf, 1);
  7843. }
  7844. static ssize_t show_num_ports(struct device *dev,
  7845. struct device_attribute *attr, char *buf)
  7846. {
  7847. struct platform_device *plat_dev = to_platform_device(dev);
  7848. struct niu_parent *p = plat_dev->dev.platform_data;
  7849. return sprintf(buf, "%d\n", p->num_ports);
  7850. }
  7851. static struct device_attribute niu_parent_attributes[] = {
  7852. __ATTR(port_phy, S_IRUGO, show_port_phy, NULL),
  7853. __ATTR(plat_type, S_IRUGO, show_plat_type, NULL),
  7854. __ATTR(rxchan_per_port, S_IRUGO, show_rxchan_per_port, NULL),
  7855. __ATTR(txchan_per_port, S_IRUGO, show_txchan_per_port, NULL),
  7856. __ATTR(num_ports, S_IRUGO, show_num_ports, NULL),
  7857. {}
  7858. };
  7859. static struct niu_parent * __devinit niu_new_parent(struct niu *np,
  7860. union niu_parent_id *id,
  7861. u8 ptype)
  7862. {
  7863. struct platform_device *plat_dev;
  7864. struct niu_parent *p;
  7865. int i;
  7866. plat_dev = platform_device_register_simple("niu-board", niu_parent_index,
  7867. NULL, 0);
  7868. if (IS_ERR(plat_dev))
  7869. return NULL;
  7870. for (i = 0; attr_name(niu_parent_attributes[i]); i++) {
  7871. int err = device_create_file(&plat_dev->dev,
  7872. &niu_parent_attributes[i]);
  7873. if (err)
  7874. goto fail_unregister;
  7875. }
  7876. p = kzalloc(sizeof(*p), GFP_KERNEL);
  7877. if (!p)
  7878. goto fail_unregister;
  7879. p->index = niu_parent_index++;
  7880. plat_dev->dev.platform_data = p;
  7881. p->plat_dev = plat_dev;
  7882. memcpy(&p->id, id, sizeof(*id));
  7883. p->plat_type = ptype;
  7884. INIT_LIST_HEAD(&p->list);
  7885. atomic_set(&p->refcnt, 0);
  7886. list_add(&p->list, &niu_parent_list);
  7887. spin_lock_init(&p->lock);
  7888. p->rxdma_clock_divider = 7500;
  7889. p->tcam_num_entries = NIU_PCI_TCAM_ENTRIES;
  7890. if (p->plat_type == PLAT_TYPE_NIU)
  7891. p->tcam_num_entries = NIU_NONPCI_TCAM_ENTRIES;
  7892. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  7893. int index = i - CLASS_CODE_USER_PROG1;
  7894. p->tcam_key[index] = TCAM_KEY_TSEL;
  7895. p->flow_key[index] = (FLOW_KEY_IPSA |
  7896. FLOW_KEY_IPDA |
  7897. FLOW_KEY_PROTO |
  7898. (FLOW_KEY_L4_BYTE12 <<
  7899. FLOW_KEY_L4_0_SHIFT) |
  7900. (FLOW_KEY_L4_BYTE12 <<
  7901. FLOW_KEY_L4_1_SHIFT));
  7902. }
  7903. for (i = 0; i < LDN_MAX + 1; i++)
  7904. p->ldg_map[i] = LDG_INVALID;
  7905. return p;
  7906. fail_unregister:
  7907. platform_device_unregister(plat_dev);
  7908. return NULL;
  7909. }
  7910. static struct niu_parent * __devinit niu_get_parent(struct niu *np,
  7911. union niu_parent_id *id,
  7912. u8 ptype)
  7913. {
  7914. struct niu_parent *p, *tmp;
  7915. int port = np->port;
  7916. mutex_lock(&niu_parent_lock);
  7917. p = NULL;
  7918. list_for_each_entry(tmp, &niu_parent_list, list) {
  7919. if (!memcmp(id, &tmp->id, sizeof(*id))) {
  7920. p = tmp;
  7921. break;
  7922. }
  7923. }
  7924. if (!p)
  7925. p = niu_new_parent(np, id, ptype);
  7926. if (p) {
  7927. char port_name[6];
  7928. int err;
  7929. sprintf(port_name, "port%d", port);
  7930. err = sysfs_create_link(&p->plat_dev->dev.kobj,
  7931. &np->device->kobj,
  7932. port_name);
  7933. if (!err) {
  7934. p->ports[port] = np;
  7935. atomic_inc(&p->refcnt);
  7936. }
  7937. }
  7938. mutex_unlock(&niu_parent_lock);
  7939. return p;
  7940. }
  7941. static void niu_put_parent(struct niu *np)
  7942. {
  7943. struct niu_parent *p = np->parent;
  7944. u8 port = np->port;
  7945. char port_name[6];
  7946. BUG_ON(!p || p->ports[port] != np);
  7947. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7948. "%s() port[%u]\n", __func__, port);
  7949. sprintf(port_name, "port%d", port);
  7950. mutex_lock(&niu_parent_lock);
  7951. sysfs_remove_link(&p->plat_dev->dev.kobj, port_name);
  7952. p->ports[port] = NULL;
  7953. np->parent = NULL;
  7954. if (atomic_dec_and_test(&p->refcnt)) {
  7955. list_del(&p->list);
  7956. platform_device_unregister(p->plat_dev);
  7957. }
  7958. mutex_unlock(&niu_parent_lock);
  7959. }
  7960. static void *niu_pci_alloc_coherent(struct device *dev, size_t size,
  7961. u64 *handle, gfp_t flag)
  7962. {
  7963. dma_addr_t dh;
  7964. void *ret;
  7965. ret = dma_alloc_coherent(dev, size, &dh, flag);
  7966. if (ret)
  7967. *handle = dh;
  7968. return ret;
  7969. }
  7970. static void niu_pci_free_coherent(struct device *dev, size_t size,
  7971. void *cpu_addr, u64 handle)
  7972. {
  7973. dma_free_coherent(dev, size, cpu_addr, handle);
  7974. }
  7975. static u64 niu_pci_map_page(struct device *dev, struct page *page,
  7976. unsigned long offset, size_t size,
  7977. enum dma_data_direction direction)
  7978. {
  7979. return dma_map_page(dev, page, offset, size, direction);
  7980. }
  7981. static void niu_pci_unmap_page(struct device *dev, u64 dma_address,
  7982. size_t size, enum dma_data_direction direction)
  7983. {
  7984. dma_unmap_page(dev, dma_address, size, direction);
  7985. }
  7986. static u64 niu_pci_map_single(struct device *dev, void *cpu_addr,
  7987. size_t size,
  7988. enum dma_data_direction direction)
  7989. {
  7990. return dma_map_single(dev, cpu_addr, size, direction);
  7991. }
  7992. static void niu_pci_unmap_single(struct device *dev, u64 dma_address,
  7993. size_t size,
  7994. enum dma_data_direction direction)
  7995. {
  7996. dma_unmap_single(dev, dma_address, size, direction);
  7997. }
  7998. static const struct niu_ops niu_pci_ops = {
  7999. .alloc_coherent = niu_pci_alloc_coherent,
  8000. .free_coherent = niu_pci_free_coherent,
  8001. .map_page = niu_pci_map_page,
  8002. .unmap_page = niu_pci_unmap_page,
  8003. .map_single = niu_pci_map_single,
  8004. .unmap_single = niu_pci_unmap_single,
  8005. };
  8006. static void __devinit niu_driver_version(void)
  8007. {
  8008. static int niu_version_printed;
  8009. if (niu_version_printed++ == 0)
  8010. pr_info("%s", version);
  8011. }
  8012. static struct net_device * __devinit niu_alloc_and_init(
  8013. struct device *gen_dev, struct pci_dev *pdev,
  8014. struct platform_device *op, const struct niu_ops *ops,
  8015. u8 port)
  8016. {
  8017. struct net_device *dev;
  8018. struct niu *np;
  8019. dev = alloc_etherdev_mq(sizeof(struct niu), NIU_NUM_TXCHAN);
  8020. if (!dev) {
  8021. dev_err(gen_dev, "Etherdev alloc failed, aborting\n");
  8022. return NULL;
  8023. }
  8024. SET_NETDEV_DEV(dev, gen_dev);
  8025. np = netdev_priv(dev);
  8026. np->dev = dev;
  8027. np->pdev = pdev;
  8028. np->op = op;
  8029. np->device = gen_dev;
  8030. np->ops = ops;
  8031. np->msg_enable = niu_debug;
  8032. spin_lock_init(&np->lock);
  8033. INIT_WORK(&np->reset_task, niu_reset_task);
  8034. np->port = port;
  8035. return dev;
  8036. }
  8037. static const struct net_device_ops niu_netdev_ops = {
  8038. .ndo_open = niu_open,
  8039. .ndo_stop = niu_close,
  8040. .ndo_start_xmit = niu_start_xmit,
  8041. .ndo_get_stats64 = niu_get_stats,
  8042. .ndo_set_rx_mode = niu_set_rx_mode,
  8043. .ndo_validate_addr = eth_validate_addr,
  8044. .ndo_set_mac_address = niu_set_mac_addr,
  8045. .ndo_do_ioctl = niu_ioctl,
  8046. .ndo_tx_timeout = niu_tx_timeout,
  8047. .ndo_change_mtu = niu_change_mtu,
  8048. };
  8049. static void __devinit niu_assign_netdev_ops(struct net_device *dev)
  8050. {
  8051. dev->netdev_ops = &niu_netdev_ops;
  8052. dev->ethtool_ops = &niu_ethtool_ops;
  8053. dev->watchdog_timeo = NIU_TX_TIMEOUT;
  8054. }
  8055. static void __devinit niu_device_announce(struct niu *np)
  8056. {
  8057. struct net_device *dev = np->dev;
  8058. pr_info("%s: NIU Ethernet %pM\n", dev->name, dev->dev_addr);
  8059. if (np->parent->plat_type == PLAT_TYPE_ATCA_CP3220) {
  8060. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8061. dev->name,
  8062. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8063. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8064. (np->flags & NIU_FLAGS_FIBER ? "RGMII FIBER" : "SERDES"),
  8065. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8066. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8067. np->vpd.phy_type);
  8068. } else {
  8069. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8070. dev->name,
  8071. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8072. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8073. (np->flags & NIU_FLAGS_FIBER ? "FIBER" :
  8074. (np->flags & NIU_FLAGS_XCVR_SERDES ? "SERDES" :
  8075. "COPPER")),
  8076. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8077. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8078. np->vpd.phy_type);
  8079. }
  8080. }
  8081. static void __devinit niu_set_basic_features(struct net_device *dev)
  8082. {
  8083. dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXHASH;
  8084. dev->features |= dev->hw_features | NETIF_F_RXCSUM;
  8085. }
  8086. static int __devinit niu_pci_init_one(struct pci_dev *pdev,
  8087. const struct pci_device_id *ent)
  8088. {
  8089. union niu_parent_id parent_id;
  8090. struct net_device *dev;
  8091. struct niu *np;
  8092. int err, pos;
  8093. u64 dma_mask;
  8094. u16 val16;
  8095. niu_driver_version();
  8096. err = pci_enable_device(pdev);
  8097. if (err) {
  8098. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  8099. return err;
  8100. }
  8101. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM) ||
  8102. !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
  8103. dev_err(&pdev->dev, "Cannot find proper PCI device base addresses, aborting\n");
  8104. err = -ENODEV;
  8105. goto err_out_disable_pdev;
  8106. }
  8107. err = pci_request_regions(pdev, DRV_MODULE_NAME);
  8108. if (err) {
  8109. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  8110. goto err_out_disable_pdev;
  8111. }
  8112. pos = pci_pcie_cap(pdev);
  8113. if (pos <= 0) {
  8114. dev_err(&pdev->dev, "Cannot find PCI Express capability, aborting\n");
  8115. goto err_out_free_res;
  8116. }
  8117. dev = niu_alloc_and_init(&pdev->dev, pdev, NULL,
  8118. &niu_pci_ops, PCI_FUNC(pdev->devfn));
  8119. if (!dev) {
  8120. err = -ENOMEM;
  8121. goto err_out_free_res;
  8122. }
  8123. np = netdev_priv(dev);
  8124. memset(&parent_id, 0, sizeof(parent_id));
  8125. parent_id.pci.domain = pci_domain_nr(pdev->bus);
  8126. parent_id.pci.bus = pdev->bus->number;
  8127. parent_id.pci.device = PCI_SLOT(pdev->devfn);
  8128. np->parent = niu_get_parent(np, &parent_id,
  8129. PLAT_TYPE_ATLAS);
  8130. if (!np->parent) {
  8131. err = -ENOMEM;
  8132. goto err_out_free_dev;
  8133. }
  8134. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  8135. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  8136. val16 |= (PCI_EXP_DEVCTL_CERE |
  8137. PCI_EXP_DEVCTL_NFERE |
  8138. PCI_EXP_DEVCTL_FERE |
  8139. PCI_EXP_DEVCTL_URRE |
  8140. PCI_EXP_DEVCTL_RELAX_EN);
  8141. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  8142. dma_mask = DMA_BIT_MASK(44);
  8143. err = pci_set_dma_mask(pdev, dma_mask);
  8144. if (!err) {
  8145. dev->features |= NETIF_F_HIGHDMA;
  8146. err = pci_set_consistent_dma_mask(pdev, dma_mask);
  8147. if (err) {
  8148. dev_err(&pdev->dev, "Unable to obtain 44 bit DMA for consistent allocations, aborting\n");
  8149. goto err_out_release_parent;
  8150. }
  8151. }
  8152. if (err || dma_mask == DMA_BIT_MASK(32)) {
  8153. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  8154. if (err) {
  8155. dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
  8156. goto err_out_release_parent;
  8157. }
  8158. }
  8159. niu_set_basic_features(dev);
  8160. dev->priv_flags |= IFF_UNICAST_FLT;
  8161. np->regs = pci_ioremap_bar(pdev, 0);
  8162. if (!np->regs) {
  8163. dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
  8164. err = -ENOMEM;
  8165. goto err_out_release_parent;
  8166. }
  8167. pci_set_master(pdev);
  8168. pci_save_state(pdev);
  8169. dev->irq = pdev->irq;
  8170. niu_assign_netdev_ops(dev);
  8171. err = niu_get_invariants(np);
  8172. if (err) {
  8173. if (err != -ENODEV)
  8174. dev_err(&pdev->dev, "Problem fetching invariants of chip, aborting\n");
  8175. goto err_out_iounmap;
  8176. }
  8177. err = register_netdev(dev);
  8178. if (err) {
  8179. dev_err(&pdev->dev, "Cannot register net device, aborting\n");
  8180. goto err_out_iounmap;
  8181. }
  8182. pci_set_drvdata(pdev, dev);
  8183. niu_device_announce(np);
  8184. return 0;
  8185. err_out_iounmap:
  8186. if (np->regs) {
  8187. iounmap(np->regs);
  8188. np->regs = NULL;
  8189. }
  8190. err_out_release_parent:
  8191. niu_put_parent(np);
  8192. err_out_free_dev:
  8193. free_netdev(dev);
  8194. err_out_free_res:
  8195. pci_release_regions(pdev);
  8196. err_out_disable_pdev:
  8197. pci_disable_device(pdev);
  8198. pci_set_drvdata(pdev, NULL);
  8199. return err;
  8200. }
  8201. static void __devexit niu_pci_remove_one(struct pci_dev *pdev)
  8202. {
  8203. struct net_device *dev = pci_get_drvdata(pdev);
  8204. if (dev) {
  8205. struct niu *np = netdev_priv(dev);
  8206. unregister_netdev(dev);
  8207. if (np->regs) {
  8208. iounmap(np->regs);
  8209. np->regs = NULL;
  8210. }
  8211. niu_ldg_free(np);
  8212. niu_put_parent(np);
  8213. free_netdev(dev);
  8214. pci_release_regions(pdev);
  8215. pci_disable_device(pdev);
  8216. pci_set_drvdata(pdev, NULL);
  8217. }
  8218. }
  8219. static int niu_suspend(struct pci_dev *pdev, pm_message_t state)
  8220. {
  8221. struct net_device *dev = pci_get_drvdata(pdev);
  8222. struct niu *np = netdev_priv(dev);
  8223. unsigned long flags;
  8224. if (!netif_running(dev))
  8225. return 0;
  8226. flush_work_sync(&np->reset_task);
  8227. niu_netif_stop(np);
  8228. del_timer_sync(&np->timer);
  8229. spin_lock_irqsave(&np->lock, flags);
  8230. niu_enable_interrupts(np, 0);
  8231. spin_unlock_irqrestore(&np->lock, flags);
  8232. netif_device_detach(dev);
  8233. spin_lock_irqsave(&np->lock, flags);
  8234. niu_stop_hw(np);
  8235. spin_unlock_irqrestore(&np->lock, flags);
  8236. pci_save_state(pdev);
  8237. return 0;
  8238. }
  8239. static int niu_resume(struct pci_dev *pdev)
  8240. {
  8241. struct net_device *dev = pci_get_drvdata(pdev);
  8242. struct niu *np = netdev_priv(dev);
  8243. unsigned long flags;
  8244. int err;
  8245. if (!netif_running(dev))
  8246. return 0;
  8247. pci_restore_state(pdev);
  8248. netif_device_attach(dev);
  8249. spin_lock_irqsave(&np->lock, flags);
  8250. err = niu_init_hw(np);
  8251. if (!err) {
  8252. np->timer.expires = jiffies + HZ;
  8253. add_timer(&np->timer);
  8254. niu_netif_start(np);
  8255. }
  8256. spin_unlock_irqrestore(&np->lock, flags);
  8257. return err;
  8258. }
  8259. static struct pci_driver niu_pci_driver = {
  8260. .name = DRV_MODULE_NAME,
  8261. .id_table = niu_pci_tbl,
  8262. .probe = niu_pci_init_one,
  8263. .remove = __devexit_p(niu_pci_remove_one),
  8264. .suspend = niu_suspend,
  8265. .resume = niu_resume,
  8266. };
  8267. #ifdef CONFIG_SPARC64
  8268. static void *niu_phys_alloc_coherent(struct device *dev, size_t size,
  8269. u64 *dma_addr, gfp_t flag)
  8270. {
  8271. unsigned long order = get_order(size);
  8272. unsigned long page = __get_free_pages(flag, order);
  8273. if (page == 0UL)
  8274. return NULL;
  8275. memset((char *)page, 0, PAGE_SIZE << order);
  8276. *dma_addr = __pa(page);
  8277. return (void *) page;
  8278. }
  8279. static void niu_phys_free_coherent(struct device *dev, size_t size,
  8280. void *cpu_addr, u64 handle)
  8281. {
  8282. unsigned long order = get_order(size);
  8283. free_pages((unsigned long) cpu_addr, order);
  8284. }
  8285. static u64 niu_phys_map_page(struct device *dev, struct page *page,
  8286. unsigned long offset, size_t size,
  8287. enum dma_data_direction direction)
  8288. {
  8289. return page_to_phys(page) + offset;
  8290. }
  8291. static void niu_phys_unmap_page(struct device *dev, u64 dma_address,
  8292. size_t size, enum dma_data_direction direction)
  8293. {
  8294. /* Nothing to do. */
  8295. }
  8296. static u64 niu_phys_map_single(struct device *dev, void *cpu_addr,
  8297. size_t size,
  8298. enum dma_data_direction direction)
  8299. {
  8300. return __pa(cpu_addr);
  8301. }
  8302. static void niu_phys_unmap_single(struct device *dev, u64 dma_address,
  8303. size_t size,
  8304. enum dma_data_direction direction)
  8305. {
  8306. /* Nothing to do. */
  8307. }
  8308. static const struct niu_ops niu_phys_ops = {
  8309. .alloc_coherent = niu_phys_alloc_coherent,
  8310. .free_coherent = niu_phys_free_coherent,
  8311. .map_page = niu_phys_map_page,
  8312. .unmap_page = niu_phys_unmap_page,
  8313. .map_single = niu_phys_map_single,
  8314. .unmap_single = niu_phys_unmap_single,
  8315. };
  8316. static int __devinit niu_of_probe(struct platform_device *op)
  8317. {
  8318. union niu_parent_id parent_id;
  8319. struct net_device *dev;
  8320. struct niu *np;
  8321. const u32 *reg;
  8322. int err;
  8323. niu_driver_version();
  8324. reg = of_get_property(op->dev.of_node, "reg", NULL);
  8325. if (!reg) {
  8326. dev_err(&op->dev, "%s: No 'reg' property, aborting\n",
  8327. op->dev.of_node->full_name);
  8328. return -ENODEV;
  8329. }
  8330. dev = niu_alloc_and_init(&op->dev, NULL, op,
  8331. &niu_phys_ops, reg[0] & 0x1);
  8332. if (!dev) {
  8333. err = -ENOMEM;
  8334. goto err_out;
  8335. }
  8336. np = netdev_priv(dev);
  8337. memset(&parent_id, 0, sizeof(parent_id));
  8338. parent_id.of = of_get_parent(op->dev.of_node);
  8339. np->parent = niu_get_parent(np, &parent_id,
  8340. PLAT_TYPE_NIU);
  8341. if (!np->parent) {
  8342. err = -ENOMEM;
  8343. goto err_out_free_dev;
  8344. }
  8345. niu_set_basic_features(dev);
  8346. np->regs = of_ioremap(&op->resource[1], 0,
  8347. resource_size(&op->resource[1]),
  8348. "niu regs");
  8349. if (!np->regs) {
  8350. dev_err(&op->dev, "Cannot map device registers, aborting\n");
  8351. err = -ENOMEM;
  8352. goto err_out_release_parent;
  8353. }
  8354. np->vir_regs_1 = of_ioremap(&op->resource[2], 0,
  8355. resource_size(&op->resource[2]),
  8356. "niu vregs-1");
  8357. if (!np->vir_regs_1) {
  8358. dev_err(&op->dev, "Cannot map device vir registers 1, aborting\n");
  8359. err = -ENOMEM;
  8360. goto err_out_iounmap;
  8361. }
  8362. np->vir_regs_2 = of_ioremap(&op->resource[3], 0,
  8363. resource_size(&op->resource[3]),
  8364. "niu vregs-2");
  8365. if (!np->vir_regs_2) {
  8366. dev_err(&op->dev, "Cannot map device vir registers 2, aborting\n");
  8367. err = -ENOMEM;
  8368. goto err_out_iounmap;
  8369. }
  8370. niu_assign_netdev_ops(dev);
  8371. err = niu_get_invariants(np);
  8372. if (err) {
  8373. if (err != -ENODEV)
  8374. dev_err(&op->dev, "Problem fetching invariants of chip, aborting\n");
  8375. goto err_out_iounmap;
  8376. }
  8377. err = register_netdev(dev);
  8378. if (err) {
  8379. dev_err(&op->dev, "Cannot register net device, aborting\n");
  8380. goto err_out_iounmap;
  8381. }
  8382. dev_set_drvdata(&op->dev, dev);
  8383. niu_device_announce(np);
  8384. return 0;
  8385. err_out_iounmap:
  8386. if (np->vir_regs_1) {
  8387. of_iounmap(&op->resource[2], np->vir_regs_1,
  8388. resource_size(&op->resource[2]));
  8389. np->vir_regs_1 = NULL;
  8390. }
  8391. if (np->vir_regs_2) {
  8392. of_iounmap(&op->resource[3], np->vir_regs_2,
  8393. resource_size(&op->resource[3]));
  8394. np->vir_regs_2 = NULL;
  8395. }
  8396. if (np->regs) {
  8397. of_iounmap(&op->resource[1], np->regs,
  8398. resource_size(&op->resource[1]));
  8399. np->regs = NULL;
  8400. }
  8401. err_out_release_parent:
  8402. niu_put_parent(np);
  8403. err_out_free_dev:
  8404. free_netdev(dev);
  8405. err_out:
  8406. return err;
  8407. }
  8408. static int __devexit niu_of_remove(struct platform_device *op)
  8409. {
  8410. struct net_device *dev = dev_get_drvdata(&op->dev);
  8411. if (dev) {
  8412. struct niu *np = netdev_priv(dev);
  8413. unregister_netdev(dev);
  8414. if (np->vir_regs_1) {
  8415. of_iounmap(&op->resource[2], np->vir_regs_1,
  8416. resource_size(&op->resource[2]));
  8417. np->vir_regs_1 = NULL;
  8418. }
  8419. if (np->vir_regs_2) {
  8420. of_iounmap(&op->resource[3], np->vir_regs_2,
  8421. resource_size(&op->resource[3]));
  8422. np->vir_regs_2 = NULL;
  8423. }
  8424. if (np->regs) {
  8425. of_iounmap(&op->resource[1], np->regs,
  8426. resource_size(&op->resource[1]));
  8427. np->regs = NULL;
  8428. }
  8429. niu_ldg_free(np);
  8430. niu_put_parent(np);
  8431. free_netdev(dev);
  8432. dev_set_drvdata(&op->dev, NULL);
  8433. }
  8434. return 0;
  8435. }
  8436. static const struct of_device_id niu_match[] = {
  8437. {
  8438. .name = "network",
  8439. .compatible = "SUNW,niusl",
  8440. },
  8441. {},
  8442. };
  8443. MODULE_DEVICE_TABLE(of, niu_match);
  8444. static struct platform_driver niu_of_driver = {
  8445. .driver = {
  8446. .name = "niu",
  8447. .owner = THIS_MODULE,
  8448. .of_match_table = niu_match,
  8449. },
  8450. .probe = niu_of_probe,
  8451. .remove = __devexit_p(niu_of_remove),
  8452. };
  8453. #endif /* CONFIG_SPARC64 */
  8454. static int __init niu_init(void)
  8455. {
  8456. int err = 0;
  8457. BUILD_BUG_ON(PAGE_SIZE < 4 * 1024);
  8458. niu_debug = netif_msg_init(debug, NIU_MSG_DEFAULT);
  8459. #ifdef CONFIG_SPARC64
  8460. err = platform_driver_register(&niu_of_driver);
  8461. #endif
  8462. if (!err) {
  8463. err = pci_register_driver(&niu_pci_driver);
  8464. #ifdef CONFIG_SPARC64
  8465. if (err)
  8466. platform_driver_unregister(&niu_of_driver);
  8467. #endif
  8468. }
  8469. return err;
  8470. }
  8471. static void __exit niu_exit(void)
  8472. {
  8473. pci_unregister_driver(&niu_pci_driver);
  8474. #ifdef CONFIG_SPARC64
  8475. platform_driver_unregister(&niu_of_driver);
  8476. #endif
  8477. }
  8478. module_init(niu_init);
  8479. module_exit(niu_exit);