l2t.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596
  1. /*
  2. * This file is part of the Chelsio T4 Ethernet driver for Linux.
  3. *
  4. * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
  5. *
  6. * This software is available to you under a choice of one of two
  7. * licenses. You may choose to be licensed under the terms of the GNU
  8. * General Public License (GPL) Version 2, available from the file
  9. * COPYING in the main directory of this source tree, or the
  10. * OpenIB.org BSD license below:
  11. *
  12. * Redistribution and use in source and binary forms, with or
  13. * without modification, are permitted provided that the following
  14. * conditions are met:
  15. *
  16. * - Redistributions of source code must retain the above
  17. * copyright notice, this list of conditions and the following
  18. * disclaimer.
  19. *
  20. * - Redistributions in binary form must reproduce the above
  21. * copyright notice, this list of conditions and the following
  22. * disclaimer in the documentation and/or other materials
  23. * provided with the distribution.
  24. *
  25. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32. * SOFTWARE.
  33. */
  34. #include <linux/skbuff.h>
  35. #include <linux/netdevice.h>
  36. #include <linux/if.h>
  37. #include <linux/if_vlan.h>
  38. #include <linux/jhash.h>
  39. #include <linux/module.h>
  40. #include <linux/debugfs.h>
  41. #include <linux/seq_file.h>
  42. #include <net/neighbour.h>
  43. #include "cxgb4.h"
  44. #include "l2t.h"
  45. #include "t4_msg.h"
  46. #include "t4fw_api.h"
  47. #define VLAN_NONE 0xfff
  48. /* identifies sync vs async L2T_WRITE_REQs */
  49. #define F_SYNC_WR (1 << 12)
  50. enum {
  51. L2T_STATE_VALID, /* entry is up to date */
  52. L2T_STATE_STALE, /* entry may be used but needs revalidation */
  53. L2T_STATE_RESOLVING, /* entry needs address resolution */
  54. L2T_STATE_SYNC_WRITE, /* synchronous write of entry underway */
  55. /* when state is one of the below the entry is not hashed */
  56. L2T_STATE_SWITCHING, /* entry is being used by a switching filter */
  57. L2T_STATE_UNUSED /* entry not in use */
  58. };
  59. struct l2t_data {
  60. rwlock_t lock;
  61. atomic_t nfree; /* number of free entries */
  62. struct l2t_entry *rover; /* starting point for next allocation */
  63. struct l2t_entry l2tab[L2T_SIZE];
  64. };
  65. static inline unsigned int vlan_prio(const struct l2t_entry *e)
  66. {
  67. return e->vlan >> 13;
  68. }
  69. static inline void l2t_hold(struct l2t_data *d, struct l2t_entry *e)
  70. {
  71. if (atomic_add_return(1, &e->refcnt) == 1) /* 0 -> 1 transition */
  72. atomic_dec(&d->nfree);
  73. }
  74. /*
  75. * To avoid having to check address families we do not allow v4 and v6
  76. * neighbors to be on the same hash chain. We keep v4 entries in the first
  77. * half of available hash buckets and v6 in the second.
  78. */
  79. enum {
  80. L2T_SZ_HALF = L2T_SIZE / 2,
  81. L2T_HASH_MASK = L2T_SZ_HALF - 1
  82. };
  83. static inline unsigned int arp_hash(const u32 *key, int ifindex)
  84. {
  85. return jhash_2words(*key, ifindex, 0) & L2T_HASH_MASK;
  86. }
  87. static inline unsigned int ipv6_hash(const u32 *key, int ifindex)
  88. {
  89. u32 xor = key[0] ^ key[1] ^ key[2] ^ key[3];
  90. return L2T_SZ_HALF + (jhash_2words(xor, ifindex, 0) & L2T_HASH_MASK);
  91. }
  92. static unsigned int addr_hash(const u32 *addr, int addr_len, int ifindex)
  93. {
  94. return addr_len == 4 ? arp_hash(addr, ifindex) :
  95. ipv6_hash(addr, ifindex);
  96. }
  97. /*
  98. * Checks if an L2T entry is for the given IP/IPv6 address. It does not check
  99. * whether the L2T entry and the address are of the same address family.
  100. * Callers ensure an address is only checked against L2T entries of the same
  101. * family, something made trivial by the separation of IP and IPv6 hash chains
  102. * mentioned above. Returns 0 if there's a match,
  103. */
  104. static int addreq(const struct l2t_entry *e, const u32 *addr)
  105. {
  106. if (e->v6)
  107. return (e->addr[0] ^ addr[0]) | (e->addr[1] ^ addr[1]) |
  108. (e->addr[2] ^ addr[2]) | (e->addr[3] ^ addr[3]);
  109. return e->addr[0] ^ addr[0];
  110. }
  111. static void neigh_replace(struct l2t_entry *e, struct neighbour *n)
  112. {
  113. neigh_hold(n);
  114. if (e->neigh)
  115. neigh_release(e->neigh);
  116. e->neigh = n;
  117. }
  118. /*
  119. * Write an L2T entry. Must be called with the entry locked.
  120. * The write may be synchronous or asynchronous.
  121. */
  122. static int write_l2e(struct adapter *adap, struct l2t_entry *e, int sync)
  123. {
  124. struct sk_buff *skb;
  125. struct cpl_l2t_write_req *req;
  126. skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
  127. if (!skb)
  128. return -ENOMEM;
  129. req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
  130. INIT_TP_WR(req, 0);
  131. OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ,
  132. e->idx | (sync ? F_SYNC_WR : 0) |
  133. TID_QID(adap->sge.fw_evtq.abs_id)));
  134. req->params = htons(L2T_W_PORT(e->lport) | L2T_W_NOREPLY(!sync));
  135. req->l2t_idx = htons(e->idx);
  136. req->vlan = htons(e->vlan);
  137. if (e->neigh)
  138. memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac));
  139. memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac));
  140. set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
  141. t4_ofld_send(adap, skb);
  142. if (sync && e->state != L2T_STATE_SWITCHING)
  143. e->state = L2T_STATE_SYNC_WRITE;
  144. return 0;
  145. }
  146. /*
  147. * Send packets waiting in an L2T entry's ARP queue. Must be called with the
  148. * entry locked.
  149. */
  150. static void send_pending(struct adapter *adap, struct l2t_entry *e)
  151. {
  152. while (e->arpq_head) {
  153. struct sk_buff *skb = e->arpq_head;
  154. e->arpq_head = skb->next;
  155. skb->next = NULL;
  156. t4_ofld_send(adap, skb);
  157. }
  158. e->arpq_tail = NULL;
  159. }
  160. /*
  161. * Process a CPL_L2T_WRITE_RPL. Wake up the ARP queue if it completes a
  162. * synchronous L2T_WRITE. Note that the TID in the reply is really the L2T
  163. * index it refers to.
  164. */
  165. void do_l2t_write_rpl(struct adapter *adap, const struct cpl_l2t_write_rpl *rpl)
  166. {
  167. unsigned int tid = GET_TID(rpl);
  168. unsigned int idx = tid & (L2T_SIZE - 1);
  169. if (unlikely(rpl->status != CPL_ERR_NONE)) {
  170. dev_err(adap->pdev_dev,
  171. "Unexpected L2T_WRITE_RPL status %u for entry %u\n",
  172. rpl->status, idx);
  173. return;
  174. }
  175. if (tid & F_SYNC_WR) {
  176. struct l2t_entry *e = &adap->l2t->l2tab[idx];
  177. spin_lock(&e->lock);
  178. if (e->state != L2T_STATE_SWITCHING) {
  179. send_pending(adap, e);
  180. e->state = (e->neigh->nud_state & NUD_STALE) ?
  181. L2T_STATE_STALE : L2T_STATE_VALID;
  182. }
  183. spin_unlock(&e->lock);
  184. }
  185. }
  186. /*
  187. * Add a packet to an L2T entry's queue of packets awaiting resolution.
  188. * Must be called with the entry's lock held.
  189. */
  190. static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb)
  191. {
  192. skb->next = NULL;
  193. if (e->arpq_head)
  194. e->arpq_tail->next = skb;
  195. else
  196. e->arpq_head = skb;
  197. e->arpq_tail = skb;
  198. }
  199. int cxgb4_l2t_send(struct net_device *dev, struct sk_buff *skb,
  200. struct l2t_entry *e)
  201. {
  202. struct adapter *adap = netdev2adap(dev);
  203. again:
  204. switch (e->state) {
  205. case L2T_STATE_STALE: /* entry is stale, kick off revalidation */
  206. neigh_event_send(e->neigh, NULL);
  207. spin_lock_bh(&e->lock);
  208. if (e->state == L2T_STATE_STALE)
  209. e->state = L2T_STATE_VALID;
  210. spin_unlock_bh(&e->lock);
  211. case L2T_STATE_VALID: /* fast-path, send the packet on */
  212. return t4_ofld_send(adap, skb);
  213. case L2T_STATE_RESOLVING:
  214. case L2T_STATE_SYNC_WRITE:
  215. spin_lock_bh(&e->lock);
  216. if (e->state != L2T_STATE_SYNC_WRITE &&
  217. e->state != L2T_STATE_RESOLVING) {
  218. spin_unlock_bh(&e->lock);
  219. goto again;
  220. }
  221. arpq_enqueue(e, skb);
  222. spin_unlock_bh(&e->lock);
  223. if (e->state == L2T_STATE_RESOLVING &&
  224. !neigh_event_send(e->neigh, NULL)) {
  225. spin_lock_bh(&e->lock);
  226. if (e->state == L2T_STATE_RESOLVING && e->arpq_head)
  227. write_l2e(adap, e, 1);
  228. spin_unlock_bh(&e->lock);
  229. }
  230. }
  231. return 0;
  232. }
  233. EXPORT_SYMBOL(cxgb4_l2t_send);
  234. /*
  235. * Allocate a free L2T entry. Must be called with l2t_data.lock held.
  236. */
  237. static struct l2t_entry *alloc_l2e(struct l2t_data *d)
  238. {
  239. struct l2t_entry *end, *e, **p;
  240. if (!atomic_read(&d->nfree))
  241. return NULL;
  242. /* there's definitely a free entry */
  243. for (e = d->rover, end = &d->l2tab[L2T_SIZE]; e != end; ++e)
  244. if (atomic_read(&e->refcnt) == 0)
  245. goto found;
  246. for (e = d->l2tab; atomic_read(&e->refcnt); ++e)
  247. ;
  248. found:
  249. d->rover = e + 1;
  250. atomic_dec(&d->nfree);
  251. /*
  252. * The entry we found may be an inactive entry that is
  253. * presently in the hash table. We need to remove it.
  254. */
  255. if (e->state < L2T_STATE_SWITCHING)
  256. for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next)
  257. if (*p == e) {
  258. *p = e->next;
  259. e->next = NULL;
  260. break;
  261. }
  262. e->state = L2T_STATE_UNUSED;
  263. return e;
  264. }
  265. /*
  266. * Called when an L2T entry has no more users.
  267. */
  268. static void t4_l2e_free(struct l2t_entry *e)
  269. {
  270. struct l2t_data *d;
  271. spin_lock_bh(&e->lock);
  272. if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */
  273. if (e->neigh) {
  274. neigh_release(e->neigh);
  275. e->neigh = NULL;
  276. }
  277. while (e->arpq_head) {
  278. struct sk_buff *skb = e->arpq_head;
  279. e->arpq_head = skb->next;
  280. kfree_skb(skb);
  281. }
  282. e->arpq_tail = NULL;
  283. }
  284. spin_unlock_bh(&e->lock);
  285. d = container_of(e, struct l2t_data, l2tab[e->idx]);
  286. atomic_inc(&d->nfree);
  287. }
  288. void cxgb4_l2t_release(struct l2t_entry *e)
  289. {
  290. if (atomic_dec_and_test(&e->refcnt))
  291. t4_l2e_free(e);
  292. }
  293. EXPORT_SYMBOL(cxgb4_l2t_release);
  294. /*
  295. * Update an L2T entry that was previously used for the same next hop as neigh.
  296. * Must be called with softirqs disabled.
  297. */
  298. static void reuse_entry(struct l2t_entry *e, struct neighbour *neigh)
  299. {
  300. unsigned int nud_state;
  301. spin_lock(&e->lock); /* avoid race with t4_l2t_free */
  302. if (neigh != e->neigh)
  303. neigh_replace(e, neigh);
  304. nud_state = neigh->nud_state;
  305. if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) ||
  306. !(nud_state & NUD_VALID))
  307. e->state = L2T_STATE_RESOLVING;
  308. else if (nud_state & NUD_CONNECTED)
  309. e->state = L2T_STATE_VALID;
  310. else
  311. e->state = L2T_STATE_STALE;
  312. spin_unlock(&e->lock);
  313. }
  314. struct l2t_entry *cxgb4_l2t_get(struct l2t_data *d, struct neighbour *neigh,
  315. const struct net_device *physdev,
  316. unsigned int priority)
  317. {
  318. u8 lport;
  319. u16 vlan;
  320. struct l2t_entry *e;
  321. int addr_len = neigh->tbl->key_len;
  322. u32 *addr = (u32 *)neigh->primary_key;
  323. int ifidx = neigh->dev->ifindex;
  324. int hash = addr_hash(addr, addr_len, ifidx);
  325. if (neigh->dev->flags & IFF_LOOPBACK)
  326. lport = netdev2pinfo(physdev)->tx_chan + 4;
  327. else
  328. lport = netdev2pinfo(physdev)->lport;
  329. if (neigh->dev->priv_flags & IFF_802_1Q_VLAN)
  330. vlan = vlan_dev_vlan_id(neigh->dev);
  331. else
  332. vlan = VLAN_NONE;
  333. write_lock_bh(&d->lock);
  334. for (e = d->l2tab[hash].first; e; e = e->next)
  335. if (!addreq(e, addr) && e->ifindex == ifidx &&
  336. e->vlan == vlan && e->lport == lport) {
  337. l2t_hold(d, e);
  338. if (atomic_read(&e->refcnt) == 1)
  339. reuse_entry(e, neigh);
  340. goto done;
  341. }
  342. /* Need to allocate a new entry */
  343. e = alloc_l2e(d);
  344. if (e) {
  345. spin_lock(&e->lock); /* avoid race with t4_l2t_free */
  346. e->state = L2T_STATE_RESOLVING;
  347. memcpy(e->addr, addr, addr_len);
  348. e->ifindex = ifidx;
  349. e->hash = hash;
  350. e->lport = lport;
  351. e->v6 = addr_len == 16;
  352. atomic_set(&e->refcnt, 1);
  353. neigh_replace(e, neigh);
  354. e->vlan = vlan;
  355. e->next = d->l2tab[hash].first;
  356. d->l2tab[hash].first = e;
  357. spin_unlock(&e->lock);
  358. }
  359. done:
  360. write_unlock_bh(&d->lock);
  361. return e;
  362. }
  363. EXPORT_SYMBOL(cxgb4_l2t_get);
  364. /*
  365. * Called when address resolution fails for an L2T entry to handle packets
  366. * on the arpq head. If a packet specifies a failure handler it is invoked,
  367. * otherwise the packet is sent to the device.
  368. */
  369. static void handle_failed_resolution(struct adapter *adap, struct sk_buff *arpq)
  370. {
  371. while (arpq) {
  372. struct sk_buff *skb = arpq;
  373. const struct l2t_skb_cb *cb = L2T_SKB_CB(skb);
  374. arpq = skb->next;
  375. skb->next = NULL;
  376. if (cb->arp_err_handler)
  377. cb->arp_err_handler(cb->handle, skb);
  378. else
  379. t4_ofld_send(adap, skb);
  380. }
  381. }
  382. /*
  383. * Called when the host's neighbor layer makes a change to some entry that is
  384. * loaded into the HW L2 table.
  385. */
  386. void t4_l2t_update(struct adapter *adap, struct neighbour *neigh)
  387. {
  388. struct l2t_entry *e;
  389. struct sk_buff *arpq = NULL;
  390. struct l2t_data *d = adap->l2t;
  391. int addr_len = neigh->tbl->key_len;
  392. u32 *addr = (u32 *) neigh->primary_key;
  393. int ifidx = neigh->dev->ifindex;
  394. int hash = addr_hash(addr, addr_len, ifidx);
  395. read_lock_bh(&d->lock);
  396. for (e = d->l2tab[hash].first; e; e = e->next)
  397. if (!addreq(e, addr) && e->ifindex == ifidx) {
  398. spin_lock(&e->lock);
  399. if (atomic_read(&e->refcnt))
  400. goto found;
  401. spin_unlock(&e->lock);
  402. break;
  403. }
  404. read_unlock_bh(&d->lock);
  405. return;
  406. found:
  407. read_unlock(&d->lock);
  408. if (neigh != e->neigh)
  409. neigh_replace(e, neigh);
  410. if (e->state == L2T_STATE_RESOLVING) {
  411. if (neigh->nud_state & NUD_FAILED) {
  412. arpq = e->arpq_head;
  413. e->arpq_head = e->arpq_tail = NULL;
  414. } else if ((neigh->nud_state & (NUD_CONNECTED | NUD_STALE)) &&
  415. e->arpq_head) {
  416. write_l2e(adap, e, 1);
  417. }
  418. } else {
  419. e->state = neigh->nud_state & NUD_CONNECTED ?
  420. L2T_STATE_VALID : L2T_STATE_STALE;
  421. if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)))
  422. write_l2e(adap, e, 0);
  423. }
  424. spin_unlock_bh(&e->lock);
  425. if (arpq)
  426. handle_failed_resolution(adap, arpq);
  427. }
  428. struct l2t_data *t4_init_l2t(void)
  429. {
  430. int i;
  431. struct l2t_data *d;
  432. d = t4_alloc_mem(sizeof(*d));
  433. if (!d)
  434. return NULL;
  435. d->rover = d->l2tab;
  436. atomic_set(&d->nfree, L2T_SIZE);
  437. rwlock_init(&d->lock);
  438. for (i = 0; i < L2T_SIZE; ++i) {
  439. d->l2tab[i].idx = i;
  440. d->l2tab[i].state = L2T_STATE_UNUSED;
  441. spin_lock_init(&d->l2tab[i].lock);
  442. atomic_set(&d->l2tab[i].refcnt, 0);
  443. }
  444. return d;
  445. }
  446. static inline void *l2t_get_idx(struct seq_file *seq, loff_t pos)
  447. {
  448. struct l2t_entry *l2tab = seq->private;
  449. return pos >= L2T_SIZE ? NULL : &l2tab[pos];
  450. }
  451. static void *l2t_seq_start(struct seq_file *seq, loff_t *pos)
  452. {
  453. return *pos ? l2t_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
  454. }
  455. static void *l2t_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  456. {
  457. v = l2t_get_idx(seq, *pos);
  458. if (v)
  459. ++*pos;
  460. return v;
  461. }
  462. static void l2t_seq_stop(struct seq_file *seq, void *v)
  463. {
  464. }
  465. static char l2e_state(const struct l2t_entry *e)
  466. {
  467. switch (e->state) {
  468. case L2T_STATE_VALID: return 'V';
  469. case L2T_STATE_STALE: return 'S';
  470. case L2T_STATE_SYNC_WRITE: return 'W';
  471. case L2T_STATE_RESOLVING: return e->arpq_head ? 'A' : 'R';
  472. case L2T_STATE_SWITCHING: return 'X';
  473. default:
  474. return 'U';
  475. }
  476. }
  477. static int l2t_seq_show(struct seq_file *seq, void *v)
  478. {
  479. if (v == SEQ_START_TOKEN)
  480. seq_puts(seq, " Idx IP address "
  481. "Ethernet address VLAN/P LP State Users Port\n");
  482. else {
  483. char ip[60];
  484. struct l2t_entry *e = v;
  485. spin_lock_bh(&e->lock);
  486. if (e->state == L2T_STATE_SWITCHING)
  487. ip[0] = '\0';
  488. else
  489. sprintf(ip, e->v6 ? "%pI6c" : "%pI4", e->addr);
  490. seq_printf(seq, "%4u %-25s %17pM %4d %u %2u %c %5u %s\n",
  491. e->idx, ip, e->dmac,
  492. e->vlan & VLAN_VID_MASK, vlan_prio(e), e->lport,
  493. l2e_state(e), atomic_read(&e->refcnt),
  494. e->neigh ? e->neigh->dev->name : "");
  495. spin_unlock_bh(&e->lock);
  496. }
  497. return 0;
  498. }
  499. static const struct seq_operations l2t_seq_ops = {
  500. .start = l2t_seq_start,
  501. .next = l2t_seq_next,
  502. .stop = l2t_seq_stop,
  503. .show = l2t_seq_show
  504. };
  505. static int l2t_seq_open(struct inode *inode, struct file *file)
  506. {
  507. int rc = seq_open(file, &l2t_seq_ops);
  508. if (!rc) {
  509. struct adapter *adap = inode->i_private;
  510. struct seq_file *seq = file->private_data;
  511. seq->private = adap->l2t->l2tab;
  512. }
  513. return rc;
  514. }
  515. const struct file_operations t4_l2t_fops = {
  516. .owner = THIS_MODULE,
  517. .open = l2t_seq_open,
  518. .read = seq_read,
  519. .llseek = seq_lseek,
  520. .release = seq_release,
  521. };