smsc9420.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764
  1. /***************************************************************************
  2. *
  3. * Copyright (C) 2007,2008 SMSC
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation; either version 2
  8. * of the License, or (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  18. *
  19. ***************************************************************************
  20. */
  21. #include <linux/interrupt.h>
  22. #include <linux/kernel.h>
  23. #include <linux/netdevice.h>
  24. #include <linux/phy.h>
  25. #include <linux/pci.h>
  26. #include <linux/if_vlan.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/crc32.h>
  29. #include <linux/slab.h>
  30. #include <linux/module.h>
  31. #include <asm/unaligned.h>
  32. #include "smsc9420.h"
  33. #define DRV_NAME "smsc9420"
  34. #define PFX DRV_NAME ": "
  35. #define DRV_MDIONAME "smsc9420-mdio"
  36. #define DRV_DESCRIPTION "SMSC LAN9420 driver"
  37. #define DRV_VERSION "1.01"
  38. MODULE_LICENSE("GPL");
  39. MODULE_VERSION(DRV_VERSION);
  40. struct smsc9420_dma_desc {
  41. u32 status;
  42. u32 length;
  43. u32 buffer1;
  44. u32 buffer2;
  45. };
  46. struct smsc9420_ring_info {
  47. struct sk_buff *skb;
  48. dma_addr_t mapping;
  49. };
  50. struct smsc9420_pdata {
  51. void __iomem *base_addr;
  52. struct pci_dev *pdev;
  53. struct net_device *dev;
  54. struct smsc9420_dma_desc *rx_ring;
  55. struct smsc9420_dma_desc *tx_ring;
  56. struct smsc9420_ring_info *tx_buffers;
  57. struct smsc9420_ring_info *rx_buffers;
  58. dma_addr_t rx_dma_addr;
  59. dma_addr_t tx_dma_addr;
  60. int tx_ring_head, tx_ring_tail;
  61. int rx_ring_head, rx_ring_tail;
  62. spinlock_t int_lock;
  63. spinlock_t phy_lock;
  64. struct napi_struct napi;
  65. bool software_irq_signal;
  66. bool rx_csum;
  67. u32 msg_enable;
  68. struct phy_device *phy_dev;
  69. struct mii_bus *mii_bus;
  70. int phy_irq[PHY_MAX_ADDR];
  71. int last_duplex;
  72. int last_carrier;
  73. };
  74. static DEFINE_PCI_DEVICE_TABLE(smsc9420_id_table) = {
  75. { PCI_VENDOR_ID_9420, PCI_DEVICE_ID_9420, PCI_ANY_ID, PCI_ANY_ID, },
  76. { 0, }
  77. };
  78. MODULE_DEVICE_TABLE(pci, smsc9420_id_table);
  79. #define SMSC_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  80. static uint smsc_debug;
  81. static uint debug = -1;
  82. module_param(debug, uint, 0);
  83. MODULE_PARM_DESC(debug, "debug level");
  84. #define smsc_dbg(TYPE, f, a...) \
  85. do { if ((pd)->msg_enable & NETIF_MSG_##TYPE) \
  86. printk(KERN_DEBUG PFX f "\n", ## a); \
  87. } while (0)
  88. #define smsc_info(TYPE, f, a...) \
  89. do { if ((pd)->msg_enable & NETIF_MSG_##TYPE) \
  90. printk(KERN_INFO PFX f "\n", ## a); \
  91. } while (0)
  92. #define smsc_warn(TYPE, f, a...) \
  93. do { if ((pd)->msg_enable & NETIF_MSG_##TYPE) \
  94. printk(KERN_WARNING PFX f "\n", ## a); \
  95. } while (0)
  96. static inline u32 smsc9420_reg_read(struct smsc9420_pdata *pd, u32 offset)
  97. {
  98. return ioread32(pd->base_addr + offset);
  99. }
  100. static inline void
  101. smsc9420_reg_write(struct smsc9420_pdata *pd, u32 offset, u32 value)
  102. {
  103. iowrite32(value, pd->base_addr + offset);
  104. }
  105. static inline void smsc9420_pci_flush_write(struct smsc9420_pdata *pd)
  106. {
  107. /* to ensure PCI write completion, we must perform a PCI read */
  108. smsc9420_reg_read(pd, ID_REV);
  109. }
  110. static int smsc9420_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
  111. {
  112. struct smsc9420_pdata *pd = (struct smsc9420_pdata *)bus->priv;
  113. unsigned long flags;
  114. u32 addr;
  115. int i, reg = -EIO;
  116. spin_lock_irqsave(&pd->phy_lock, flags);
  117. /* confirm MII not busy */
  118. if ((smsc9420_reg_read(pd, MII_ACCESS) & MII_ACCESS_MII_BUSY_)) {
  119. smsc_warn(DRV, "MII is busy???");
  120. goto out;
  121. }
  122. /* set the address, index & direction (read from PHY) */
  123. addr = ((phyaddr & 0x1F) << 11) | ((regidx & 0x1F) << 6) |
  124. MII_ACCESS_MII_READ_;
  125. smsc9420_reg_write(pd, MII_ACCESS, addr);
  126. /* wait for read to complete with 50us timeout */
  127. for (i = 0; i < 5; i++) {
  128. if (!(smsc9420_reg_read(pd, MII_ACCESS) &
  129. MII_ACCESS_MII_BUSY_)) {
  130. reg = (u16)smsc9420_reg_read(pd, MII_DATA);
  131. goto out;
  132. }
  133. udelay(10);
  134. }
  135. smsc_warn(DRV, "MII busy timeout!");
  136. out:
  137. spin_unlock_irqrestore(&pd->phy_lock, flags);
  138. return reg;
  139. }
  140. static int smsc9420_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
  141. u16 val)
  142. {
  143. struct smsc9420_pdata *pd = (struct smsc9420_pdata *)bus->priv;
  144. unsigned long flags;
  145. u32 addr;
  146. int i, reg = -EIO;
  147. spin_lock_irqsave(&pd->phy_lock, flags);
  148. /* confirm MII not busy */
  149. if ((smsc9420_reg_read(pd, MII_ACCESS) & MII_ACCESS_MII_BUSY_)) {
  150. smsc_warn(DRV, "MII is busy???");
  151. goto out;
  152. }
  153. /* put the data to write in the MAC */
  154. smsc9420_reg_write(pd, MII_DATA, (u32)val);
  155. /* set the address, index & direction (write to PHY) */
  156. addr = ((phyaddr & 0x1F) << 11) | ((regidx & 0x1F) << 6) |
  157. MII_ACCESS_MII_WRITE_;
  158. smsc9420_reg_write(pd, MII_ACCESS, addr);
  159. /* wait for write to complete with 50us timeout */
  160. for (i = 0; i < 5; i++) {
  161. if (!(smsc9420_reg_read(pd, MII_ACCESS) &
  162. MII_ACCESS_MII_BUSY_)) {
  163. reg = 0;
  164. goto out;
  165. }
  166. udelay(10);
  167. }
  168. smsc_warn(DRV, "MII busy timeout!");
  169. out:
  170. spin_unlock_irqrestore(&pd->phy_lock, flags);
  171. return reg;
  172. }
  173. /* Returns hash bit number for given MAC address
  174. * Example:
  175. * 01 00 5E 00 00 01 -> returns bit number 31 */
  176. static u32 smsc9420_hash(u8 addr[ETH_ALEN])
  177. {
  178. return (ether_crc(ETH_ALEN, addr) >> 26) & 0x3f;
  179. }
  180. static int smsc9420_eeprom_reload(struct smsc9420_pdata *pd)
  181. {
  182. int timeout = 100000;
  183. BUG_ON(!pd);
  184. if (smsc9420_reg_read(pd, E2P_CMD) & E2P_CMD_EPC_BUSY_) {
  185. smsc_dbg(DRV, "smsc9420_eeprom_reload: Eeprom busy");
  186. return -EIO;
  187. }
  188. smsc9420_reg_write(pd, E2P_CMD,
  189. (E2P_CMD_EPC_BUSY_ | E2P_CMD_EPC_CMD_RELOAD_));
  190. do {
  191. udelay(10);
  192. if (!(smsc9420_reg_read(pd, E2P_CMD) & E2P_CMD_EPC_BUSY_))
  193. return 0;
  194. } while (timeout--);
  195. smsc_warn(DRV, "smsc9420_eeprom_reload: Eeprom timed out");
  196. return -EIO;
  197. }
  198. /* Standard ioctls for mii-tool */
  199. static int smsc9420_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  200. {
  201. struct smsc9420_pdata *pd = netdev_priv(dev);
  202. if (!netif_running(dev) || !pd->phy_dev)
  203. return -EINVAL;
  204. return phy_mii_ioctl(pd->phy_dev, ifr, cmd);
  205. }
  206. static int smsc9420_ethtool_get_settings(struct net_device *dev,
  207. struct ethtool_cmd *cmd)
  208. {
  209. struct smsc9420_pdata *pd = netdev_priv(dev);
  210. if (!pd->phy_dev)
  211. return -ENODEV;
  212. cmd->maxtxpkt = 1;
  213. cmd->maxrxpkt = 1;
  214. return phy_ethtool_gset(pd->phy_dev, cmd);
  215. }
  216. static int smsc9420_ethtool_set_settings(struct net_device *dev,
  217. struct ethtool_cmd *cmd)
  218. {
  219. struct smsc9420_pdata *pd = netdev_priv(dev);
  220. if (!pd->phy_dev)
  221. return -ENODEV;
  222. return phy_ethtool_sset(pd->phy_dev, cmd);
  223. }
  224. static void smsc9420_ethtool_get_drvinfo(struct net_device *netdev,
  225. struct ethtool_drvinfo *drvinfo)
  226. {
  227. struct smsc9420_pdata *pd = netdev_priv(netdev);
  228. strcpy(drvinfo->driver, DRV_NAME);
  229. strcpy(drvinfo->bus_info, pci_name(pd->pdev));
  230. strcpy(drvinfo->version, DRV_VERSION);
  231. }
  232. static u32 smsc9420_ethtool_get_msglevel(struct net_device *netdev)
  233. {
  234. struct smsc9420_pdata *pd = netdev_priv(netdev);
  235. return pd->msg_enable;
  236. }
  237. static void smsc9420_ethtool_set_msglevel(struct net_device *netdev, u32 data)
  238. {
  239. struct smsc9420_pdata *pd = netdev_priv(netdev);
  240. pd->msg_enable = data;
  241. }
  242. static int smsc9420_ethtool_nway_reset(struct net_device *netdev)
  243. {
  244. struct smsc9420_pdata *pd = netdev_priv(netdev);
  245. if (!pd->phy_dev)
  246. return -ENODEV;
  247. return phy_start_aneg(pd->phy_dev);
  248. }
  249. static int smsc9420_ethtool_getregslen(struct net_device *dev)
  250. {
  251. /* all smsc9420 registers plus all phy registers */
  252. return 0x100 + (32 * sizeof(u32));
  253. }
  254. static void
  255. smsc9420_ethtool_getregs(struct net_device *dev, struct ethtool_regs *regs,
  256. void *buf)
  257. {
  258. struct smsc9420_pdata *pd = netdev_priv(dev);
  259. struct phy_device *phy_dev = pd->phy_dev;
  260. unsigned int i, j = 0;
  261. u32 *data = buf;
  262. regs->version = smsc9420_reg_read(pd, ID_REV);
  263. for (i = 0; i < 0x100; i += (sizeof(u32)))
  264. data[j++] = smsc9420_reg_read(pd, i);
  265. // cannot read phy registers if the net device is down
  266. if (!phy_dev)
  267. return;
  268. for (i = 0; i <= 31; i++)
  269. data[j++] = smsc9420_mii_read(phy_dev->bus, phy_dev->addr, i);
  270. }
  271. static void smsc9420_eeprom_enable_access(struct smsc9420_pdata *pd)
  272. {
  273. unsigned int temp = smsc9420_reg_read(pd, GPIO_CFG);
  274. temp &= ~GPIO_CFG_EEPR_EN_;
  275. smsc9420_reg_write(pd, GPIO_CFG, temp);
  276. msleep(1);
  277. }
  278. static int smsc9420_eeprom_send_cmd(struct smsc9420_pdata *pd, u32 op)
  279. {
  280. int timeout = 100;
  281. u32 e2cmd;
  282. smsc_dbg(HW, "op 0x%08x", op);
  283. if (smsc9420_reg_read(pd, E2P_CMD) & E2P_CMD_EPC_BUSY_) {
  284. smsc_warn(HW, "Busy at start");
  285. return -EBUSY;
  286. }
  287. e2cmd = op | E2P_CMD_EPC_BUSY_;
  288. smsc9420_reg_write(pd, E2P_CMD, e2cmd);
  289. do {
  290. msleep(1);
  291. e2cmd = smsc9420_reg_read(pd, E2P_CMD);
  292. } while ((e2cmd & E2P_CMD_EPC_BUSY_) && (--timeout));
  293. if (!timeout) {
  294. smsc_info(HW, "TIMED OUT");
  295. return -EAGAIN;
  296. }
  297. if (e2cmd & E2P_CMD_EPC_TIMEOUT_) {
  298. smsc_info(HW, "Error occurred during eeprom operation");
  299. return -EINVAL;
  300. }
  301. return 0;
  302. }
  303. static int smsc9420_eeprom_read_location(struct smsc9420_pdata *pd,
  304. u8 address, u8 *data)
  305. {
  306. u32 op = E2P_CMD_EPC_CMD_READ_ | address;
  307. int ret;
  308. smsc_dbg(HW, "address 0x%x", address);
  309. ret = smsc9420_eeprom_send_cmd(pd, op);
  310. if (!ret)
  311. data[address] = smsc9420_reg_read(pd, E2P_DATA);
  312. return ret;
  313. }
  314. static int smsc9420_eeprom_write_location(struct smsc9420_pdata *pd,
  315. u8 address, u8 data)
  316. {
  317. u32 op = E2P_CMD_EPC_CMD_ERASE_ | address;
  318. int ret;
  319. smsc_dbg(HW, "address 0x%x, data 0x%x", address, data);
  320. ret = smsc9420_eeprom_send_cmd(pd, op);
  321. if (!ret) {
  322. op = E2P_CMD_EPC_CMD_WRITE_ | address;
  323. smsc9420_reg_write(pd, E2P_DATA, (u32)data);
  324. ret = smsc9420_eeprom_send_cmd(pd, op);
  325. }
  326. return ret;
  327. }
  328. static int smsc9420_ethtool_get_eeprom_len(struct net_device *dev)
  329. {
  330. return SMSC9420_EEPROM_SIZE;
  331. }
  332. static int smsc9420_ethtool_get_eeprom(struct net_device *dev,
  333. struct ethtool_eeprom *eeprom, u8 *data)
  334. {
  335. struct smsc9420_pdata *pd = netdev_priv(dev);
  336. u8 eeprom_data[SMSC9420_EEPROM_SIZE];
  337. int len, i;
  338. smsc9420_eeprom_enable_access(pd);
  339. len = min(eeprom->len, SMSC9420_EEPROM_SIZE);
  340. for (i = 0; i < len; i++) {
  341. int ret = smsc9420_eeprom_read_location(pd, i, eeprom_data);
  342. if (ret < 0) {
  343. eeprom->len = 0;
  344. return ret;
  345. }
  346. }
  347. memcpy(data, &eeprom_data[eeprom->offset], len);
  348. eeprom->magic = SMSC9420_EEPROM_MAGIC;
  349. eeprom->len = len;
  350. return 0;
  351. }
  352. static int smsc9420_ethtool_set_eeprom(struct net_device *dev,
  353. struct ethtool_eeprom *eeprom, u8 *data)
  354. {
  355. struct smsc9420_pdata *pd = netdev_priv(dev);
  356. int ret;
  357. if (eeprom->magic != SMSC9420_EEPROM_MAGIC)
  358. return -EINVAL;
  359. smsc9420_eeprom_enable_access(pd);
  360. smsc9420_eeprom_send_cmd(pd, E2P_CMD_EPC_CMD_EWEN_);
  361. ret = smsc9420_eeprom_write_location(pd, eeprom->offset, *data);
  362. smsc9420_eeprom_send_cmd(pd, E2P_CMD_EPC_CMD_EWDS_);
  363. /* Single byte write, according to man page */
  364. eeprom->len = 1;
  365. return ret;
  366. }
  367. static const struct ethtool_ops smsc9420_ethtool_ops = {
  368. .get_settings = smsc9420_ethtool_get_settings,
  369. .set_settings = smsc9420_ethtool_set_settings,
  370. .get_drvinfo = smsc9420_ethtool_get_drvinfo,
  371. .get_msglevel = smsc9420_ethtool_get_msglevel,
  372. .set_msglevel = smsc9420_ethtool_set_msglevel,
  373. .nway_reset = smsc9420_ethtool_nway_reset,
  374. .get_link = ethtool_op_get_link,
  375. .get_eeprom_len = smsc9420_ethtool_get_eeprom_len,
  376. .get_eeprom = smsc9420_ethtool_get_eeprom,
  377. .set_eeprom = smsc9420_ethtool_set_eeprom,
  378. .get_regs_len = smsc9420_ethtool_getregslen,
  379. .get_regs = smsc9420_ethtool_getregs,
  380. };
  381. /* Sets the device MAC address to dev_addr */
  382. static void smsc9420_set_mac_address(struct net_device *dev)
  383. {
  384. struct smsc9420_pdata *pd = netdev_priv(dev);
  385. u8 *dev_addr = dev->dev_addr;
  386. u32 mac_high16 = (dev_addr[5] << 8) | dev_addr[4];
  387. u32 mac_low32 = (dev_addr[3] << 24) | (dev_addr[2] << 16) |
  388. (dev_addr[1] << 8) | dev_addr[0];
  389. smsc9420_reg_write(pd, ADDRH, mac_high16);
  390. smsc9420_reg_write(pd, ADDRL, mac_low32);
  391. }
  392. static void smsc9420_check_mac_address(struct net_device *dev)
  393. {
  394. struct smsc9420_pdata *pd = netdev_priv(dev);
  395. /* Check if mac address has been specified when bringing interface up */
  396. if (is_valid_ether_addr(dev->dev_addr)) {
  397. smsc9420_set_mac_address(dev);
  398. smsc_dbg(PROBE, "MAC Address is specified by configuration");
  399. } else {
  400. /* Try reading mac address from device. if EEPROM is present
  401. * it will already have been set */
  402. u32 mac_high16 = smsc9420_reg_read(pd, ADDRH);
  403. u32 mac_low32 = smsc9420_reg_read(pd, ADDRL);
  404. dev->dev_addr[0] = (u8)(mac_low32);
  405. dev->dev_addr[1] = (u8)(mac_low32 >> 8);
  406. dev->dev_addr[2] = (u8)(mac_low32 >> 16);
  407. dev->dev_addr[3] = (u8)(mac_low32 >> 24);
  408. dev->dev_addr[4] = (u8)(mac_high16);
  409. dev->dev_addr[5] = (u8)(mac_high16 >> 8);
  410. if (is_valid_ether_addr(dev->dev_addr)) {
  411. /* eeprom values are valid so use them */
  412. smsc_dbg(PROBE, "Mac Address is read from EEPROM");
  413. } else {
  414. /* eeprom values are invalid, generate random MAC */
  415. random_ether_addr(dev->dev_addr);
  416. smsc9420_set_mac_address(dev);
  417. smsc_dbg(PROBE,
  418. "MAC Address is set to random_ether_addr");
  419. }
  420. }
  421. }
  422. static void smsc9420_stop_tx(struct smsc9420_pdata *pd)
  423. {
  424. u32 dmac_control, mac_cr, dma_intr_ena;
  425. int timeout = 1000;
  426. /* disable TX DMAC */
  427. dmac_control = smsc9420_reg_read(pd, DMAC_CONTROL);
  428. dmac_control &= (~DMAC_CONTROL_ST_);
  429. smsc9420_reg_write(pd, DMAC_CONTROL, dmac_control);
  430. /* Wait max 10ms for transmit process to stop */
  431. while (--timeout) {
  432. if (smsc9420_reg_read(pd, DMAC_STATUS) & DMAC_STS_TS_)
  433. break;
  434. udelay(10);
  435. }
  436. if (!timeout)
  437. smsc_warn(IFDOWN, "TX DMAC failed to stop");
  438. /* ACK Tx DMAC stop bit */
  439. smsc9420_reg_write(pd, DMAC_STATUS, DMAC_STS_TXPS_);
  440. /* mask TX DMAC interrupts */
  441. dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  442. dma_intr_ena &= ~(DMAC_INTR_ENA_TX_);
  443. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  444. smsc9420_pci_flush_write(pd);
  445. /* stop MAC TX */
  446. mac_cr = smsc9420_reg_read(pd, MAC_CR) & (~MAC_CR_TXEN_);
  447. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  448. smsc9420_pci_flush_write(pd);
  449. }
  450. static void smsc9420_free_tx_ring(struct smsc9420_pdata *pd)
  451. {
  452. int i;
  453. BUG_ON(!pd->tx_ring);
  454. if (!pd->tx_buffers)
  455. return;
  456. for (i = 0; i < TX_RING_SIZE; i++) {
  457. struct sk_buff *skb = pd->tx_buffers[i].skb;
  458. if (skb) {
  459. BUG_ON(!pd->tx_buffers[i].mapping);
  460. pci_unmap_single(pd->pdev, pd->tx_buffers[i].mapping,
  461. skb->len, PCI_DMA_TODEVICE);
  462. dev_kfree_skb_any(skb);
  463. }
  464. pd->tx_ring[i].status = 0;
  465. pd->tx_ring[i].length = 0;
  466. pd->tx_ring[i].buffer1 = 0;
  467. pd->tx_ring[i].buffer2 = 0;
  468. }
  469. wmb();
  470. kfree(pd->tx_buffers);
  471. pd->tx_buffers = NULL;
  472. pd->tx_ring_head = 0;
  473. pd->tx_ring_tail = 0;
  474. }
  475. static void smsc9420_free_rx_ring(struct smsc9420_pdata *pd)
  476. {
  477. int i;
  478. BUG_ON(!pd->rx_ring);
  479. if (!pd->rx_buffers)
  480. return;
  481. for (i = 0; i < RX_RING_SIZE; i++) {
  482. if (pd->rx_buffers[i].skb)
  483. dev_kfree_skb_any(pd->rx_buffers[i].skb);
  484. if (pd->rx_buffers[i].mapping)
  485. pci_unmap_single(pd->pdev, pd->rx_buffers[i].mapping,
  486. PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
  487. pd->rx_ring[i].status = 0;
  488. pd->rx_ring[i].length = 0;
  489. pd->rx_ring[i].buffer1 = 0;
  490. pd->rx_ring[i].buffer2 = 0;
  491. }
  492. wmb();
  493. kfree(pd->rx_buffers);
  494. pd->rx_buffers = NULL;
  495. pd->rx_ring_head = 0;
  496. pd->rx_ring_tail = 0;
  497. }
  498. static void smsc9420_stop_rx(struct smsc9420_pdata *pd)
  499. {
  500. int timeout = 1000;
  501. u32 mac_cr, dmac_control, dma_intr_ena;
  502. /* mask RX DMAC interrupts */
  503. dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  504. dma_intr_ena &= (~DMAC_INTR_ENA_RX_);
  505. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  506. smsc9420_pci_flush_write(pd);
  507. /* stop RX MAC prior to stoping DMA */
  508. mac_cr = smsc9420_reg_read(pd, MAC_CR) & (~MAC_CR_RXEN_);
  509. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  510. smsc9420_pci_flush_write(pd);
  511. /* stop RX DMAC */
  512. dmac_control = smsc9420_reg_read(pd, DMAC_CONTROL);
  513. dmac_control &= (~DMAC_CONTROL_SR_);
  514. smsc9420_reg_write(pd, DMAC_CONTROL, dmac_control);
  515. smsc9420_pci_flush_write(pd);
  516. /* wait up to 10ms for receive to stop */
  517. while (--timeout) {
  518. if (smsc9420_reg_read(pd, DMAC_STATUS) & DMAC_STS_RS_)
  519. break;
  520. udelay(10);
  521. }
  522. if (!timeout)
  523. smsc_warn(IFDOWN, "RX DMAC did not stop! timeout.");
  524. /* ACK the Rx DMAC stop bit */
  525. smsc9420_reg_write(pd, DMAC_STATUS, DMAC_STS_RXPS_);
  526. }
  527. static irqreturn_t smsc9420_isr(int irq, void *dev_id)
  528. {
  529. struct smsc9420_pdata *pd = dev_id;
  530. u32 int_cfg, int_sts, int_ctl;
  531. irqreturn_t ret = IRQ_NONE;
  532. ulong flags;
  533. BUG_ON(!pd);
  534. BUG_ON(!pd->base_addr);
  535. int_cfg = smsc9420_reg_read(pd, INT_CFG);
  536. /* check if it's our interrupt */
  537. if ((int_cfg & (INT_CFG_IRQ_EN_ | INT_CFG_IRQ_INT_)) !=
  538. (INT_CFG_IRQ_EN_ | INT_CFG_IRQ_INT_))
  539. return IRQ_NONE;
  540. int_sts = smsc9420_reg_read(pd, INT_STAT);
  541. if (likely(INT_STAT_DMAC_INT_ & int_sts)) {
  542. u32 status = smsc9420_reg_read(pd, DMAC_STATUS);
  543. u32 ints_to_clear = 0;
  544. if (status & DMAC_STS_TX_) {
  545. ints_to_clear |= (DMAC_STS_TX_ | DMAC_STS_NIS_);
  546. netif_wake_queue(pd->dev);
  547. }
  548. if (status & DMAC_STS_RX_) {
  549. /* mask RX DMAC interrupts */
  550. u32 dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  551. dma_intr_ena &= (~DMAC_INTR_ENA_RX_);
  552. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  553. smsc9420_pci_flush_write(pd);
  554. ints_to_clear |= (DMAC_STS_RX_ | DMAC_STS_NIS_);
  555. napi_schedule(&pd->napi);
  556. }
  557. if (ints_to_clear)
  558. smsc9420_reg_write(pd, DMAC_STATUS, ints_to_clear);
  559. ret = IRQ_HANDLED;
  560. }
  561. if (unlikely(INT_STAT_SW_INT_ & int_sts)) {
  562. /* mask software interrupt */
  563. spin_lock_irqsave(&pd->int_lock, flags);
  564. int_ctl = smsc9420_reg_read(pd, INT_CTL);
  565. int_ctl &= (~INT_CTL_SW_INT_EN_);
  566. smsc9420_reg_write(pd, INT_CTL, int_ctl);
  567. spin_unlock_irqrestore(&pd->int_lock, flags);
  568. smsc9420_reg_write(pd, INT_STAT, INT_STAT_SW_INT_);
  569. pd->software_irq_signal = true;
  570. smp_wmb();
  571. ret = IRQ_HANDLED;
  572. }
  573. /* to ensure PCI write completion, we must perform a PCI read */
  574. smsc9420_pci_flush_write(pd);
  575. return ret;
  576. }
  577. #ifdef CONFIG_NET_POLL_CONTROLLER
  578. static void smsc9420_poll_controller(struct net_device *dev)
  579. {
  580. disable_irq(dev->irq);
  581. smsc9420_isr(0, dev);
  582. enable_irq(dev->irq);
  583. }
  584. #endif /* CONFIG_NET_POLL_CONTROLLER */
  585. static void smsc9420_dmac_soft_reset(struct smsc9420_pdata *pd)
  586. {
  587. smsc9420_reg_write(pd, BUS_MODE, BUS_MODE_SWR_);
  588. smsc9420_reg_read(pd, BUS_MODE);
  589. udelay(2);
  590. if (smsc9420_reg_read(pd, BUS_MODE) & BUS_MODE_SWR_)
  591. smsc_warn(DRV, "Software reset not cleared");
  592. }
  593. static int smsc9420_stop(struct net_device *dev)
  594. {
  595. struct smsc9420_pdata *pd = netdev_priv(dev);
  596. u32 int_cfg;
  597. ulong flags;
  598. BUG_ON(!pd);
  599. BUG_ON(!pd->phy_dev);
  600. /* disable master interrupt */
  601. spin_lock_irqsave(&pd->int_lock, flags);
  602. int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
  603. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  604. spin_unlock_irqrestore(&pd->int_lock, flags);
  605. netif_tx_disable(dev);
  606. napi_disable(&pd->napi);
  607. smsc9420_stop_tx(pd);
  608. smsc9420_free_tx_ring(pd);
  609. smsc9420_stop_rx(pd);
  610. smsc9420_free_rx_ring(pd);
  611. free_irq(dev->irq, pd);
  612. smsc9420_dmac_soft_reset(pd);
  613. phy_stop(pd->phy_dev);
  614. phy_disconnect(pd->phy_dev);
  615. pd->phy_dev = NULL;
  616. mdiobus_unregister(pd->mii_bus);
  617. mdiobus_free(pd->mii_bus);
  618. return 0;
  619. }
  620. static void smsc9420_rx_count_stats(struct net_device *dev, u32 desc_status)
  621. {
  622. if (unlikely(desc_status & RDES0_ERROR_SUMMARY_)) {
  623. dev->stats.rx_errors++;
  624. if (desc_status & RDES0_DESCRIPTOR_ERROR_)
  625. dev->stats.rx_over_errors++;
  626. else if (desc_status & (RDES0_FRAME_TOO_LONG_ |
  627. RDES0_RUNT_FRAME_ | RDES0_COLLISION_SEEN_))
  628. dev->stats.rx_frame_errors++;
  629. else if (desc_status & RDES0_CRC_ERROR_)
  630. dev->stats.rx_crc_errors++;
  631. }
  632. if (unlikely(desc_status & RDES0_LENGTH_ERROR_))
  633. dev->stats.rx_length_errors++;
  634. if (unlikely(!((desc_status & RDES0_LAST_DESCRIPTOR_) &&
  635. (desc_status & RDES0_FIRST_DESCRIPTOR_))))
  636. dev->stats.rx_length_errors++;
  637. if (desc_status & RDES0_MULTICAST_FRAME_)
  638. dev->stats.multicast++;
  639. }
  640. static void smsc9420_rx_handoff(struct smsc9420_pdata *pd, const int index,
  641. const u32 status)
  642. {
  643. struct net_device *dev = pd->dev;
  644. struct sk_buff *skb;
  645. u16 packet_length = (status & RDES0_FRAME_LENGTH_MASK_)
  646. >> RDES0_FRAME_LENGTH_SHFT_;
  647. /* remove crc from packet lendth */
  648. packet_length -= 4;
  649. if (pd->rx_csum)
  650. packet_length -= 2;
  651. dev->stats.rx_packets++;
  652. dev->stats.rx_bytes += packet_length;
  653. pci_unmap_single(pd->pdev, pd->rx_buffers[index].mapping,
  654. PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
  655. pd->rx_buffers[index].mapping = 0;
  656. skb = pd->rx_buffers[index].skb;
  657. pd->rx_buffers[index].skb = NULL;
  658. if (pd->rx_csum) {
  659. u16 hw_csum = get_unaligned_le16(skb_tail_pointer(skb) +
  660. NET_IP_ALIGN + packet_length + 4);
  661. put_unaligned_le16(hw_csum, &skb->csum);
  662. skb->ip_summed = CHECKSUM_COMPLETE;
  663. }
  664. skb_reserve(skb, NET_IP_ALIGN);
  665. skb_put(skb, packet_length);
  666. skb->protocol = eth_type_trans(skb, dev);
  667. netif_receive_skb(skb);
  668. }
  669. static int smsc9420_alloc_rx_buffer(struct smsc9420_pdata *pd, int index)
  670. {
  671. struct sk_buff *skb = netdev_alloc_skb(pd->dev, PKT_BUF_SZ);
  672. dma_addr_t mapping;
  673. BUG_ON(pd->rx_buffers[index].skb);
  674. BUG_ON(pd->rx_buffers[index].mapping);
  675. if (unlikely(!skb)) {
  676. smsc_warn(RX_ERR, "Failed to allocate new skb!");
  677. return -ENOMEM;
  678. }
  679. skb->dev = pd->dev;
  680. mapping = pci_map_single(pd->pdev, skb_tail_pointer(skb),
  681. PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
  682. if (pci_dma_mapping_error(pd->pdev, mapping)) {
  683. dev_kfree_skb_any(skb);
  684. smsc_warn(RX_ERR, "pci_map_single failed!");
  685. return -ENOMEM;
  686. }
  687. pd->rx_buffers[index].skb = skb;
  688. pd->rx_buffers[index].mapping = mapping;
  689. pd->rx_ring[index].buffer1 = mapping + NET_IP_ALIGN;
  690. pd->rx_ring[index].status = RDES0_OWN_;
  691. wmb();
  692. return 0;
  693. }
  694. static void smsc9420_alloc_new_rx_buffers(struct smsc9420_pdata *pd)
  695. {
  696. while (pd->rx_ring_tail != pd->rx_ring_head) {
  697. if (smsc9420_alloc_rx_buffer(pd, pd->rx_ring_tail))
  698. break;
  699. pd->rx_ring_tail = (pd->rx_ring_tail + 1) % RX_RING_SIZE;
  700. }
  701. }
  702. static int smsc9420_rx_poll(struct napi_struct *napi, int budget)
  703. {
  704. struct smsc9420_pdata *pd =
  705. container_of(napi, struct smsc9420_pdata, napi);
  706. struct net_device *dev = pd->dev;
  707. u32 drop_frame_cnt, dma_intr_ena, status;
  708. int work_done;
  709. for (work_done = 0; work_done < budget; work_done++) {
  710. rmb();
  711. status = pd->rx_ring[pd->rx_ring_head].status;
  712. /* stop if DMAC owns this dma descriptor */
  713. if (status & RDES0_OWN_)
  714. break;
  715. smsc9420_rx_count_stats(dev, status);
  716. smsc9420_rx_handoff(pd, pd->rx_ring_head, status);
  717. pd->rx_ring_head = (pd->rx_ring_head + 1) % RX_RING_SIZE;
  718. smsc9420_alloc_new_rx_buffers(pd);
  719. }
  720. drop_frame_cnt = smsc9420_reg_read(pd, MISS_FRAME_CNTR);
  721. dev->stats.rx_dropped +=
  722. (drop_frame_cnt & 0xFFFF) + ((drop_frame_cnt >> 17) & 0x3FF);
  723. /* Kick RXDMA */
  724. smsc9420_reg_write(pd, RX_POLL_DEMAND, 1);
  725. smsc9420_pci_flush_write(pd);
  726. if (work_done < budget) {
  727. napi_complete(&pd->napi);
  728. /* re-enable RX DMA interrupts */
  729. dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  730. dma_intr_ena |= (DMAC_INTR_ENA_RX_ | DMAC_INTR_ENA_NIS_);
  731. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  732. smsc9420_pci_flush_write(pd);
  733. }
  734. return work_done;
  735. }
  736. static void
  737. smsc9420_tx_update_stats(struct net_device *dev, u32 status, u32 length)
  738. {
  739. if (unlikely(status & TDES0_ERROR_SUMMARY_)) {
  740. dev->stats.tx_errors++;
  741. if (status & (TDES0_EXCESSIVE_DEFERRAL_ |
  742. TDES0_EXCESSIVE_COLLISIONS_))
  743. dev->stats.tx_aborted_errors++;
  744. if (status & (TDES0_LOSS_OF_CARRIER_ | TDES0_NO_CARRIER_))
  745. dev->stats.tx_carrier_errors++;
  746. } else {
  747. dev->stats.tx_packets++;
  748. dev->stats.tx_bytes += (length & 0x7FF);
  749. }
  750. if (unlikely(status & TDES0_EXCESSIVE_COLLISIONS_)) {
  751. dev->stats.collisions += 16;
  752. } else {
  753. dev->stats.collisions +=
  754. (status & TDES0_COLLISION_COUNT_MASK_) >>
  755. TDES0_COLLISION_COUNT_SHFT_;
  756. }
  757. if (unlikely(status & TDES0_HEARTBEAT_FAIL_))
  758. dev->stats.tx_heartbeat_errors++;
  759. }
  760. /* Check for completed dma transfers, update stats and free skbs */
  761. static void smsc9420_complete_tx(struct net_device *dev)
  762. {
  763. struct smsc9420_pdata *pd = netdev_priv(dev);
  764. while (pd->tx_ring_tail != pd->tx_ring_head) {
  765. int index = pd->tx_ring_tail;
  766. u32 status, length;
  767. rmb();
  768. status = pd->tx_ring[index].status;
  769. length = pd->tx_ring[index].length;
  770. /* Check if DMA still owns this descriptor */
  771. if (unlikely(TDES0_OWN_ & status))
  772. break;
  773. smsc9420_tx_update_stats(dev, status, length);
  774. BUG_ON(!pd->tx_buffers[index].skb);
  775. BUG_ON(!pd->tx_buffers[index].mapping);
  776. pci_unmap_single(pd->pdev, pd->tx_buffers[index].mapping,
  777. pd->tx_buffers[index].skb->len, PCI_DMA_TODEVICE);
  778. pd->tx_buffers[index].mapping = 0;
  779. dev_kfree_skb_any(pd->tx_buffers[index].skb);
  780. pd->tx_buffers[index].skb = NULL;
  781. pd->tx_ring[index].buffer1 = 0;
  782. wmb();
  783. pd->tx_ring_tail = (pd->tx_ring_tail + 1) % TX_RING_SIZE;
  784. }
  785. }
  786. static netdev_tx_t smsc9420_hard_start_xmit(struct sk_buff *skb,
  787. struct net_device *dev)
  788. {
  789. struct smsc9420_pdata *pd = netdev_priv(dev);
  790. dma_addr_t mapping;
  791. int index = pd->tx_ring_head;
  792. u32 tmp_desc1;
  793. bool about_to_take_last_desc =
  794. (((pd->tx_ring_head + 2) % TX_RING_SIZE) == pd->tx_ring_tail);
  795. smsc9420_complete_tx(dev);
  796. rmb();
  797. BUG_ON(pd->tx_ring[index].status & TDES0_OWN_);
  798. BUG_ON(pd->tx_buffers[index].skb);
  799. BUG_ON(pd->tx_buffers[index].mapping);
  800. mapping = pci_map_single(pd->pdev, skb->data,
  801. skb->len, PCI_DMA_TODEVICE);
  802. if (pci_dma_mapping_error(pd->pdev, mapping)) {
  803. smsc_warn(TX_ERR, "pci_map_single failed, dropping packet");
  804. return NETDEV_TX_BUSY;
  805. }
  806. pd->tx_buffers[index].skb = skb;
  807. pd->tx_buffers[index].mapping = mapping;
  808. tmp_desc1 = (TDES1_LS_ | ((u32)skb->len & 0x7FF));
  809. if (unlikely(about_to_take_last_desc)) {
  810. tmp_desc1 |= TDES1_IC_;
  811. netif_stop_queue(pd->dev);
  812. }
  813. /* check if we are at the last descriptor and need to set EOR */
  814. if (unlikely(index == (TX_RING_SIZE - 1)))
  815. tmp_desc1 |= TDES1_TER_;
  816. pd->tx_ring[index].buffer1 = mapping;
  817. pd->tx_ring[index].length = tmp_desc1;
  818. wmb();
  819. /* increment head */
  820. pd->tx_ring_head = (pd->tx_ring_head + 1) % TX_RING_SIZE;
  821. /* assign ownership to DMAC */
  822. pd->tx_ring[index].status = TDES0_OWN_;
  823. wmb();
  824. skb_tx_timestamp(skb);
  825. /* kick the DMA */
  826. smsc9420_reg_write(pd, TX_POLL_DEMAND, 1);
  827. smsc9420_pci_flush_write(pd);
  828. return NETDEV_TX_OK;
  829. }
  830. static struct net_device_stats *smsc9420_get_stats(struct net_device *dev)
  831. {
  832. struct smsc9420_pdata *pd = netdev_priv(dev);
  833. u32 counter = smsc9420_reg_read(pd, MISS_FRAME_CNTR);
  834. dev->stats.rx_dropped +=
  835. (counter & 0x0000FFFF) + ((counter >> 17) & 0x000003FF);
  836. return &dev->stats;
  837. }
  838. static void smsc9420_set_multicast_list(struct net_device *dev)
  839. {
  840. struct smsc9420_pdata *pd = netdev_priv(dev);
  841. u32 mac_cr = smsc9420_reg_read(pd, MAC_CR);
  842. if (dev->flags & IFF_PROMISC) {
  843. smsc_dbg(HW, "Promiscuous Mode Enabled");
  844. mac_cr |= MAC_CR_PRMS_;
  845. mac_cr &= (~MAC_CR_MCPAS_);
  846. mac_cr &= (~MAC_CR_HPFILT_);
  847. } else if (dev->flags & IFF_ALLMULTI) {
  848. smsc_dbg(HW, "Receive all Multicast Enabled");
  849. mac_cr &= (~MAC_CR_PRMS_);
  850. mac_cr |= MAC_CR_MCPAS_;
  851. mac_cr &= (~MAC_CR_HPFILT_);
  852. } else if (!netdev_mc_empty(dev)) {
  853. struct netdev_hw_addr *ha;
  854. u32 hash_lo = 0, hash_hi = 0;
  855. smsc_dbg(HW, "Multicast filter enabled");
  856. netdev_for_each_mc_addr(ha, dev) {
  857. u32 bit_num = smsc9420_hash(ha->addr);
  858. u32 mask = 1 << (bit_num & 0x1F);
  859. if (bit_num & 0x20)
  860. hash_hi |= mask;
  861. else
  862. hash_lo |= mask;
  863. }
  864. smsc9420_reg_write(pd, HASHH, hash_hi);
  865. smsc9420_reg_write(pd, HASHL, hash_lo);
  866. mac_cr &= (~MAC_CR_PRMS_);
  867. mac_cr &= (~MAC_CR_MCPAS_);
  868. mac_cr |= MAC_CR_HPFILT_;
  869. } else {
  870. smsc_dbg(HW, "Receive own packets only.");
  871. smsc9420_reg_write(pd, HASHH, 0);
  872. smsc9420_reg_write(pd, HASHL, 0);
  873. mac_cr &= (~MAC_CR_PRMS_);
  874. mac_cr &= (~MAC_CR_MCPAS_);
  875. mac_cr &= (~MAC_CR_HPFILT_);
  876. }
  877. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  878. smsc9420_pci_flush_write(pd);
  879. }
  880. static void smsc9420_phy_update_flowcontrol(struct smsc9420_pdata *pd)
  881. {
  882. struct phy_device *phy_dev = pd->phy_dev;
  883. u32 flow;
  884. if (phy_dev->duplex == DUPLEX_FULL) {
  885. u16 lcladv = phy_read(phy_dev, MII_ADVERTISE);
  886. u16 rmtadv = phy_read(phy_dev, MII_LPA);
  887. u8 cap = mii_resolve_flowctrl_fdx(lcladv, rmtadv);
  888. if (cap & FLOW_CTRL_RX)
  889. flow = 0xFFFF0002;
  890. else
  891. flow = 0;
  892. smsc_info(LINK, "rx pause %s, tx pause %s",
  893. (cap & FLOW_CTRL_RX ? "enabled" : "disabled"),
  894. (cap & FLOW_CTRL_TX ? "enabled" : "disabled"));
  895. } else {
  896. smsc_info(LINK, "half duplex");
  897. flow = 0;
  898. }
  899. smsc9420_reg_write(pd, FLOW, flow);
  900. }
  901. /* Update link mode if anything has changed. Called periodically when the
  902. * PHY is in polling mode, even if nothing has changed. */
  903. static void smsc9420_phy_adjust_link(struct net_device *dev)
  904. {
  905. struct smsc9420_pdata *pd = netdev_priv(dev);
  906. struct phy_device *phy_dev = pd->phy_dev;
  907. int carrier;
  908. if (phy_dev->duplex != pd->last_duplex) {
  909. u32 mac_cr = smsc9420_reg_read(pd, MAC_CR);
  910. if (phy_dev->duplex) {
  911. smsc_dbg(LINK, "full duplex mode");
  912. mac_cr |= MAC_CR_FDPX_;
  913. } else {
  914. smsc_dbg(LINK, "half duplex mode");
  915. mac_cr &= ~MAC_CR_FDPX_;
  916. }
  917. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  918. smsc9420_phy_update_flowcontrol(pd);
  919. pd->last_duplex = phy_dev->duplex;
  920. }
  921. carrier = netif_carrier_ok(dev);
  922. if (carrier != pd->last_carrier) {
  923. if (carrier)
  924. smsc_dbg(LINK, "carrier OK");
  925. else
  926. smsc_dbg(LINK, "no carrier");
  927. pd->last_carrier = carrier;
  928. }
  929. }
  930. static int smsc9420_mii_probe(struct net_device *dev)
  931. {
  932. struct smsc9420_pdata *pd = netdev_priv(dev);
  933. struct phy_device *phydev = NULL;
  934. BUG_ON(pd->phy_dev);
  935. /* Device only supports internal PHY at address 1 */
  936. if (!pd->mii_bus->phy_map[1]) {
  937. pr_err("%s: no PHY found at address 1\n", dev->name);
  938. return -ENODEV;
  939. }
  940. phydev = pd->mii_bus->phy_map[1];
  941. smsc_info(PROBE, "PHY addr %d, phy_id 0x%08X", phydev->addr,
  942. phydev->phy_id);
  943. phydev = phy_connect(dev, dev_name(&phydev->dev),
  944. smsc9420_phy_adjust_link, 0, PHY_INTERFACE_MODE_MII);
  945. if (IS_ERR(phydev)) {
  946. pr_err("%s: Could not attach to PHY\n", dev->name);
  947. return PTR_ERR(phydev);
  948. }
  949. pr_info("%s: attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
  950. dev->name, phydev->drv->name, dev_name(&phydev->dev), phydev->irq);
  951. /* mask with MAC supported features */
  952. phydev->supported &= (PHY_BASIC_FEATURES | SUPPORTED_Pause |
  953. SUPPORTED_Asym_Pause);
  954. phydev->advertising = phydev->supported;
  955. pd->phy_dev = phydev;
  956. pd->last_duplex = -1;
  957. pd->last_carrier = -1;
  958. return 0;
  959. }
  960. static int smsc9420_mii_init(struct net_device *dev)
  961. {
  962. struct smsc9420_pdata *pd = netdev_priv(dev);
  963. int err = -ENXIO, i;
  964. pd->mii_bus = mdiobus_alloc();
  965. if (!pd->mii_bus) {
  966. err = -ENOMEM;
  967. goto err_out_1;
  968. }
  969. pd->mii_bus->name = DRV_MDIONAME;
  970. snprintf(pd->mii_bus->id, MII_BUS_ID_SIZE, "%x",
  971. (pd->pdev->bus->number << 8) | pd->pdev->devfn);
  972. pd->mii_bus->priv = pd;
  973. pd->mii_bus->read = smsc9420_mii_read;
  974. pd->mii_bus->write = smsc9420_mii_write;
  975. pd->mii_bus->irq = pd->phy_irq;
  976. for (i = 0; i < PHY_MAX_ADDR; ++i)
  977. pd->mii_bus->irq[i] = PHY_POLL;
  978. /* Mask all PHYs except ID 1 (internal) */
  979. pd->mii_bus->phy_mask = ~(1 << 1);
  980. if (mdiobus_register(pd->mii_bus)) {
  981. smsc_warn(PROBE, "Error registering mii bus");
  982. goto err_out_free_bus_2;
  983. }
  984. if (smsc9420_mii_probe(dev) < 0) {
  985. smsc_warn(PROBE, "Error probing mii bus");
  986. goto err_out_unregister_bus_3;
  987. }
  988. return 0;
  989. err_out_unregister_bus_3:
  990. mdiobus_unregister(pd->mii_bus);
  991. err_out_free_bus_2:
  992. mdiobus_free(pd->mii_bus);
  993. err_out_1:
  994. return err;
  995. }
  996. static int smsc9420_alloc_tx_ring(struct smsc9420_pdata *pd)
  997. {
  998. int i;
  999. BUG_ON(!pd->tx_ring);
  1000. pd->tx_buffers = kmalloc((sizeof(struct smsc9420_ring_info) *
  1001. TX_RING_SIZE), GFP_KERNEL);
  1002. if (!pd->tx_buffers) {
  1003. smsc_warn(IFUP, "Failed to allocated tx_buffers");
  1004. return -ENOMEM;
  1005. }
  1006. /* Initialize the TX Ring */
  1007. for (i = 0; i < TX_RING_SIZE; i++) {
  1008. pd->tx_buffers[i].skb = NULL;
  1009. pd->tx_buffers[i].mapping = 0;
  1010. pd->tx_ring[i].status = 0;
  1011. pd->tx_ring[i].length = 0;
  1012. pd->tx_ring[i].buffer1 = 0;
  1013. pd->tx_ring[i].buffer2 = 0;
  1014. }
  1015. pd->tx_ring[TX_RING_SIZE - 1].length = TDES1_TER_;
  1016. wmb();
  1017. pd->tx_ring_head = 0;
  1018. pd->tx_ring_tail = 0;
  1019. smsc9420_reg_write(pd, TX_BASE_ADDR, pd->tx_dma_addr);
  1020. smsc9420_pci_flush_write(pd);
  1021. return 0;
  1022. }
  1023. static int smsc9420_alloc_rx_ring(struct smsc9420_pdata *pd)
  1024. {
  1025. int i;
  1026. BUG_ON(!pd->rx_ring);
  1027. pd->rx_buffers = kmalloc((sizeof(struct smsc9420_ring_info) *
  1028. RX_RING_SIZE), GFP_KERNEL);
  1029. if (pd->rx_buffers == NULL) {
  1030. smsc_warn(IFUP, "Failed to allocated rx_buffers");
  1031. goto out;
  1032. }
  1033. /* initialize the rx ring */
  1034. for (i = 0; i < RX_RING_SIZE; i++) {
  1035. pd->rx_ring[i].status = 0;
  1036. pd->rx_ring[i].length = PKT_BUF_SZ;
  1037. pd->rx_ring[i].buffer2 = 0;
  1038. pd->rx_buffers[i].skb = NULL;
  1039. pd->rx_buffers[i].mapping = 0;
  1040. }
  1041. pd->rx_ring[RX_RING_SIZE - 1].length = (PKT_BUF_SZ | RDES1_RER_);
  1042. /* now allocate the entire ring of skbs */
  1043. for (i = 0; i < RX_RING_SIZE; i++) {
  1044. if (smsc9420_alloc_rx_buffer(pd, i)) {
  1045. smsc_warn(IFUP, "failed to allocate rx skb %d", i);
  1046. goto out_free_rx_skbs;
  1047. }
  1048. }
  1049. pd->rx_ring_head = 0;
  1050. pd->rx_ring_tail = 0;
  1051. smsc9420_reg_write(pd, VLAN1, ETH_P_8021Q);
  1052. smsc_dbg(IFUP, "VLAN1 = 0x%08x", smsc9420_reg_read(pd, VLAN1));
  1053. if (pd->rx_csum) {
  1054. /* Enable RX COE */
  1055. u32 coe = smsc9420_reg_read(pd, COE_CR) | RX_COE_EN;
  1056. smsc9420_reg_write(pd, COE_CR, coe);
  1057. smsc_dbg(IFUP, "COE_CR = 0x%08x", coe);
  1058. }
  1059. smsc9420_reg_write(pd, RX_BASE_ADDR, pd->rx_dma_addr);
  1060. smsc9420_pci_flush_write(pd);
  1061. return 0;
  1062. out_free_rx_skbs:
  1063. smsc9420_free_rx_ring(pd);
  1064. out:
  1065. return -ENOMEM;
  1066. }
  1067. static int smsc9420_open(struct net_device *dev)
  1068. {
  1069. struct smsc9420_pdata *pd;
  1070. u32 bus_mode, mac_cr, dmac_control, int_cfg, dma_intr_ena, int_ctl;
  1071. unsigned long flags;
  1072. int result = 0, timeout;
  1073. BUG_ON(!dev);
  1074. pd = netdev_priv(dev);
  1075. BUG_ON(!pd);
  1076. if (!is_valid_ether_addr(dev->dev_addr)) {
  1077. smsc_warn(IFUP, "dev_addr is not a valid MAC address");
  1078. result = -EADDRNOTAVAIL;
  1079. goto out_0;
  1080. }
  1081. netif_carrier_off(dev);
  1082. /* disable, mask and acknowledge all interrupts */
  1083. spin_lock_irqsave(&pd->int_lock, flags);
  1084. int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
  1085. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1086. smsc9420_reg_write(pd, INT_CTL, 0);
  1087. spin_unlock_irqrestore(&pd->int_lock, flags);
  1088. smsc9420_reg_write(pd, DMAC_INTR_ENA, 0);
  1089. smsc9420_reg_write(pd, INT_STAT, 0xFFFFFFFF);
  1090. smsc9420_pci_flush_write(pd);
  1091. if (request_irq(dev->irq, smsc9420_isr, IRQF_SHARED | IRQF_DISABLED,
  1092. DRV_NAME, pd)) {
  1093. smsc_warn(IFUP, "Unable to use IRQ = %d", dev->irq);
  1094. result = -ENODEV;
  1095. goto out_0;
  1096. }
  1097. smsc9420_dmac_soft_reset(pd);
  1098. /* make sure MAC_CR is sane */
  1099. smsc9420_reg_write(pd, MAC_CR, 0);
  1100. smsc9420_set_mac_address(dev);
  1101. /* Configure GPIO pins to drive LEDs */
  1102. smsc9420_reg_write(pd, GPIO_CFG,
  1103. (GPIO_CFG_LED_3_ | GPIO_CFG_LED_2_ | GPIO_CFG_LED_1_));
  1104. bus_mode = BUS_MODE_DMA_BURST_LENGTH_16;
  1105. #ifdef __BIG_ENDIAN
  1106. bus_mode |= BUS_MODE_DBO_;
  1107. #endif
  1108. smsc9420_reg_write(pd, BUS_MODE, bus_mode);
  1109. smsc9420_pci_flush_write(pd);
  1110. /* set bus master bridge arbitration priority for Rx and TX DMA */
  1111. smsc9420_reg_write(pd, BUS_CFG, BUS_CFG_RXTXWEIGHT_4_1);
  1112. smsc9420_reg_write(pd, DMAC_CONTROL,
  1113. (DMAC_CONTROL_SF_ | DMAC_CONTROL_OSF_));
  1114. smsc9420_pci_flush_write(pd);
  1115. /* test the IRQ connection to the ISR */
  1116. smsc_dbg(IFUP, "Testing ISR using IRQ %d", dev->irq);
  1117. pd->software_irq_signal = false;
  1118. spin_lock_irqsave(&pd->int_lock, flags);
  1119. /* configure interrupt deassertion timer and enable interrupts */
  1120. int_cfg = smsc9420_reg_read(pd, INT_CFG) | INT_CFG_IRQ_EN_;
  1121. int_cfg &= ~(INT_CFG_INT_DEAS_MASK);
  1122. int_cfg |= (INT_DEAS_TIME & INT_CFG_INT_DEAS_MASK);
  1123. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1124. /* unmask software interrupt */
  1125. int_ctl = smsc9420_reg_read(pd, INT_CTL) | INT_CTL_SW_INT_EN_;
  1126. smsc9420_reg_write(pd, INT_CTL, int_ctl);
  1127. spin_unlock_irqrestore(&pd->int_lock, flags);
  1128. smsc9420_pci_flush_write(pd);
  1129. timeout = 1000;
  1130. while (timeout--) {
  1131. if (pd->software_irq_signal)
  1132. break;
  1133. msleep(1);
  1134. }
  1135. /* disable interrupts */
  1136. spin_lock_irqsave(&pd->int_lock, flags);
  1137. int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
  1138. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1139. spin_unlock_irqrestore(&pd->int_lock, flags);
  1140. if (!pd->software_irq_signal) {
  1141. smsc_warn(IFUP, "ISR failed signaling test");
  1142. result = -ENODEV;
  1143. goto out_free_irq_1;
  1144. }
  1145. smsc_dbg(IFUP, "ISR passed test using IRQ %d", dev->irq);
  1146. result = smsc9420_alloc_tx_ring(pd);
  1147. if (result) {
  1148. smsc_warn(IFUP, "Failed to Initialize tx dma ring");
  1149. result = -ENOMEM;
  1150. goto out_free_irq_1;
  1151. }
  1152. result = smsc9420_alloc_rx_ring(pd);
  1153. if (result) {
  1154. smsc_warn(IFUP, "Failed to Initialize rx dma ring");
  1155. result = -ENOMEM;
  1156. goto out_free_tx_ring_2;
  1157. }
  1158. result = smsc9420_mii_init(dev);
  1159. if (result) {
  1160. smsc_warn(IFUP, "Failed to initialize Phy");
  1161. result = -ENODEV;
  1162. goto out_free_rx_ring_3;
  1163. }
  1164. /* Bring the PHY up */
  1165. phy_start(pd->phy_dev);
  1166. napi_enable(&pd->napi);
  1167. /* start tx and rx */
  1168. mac_cr = smsc9420_reg_read(pd, MAC_CR) | MAC_CR_TXEN_ | MAC_CR_RXEN_;
  1169. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  1170. dmac_control = smsc9420_reg_read(pd, DMAC_CONTROL);
  1171. dmac_control |= DMAC_CONTROL_ST_ | DMAC_CONTROL_SR_;
  1172. smsc9420_reg_write(pd, DMAC_CONTROL, dmac_control);
  1173. smsc9420_pci_flush_write(pd);
  1174. dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  1175. dma_intr_ena |=
  1176. (DMAC_INTR_ENA_TX_ | DMAC_INTR_ENA_RX_ | DMAC_INTR_ENA_NIS_);
  1177. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  1178. smsc9420_pci_flush_write(pd);
  1179. netif_wake_queue(dev);
  1180. smsc9420_reg_write(pd, RX_POLL_DEMAND, 1);
  1181. /* enable interrupts */
  1182. spin_lock_irqsave(&pd->int_lock, flags);
  1183. int_cfg = smsc9420_reg_read(pd, INT_CFG) | INT_CFG_IRQ_EN_;
  1184. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1185. spin_unlock_irqrestore(&pd->int_lock, flags);
  1186. return 0;
  1187. out_free_rx_ring_3:
  1188. smsc9420_free_rx_ring(pd);
  1189. out_free_tx_ring_2:
  1190. smsc9420_free_tx_ring(pd);
  1191. out_free_irq_1:
  1192. free_irq(dev->irq, pd);
  1193. out_0:
  1194. return result;
  1195. }
  1196. #ifdef CONFIG_PM
  1197. static int smsc9420_suspend(struct pci_dev *pdev, pm_message_t state)
  1198. {
  1199. struct net_device *dev = pci_get_drvdata(pdev);
  1200. struct smsc9420_pdata *pd = netdev_priv(dev);
  1201. u32 int_cfg;
  1202. ulong flags;
  1203. /* disable interrupts */
  1204. spin_lock_irqsave(&pd->int_lock, flags);
  1205. int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
  1206. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1207. spin_unlock_irqrestore(&pd->int_lock, flags);
  1208. if (netif_running(dev)) {
  1209. netif_tx_disable(dev);
  1210. smsc9420_stop_tx(pd);
  1211. smsc9420_free_tx_ring(pd);
  1212. napi_disable(&pd->napi);
  1213. smsc9420_stop_rx(pd);
  1214. smsc9420_free_rx_ring(pd);
  1215. free_irq(dev->irq, pd);
  1216. netif_device_detach(dev);
  1217. }
  1218. pci_save_state(pdev);
  1219. pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
  1220. pci_disable_device(pdev);
  1221. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  1222. return 0;
  1223. }
  1224. static int smsc9420_resume(struct pci_dev *pdev)
  1225. {
  1226. struct net_device *dev = pci_get_drvdata(pdev);
  1227. struct smsc9420_pdata *pd = netdev_priv(dev);
  1228. int err;
  1229. pci_set_power_state(pdev, PCI_D0);
  1230. pci_restore_state(pdev);
  1231. err = pci_enable_device(pdev);
  1232. if (err)
  1233. return err;
  1234. pci_set_master(pdev);
  1235. err = pci_enable_wake(pdev, 0, 0);
  1236. if (err)
  1237. smsc_warn(IFUP, "pci_enable_wake failed: %d", err);
  1238. if (netif_running(dev)) {
  1239. err = smsc9420_open(dev);
  1240. netif_device_attach(dev);
  1241. }
  1242. return err;
  1243. }
  1244. #endif /* CONFIG_PM */
  1245. static const struct net_device_ops smsc9420_netdev_ops = {
  1246. .ndo_open = smsc9420_open,
  1247. .ndo_stop = smsc9420_stop,
  1248. .ndo_start_xmit = smsc9420_hard_start_xmit,
  1249. .ndo_get_stats = smsc9420_get_stats,
  1250. .ndo_set_rx_mode = smsc9420_set_multicast_list,
  1251. .ndo_do_ioctl = smsc9420_do_ioctl,
  1252. .ndo_validate_addr = eth_validate_addr,
  1253. .ndo_set_mac_address = eth_mac_addr,
  1254. #ifdef CONFIG_NET_POLL_CONTROLLER
  1255. .ndo_poll_controller = smsc9420_poll_controller,
  1256. #endif /* CONFIG_NET_POLL_CONTROLLER */
  1257. };
  1258. static int __devinit
  1259. smsc9420_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  1260. {
  1261. struct net_device *dev;
  1262. struct smsc9420_pdata *pd;
  1263. void __iomem *virt_addr;
  1264. int result = 0;
  1265. u32 id_rev;
  1266. printk(KERN_INFO DRV_DESCRIPTION " version " DRV_VERSION "\n");
  1267. /* First do the PCI initialisation */
  1268. result = pci_enable_device(pdev);
  1269. if (unlikely(result)) {
  1270. printk(KERN_ERR "Cannot enable smsc9420\n");
  1271. goto out_0;
  1272. }
  1273. pci_set_master(pdev);
  1274. dev = alloc_etherdev(sizeof(*pd));
  1275. if (!dev) {
  1276. printk(KERN_ERR "ether device alloc failed\n");
  1277. goto out_disable_pci_device_1;
  1278. }
  1279. SET_NETDEV_DEV(dev, &pdev->dev);
  1280. if (!(pci_resource_flags(pdev, SMSC_BAR) & IORESOURCE_MEM)) {
  1281. printk(KERN_ERR "Cannot find PCI device base address\n");
  1282. goto out_free_netdev_2;
  1283. }
  1284. if ((pci_request_regions(pdev, DRV_NAME))) {
  1285. printk(KERN_ERR "Cannot obtain PCI resources, aborting.\n");
  1286. goto out_free_netdev_2;
  1287. }
  1288. if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
  1289. printk(KERN_ERR "No usable DMA configuration, aborting.\n");
  1290. goto out_free_regions_3;
  1291. }
  1292. virt_addr = ioremap(pci_resource_start(pdev, SMSC_BAR),
  1293. pci_resource_len(pdev, SMSC_BAR));
  1294. if (!virt_addr) {
  1295. printk(KERN_ERR "Cannot map device registers, aborting.\n");
  1296. goto out_free_regions_3;
  1297. }
  1298. /* registers are double mapped with 0 offset for LE and 0x200 for BE */
  1299. virt_addr += LAN9420_CPSR_ENDIAN_OFFSET;
  1300. dev->base_addr = (ulong)virt_addr;
  1301. pd = netdev_priv(dev);
  1302. /* pci descriptors are created in the PCI consistent area */
  1303. pd->rx_ring = pci_alloc_consistent(pdev,
  1304. sizeof(struct smsc9420_dma_desc) * RX_RING_SIZE +
  1305. sizeof(struct smsc9420_dma_desc) * TX_RING_SIZE,
  1306. &pd->rx_dma_addr);
  1307. if (!pd->rx_ring)
  1308. goto out_free_io_4;
  1309. /* descriptors are aligned due to the nature of pci_alloc_consistent */
  1310. pd->tx_ring = (struct smsc9420_dma_desc *)
  1311. (pd->rx_ring + RX_RING_SIZE);
  1312. pd->tx_dma_addr = pd->rx_dma_addr +
  1313. sizeof(struct smsc9420_dma_desc) * RX_RING_SIZE;
  1314. pd->pdev = pdev;
  1315. pd->dev = dev;
  1316. pd->base_addr = virt_addr;
  1317. pd->msg_enable = smsc_debug;
  1318. pd->rx_csum = true;
  1319. smsc_dbg(PROBE, "lan_base=0x%08lx", (ulong)virt_addr);
  1320. id_rev = smsc9420_reg_read(pd, ID_REV);
  1321. switch (id_rev & 0xFFFF0000) {
  1322. case 0x94200000:
  1323. smsc_info(PROBE, "LAN9420 identified, ID_REV=0x%08X", id_rev);
  1324. break;
  1325. default:
  1326. smsc_warn(PROBE, "LAN9420 NOT identified");
  1327. smsc_warn(PROBE, "ID_REV=0x%08X", id_rev);
  1328. goto out_free_dmadesc_5;
  1329. }
  1330. smsc9420_dmac_soft_reset(pd);
  1331. smsc9420_eeprom_reload(pd);
  1332. smsc9420_check_mac_address(dev);
  1333. dev->netdev_ops = &smsc9420_netdev_ops;
  1334. dev->ethtool_ops = &smsc9420_ethtool_ops;
  1335. dev->irq = pdev->irq;
  1336. netif_napi_add(dev, &pd->napi, smsc9420_rx_poll, NAPI_WEIGHT);
  1337. result = register_netdev(dev);
  1338. if (result) {
  1339. smsc_warn(PROBE, "error %i registering device", result);
  1340. goto out_free_dmadesc_5;
  1341. }
  1342. pci_set_drvdata(pdev, dev);
  1343. spin_lock_init(&pd->int_lock);
  1344. spin_lock_init(&pd->phy_lock);
  1345. dev_info(&dev->dev, "MAC Address: %pM\n", dev->dev_addr);
  1346. return 0;
  1347. out_free_dmadesc_5:
  1348. pci_free_consistent(pdev, sizeof(struct smsc9420_dma_desc) *
  1349. (RX_RING_SIZE + TX_RING_SIZE), pd->rx_ring, pd->rx_dma_addr);
  1350. out_free_io_4:
  1351. iounmap(virt_addr - LAN9420_CPSR_ENDIAN_OFFSET);
  1352. out_free_regions_3:
  1353. pci_release_regions(pdev);
  1354. out_free_netdev_2:
  1355. free_netdev(dev);
  1356. out_disable_pci_device_1:
  1357. pci_disable_device(pdev);
  1358. out_0:
  1359. return -ENODEV;
  1360. }
  1361. static void __devexit smsc9420_remove(struct pci_dev *pdev)
  1362. {
  1363. struct net_device *dev;
  1364. struct smsc9420_pdata *pd;
  1365. dev = pci_get_drvdata(pdev);
  1366. if (!dev)
  1367. return;
  1368. pci_set_drvdata(pdev, NULL);
  1369. pd = netdev_priv(dev);
  1370. unregister_netdev(dev);
  1371. /* tx_buffers and rx_buffers are freed in stop */
  1372. BUG_ON(pd->tx_buffers);
  1373. BUG_ON(pd->rx_buffers);
  1374. BUG_ON(!pd->tx_ring);
  1375. BUG_ON(!pd->rx_ring);
  1376. pci_free_consistent(pdev, sizeof(struct smsc9420_dma_desc) *
  1377. (RX_RING_SIZE + TX_RING_SIZE), pd->rx_ring, pd->rx_dma_addr);
  1378. iounmap(pd->base_addr - LAN9420_CPSR_ENDIAN_OFFSET);
  1379. pci_release_regions(pdev);
  1380. free_netdev(dev);
  1381. pci_disable_device(pdev);
  1382. }
  1383. static struct pci_driver smsc9420_driver = {
  1384. .name = DRV_NAME,
  1385. .id_table = smsc9420_id_table,
  1386. .probe = smsc9420_probe,
  1387. .remove = __devexit_p(smsc9420_remove),
  1388. #ifdef CONFIG_PM
  1389. .suspend = smsc9420_suspend,
  1390. .resume = smsc9420_resume,
  1391. #endif /* CONFIG_PM */
  1392. };
  1393. static int __init smsc9420_init_module(void)
  1394. {
  1395. smsc_debug = netif_msg_init(debug, SMSC_MSG_DEFAULT);
  1396. return pci_register_driver(&smsc9420_driver);
  1397. }
  1398. static void __exit smsc9420_exit_module(void)
  1399. {
  1400. pci_unregister_driver(&smsc9420_driver);
  1401. }
  1402. module_init(smsc9420_init_module);
  1403. module_exit(smsc9420_exit_module);