fec.c 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728
  1. /*
  2. * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
  3. * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
  4. *
  5. * Right now, I am very wasteful with the buffers. I allocate memory
  6. * pages and then divide them into 2K frame buffers. This way I know I
  7. * have buffers large enough to hold one frame within one buffer descriptor.
  8. * Once I get this working, I will use 64 or 128 byte CPM buffers, which
  9. * will be much more memory efficient and will easily handle lots of
  10. * small packets.
  11. *
  12. * Much better multiple PHY support by Magnus Damm.
  13. * Copyright (c) 2000 Ericsson Radio Systems AB.
  14. *
  15. * Support for FEC controller of ColdFire processors.
  16. * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
  17. *
  18. * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
  19. * Copyright (c) 2004-2006 Macq Electronique SA.
  20. *
  21. * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  22. */
  23. #include <linux/module.h>
  24. #include <linux/kernel.h>
  25. #include <linux/string.h>
  26. #include <linux/ptrace.h>
  27. #include <linux/errno.h>
  28. #include <linux/ioport.h>
  29. #include <linux/slab.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/pci.h>
  32. #include <linux/init.h>
  33. #include <linux/delay.h>
  34. #include <linux/netdevice.h>
  35. #include <linux/etherdevice.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/spinlock.h>
  38. #include <linux/workqueue.h>
  39. #include <linux/bitops.h>
  40. #include <linux/io.h>
  41. #include <linux/irq.h>
  42. #include <linux/clk.h>
  43. #include <linux/platform_device.h>
  44. #include <linux/phy.h>
  45. #include <linux/fec.h>
  46. #include <linux/of.h>
  47. #include <linux/of_device.h>
  48. #include <linux/of_gpio.h>
  49. #include <linux/of_net.h>
  50. #include <asm/cacheflush.h>
  51. #ifndef CONFIG_ARM
  52. #include <asm/coldfire.h>
  53. #include <asm/mcfsim.h>
  54. #endif
  55. #include "fec.h"
  56. #if defined(CONFIG_ARM)
  57. #define FEC_ALIGNMENT 0xf
  58. #else
  59. #define FEC_ALIGNMENT 0x3
  60. #endif
  61. #define DRIVER_NAME "fec"
  62. /* Controller is ENET-MAC */
  63. #define FEC_QUIRK_ENET_MAC (1 << 0)
  64. /* Controller needs driver to swap frame */
  65. #define FEC_QUIRK_SWAP_FRAME (1 << 1)
  66. /* Controller uses gasket */
  67. #define FEC_QUIRK_USE_GASKET (1 << 2)
  68. /* Controller has GBIT support */
  69. #define FEC_QUIRK_HAS_GBIT (1 << 3)
  70. static struct platform_device_id fec_devtype[] = {
  71. {
  72. /* keep it for coldfire */
  73. .name = DRIVER_NAME,
  74. .driver_data = 0,
  75. }, {
  76. .name = "imx25-fec",
  77. .driver_data = FEC_QUIRK_USE_GASKET,
  78. }, {
  79. .name = "imx27-fec",
  80. .driver_data = 0,
  81. }, {
  82. .name = "imx28-fec",
  83. .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
  84. }, {
  85. .name = "imx6q-fec",
  86. .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT,
  87. }, {
  88. /* sentinel */
  89. }
  90. };
  91. MODULE_DEVICE_TABLE(platform, fec_devtype);
  92. enum imx_fec_type {
  93. IMX25_FEC = 1, /* runs on i.mx25/50/53 */
  94. IMX27_FEC, /* runs on i.mx27/35/51 */
  95. IMX28_FEC,
  96. IMX6Q_FEC,
  97. };
  98. static const struct of_device_id fec_dt_ids[] = {
  99. { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
  100. { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
  101. { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
  102. { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
  103. { /* sentinel */ }
  104. };
  105. MODULE_DEVICE_TABLE(of, fec_dt_ids);
  106. static unsigned char macaddr[ETH_ALEN];
  107. module_param_array(macaddr, byte, NULL, 0);
  108. MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
  109. #if defined(CONFIG_M5272)
  110. /*
  111. * Some hardware gets it MAC address out of local flash memory.
  112. * if this is non-zero then assume it is the address to get MAC from.
  113. */
  114. #if defined(CONFIG_NETtel)
  115. #define FEC_FLASHMAC 0xf0006006
  116. #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
  117. #define FEC_FLASHMAC 0xf0006000
  118. #elif defined(CONFIG_CANCam)
  119. #define FEC_FLASHMAC 0xf0020000
  120. #elif defined (CONFIG_M5272C3)
  121. #define FEC_FLASHMAC (0xffe04000 + 4)
  122. #elif defined(CONFIG_MOD5272)
  123. #define FEC_FLASHMAC 0xffc0406b
  124. #else
  125. #define FEC_FLASHMAC 0
  126. #endif
  127. #endif /* CONFIG_M5272 */
  128. /* The number of Tx and Rx buffers. These are allocated from the page
  129. * pool. The code may assume these are power of two, so it it best
  130. * to keep them that size.
  131. * We don't need to allocate pages for the transmitter. We just use
  132. * the skbuffer directly.
  133. */
  134. #define FEC_ENET_RX_PAGES 8
  135. #define FEC_ENET_RX_FRSIZE 2048
  136. #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
  137. #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
  138. #define FEC_ENET_TX_FRSIZE 2048
  139. #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
  140. #define TX_RING_SIZE 16 /* Must be power of two */
  141. #define TX_RING_MOD_MASK 15 /* for this to work */
  142. #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
  143. #error "FEC: descriptor ring size constants too large"
  144. #endif
  145. /* Interrupt events/masks. */
  146. #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
  147. #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
  148. #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
  149. #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
  150. #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
  151. #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
  152. #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
  153. #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
  154. #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
  155. #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
  156. #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
  157. /* The FEC stores dest/src/type, data, and checksum for receive packets.
  158. */
  159. #define PKT_MAXBUF_SIZE 1518
  160. #define PKT_MINBUF_SIZE 64
  161. #define PKT_MAXBLR_SIZE 1520
  162. /* This device has up to three irqs on some platforms */
  163. #define FEC_IRQ_NUM 3
  164. /*
  165. * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
  166. * size bits. Other FEC hardware does not, so we need to take that into
  167. * account when setting it.
  168. */
  169. #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
  170. defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
  171. #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
  172. #else
  173. #define OPT_FRAME_SIZE 0
  174. #endif
  175. /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
  176. * tx_bd_base always point to the base of the buffer descriptors. The
  177. * cur_rx and cur_tx point to the currently available buffer.
  178. * The dirty_tx tracks the current buffer that is being sent by the
  179. * controller. The cur_tx and dirty_tx are equal under both completely
  180. * empty and completely full conditions. The empty/ready indicator in
  181. * the buffer descriptor determines the actual condition.
  182. */
  183. struct fec_enet_private {
  184. /* Hardware registers of the FEC device */
  185. void __iomem *hwp;
  186. struct net_device *netdev;
  187. struct clk *clk;
  188. /* The saved address of a sent-in-place packet/buffer, for skfree(). */
  189. unsigned char *tx_bounce[TX_RING_SIZE];
  190. struct sk_buff* tx_skbuff[TX_RING_SIZE];
  191. struct sk_buff* rx_skbuff[RX_RING_SIZE];
  192. ushort skb_cur;
  193. ushort skb_dirty;
  194. /* CPM dual port RAM relative addresses */
  195. dma_addr_t bd_dma;
  196. /* Address of Rx and Tx buffers */
  197. struct bufdesc *rx_bd_base;
  198. struct bufdesc *tx_bd_base;
  199. /* The next free ring entry */
  200. struct bufdesc *cur_rx, *cur_tx;
  201. /* The ring entries to be free()ed */
  202. struct bufdesc *dirty_tx;
  203. uint tx_full;
  204. /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
  205. spinlock_t hw_lock;
  206. struct platform_device *pdev;
  207. int opened;
  208. /* Phylib and MDIO interface */
  209. struct mii_bus *mii_bus;
  210. struct phy_device *phy_dev;
  211. int mii_timeout;
  212. uint phy_speed;
  213. phy_interface_t phy_interface;
  214. int link;
  215. int full_duplex;
  216. struct completion mdio_done;
  217. int irq[FEC_IRQ_NUM];
  218. };
  219. /* FEC MII MMFR bits definition */
  220. #define FEC_MMFR_ST (1 << 30)
  221. #define FEC_MMFR_OP_READ (2 << 28)
  222. #define FEC_MMFR_OP_WRITE (1 << 28)
  223. #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
  224. #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
  225. #define FEC_MMFR_TA (2 << 16)
  226. #define FEC_MMFR_DATA(v) (v & 0xffff)
  227. #define FEC_MII_TIMEOUT 1000 /* us */
  228. /* Transmitter timeout */
  229. #define TX_TIMEOUT (2 * HZ)
  230. static void *swap_buffer(void *bufaddr, int len)
  231. {
  232. int i;
  233. unsigned int *buf = bufaddr;
  234. for (i = 0; i < (len + 3) / 4; i++, buf++)
  235. *buf = cpu_to_be32(*buf);
  236. return bufaddr;
  237. }
  238. static netdev_tx_t
  239. fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  240. {
  241. struct fec_enet_private *fep = netdev_priv(ndev);
  242. const struct platform_device_id *id_entry =
  243. platform_get_device_id(fep->pdev);
  244. struct bufdesc *bdp;
  245. void *bufaddr;
  246. unsigned short status;
  247. unsigned long flags;
  248. if (!fep->link) {
  249. /* Link is down or autonegotiation is in progress. */
  250. return NETDEV_TX_BUSY;
  251. }
  252. spin_lock_irqsave(&fep->hw_lock, flags);
  253. /* Fill in a Tx ring entry */
  254. bdp = fep->cur_tx;
  255. status = bdp->cbd_sc;
  256. if (status & BD_ENET_TX_READY) {
  257. /* Ooops. All transmit buffers are full. Bail out.
  258. * This should not happen, since ndev->tbusy should be set.
  259. */
  260. printk("%s: tx queue full!.\n", ndev->name);
  261. spin_unlock_irqrestore(&fep->hw_lock, flags);
  262. return NETDEV_TX_BUSY;
  263. }
  264. /* Clear all of the status flags */
  265. status &= ~BD_ENET_TX_STATS;
  266. /* Set buffer length and buffer pointer */
  267. bufaddr = skb->data;
  268. bdp->cbd_datlen = skb->len;
  269. /*
  270. * On some FEC implementations data must be aligned on
  271. * 4-byte boundaries. Use bounce buffers to copy data
  272. * and get it aligned. Ugh.
  273. */
  274. if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
  275. unsigned int index;
  276. index = bdp - fep->tx_bd_base;
  277. memcpy(fep->tx_bounce[index], skb->data, skb->len);
  278. bufaddr = fep->tx_bounce[index];
  279. }
  280. /*
  281. * Some design made an incorrect assumption on endian mode of
  282. * the system that it's running on. As the result, driver has to
  283. * swap every frame going to and coming from the controller.
  284. */
  285. if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
  286. swap_buffer(bufaddr, skb->len);
  287. /* Save skb pointer */
  288. fep->tx_skbuff[fep->skb_cur] = skb;
  289. ndev->stats.tx_bytes += skb->len;
  290. fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
  291. /* Push the data cache so the CPM does not get stale memory
  292. * data.
  293. */
  294. bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
  295. FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
  296. /* Send it on its way. Tell FEC it's ready, interrupt when done,
  297. * it's the last BD of the frame, and to put the CRC on the end.
  298. */
  299. status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
  300. | BD_ENET_TX_LAST | BD_ENET_TX_TC);
  301. bdp->cbd_sc = status;
  302. /* Trigger transmission start */
  303. writel(0, fep->hwp + FEC_X_DES_ACTIVE);
  304. /* If this was the last BD in the ring, start at the beginning again. */
  305. if (status & BD_ENET_TX_WRAP)
  306. bdp = fep->tx_bd_base;
  307. else
  308. bdp++;
  309. if (bdp == fep->dirty_tx) {
  310. fep->tx_full = 1;
  311. netif_stop_queue(ndev);
  312. }
  313. fep->cur_tx = bdp;
  314. skb_tx_timestamp(skb);
  315. spin_unlock_irqrestore(&fep->hw_lock, flags);
  316. return NETDEV_TX_OK;
  317. }
  318. /* This function is called to start or restart the FEC during a link
  319. * change. This only happens when switching between half and full
  320. * duplex.
  321. */
  322. static void
  323. fec_restart(struct net_device *ndev, int duplex)
  324. {
  325. struct fec_enet_private *fep = netdev_priv(ndev);
  326. const struct platform_device_id *id_entry =
  327. platform_get_device_id(fep->pdev);
  328. int i;
  329. u32 temp_mac[2];
  330. u32 rcntl = OPT_FRAME_SIZE | 0x04;
  331. u32 ecntl = 0x2; /* ETHEREN */
  332. /* Whack a reset. We should wait for this. */
  333. writel(1, fep->hwp + FEC_ECNTRL);
  334. udelay(10);
  335. /*
  336. * enet-mac reset will reset mac address registers too,
  337. * so need to reconfigure it.
  338. */
  339. if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
  340. memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
  341. writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
  342. writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
  343. }
  344. /* Clear any outstanding interrupt. */
  345. writel(0xffc00000, fep->hwp + FEC_IEVENT);
  346. /* Reset all multicast. */
  347. writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
  348. writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
  349. #ifndef CONFIG_M5272
  350. writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
  351. writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
  352. #endif
  353. /* Set maximum receive buffer size. */
  354. writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
  355. /* Set receive and transmit descriptor base. */
  356. writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
  357. writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
  358. fep->hwp + FEC_X_DES_START);
  359. fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
  360. fep->cur_rx = fep->rx_bd_base;
  361. /* Reset SKB transmit buffers. */
  362. fep->skb_cur = fep->skb_dirty = 0;
  363. for (i = 0; i <= TX_RING_MOD_MASK; i++) {
  364. if (fep->tx_skbuff[i]) {
  365. dev_kfree_skb_any(fep->tx_skbuff[i]);
  366. fep->tx_skbuff[i] = NULL;
  367. }
  368. }
  369. /* Enable MII mode */
  370. if (duplex) {
  371. /* FD enable */
  372. writel(0x04, fep->hwp + FEC_X_CNTRL);
  373. } else {
  374. /* No Rcv on Xmit */
  375. rcntl |= 0x02;
  376. writel(0x0, fep->hwp + FEC_X_CNTRL);
  377. }
  378. fep->full_duplex = duplex;
  379. /* Set MII speed */
  380. writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
  381. /*
  382. * The phy interface and speed need to get configured
  383. * differently on enet-mac.
  384. */
  385. if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
  386. /* Enable flow control and length check */
  387. rcntl |= 0x40000000 | 0x00000020;
  388. /* RGMII, RMII or MII */
  389. if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
  390. rcntl |= (1 << 6);
  391. else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
  392. rcntl |= (1 << 8);
  393. else
  394. rcntl &= ~(1 << 8);
  395. /* 1G, 100M or 10M */
  396. if (fep->phy_dev) {
  397. if (fep->phy_dev->speed == SPEED_1000)
  398. ecntl |= (1 << 5);
  399. else if (fep->phy_dev->speed == SPEED_100)
  400. rcntl &= ~(1 << 9);
  401. else
  402. rcntl |= (1 << 9);
  403. }
  404. } else {
  405. #ifdef FEC_MIIGSK_ENR
  406. if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
  407. /* disable the gasket and wait */
  408. writel(0, fep->hwp + FEC_MIIGSK_ENR);
  409. while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
  410. udelay(1);
  411. /*
  412. * configure the gasket:
  413. * RMII, 50 MHz, no loopback, no echo
  414. * MII, 25 MHz, no loopback, no echo
  415. */
  416. writel((fep->phy_interface == PHY_INTERFACE_MODE_RMII) ?
  417. 1 : 0, fep->hwp + FEC_MIIGSK_CFGR);
  418. /* re-enable the gasket */
  419. writel(2, fep->hwp + FEC_MIIGSK_ENR);
  420. }
  421. #endif
  422. }
  423. writel(rcntl, fep->hwp + FEC_R_CNTRL);
  424. if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
  425. /* enable ENET endian swap */
  426. ecntl |= (1 << 8);
  427. /* enable ENET store and forward mode */
  428. writel(1 << 8, fep->hwp + FEC_X_WMRK);
  429. }
  430. /* And last, enable the transmit and receive processing */
  431. writel(ecntl, fep->hwp + FEC_ECNTRL);
  432. writel(0, fep->hwp + FEC_R_DES_ACTIVE);
  433. /* Enable interrupts we wish to service */
  434. writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
  435. }
  436. static void
  437. fec_stop(struct net_device *ndev)
  438. {
  439. struct fec_enet_private *fep = netdev_priv(ndev);
  440. const struct platform_device_id *id_entry =
  441. platform_get_device_id(fep->pdev);
  442. /* We cannot expect a graceful transmit stop without link !!! */
  443. if (fep->link) {
  444. writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
  445. udelay(10);
  446. if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
  447. printk("fec_stop : Graceful transmit stop did not complete !\n");
  448. }
  449. /* Whack a reset. We should wait for this. */
  450. writel(1, fep->hwp + FEC_ECNTRL);
  451. udelay(10);
  452. writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
  453. writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
  454. /* We have to keep ENET enabled to have MII interrupt stay working */
  455. if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
  456. writel(2, fep->hwp + FEC_ECNTRL);
  457. }
  458. static void
  459. fec_timeout(struct net_device *ndev)
  460. {
  461. struct fec_enet_private *fep = netdev_priv(ndev);
  462. ndev->stats.tx_errors++;
  463. fec_restart(ndev, fep->full_duplex);
  464. netif_wake_queue(ndev);
  465. }
  466. static void
  467. fec_enet_tx(struct net_device *ndev)
  468. {
  469. struct fec_enet_private *fep;
  470. struct bufdesc *bdp;
  471. unsigned short status;
  472. struct sk_buff *skb;
  473. fep = netdev_priv(ndev);
  474. spin_lock(&fep->hw_lock);
  475. bdp = fep->dirty_tx;
  476. while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
  477. if (bdp == fep->cur_tx && fep->tx_full == 0)
  478. break;
  479. dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
  480. FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
  481. bdp->cbd_bufaddr = 0;
  482. skb = fep->tx_skbuff[fep->skb_dirty];
  483. /* Check for errors. */
  484. if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
  485. BD_ENET_TX_RL | BD_ENET_TX_UN |
  486. BD_ENET_TX_CSL)) {
  487. ndev->stats.tx_errors++;
  488. if (status & BD_ENET_TX_HB) /* No heartbeat */
  489. ndev->stats.tx_heartbeat_errors++;
  490. if (status & BD_ENET_TX_LC) /* Late collision */
  491. ndev->stats.tx_window_errors++;
  492. if (status & BD_ENET_TX_RL) /* Retrans limit */
  493. ndev->stats.tx_aborted_errors++;
  494. if (status & BD_ENET_TX_UN) /* Underrun */
  495. ndev->stats.tx_fifo_errors++;
  496. if (status & BD_ENET_TX_CSL) /* Carrier lost */
  497. ndev->stats.tx_carrier_errors++;
  498. } else {
  499. ndev->stats.tx_packets++;
  500. }
  501. if (status & BD_ENET_TX_READY)
  502. printk("HEY! Enet xmit interrupt and TX_READY.\n");
  503. /* Deferred means some collisions occurred during transmit,
  504. * but we eventually sent the packet OK.
  505. */
  506. if (status & BD_ENET_TX_DEF)
  507. ndev->stats.collisions++;
  508. /* Free the sk buffer associated with this last transmit */
  509. dev_kfree_skb_any(skb);
  510. fep->tx_skbuff[fep->skb_dirty] = NULL;
  511. fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
  512. /* Update pointer to next buffer descriptor to be transmitted */
  513. if (status & BD_ENET_TX_WRAP)
  514. bdp = fep->tx_bd_base;
  515. else
  516. bdp++;
  517. /* Since we have freed up a buffer, the ring is no longer full
  518. */
  519. if (fep->tx_full) {
  520. fep->tx_full = 0;
  521. if (netif_queue_stopped(ndev))
  522. netif_wake_queue(ndev);
  523. }
  524. }
  525. fep->dirty_tx = bdp;
  526. spin_unlock(&fep->hw_lock);
  527. }
  528. /* During a receive, the cur_rx points to the current incoming buffer.
  529. * When we update through the ring, if the next incoming buffer has
  530. * not been given to the system, we just set the empty indicator,
  531. * effectively tossing the packet.
  532. */
  533. static void
  534. fec_enet_rx(struct net_device *ndev)
  535. {
  536. struct fec_enet_private *fep = netdev_priv(ndev);
  537. const struct platform_device_id *id_entry =
  538. platform_get_device_id(fep->pdev);
  539. struct bufdesc *bdp;
  540. unsigned short status;
  541. struct sk_buff *skb;
  542. ushort pkt_len;
  543. __u8 *data;
  544. #ifdef CONFIG_M532x
  545. flush_cache_all();
  546. #endif
  547. spin_lock(&fep->hw_lock);
  548. /* First, grab all of the stats for the incoming packet.
  549. * These get messed up if we get called due to a busy condition.
  550. */
  551. bdp = fep->cur_rx;
  552. while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
  553. /* Since we have allocated space to hold a complete frame,
  554. * the last indicator should be set.
  555. */
  556. if ((status & BD_ENET_RX_LAST) == 0)
  557. printk("FEC ENET: rcv is not +last\n");
  558. if (!fep->opened)
  559. goto rx_processing_done;
  560. /* Check for errors. */
  561. if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
  562. BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  563. ndev->stats.rx_errors++;
  564. if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
  565. /* Frame too long or too short. */
  566. ndev->stats.rx_length_errors++;
  567. }
  568. if (status & BD_ENET_RX_NO) /* Frame alignment */
  569. ndev->stats.rx_frame_errors++;
  570. if (status & BD_ENET_RX_CR) /* CRC Error */
  571. ndev->stats.rx_crc_errors++;
  572. if (status & BD_ENET_RX_OV) /* FIFO overrun */
  573. ndev->stats.rx_fifo_errors++;
  574. }
  575. /* Report late collisions as a frame error.
  576. * On this error, the BD is closed, but we don't know what we
  577. * have in the buffer. So, just drop this frame on the floor.
  578. */
  579. if (status & BD_ENET_RX_CL) {
  580. ndev->stats.rx_errors++;
  581. ndev->stats.rx_frame_errors++;
  582. goto rx_processing_done;
  583. }
  584. /* Process the incoming frame. */
  585. ndev->stats.rx_packets++;
  586. pkt_len = bdp->cbd_datlen;
  587. ndev->stats.rx_bytes += pkt_len;
  588. data = (__u8*)__va(bdp->cbd_bufaddr);
  589. dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
  590. FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
  591. if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
  592. swap_buffer(data, pkt_len);
  593. /* This does 16 byte alignment, exactly what we need.
  594. * The packet length includes FCS, but we don't want to
  595. * include that when passing upstream as it messes up
  596. * bridging applications.
  597. */
  598. skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN);
  599. if (unlikely(!skb)) {
  600. printk("%s: Memory squeeze, dropping packet.\n",
  601. ndev->name);
  602. ndev->stats.rx_dropped++;
  603. } else {
  604. skb_reserve(skb, NET_IP_ALIGN);
  605. skb_put(skb, pkt_len - 4); /* Make room */
  606. skb_copy_to_linear_data(skb, data, pkt_len - 4);
  607. skb->protocol = eth_type_trans(skb, ndev);
  608. if (!skb_defer_rx_timestamp(skb))
  609. netif_rx(skb);
  610. }
  611. bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data,
  612. FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
  613. rx_processing_done:
  614. /* Clear the status flags for this buffer */
  615. status &= ~BD_ENET_RX_STATS;
  616. /* Mark the buffer empty */
  617. status |= BD_ENET_RX_EMPTY;
  618. bdp->cbd_sc = status;
  619. /* Update BD pointer to next entry */
  620. if (status & BD_ENET_RX_WRAP)
  621. bdp = fep->rx_bd_base;
  622. else
  623. bdp++;
  624. /* Doing this here will keep the FEC running while we process
  625. * incoming frames. On a heavily loaded network, we should be
  626. * able to keep up at the expense of system resources.
  627. */
  628. writel(0, fep->hwp + FEC_R_DES_ACTIVE);
  629. }
  630. fep->cur_rx = bdp;
  631. spin_unlock(&fep->hw_lock);
  632. }
  633. static irqreturn_t
  634. fec_enet_interrupt(int irq, void *dev_id)
  635. {
  636. struct net_device *ndev = dev_id;
  637. struct fec_enet_private *fep = netdev_priv(ndev);
  638. uint int_events;
  639. irqreturn_t ret = IRQ_NONE;
  640. do {
  641. int_events = readl(fep->hwp + FEC_IEVENT);
  642. writel(int_events, fep->hwp + FEC_IEVENT);
  643. if (int_events & FEC_ENET_RXF) {
  644. ret = IRQ_HANDLED;
  645. fec_enet_rx(ndev);
  646. }
  647. /* Transmit OK, or non-fatal error. Update the buffer
  648. * descriptors. FEC handles all errors, we just discover
  649. * them as part of the transmit process.
  650. */
  651. if (int_events & FEC_ENET_TXF) {
  652. ret = IRQ_HANDLED;
  653. fec_enet_tx(ndev);
  654. }
  655. if (int_events & FEC_ENET_MII) {
  656. ret = IRQ_HANDLED;
  657. complete(&fep->mdio_done);
  658. }
  659. } while (int_events);
  660. return ret;
  661. }
  662. /* ------------------------------------------------------------------------- */
  663. static void __inline__ fec_get_mac(struct net_device *ndev)
  664. {
  665. struct fec_enet_private *fep = netdev_priv(ndev);
  666. struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
  667. unsigned char *iap, tmpaddr[ETH_ALEN];
  668. /*
  669. * try to get mac address in following order:
  670. *
  671. * 1) module parameter via kernel command line in form
  672. * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
  673. */
  674. iap = macaddr;
  675. #ifdef CONFIG_OF
  676. /*
  677. * 2) from device tree data
  678. */
  679. if (!is_valid_ether_addr(iap)) {
  680. struct device_node *np = fep->pdev->dev.of_node;
  681. if (np) {
  682. const char *mac = of_get_mac_address(np);
  683. if (mac)
  684. iap = (unsigned char *) mac;
  685. }
  686. }
  687. #endif
  688. /*
  689. * 3) from flash or fuse (via platform data)
  690. */
  691. if (!is_valid_ether_addr(iap)) {
  692. #ifdef CONFIG_M5272
  693. if (FEC_FLASHMAC)
  694. iap = (unsigned char *)FEC_FLASHMAC;
  695. #else
  696. if (pdata)
  697. memcpy(iap, pdata->mac, ETH_ALEN);
  698. #endif
  699. }
  700. /*
  701. * 4) FEC mac registers set by bootloader
  702. */
  703. if (!is_valid_ether_addr(iap)) {
  704. *((unsigned long *) &tmpaddr[0]) =
  705. be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW));
  706. *((unsigned short *) &tmpaddr[4]) =
  707. be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
  708. iap = &tmpaddr[0];
  709. }
  710. memcpy(ndev->dev_addr, iap, ETH_ALEN);
  711. /* Adjust MAC if using macaddr */
  712. if (iap == macaddr)
  713. ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->pdev->id;
  714. }
  715. /* ------------------------------------------------------------------------- */
  716. /*
  717. * Phy section
  718. */
  719. static void fec_enet_adjust_link(struct net_device *ndev)
  720. {
  721. struct fec_enet_private *fep = netdev_priv(ndev);
  722. struct phy_device *phy_dev = fep->phy_dev;
  723. unsigned long flags;
  724. int status_change = 0;
  725. spin_lock_irqsave(&fep->hw_lock, flags);
  726. /* Prevent a state halted on mii error */
  727. if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
  728. phy_dev->state = PHY_RESUMING;
  729. goto spin_unlock;
  730. }
  731. /* Duplex link change */
  732. if (phy_dev->link) {
  733. if (fep->full_duplex != phy_dev->duplex) {
  734. fec_restart(ndev, phy_dev->duplex);
  735. status_change = 1;
  736. }
  737. }
  738. /* Link on or off change */
  739. if (phy_dev->link != fep->link) {
  740. fep->link = phy_dev->link;
  741. if (phy_dev->link)
  742. fec_restart(ndev, phy_dev->duplex);
  743. else
  744. fec_stop(ndev);
  745. status_change = 1;
  746. }
  747. spin_unlock:
  748. spin_unlock_irqrestore(&fep->hw_lock, flags);
  749. if (status_change)
  750. phy_print_status(phy_dev);
  751. }
  752. static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
  753. {
  754. struct fec_enet_private *fep = bus->priv;
  755. unsigned long time_left;
  756. fep->mii_timeout = 0;
  757. init_completion(&fep->mdio_done);
  758. /* start a read op */
  759. writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
  760. FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
  761. FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
  762. /* wait for end of transfer */
  763. time_left = wait_for_completion_timeout(&fep->mdio_done,
  764. usecs_to_jiffies(FEC_MII_TIMEOUT));
  765. if (time_left == 0) {
  766. fep->mii_timeout = 1;
  767. printk(KERN_ERR "FEC: MDIO read timeout\n");
  768. return -ETIMEDOUT;
  769. }
  770. /* return value */
  771. return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
  772. }
  773. static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
  774. u16 value)
  775. {
  776. struct fec_enet_private *fep = bus->priv;
  777. unsigned long time_left;
  778. fep->mii_timeout = 0;
  779. init_completion(&fep->mdio_done);
  780. /* start a write op */
  781. writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
  782. FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
  783. FEC_MMFR_TA | FEC_MMFR_DATA(value),
  784. fep->hwp + FEC_MII_DATA);
  785. /* wait for end of transfer */
  786. time_left = wait_for_completion_timeout(&fep->mdio_done,
  787. usecs_to_jiffies(FEC_MII_TIMEOUT));
  788. if (time_left == 0) {
  789. fep->mii_timeout = 1;
  790. printk(KERN_ERR "FEC: MDIO write timeout\n");
  791. return -ETIMEDOUT;
  792. }
  793. return 0;
  794. }
  795. static int fec_enet_mdio_reset(struct mii_bus *bus)
  796. {
  797. return 0;
  798. }
  799. static int fec_enet_mii_probe(struct net_device *ndev)
  800. {
  801. struct fec_enet_private *fep = netdev_priv(ndev);
  802. const struct platform_device_id *id_entry =
  803. platform_get_device_id(fep->pdev);
  804. struct phy_device *phy_dev = NULL;
  805. char mdio_bus_id[MII_BUS_ID_SIZE];
  806. char phy_name[MII_BUS_ID_SIZE + 3];
  807. int phy_id;
  808. int dev_id = fep->pdev->id;
  809. fep->phy_dev = NULL;
  810. /* check for attached phy */
  811. for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
  812. if ((fep->mii_bus->phy_mask & (1 << phy_id)))
  813. continue;
  814. if (fep->mii_bus->phy_map[phy_id] == NULL)
  815. continue;
  816. if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
  817. continue;
  818. if (dev_id--)
  819. continue;
  820. strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
  821. break;
  822. }
  823. if (phy_id >= PHY_MAX_ADDR) {
  824. printk(KERN_INFO "%s: no PHY, assuming direct connection "
  825. "to switch\n", ndev->name);
  826. strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE);
  827. phy_id = 0;
  828. }
  829. snprintf(phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT, mdio_bus_id, phy_id);
  830. phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 0,
  831. fep->phy_interface);
  832. if (IS_ERR(phy_dev)) {
  833. printk(KERN_ERR "%s: could not attach to PHY\n", ndev->name);
  834. return PTR_ERR(phy_dev);
  835. }
  836. /* mask with MAC supported features */
  837. if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT)
  838. phy_dev->supported &= PHY_GBIT_FEATURES;
  839. else
  840. phy_dev->supported &= PHY_BASIC_FEATURES;
  841. phy_dev->advertising = phy_dev->supported;
  842. fep->phy_dev = phy_dev;
  843. fep->link = 0;
  844. fep->full_duplex = 0;
  845. printk(KERN_INFO "%s: Freescale FEC PHY driver [%s] "
  846. "(mii_bus:phy_addr=%s, irq=%d)\n", ndev->name,
  847. fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
  848. fep->phy_dev->irq);
  849. return 0;
  850. }
  851. static int fec_enet_mii_init(struct platform_device *pdev)
  852. {
  853. static struct mii_bus *fec0_mii_bus;
  854. struct net_device *ndev = platform_get_drvdata(pdev);
  855. struct fec_enet_private *fep = netdev_priv(ndev);
  856. const struct platform_device_id *id_entry =
  857. platform_get_device_id(fep->pdev);
  858. int err = -ENXIO, i;
  859. /*
  860. * The dual fec interfaces are not equivalent with enet-mac.
  861. * Here are the differences:
  862. *
  863. * - fec0 supports MII & RMII modes while fec1 only supports RMII
  864. * - fec0 acts as the 1588 time master while fec1 is slave
  865. * - external phys can only be configured by fec0
  866. *
  867. * That is to say fec1 can not work independently. It only works
  868. * when fec0 is working. The reason behind this design is that the
  869. * second interface is added primarily for Switch mode.
  870. *
  871. * Because of the last point above, both phys are attached on fec0
  872. * mdio interface in board design, and need to be configured by
  873. * fec0 mii_bus.
  874. */
  875. if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && pdev->id > 0) {
  876. /* fec1 uses fec0 mii_bus */
  877. fep->mii_bus = fec0_mii_bus;
  878. return 0;
  879. }
  880. fep->mii_timeout = 0;
  881. /*
  882. * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
  883. *
  884. * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
  885. * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
  886. * Reference Manual has an error on this, and gets fixed on i.MX6Q
  887. * document.
  888. */
  889. fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000);
  890. if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
  891. fep->phy_speed--;
  892. fep->phy_speed <<= 1;
  893. writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
  894. fep->mii_bus = mdiobus_alloc();
  895. if (fep->mii_bus == NULL) {
  896. err = -ENOMEM;
  897. goto err_out;
  898. }
  899. fep->mii_bus->name = "fec_enet_mii_bus";
  900. fep->mii_bus->read = fec_enet_mdio_read;
  901. fep->mii_bus->write = fec_enet_mdio_write;
  902. fep->mii_bus->reset = fec_enet_mdio_reset;
  903. snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%x", pdev->id + 1);
  904. fep->mii_bus->priv = fep;
  905. fep->mii_bus->parent = &pdev->dev;
  906. fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
  907. if (!fep->mii_bus->irq) {
  908. err = -ENOMEM;
  909. goto err_out_free_mdiobus;
  910. }
  911. for (i = 0; i < PHY_MAX_ADDR; i++)
  912. fep->mii_bus->irq[i] = PHY_POLL;
  913. if (mdiobus_register(fep->mii_bus))
  914. goto err_out_free_mdio_irq;
  915. /* save fec0 mii_bus */
  916. if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
  917. fec0_mii_bus = fep->mii_bus;
  918. return 0;
  919. err_out_free_mdio_irq:
  920. kfree(fep->mii_bus->irq);
  921. err_out_free_mdiobus:
  922. mdiobus_free(fep->mii_bus);
  923. err_out:
  924. return err;
  925. }
  926. static void fec_enet_mii_remove(struct fec_enet_private *fep)
  927. {
  928. if (fep->phy_dev)
  929. phy_disconnect(fep->phy_dev);
  930. mdiobus_unregister(fep->mii_bus);
  931. kfree(fep->mii_bus->irq);
  932. mdiobus_free(fep->mii_bus);
  933. }
  934. static int fec_enet_get_settings(struct net_device *ndev,
  935. struct ethtool_cmd *cmd)
  936. {
  937. struct fec_enet_private *fep = netdev_priv(ndev);
  938. struct phy_device *phydev = fep->phy_dev;
  939. if (!phydev)
  940. return -ENODEV;
  941. return phy_ethtool_gset(phydev, cmd);
  942. }
  943. static int fec_enet_set_settings(struct net_device *ndev,
  944. struct ethtool_cmd *cmd)
  945. {
  946. struct fec_enet_private *fep = netdev_priv(ndev);
  947. struct phy_device *phydev = fep->phy_dev;
  948. if (!phydev)
  949. return -ENODEV;
  950. return phy_ethtool_sset(phydev, cmd);
  951. }
  952. static void fec_enet_get_drvinfo(struct net_device *ndev,
  953. struct ethtool_drvinfo *info)
  954. {
  955. struct fec_enet_private *fep = netdev_priv(ndev);
  956. strcpy(info->driver, fep->pdev->dev.driver->name);
  957. strcpy(info->version, "Revision: 1.0");
  958. strcpy(info->bus_info, dev_name(&ndev->dev));
  959. }
  960. static struct ethtool_ops fec_enet_ethtool_ops = {
  961. .get_settings = fec_enet_get_settings,
  962. .set_settings = fec_enet_set_settings,
  963. .get_drvinfo = fec_enet_get_drvinfo,
  964. .get_link = ethtool_op_get_link,
  965. };
  966. static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
  967. {
  968. struct fec_enet_private *fep = netdev_priv(ndev);
  969. struct phy_device *phydev = fep->phy_dev;
  970. if (!netif_running(ndev))
  971. return -EINVAL;
  972. if (!phydev)
  973. return -ENODEV;
  974. return phy_mii_ioctl(phydev, rq, cmd);
  975. }
  976. static void fec_enet_free_buffers(struct net_device *ndev)
  977. {
  978. struct fec_enet_private *fep = netdev_priv(ndev);
  979. int i;
  980. struct sk_buff *skb;
  981. struct bufdesc *bdp;
  982. bdp = fep->rx_bd_base;
  983. for (i = 0; i < RX_RING_SIZE; i++) {
  984. skb = fep->rx_skbuff[i];
  985. if (bdp->cbd_bufaddr)
  986. dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
  987. FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
  988. if (skb)
  989. dev_kfree_skb(skb);
  990. bdp++;
  991. }
  992. bdp = fep->tx_bd_base;
  993. for (i = 0; i < TX_RING_SIZE; i++)
  994. kfree(fep->tx_bounce[i]);
  995. }
  996. static int fec_enet_alloc_buffers(struct net_device *ndev)
  997. {
  998. struct fec_enet_private *fep = netdev_priv(ndev);
  999. int i;
  1000. struct sk_buff *skb;
  1001. struct bufdesc *bdp;
  1002. bdp = fep->rx_bd_base;
  1003. for (i = 0; i < RX_RING_SIZE; i++) {
  1004. skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE);
  1005. if (!skb) {
  1006. fec_enet_free_buffers(ndev);
  1007. return -ENOMEM;
  1008. }
  1009. fep->rx_skbuff[i] = skb;
  1010. bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
  1011. FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
  1012. bdp->cbd_sc = BD_ENET_RX_EMPTY;
  1013. bdp++;
  1014. }
  1015. /* Set the last buffer to wrap. */
  1016. bdp--;
  1017. bdp->cbd_sc |= BD_SC_WRAP;
  1018. bdp = fep->tx_bd_base;
  1019. for (i = 0; i < TX_RING_SIZE; i++) {
  1020. fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
  1021. bdp->cbd_sc = 0;
  1022. bdp->cbd_bufaddr = 0;
  1023. bdp++;
  1024. }
  1025. /* Set the last buffer to wrap. */
  1026. bdp--;
  1027. bdp->cbd_sc |= BD_SC_WRAP;
  1028. return 0;
  1029. }
  1030. static int
  1031. fec_enet_open(struct net_device *ndev)
  1032. {
  1033. struct fec_enet_private *fep = netdev_priv(ndev);
  1034. int ret;
  1035. /* I should reset the ring buffers here, but I don't yet know
  1036. * a simple way to do that.
  1037. */
  1038. ret = fec_enet_alloc_buffers(ndev);
  1039. if (ret)
  1040. return ret;
  1041. /* Probe and connect to PHY when open the interface */
  1042. ret = fec_enet_mii_probe(ndev);
  1043. if (ret) {
  1044. fec_enet_free_buffers(ndev);
  1045. return ret;
  1046. }
  1047. phy_start(fep->phy_dev);
  1048. netif_start_queue(ndev);
  1049. fep->opened = 1;
  1050. return 0;
  1051. }
  1052. static int
  1053. fec_enet_close(struct net_device *ndev)
  1054. {
  1055. struct fec_enet_private *fep = netdev_priv(ndev);
  1056. /* Don't know what to do yet. */
  1057. fep->opened = 0;
  1058. netif_stop_queue(ndev);
  1059. fec_stop(ndev);
  1060. if (fep->phy_dev) {
  1061. phy_stop(fep->phy_dev);
  1062. phy_disconnect(fep->phy_dev);
  1063. }
  1064. fec_enet_free_buffers(ndev);
  1065. return 0;
  1066. }
  1067. /* Set or clear the multicast filter for this adaptor.
  1068. * Skeleton taken from sunlance driver.
  1069. * The CPM Ethernet implementation allows Multicast as well as individual
  1070. * MAC address filtering. Some of the drivers check to make sure it is
  1071. * a group multicast address, and discard those that are not. I guess I
  1072. * will do the same for now, but just remove the test if you want
  1073. * individual filtering as well (do the upper net layers want or support
  1074. * this kind of feature?).
  1075. */
  1076. #define HASH_BITS 6 /* #bits in hash */
  1077. #define CRC32_POLY 0xEDB88320
  1078. static void set_multicast_list(struct net_device *ndev)
  1079. {
  1080. struct fec_enet_private *fep = netdev_priv(ndev);
  1081. struct netdev_hw_addr *ha;
  1082. unsigned int i, bit, data, crc, tmp;
  1083. unsigned char hash;
  1084. if (ndev->flags & IFF_PROMISC) {
  1085. tmp = readl(fep->hwp + FEC_R_CNTRL);
  1086. tmp |= 0x8;
  1087. writel(tmp, fep->hwp + FEC_R_CNTRL);
  1088. return;
  1089. }
  1090. tmp = readl(fep->hwp + FEC_R_CNTRL);
  1091. tmp &= ~0x8;
  1092. writel(tmp, fep->hwp + FEC_R_CNTRL);
  1093. if (ndev->flags & IFF_ALLMULTI) {
  1094. /* Catch all multicast addresses, so set the
  1095. * filter to all 1's
  1096. */
  1097. writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
  1098. writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
  1099. return;
  1100. }
  1101. /* Clear filter and add the addresses in hash register
  1102. */
  1103. writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
  1104. writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
  1105. netdev_for_each_mc_addr(ha, ndev) {
  1106. /* calculate crc32 value of mac address */
  1107. crc = 0xffffffff;
  1108. for (i = 0; i < ndev->addr_len; i++) {
  1109. data = ha->addr[i];
  1110. for (bit = 0; bit < 8; bit++, data >>= 1) {
  1111. crc = (crc >> 1) ^
  1112. (((crc ^ data) & 1) ? CRC32_POLY : 0);
  1113. }
  1114. }
  1115. /* only upper 6 bits (HASH_BITS) are used
  1116. * which point to specific bit in he hash registers
  1117. */
  1118. hash = (crc >> (32 - HASH_BITS)) & 0x3f;
  1119. if (hash > 31) {
  1120. tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
  1121. tmp |= 1 << (hash - 32);
  1122. writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
  1123. } else {
  1124. tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
  1125. tmp |= 1 << hash;
  1126. writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
  1127. }
  1128. }
  1129. }
  1130. /* Set a MAC change in hardware. */
  1131. static int
  1132. fec_set_mac_address(struct net_device *ndev, void *p)
  1133. {
  1134. struct fec_enet_private *fep = netdev_priv(ndev);
  1135. struct sockaddr *addr = p;
  1136. if (!is_valid_ether_addr(addr->sa_data))
  1137. return -EADDRNOTAVAIL;
  1138. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  1139. writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
  1140. (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
  1141. fep->hwp + FEC_ADDR_LOW);
  1142. writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
  1143. fep->hwp + FEC_ADDR_HIGH);
  1144. return 0;
  1145. }
  1146. #ifdef CONFIG_NET_POLL_CONTROLLER
  1147. /*
  1148. * fec_poll_controller: FEC Poll controller function
  1149. * @dev: The FEC network adapter
  1150. *
  1151. * Polled functionality used by netconsole and others in non interrupt mode
  1152. *
  1153. */
  1154. void fec_poll_controller(struct net_device *dev)
  1155. {
  1156. int i;
  1157. struct fec_enet_private *fep = netdev_priv(dev);
  1158. for (i = 0; i < FEC_IRQ_NUM; i++) {
  1159. if (fep->irq[i] > 0) {
  1160. disable_irq(fep->irq[i]);
  1161. fec_enet_interrupt(fep->irq[i], dev);
  1162. enable_irq(fep->irq[i]);
  1163. }
  1164. }
  1165. }
  1166. #endif
  1167. static const struct net_device_ops fec_netdev_ops = {
  1168. .ndo_open = fec_enet_open,
  1169. .ndo_stop = fec_enet_close,
  1170. .ndo_start_xmit = fec_enet_start_xmit,
  1171. .ndo_set_rx_mode = set_multicast_list,
  1172. .ndo_change_mtu = eth_change_mtu,
  1173. .ndo_validate_addr = eth_validate_addr,
  1174. .ndo_tx_timeout = fec_timeout,
  1175. .ndo_set_mac_address = fec_set_mac_address,
  1176. .ndo_do_ioctl = fec_enet_ioctl,
  1177. #ifdef CONFIG_NET_POLL_CONTROLLER
  1178. .ndo_poll_controller = fec_poll_controller,
  1179. #endif
  1180. };
  1181. /*
  1182. * XXX: We need to clean up on failure exits here.
  1183. *
  1184. */
  1185. static int fec_enet_init(struct net_device *ndev)
  1186. {
  1187. struct fec_enet_private *fep = netdev_priv(ndev);
  1188. struct bufdesc *cbd_base;
  1189. struct bufdesc *bdp;
  1190. int i;
  1191. /* Allocate memory for buffer descriptors. */
  1192. cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
  1193. GFP_KERNEL);
  1194. if (!cbd_base) {
  1195. printk("FEC: allocate descriptor memory failed?\n");
  1196. return -ENOMEM;
  1197. }
  1198. spin_lock_init(&fep->hw_lock);
  1199. fep->netdev = ndev;
  1200. /* Get the Ethernet address */
  1201. fec_get_mac(ndev);
  1202. /* Set receive and transmit descriptor base. */
  1203. fep->rx_bd_base = cbd_base;
  1204. fep->tx_bd_base = cbd_base + RX_RING_SIZE;
  1205. /* The FEC Ethernet specific entries in the device structure */
  1206. ndev->watchdog_timeo = TX_TIMEOUT;
  1207. ndev->netdev_ops = &fec_netdev_ops;
  1208. ndev->ethtool_ops = &fec_enet_ethtool_ops;
  1209. /* Initialize the receive buffer descriptors. */
  1210. bdp = fep->rx_bd_base;
  1211. for (i = 0; i < RX_RING_SIZE; i++) {
  1212. /* Initialize the BD for every fragment in the page. */
  1213. bdp->cbd_sc = 0;
  1214. bdp++;
  1215. }
  1216. /* Set the last buffer to wrap */
  1217. bdp--;
  1218. bdp->cbd_sc |= BD_SC_WRAP;
  1219. /* ...and the same for transmit */
  1220. bdp = fep->tx_bd_base;
  1221. for (i = 0; i < TX_RING_SIZE; i++) {
  1222. /* Initialize the BD for every fragment in the page. */
  1223. bdp->cbd_sc = 0;
  1224. bdp->cbd_bufaddr = 0;
  1225. bdp++;
  1226. }
  1227. /* Set the last buffer to wrap */
  1228. bdp--;
  1229. bdp->cbd_sc |= BD_SC_WRAP;
  1230. fec_restart(ndev, 0);
  1231. return 0;
  1232. }
  1233. #ifdef CONFIG_OF
  1234. static int __devinit fec_get_phy_mode_dt(struct platform_device *pdev)
  1235. {
  1236. struct device_node *np = pdev->dev.of_node;
  1237. if (np)
  1238. return of_get_phy_mode(np);
  1239. return -ENODEV;
  1240. }
  1241. static void __devinit fec_reset_phy(struct platform_device *pdev)
  1242. {
  1243. int err, phy_reset;
  1244. struct device_node *np = pdev->dev.of_node;
  1245. if (!np)
  1246. return;
  1247. phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
  1248. err = gpio_request_one(phy_reset, GPIOF_OUT_INIT_LOW, "phy-reset");
  1249. if (err) {
  1250. pr_debug("FEC: failed to get gpio phy-reset: %d\n", err);
  1251. return;
  1252. }
  1253. msleep(1);
  1254. gpio_set_value(phy_reset, 1);
  1255. }
  1256. #else /* CONFIG_OF */
  1257. static inline int fec_get_phy_mode_dt(struct platform_device *pdev)
  1258. {
  1259. return -ENODEV;
  1260. }
  1261. static inline void fec_reset_phy(struct platform_device *pdev)
  1262. {
  1263. /*
  1264. * In case of platform probe, the reset has been done
  1265. * by machine code.
  1266. */
  1267. }
  1268. #endif /* CONFIG_OF */
  1269. static int __devinit
  1270. fec_probe(struct platform_device *pdev)
  1271. {
  1272. struct fec_enet_private *fep;
  1273. struct fec_platform_data *pdata;
  1274. struct net_device *ndev;
  1275. int i, irq, ret = 0;
  1276. struct resource *r;
  1277. const struct of_device_id *of_id;
  1278. of_id = of_match_device(fec_dt_ids, &pdev->dev);
  1279. if (of_id)
  1280. pdev->id_entry = of_id->data;
  1281. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1282. if (!r)
  1283. return -ENXIO;
  1284. r = request_mem_region(r->start, resource_size(r), pdev->name);
  1285. if (!r)
  1286. return -EBUSY;
  1287. /* Init network device */
  1288. ndev = alloc_etherdev(sizeof(struct fec_enet_private));
  1289. if (!ndev) {
  1290. ret = -ENOMEM;
  1291. goto failed_alloc_etherdev;
  1292. }
  1293. SET_NETDEV_DEV(ndev, &pdev->dev);
  1294. /* setup board info structure */
  1295. fep = netdev_priv(ndev);
  1296. fep->hwp = ioremap(r->start, resource_size(r));
  1297. fep->pdev = pdev;
  1298. if (!fep->hwp) {
  1299. ret = -ENOMEM;
  1300. goto failed_ioremap;
  1301. }
  1302. platform_set_drvdata(pdev, ndev);
  1303. ret = fec_get_phy_mode_dt(pdev);
  1304. if (ret < 0) {
  1305. pdata = pdev->dev.platform_data;
  1306. if (pdata)
  1307. fep->phy_interface = pdata->phy;
  1308. else
  1309. fep->phy_interface = PHY_INTERFACE_MODE_MII;
  1310. } else {
  1311. fep->phy_interface = ret;
  1312. }
  1313. fec_reset_phy(pdev);
  1314. for (i = 0; i < FEC_IRQ_NUM; i++) {
  1315. irq = platform_get_irq(pdev, i);
  1316. if (i && irq < 0)
  1317. break;
  1318. ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
  1319. if (ret) {
  1320. while (--i >= 0) {
  1321. irq = platform_get_irq(pdev, i);
  1322. free_irq(irq, ndev);
  1323. }
  1324. goto failed_irq;
  1325. }
  1326. }
  1327. fep->clk = clk_get(&pdev->dev, "fec_clk");
  1328. if (IS_ERR(fep->clk)) {
  1329. ret = PTR_ERR(fep->clk);
  1330. goto failed_clk;
  1331. }
  1332. clk_enable(fep->clk);
  1333. ret = fec_enet_init(ndev);
  1334. if (ret)
  1335. goto failed_init;
  1336. ret = fec_enet_mii_init(pdev);
  1337. if (ret)
  1338. goto failed_mii_init;
  1339. /* Carrier starts down, phylib will bring it up */
  1340. netif_carrier_off(ndev);
  1341. ret = register_netdev(ndev);
  1342. if (ret)
  1343. goto failed_register;
  1344. return 0;
  1345. failed_register:
  1346. fec_enet_mii_remove(fep);
  1347. failed_mii_init:
  1348. failed_init:
  1349. clk_disable(fep->clk);
  1350. clk_put(fep->clk);
  1351. failed_clk:
  1352. for (i = 0; i < FEC_IRQ_NUM; i++) {
  1353. irq = platform_get_irq(pdev, i);
  1354. if (irq > 0)
  1355. free_irq(irq, ndev);
  1356. }
  1357. failed_irq:
  1358. iounmap(fep->hwp);
  1359. failed_ioremap:
  1360. free_netdev(ndev);
  1361. failed_alloc_etherdev:
  1362. release_mem_region(r->start, resource_size(r));
  1363. return ret;
  1364. }
  1365. static int __devexit
  1366. fec_drv_remove(struct platform_device *pdev)
  1367. {
  1368. struct net_device *ndev = platform_get_drvdata(pdev);
  1369. struct fec_enet_private *fep = netdev_priv(ndev);
  1370. struct resource *r;
  1371. fec_stop(ndev);
  1372. fec_enet_mii_remove(fep);
  1373. clk_disable(fep->clk);
  1374. clk_put(fep->clk);
  1375. iounmap(fep->hwp);
  1376. unregister_netdev(ndev);
  1377. free_netdev(ndev);
  1378. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1379. BUG_ON(!r);
  1380. release_mem_region(r->start, resource_size(r));
  1381. platform_set_drvdata(pdev, NULL);
  1382. return 0;
  1383. }
  1384. #ifdef CONFIG_PM
  1385. static int
  1386. fec_suspend(struct device *dev)
  1387. {
  1388. struct net_device *ndev = dev_get_drvdata(dev);
  1389. struct fec_enet_private *fep = netdev_priv(ndev);
  1390. if (netif_running(ndev)) {
  1391. fec_stop(ndev);
  1392. netif_device_detach(ndev);
  1393. }
  1394. clk_disable(fep->clk);
  1395. return 0;
  1396. }
  1397. static int
  1398. fec_resume(struct device *dev)
  1399. {
  1400. struct net_device *ndev = dev_get_drvdata(dev);
  1401. struct fec_enet_private *fep = netdev_priv(ndev);
  1402. clk_enable(fep->clk);
  1403. if (netif_running(ndev)) {
  1404. fec_restart(ndev, fep->full_duplex);
  1405. netif_device_attach(ndev);
  1406. }
  1407. return 0;
  1408. }
  1409. static const struct dev_pm_ops fec_pm_ops = {
  1410. .suspend = fec_suspend,
  1411. .resume = fec_resume,
  1412. .freeze = fec_suspend,
  1413. .thaw = fec_resume,
  1414. .poweroff = fec_suspend,
  1415. .restore = fec_resume,
  1416. };
  1417. #endif
  1418. static struct platform_driver fec_driver = {
  1419. .driver = {
  1420. .name = DRIVER_NAME,
  1421. .owner = THIS_MODULE,
  1422. #ifdef CONFIG_PM
  1423. .pm = &fec_pm_ops,
  1424. #endif
  1425. .of_match_table = fec_dt_ids,
  1426. },
  1427. .id_table = fec_devtype,
  1428. .probe = fec_probe,
  1429. .remove = __devexit_p(fec_drv_remove),
  1430. };
  1431. static int __init
  1432. fec_enet_module_init(void)
  1433. {
  1434. printk(KERN_INFO "FEC Ethernet Driver\n");
  1435. return platform_driver_register(&fec_driver);
  1436. }
  1437. static void __exit
  1438. fec_enet_cleanup(void)
  1439. {
  1440. platform_driver_unregister(&fec_driver);
  1441. }
  1442. module_exit(fec_enet_cleanup);
  1443. module_init(fec_enet_module_init);
  1444. MODULE_LICENSE("GPL");