mxc_nand.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291
  1. /*
  2. * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
  3. * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation; either version 2
  8. * of the License, or (at your option) any later version.
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
  17. * MA 02110-1301, USA.
  18. */
  19. #include <linux/delay.h>
  20. #include <linux/slab.h>
  21. #include <linux/init.h>
  22. #include <linux/module.h>
  23. #include <linux/mtd/mtd.h>
  24. #include <linux/mtd/nand.h>
  25. #include <linux/mtd/partitions.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/device.h>
  28. #include <linux/platform_device.h>
  29. #include <linux/clk.h>
  30. #include <linux/err.h>
  31. #include <linux/io.h>
  32. #include <linux/irq.h>
  33. #include <linux/completion.h>
  34. #include <asm/mach/flash.h>
  35. #include <mach/mxc_nand.h>
  36. #include <mach/hardware.h>
  37. #define DRIVER_NAME "mxc_nand"
  38. #define nfc_is_v21() (cpu_is_mx25() || cpu_is_mx35())
  39. #define nfc_is_v1() (cpu_is_mx31() || cpu_is_mx27() || cpu_is_mx21())
  40. #define nfc_is_v3_2() (cpu_is_mx51() || cpu_is_mx53())
  41. #define nfc_is_v3() nfc_is_v3_2()
  42. /* Addresses for NFC registers */
  43. #define NFC_V1_V2_BUF_SIZE (host->regs + 0x00)
  44. #define NFC_V1_V2_BUF_ADDR (host->regs + 0x04)
  45. #define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06)
  46. #define NFC_V1_V2_FLASH_CMD (host->regs + 0x08)
  47. #define NFC_V1_V2_CONFIG (host->regs + 0x0a)
  48. #define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c)
  49. #define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e)
  50. #define NFC_V1_V2_RSLTSPARE_AREA (host->regs + 0x10)
  51. #define NFC_V1_V2_WRPROT (host->regs + 0x12)
  52. #define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14)
  53. #define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16)
  54. #define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20)
  55. #define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24)
  56. #define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28)
  57. #define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c)
  58. #define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22)
  59. #define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26)
  60. #define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a)
  61. #define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e)
  62. #define NFC_V1_V2_NF_WRPRST (host->regs + 0x18)
  63. #define NFC_V1_V2_CONFIG1 (host->regs + 0x1a)
  64. #define NFC_V1_V2_CONFIG2 (host->regs + 0x1c)
  65. #define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0)
  66. #define NFC_V1_V2_CONFIG1_SP_EN (1 << 2)
  67. #define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3)
  68. #define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4)
  69. #define NFC_V1_V2_CONFIG1_BIG (1 << 5)
  70. #define NFC_V1_V2_CONFIG1_RST (1 << 6)
  71. #define NFC_V1_V2_CONFIG1_CE (1 << 7)
  72. #define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8)
  73. #define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9)
  74. #define NFC_V2_CONFIG1_FP_INT (1 << 11)
  75. #define NFC_V1_V2_CONFIG2_INT (1 << 15)
  76. /*
  77. * Operation modes for the NFC. Valid for v1, v2 and v3
  78. * type controllers.
  79. */
  80. #define NFC_CMD (1 << 0)
  81. #define NFC_ADDR (1 << 1)
  82. #define NFC_INPUT (1 << 2)
  83. #define NFC_OUTPUT (1 << 3)
  84. #define NFC_ID (1 << 4)
  85. #define NFC_STATUS (1 << 5)
  86. #define NFC_V3_FLASH_CMD (host->regs_axi + 0x00)
  87. #define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04)
  88. #define NFC_V3_CONFIG1 (host->regs_axi + 0x34)
  89. #define NFC_V3_CONFIG1_SP_EN (1 << 0)
  90. #define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4)
  91. #define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38)
  92. #define NFC_V3_LAUNCH (host->regs_axi + 0x40)
  93. #define NFC_V3_WRPROT (host->regs_ip + 0x0)
  94. #define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0)
  95. #define NFC_V3_WRPROT_LOCK (1 << 1)
  96. #define NFC_V3_WRPROT_UNLOCK (1 << 2)
  97. #define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6)
  98. #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04)
  99. #define NFC_V3_CONFIG2 (host->regs_ip + 0x24)
  100. #define NFC_V3_CONFIG2_PS_512 (0 << 0)
  101. #define NFC_V3_CONFIG2_PS_2048 (1 << 0)
  102. #define NFC_V3_CONFIG2_PS_4096 (2 << 0)
  103. #define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2)
  104. #define NFC_V3_CONFIG2_ECC_EN (1 << 3)
  105. #define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4)
  106. #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5)
  107. #define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6)
  108. #define NFC_V3_CONFIG2_PPB(x) (((x) & 0x3) << 7)
  109. #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12)
  110. #define NFC_V3_CONFIG2_INT_MSK (1 << 15)
  111. #define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24)
  112. #define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16)
  113. #define NFC_V3_CONFIG3 (host->regs_ip + 0x28)
  114. #define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0)
  115. #define NFC_V3_CONFIG3_FW8 (1 << 3)
  116. #define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8)
  117. #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12)
  118. #define NFC_V3_CONFIG3_RBB_MODE (1 << 15)
  119. #define NFC_V3_CONFIG3_NO_SDMA (1 << 20)
  120. #define NFC_V3_IPC (host->regs_ip + 0x2C)
  121. #define NFC_V3_IPC_CREQ (1 << 0)
  122. #define NFC_V3_IPC_INT (1 << 31)
  123. #define NFC_V3_DELAY_LINE (host->regs_ip + 0x34)
  124. struct mxc_nand_host {
  125. struct mtd_info mtd;
  126. struct nand_chip nand;
  127. struct device *dev;
  128. void *spare0;
  129. void *main_area0;
  130. void __iomem *base;
  131. void __iomem *regs;
  132. void __iomem *regs_axi;
  133. void __iomem *regs_ip;
  134. int status_request;
  135. struct clk *clk;
  136. int clk_act;
  137. int irq;
  138. int eccsize;
  139. int active_cs;
  140. struct completion op_completion;
  141. uint8_t *data_buf;
  142. unsigned int buf_start;
  143. int spare_len;
  144. void (*preset)(struct mtd_info *);
  145. void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
  146. void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
  147. void (*send_page)(struct mtd_info *, unsigned int);
  148. void (*send_read_id)(struct mxc_nand_host *);
  149. uint16_t (*get_dev_status)(struct mxc_nand_host *);
  150. int (*check_int)(struct mxc_nand_host *);
  151. void (*irq_control)(struct mxc_nand_host *, int);
  152. };
  153. /* OOB placement block for use with hardware ecc generation */
  154. static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
  155. .eccbytes = 5,
  156. .eccpos = {6, 7, 8, 9, 10},
  157. .oobfree = {{0, 5}, {12, 4}, }
  158. };
  159. static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
  160. .eccbytes = 20,
  161. .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
  162. 38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
  163. .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
  164. };
  165. /* OOB description for 512 byte pages with 16 byte OOB */
  166. static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
  167. .eccbytes = 1 * 9,
  168. .eccpos = {
  169. 7, 8, 9, 10, 11, 12, 13, 14, 15
  170. },
  171. .oobfree = {
  172. {.offset = 0, .length = 5}
  173. }
  174. };
  175. /* OOB description for 2048 byte pages with 64 byte OOB */
  176. static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
  177. .eccbytes = 4 * 9,
  178. .eccpos = {
  179. 7, 8, 9, 10, 11, 12, 13, 14, 15,
  180. 23, 24, 25, 26, 27, 28, 29, 30, 31,
  181. 39, 40, 41, 42, 43, 44, 45, 46, 47,
  182. 55, 56, 57, 58, 59, 60, 61, 62, 63
  183. },
  184. .oobfree = {
  185. {.offset = 2, .length = 4},
  186. {.offset = 16, .length = 7},
  187. {.offset = 32, .length = 7},
  188. {.offset = 48, .length = 7}
  189. }
  190. };
  191. /* OOB description for 4096 byte pages with 128 byte OOB */
  192. static struct nand_ecclayout nandv2_hw_eccoob_4k = {
  193. .eccbytes = 8 * 9,
  194. .eccpos = {
  195. 7, 8, 9, 10, 11, 12, 13, 14, 15,
  196. 23, 24, 25, 26, 27, 28, 29, 30, 31,
  197. 39, 40, 41, 42, 43, 44, 45, 46, 47,
  198. 55, 56, 57, 58, 59, 60, 61, 62, 63,
  199. 71, 72, 73, 74, 75, 76, 77, 78, 79,
  200. 87, 88, 89, 90, 91, 92, 93, 94, 95,
  201. 103, 104, 105, 106, 107, 108, 109, 110, 111,
  202. 119, 120, 121, 122, 123, 124, 125, 126, 127,
  203. },
  204. .oobfree = {
  205. {.offset = 2, .length = 4},
  206. {.offset = 16, .length = 7},
  207. {.offset = 32, .length = 7},
  208. {.offset = 48, .length = 7},
  209. {.offset = 64, .length = 7},
  210. {.offset = 80, .length = 7},
  211. {.offset = 96, .length = 7},
  212. {.offset = 112, .length = 7},
  213. }
  214. };
  215. static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL };
  216. static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
  217. {
  218. struct mxc_nand_host *host = dev_id;
  219. if (!host->check_int(host))
  220. return IRQ_NONE;
  221. host->irq_control(host, 0);
  222. complete(&host->op_completion);
  223. return IRQ_HANDLED;
  224. }
  225. static int check_int_v3(struct mxc_nand_host *host)
  226. {
  227. uint32_t tmp;
  228. tmp = readl(NFC_V3_IPC);
  229. if (!(tmp & NFC_V3_IPC_INT))
  230. return 0;
  231. tmp &= ~NFC_V3_IPC_INT;
  232. writel(tmp, NFC_V3_IPC);
  233. return 1;
  234. }
  235. static int check_int_v1_v2(struct mxc_nand_host *host)
  236. {
  237. uint32_t tmp;
  238. tmp = readw(NFC_V1_V2_CONFIG2);
  239. if (!(tmp & NFC_V1_V2_CONFIG2_INT))
  240. return 0;
  241. if (!cpu_is_mx21())
  242. writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
  243. return 1;
  244. }
  245. /*
  246. * It has been observed that the i.MX21 cannot read the CONFIG2:INT bit
  247. * if interrupts are masked (CONFIG1:INT_MSK is set). To handle this, the
  248. * driver can enable/disable the irq line rather than simply masking the
  249. * interrupts.
  250. */
  251. static void irq_control_mx21(struct mxc_nand_host *host, int activate)
  252. {
  253. if (activate)
  254. enable_irq(host->irq);
  255. else
  256. disable_irq_nosync(host->irq);
  257. }
  258. static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
  259. {
  260. uint16_t tmp;
  261. tmp = readw(NFC_V1_V2_CONFIG1);
  262. if (activate)
  263. tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
  264. else
  265. tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
  266. writew(tmp, NFC_V1_V2_CONFIG1);
  267. }
  268. static void irq_control_v3(struct mxc_nand_host *host, int activate)
  269. {
  270. uint32_t tmp;
  271. tmp = readl(NFC_V3_CONFIG2);
  272. if (activate)
  273. tmp &= ~NFC_V3_CONFIG2_INT_MSK;
  274. else
  275. tmp |= NFC_V3_CONFIG2_INT_MSK;
  276. writel(tmp, NFC_V3_CONFIG2);
  277. }
  278. /* This function polls the NANDFC to wait for the basic operation to
  279. * complete by checking the INT bit of config2 register.
  280. */
  281. static void wait_op_done(struct mxc_nand_host *host, int useirq)
  282. {
  283. int max_retries = 8000;
  284. if (useirq) {
  285. if (!host->check_int(host)) {
  286. INIT_COMPLETION(host->op_completion);
  287. host->irq_control(host, 1);
  288. wait_for_completion(&host->op_completion);
  289. }
  290. } else {
  291. while (max_retries-- > 0) {
  292. if (host->check_int(host))
  293. break;
  294. udelay(1);
  295. }
  296. if (max_retries < 0)
  297. pr_debug("%s: INT not set\n", __func__);
  298. }
  299. }
  300. static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
  301. {
  302. /* fill command */
  303. writel(cmd, NFC_V3_FLASH_CMD);
  304. /* send out command */
  305. writel(NFC_CMD, NFC_V3_LAUNCH);
  306. /* Wait for operation to complete */
  307. wait_op_done(host, useirq);
  308. }
  309. /* This function issues the specified command to the NAND device and
  310. * waits for completion. */
  311. static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
  312. {
  313. pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
  314. writew(cmd, NFC_V1_V2_FLASH_CMD);
  315. writew(NFC_CMD, NFC_V1_V2_CONFIG2);
  316. if (cpu_is_mx21() && (cmd == NAND_CMD_RESET)) {
  317. int max_retries = 100;
  318. /* Reset completion is indicated by NFC_CONFIG2 */
  319. /* being set to 0 */
  320. while (max_retries-- > 0) {
  321. if (readw(NFC_V1_V2_CONFIG2) == 0) {
  322. break;
  323. }
  324. udelay(1);
  325. }
  326. if (max_retries < 0)
  327. pr_debug("%s: RESET failed\n", __func__);
  328. } else {
  329. /* Wait for operation to complete */
  330. wait_op_done(host, useirq);
  331. }
  332. }
  333. static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
  334. {
  335. /* fill address */
  336. writel(addr, NFC_V3_FLASH_ADDR0);
  337. /* send out address */
  338. writel(NFC_ADDR, NFC_V3_LAUNCH);
  339. wait_op_done(host, 0);
  340. }
  341. /* This function sends an address (or partial address) to the
  342. * NAND device. The address is used to select the source/destination for
  343. * a NAND command. */
  344. static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
  345. {
  346. pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
  347. writew(addr, NFC_V1_V2_FLASH_ADDR);
  348. writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
  349. /* Wait for operation to complete */
  350. wait_op_done(host, islast);
  351. }
  352. static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
  353. {
  354. struct nand_chip *nand_chip = mtd->priv;
  355. struct mxc_nand_host *host = nand_chip->priv;
  356. uint32_t tmp;
  357. tmp = readl(NFC_V3_CONFIG1);
  358. tmp &= ~(7 << 4);
  359. writel(tmp, NFC_V3_CONFIG1);
  360. /* transfer data from NFC ram to nand */
  361. writel(ops, NFC_V3_LAUNCH);
  362. wait_op_done(host, false);
  363. }
  364. static void send_page_v1_v2(struct mtd_info *mtd, unsigned int ops)
  365. {
  366. struct nand_chip *nand_chip = mtd->priv;
  367. struct mxc_nand_host *host = nand_chip->priv;
  368. int bufs, i;
  369. if (nfc_is_v1() && mtd->writesize > 512)
  370. bufs = 4;
  371. else
  372. bufs = 1;
  373. for (i = 0; i < bufs; i++) {
  374. /* NANDFC buffer 0 is used for page read/write */
  375. writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
  376. writew(ops, NFC_V1_V2_CONFIG2);
  377. /* Wait for operation to complete */
  378. wait_op_done(host, true);
  379. }
  380. }
  381. static void send_read_id_v3(struct mxc_nand_host *host)
  382. {
  383. /* Read ID into main buffer */
  384. writel(NFC_ID, NFC_V3_LAUNCH);
  385. wait_op_done(host, true);
  386. memcpy(host->data_buf, host->main_area0, 16);
  387. }
  388. /* Request the NANDFC to perform a read of the NAND device ID. */
  389. static void send_read_id_v1_v2(struct mxc_nand_host *host)
  390. {
  391. struct nand_chip *this = &host->nand;
  392. /* NANDFC buffer 0 is used for device ID output */
  393. writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
  394. writew(NFC_ID, NFC_V1_V2_CONFIG2);
  395. /* Wait for operation to complete */
  396. wait_op_done(host, true);
  397. memcpy(host->data_buf, host->main_area0, 16);
  398. if (this->options & NAND_BUSWIDTH_16) {
  399. /* compress the ID info */
  400. host->data_buf[1] = host->data_buf[2];
  401. host->data_buf[2] = host->data_buf[4];
  402. host->data_buf[3] = host->data_buf[6];
  403. host->data_buf[4] = host->data_buf[8];
  404. host->data_buf[5] = host->data_buf[10];
  405. }
  406. }
  407. static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
  408. {
  409. writew(NFC_STATUS, NFC_V3_LAUNCH);
  410. wait_op_done(host, true);
  411. return readl(NFC_V3_CONFIG1) >> 16;
  412. }
  413. /* This function requests the NANDFC to perform a read of the
  414. * NAND device status and returns the current status. */
  415. static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
  416. {
  417. void __iomem *main_buf = host->main_area0;
  418. uint32_t store;
  419. uint16_t ret;
  420. writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
  421. /*
  422. * The device status is stored in main_area0. To
  423. * prevent corruption of the buffer save the value
  424. * and restore it afterwards.
  425. */
  426. store = readl(main_buf);
  427. writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
  428. wait_op_done(host, true);
  429. ret = readw(main_buf);
  430. writel(store, main_buf);
  431. return ret;
  432. }
  433. /* This functions is used by upper layer to checks if device is ready */
  434. static int mxc_nand_dev_ready(struct mtd_info *mtd)
  435. {
  436. /*
  437. * NFC handles R/B internally. Therefore, this function
  438. * always returns status as ready.
  439. */
  440. return 1;
  441. }
  442. static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
  443. {
  444. /*
  445. * If HW ECC is enabled, we turn it on during init. There is
  446. * no need to enable again here.
  447. */
  448. }
  449. static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
  450. u_char *read_ecc, u_char *calc_ecc)
  451. {
  452. struct nand_chip *nand_chip = mtd->priv;
  453. struct mxc_nand_host *host = nand_chip->priv;
  454. /*
  455. * 1-Bit errors are automatically corrected in HW. No need for
  456. * additional correction. 2-Bit errors cannot be corrected by
  457. * HW ECC, so we need to return failure
  458. */
  459. uint16_t ecc_status = readw(NFC_V1_V2_ECC_STATUS_RESULT);
  460. if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
  461. pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
  462. return -1;
  463. }
  464. return 0;
  465. }
  466. static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
  467. u_char *read_ecc, u_char *calc_ecc)
  468. {
  469. struct nand_chip *nand_chip = mtd->priv;
  470. struct mxc_nand_host *host = nand_chip->priv;
  471. u32 ecc_stat, err;
  472. int no_subpages = 1;
  473. int ret = 0;
  474. u8 ecc_bit_mask, err_limit;
  475. ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
  476. err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
  477. no_subpages = mtd->writesize >> 9;
  478. if (nfc_is_v21())
  479. ecc_stat = readl(NFC_V1_V2_ECC_STATUS_RESULT);
  480. else
  481. ecc_stat = readl(NFC_V3_ECC_STATUS_RESULT);
  482. do {
  483. err = ecc_stat & ecc_bit_mask;
  484. if (err > err_limit) {
  485. printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
  486. return -1;
  487. } else {
  488. ret += err;
  489. }
  490. ecc_stat >>= 4;
  491. } while (--no_subpages);
  492. mtd->ecc_stats.corrected += ret;
  493. pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
  494. return ret;
  495. }
  496. static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
  497. u_char *ecc_code)
  498. {
  499. return 0;
  500. }
  501. static u_char mxc_nand_read_byte(struct mtd_info *mtd)
  502. {
  503. struct nand_chip *nand_chip = mtd->priv;
  504. struct mxc_nand_host *host = nand_chip->priv;
  505. uint8_t ret;
  506. /* Check for status request */
  507. if (host->status_request)
  508. return host->get_dev_status(host) & 0xFF;
  509. ret = *(uint8_t *)(host->data_buf + host->buf_start);
  510. host->buf_start++;
  511. return ret;
  512. }
  513. static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
  514. {
  515. struct nand_chip *nand_chip = mtd->priv;
  516. struct mxc_nand_host *host = nand_chip->priv;
  517. uint16_t ret;
  518. ret = *(uint16_t *)(host->data_buf + host->buf_start);
  519. host->buf_start += 2;
  520. return ret;
  521. }
  522. /* Write data of length len to buffer buf. The data to be
  523. * written on NAND Flash is first copied to RAMbuffer. After the Data Input
  524. * Operation by the NFC, the data is written to NAND Flash */
  525. static void mxc_nand_write_buf(struct mtd_info *mtd,
  526. const u_char *buf, int len)
  527. {
  528. struct nand_chip *nand_chip = mtd->priv;
  529. struct mxc_nand_host *host = nand_chip->priv;
  530. u16 col = host->buf_start;
  531. int n = mtd->oobsize + mtd->writesize - col;
  532. n = min(n, len);
  533. memcpy(host->data_buf + col, buf, n);
  534. host->buf_start += n;
  535. }
  536. /* Read the data buffer from the NAND Flash. To read the data from NAND
  537. * Flash first the data output cycle is initiated by the NFC, which copies
  538. * the data to RAMbuffer. This data of length len is then copied to buffer buf.
  539. */
  540. static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
  541. {
  542. struct nand_chip *nand_chip = mtd->priv;
  543. struct mxc_nand_host *host = nand_chip->priv;
  544. u16 col = host->buf_start;
  545. int n = mtd->oobsize + mtd->writesize - col;
  546. n = min(n, len);
  547. memcpy(buf, host->data_buf + col, n);
  548. host->buf_start += n;
  549. }
  550. /* Used by the upper layer to verify the data in NAND Flash
  551. * with the data in the buf. */
  552. static int mxc_nand_verify_buf(struct mtd_info *mtd,
  553. const u_char *buf, int len)
  554. {
  555. return -EFAULT;
  556. }
  557. /* This function is used by upper layer for select and
  558. * deselect of the NAND chip */
  559. static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
  560. {
  561. struct nand_chip *nand_chip = mtd->priv;
  562. struct mxc_nand_host *host = nand_chip->priv;
  563. if (chip == -1) {
  564. /* Disable the NFC clock */
  565. if (host->clk_act) {
  566. clk_disable(host->clk);
  567. host->clk_act = 0;
  568. }
  569. return;
  570. }
  571. if (!host->clk_act) {
  572. /* Enable the NFC clock */
  573. clk_enable(host->clk);
  574. host->clk_act = 1;
  575. }
  576. if (nfc_is_v21()) {
  577. host->active_cs = chip;
  578. writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
  579. }
  580. }
  581. /*
  582. * Function to transfer data to/from spare area.
  583. */
  584. static void copy_spare(struct mtd_info *mtd, bool bfrom)
  585. {
  586. struct nand_chip *this = mtd->priv;
  587. struct mxc_nand_host *host = this->priv;
  588. u16 i, j;
  589. u16 n = mtd->writesize >> 9;
  590. u8 *d = host->data_buf + mtd->writesize;
  591. u8 *s = host->spare0;
  592. u16 t = host->spare_len;
  593. j = (mtd->oobsize / n >> 1) << 1;
  594. if (bfrom) {
  595. for (i = 0; i < n - 1; i++)
  596. memcpy(d + i * j, s + i * t, j);
  597. /* the last section */
  598. memcpy(d + i * j, s + i * t, mtd->oobsize - i * j);
  599. } else {
  600. for (i = 0; i < n - 1; i++)
  601. memcpy(&s[i * t], &d[i * j], j);
  602. /* the last section */
  603. memcpy(&s[i * t], &d[i * j], mtd->oobsize - i * j);
  604. }
  605. }
  606. static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
  607. {
  608. struct nand_chip *nand_chip = mtd->priv;
  609. struct mxc_nand_host *host = nand_chip->priv;
  610. /* Write out column address, if necessary */
  611. if (column != -1) {
  612. /*
  613. * MXC NANDFC can only perform full page+spare or
  614. * spare-only read/write. When the upper layers
  615. * perform a read/write buf operation, the saved column
  616. * address is used to index into the full page.
  617. */
  618. host->send_addr(host, 0, page_addr == -1);
  619. if (mtd->writesize > 512)
  620. /* another col addr cycle for 2k page */
  621. host->send_addr(host, 0, false);
  622. }
  623. /* Write out page address, if necessary */
  624. if (page_addr != -1) {
  625. /* paddr_0 - p_addr_7 */
  626. host->send_addr(host, (page_addr & 0xff), false);
  627. if (mtd->writesize > 512) {
  628. if (mtd->size >= 0x10000000) {
  629. /* paddr_8 - paddr_15 */
  630. host->send_addr(host, (page_addr >> 8) & 0xff, false);
  631. host->send_addr(host, (page_addr >> 16) & 0xff, true);
  632. } else
  633. /* paddr_8 - paddr_15 */
  634. host->send_addr(host, (page_addr >> 8) & 0xff, true);
  635. } else {
  636. /* One more address cycle for higher density devices */
  637. if (mtd->size >= 0x4000000) {
  638. /* paddr_8 - paddr_15 */
  639. host->send_addr(host, (page_addr >> 8) & 0xff, false);
  640. host->send_addr(host, (page_addr >> 16) & 0xff, true);
  641. } else
  642. /* paddr_8 - paddr_15 */
  643. host->send_addr(host, (page_addr >> 8) & 0xff, true);
  644. }
  645. }
  646. }
  647. /*
  648. * v2 and v3 type controllers can do 4bit or 8bit ecc depending
  649. * on how much oob the nand chip has. For 8bit ecc we need at least
  650. * 26 bytes of oob data per 512 byte block.
  651. */
  652. static int get_eccsize(struct mtd_info *mtd)
  653. {
  654. int oobbytes_per_512 = 0;
  655. oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
  656. if (oobbytes_per_512 < 26)
  657. return 4;
  658. else
  659. return 8;
  660. }
  661. static void preset_v1_v2(struct mtd_info *mtd)
  662. {
  663. struct nand_chip *nand_chip = mtd->priv;
  664. struct mxc_nand_host *host = nand_chip->priv;
  665. uint16_t config1 = 0;
  666. if (nand_chip->ecc.mode == NAND_ECC_HW)
  667. config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
  668. if (nfc_is_v21())
  669. config1 |= NFC_V2_CONFIG1_FP_INT;
  670. if (!cpu_is_mx21())
  671. config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
  672. if (nfc_is_v21() && mtd->writesize) {
  673. uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
  674. host->eccsize = get_eccsize(mtd);
  675. if (host->eccsize == 4)
  676. config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
  677. config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
  678. } else {
  679. host->eccsize = 1;
  680. }
  681. writew(config1, NFC_V1_V2_CONFIG1);
  682. /* preset operation */
  683. /* Unlock the internal RAM Buffer */
  684. writew(0x2, NFC_V1_V2_CONFIG);
  685. /* Blocks to be unlocked */
  686. if (nfc_is_v21()) {
  687. writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
  688. writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
  689. writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
  690. writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
  691. writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
  692. writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
  693. writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
  694. writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
  695. } else if (nfc_is_v1()) {
  696. writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
  697. writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
  698. } else
  699. BUG();
  700. /* Unlock Block Command for given address range */
  701. writew(0x4, NFC_V1_V2_WRPROT);
  702. }
  703. static void preset_v3(struct mtd_info *mtd)
  704. {
  705. struct nand_chip *chip = mtd->priv;
  706. struct mxc_nand_host *host = chip->priv;
  707. uint32_t config2, config3;
  708. int i, addr_phases;
  709. writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
  710. writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
  711. /* Unlock the internal RAM Buffer */
  712. writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
  713. NFC_V3_WRPROT);
  714. /* Blocks to be unlocked */
  715. for (i = 0; i < NAND_MAX_CHIPS; i++)
  716. writel(0x0 | (0xffff << 16),
  717. NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
  718. writel(0, NFC_V3_IPC);
  719. config2 = NFC_V3_CONFIG2_ONE_CYCLE |
  720. NFC_V3_CONFIG2_2CMD_PHASES |
  721. NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
  722. NFC_V3_CONFIG2_ST_CMD(0x70) |
  723. NFC_V3_CONFIG2_INT_MSK |
  724. NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
  725. if (chip->ecc.mode == NAND_ECC_HW)
  726. config2 |= NFC_V3_CONFIG2_ECC_EN;
  727. addr_phases = fls(chip->pagemask) >> 3;
  728. if (mtd->writesize == 2048) {
  729. config2 |= NFC_V3_CONFIG2_PS_2048;
  730. config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
  731. } else if (mtd->writesize == 4096) {
  732. config2 |= NFC_V3_CONFIG2_PS_4096;
  733. config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
  734. } else {
  735. config2 |= NFC_V3_CONFIG2_PS_512;
  736. config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
  737. }
  738. if (mtd->writesize) {
  739. config2 |= NFC_V3_CONFIG2_PPB(ffs(mtd->erasesize / mtd->writesize) - 6);
  740. host->eccsize = get_eccsize(mtd);
  741. if (host->eccsize == 8)
  742. config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
  743. }
  744. writel(config2, NFC_V3_CONFIG2);
  745. config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
  746. NFC_V3_CONFIG3_NO_SDMA |
  747. NFC_V3_CONFIG3_RBB_MODE |
  748. NFC_V3_CONFIG3_SBB(6) | /* Reset default */
  749. NFC_V3_CONFIG3_ADD_OP(0);
  750. if (!(chip->options & NAND_BUSWIDTH_16))
  751. config3 |= NFC_V3_CONFIG3_FW8;
  752. writel(config3, NFC_V3_CONFIG3);
  753. writel(0, NFC_V3_DELAY_LINE);
  754. }
  755. /* Used by the upper layer to write command to NAND Flash for
  756. * different operations to be carried out on NAND Flash */
  757. static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
  758. int column, int page_addr)
  759. {
  760. struct nand_chip *nand_chip = mtd->priv;
  761. struct mxc_nand_host *host = nand_chip->priv;
  762. pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
  763. command, column, page_addr);
  764. /* Reset command state information */
  765. host->status_request = false;
  766. /* Command pre-processing step */
  767. switch (command) {
  768. case NAND_CMD_RESET:
  769. host->preset(mtd);
  770. host->send_cmd(host, command, false);
  771. break;
  772. case NAND_CMD_STATUS:
  773. host->buf_start = 0;
  774. host->status_request = true;
  775. host->send_cmd(host, command, true);
  776. mxc_do_addr_cycle(mtd, column, page_addr);
  777. break;
  778. case NAND_CMD_READ0:
  779. case NAND_CMD_READOOB:
  780. if (command == NAND_CMD_READ0)
  781. host->buf_start = column;
  782. else
  783. host->buf_start = column + mtd->writesize;
  784. command = NAND_CMD_READ0; /* only READ0 is valid */
  785. host->send_cmd(host, command, false);
  786. mxc_do_addr_cycle(mtd, column, page_addr);
  787. if (mtd->writesize > 512)
  788. host->send_cmd(host, NAND_CMD_READSTART, true);
  789. host->send_page(mtd, NFC_OUTPUT);
  790. memcpy(host->data_buf, host->main_area0, mtd->writesize);
  791. copy_spare(mtd, true);
  792. break;
  793. case NAND_CMD_SEQIN:
  794. if (column >= mtd->writesize)
  795. /* call ourself to read a page */
  796. mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
  797. host->buf_start = column;
  798. host->send_cmd(host, command, false);
  799. mxc_do_addr_cycle(mtd, column, page_addr);
  800. break;
  801. case NAND_CMD_PAGEPROG:
  802. memcpy(host->main_area0, host->data_buf, mtd->writesize);
  803. copy_spare(mtd, false);
  804. host->send_page(mtd, NFC_INPUT);
  805. host->send_cmd(host, command, true);
  806. mxc_do_addr_cycle(mtd, column, page_addr);
  807. break;
  808. case NAND_CMD_READID:
  809. host->send_cmd(host, command, true);
  810. mxc_do_addr_cycle(mtd, column, page_addr);
  811. host->send_read_id(host);
  812. host->buf_start = column;
  813. break;
  814. case NAND_CMD_ERASE1:
  815. case NAND_CMD_ERASE2:
  816. host->send_cmd(host, command, false);
  817. mxc_do_addr_cycle(mtd, column, page_addr);
  818. break;
  819. }
  820. }
  821. /*
  822. * The generic flash bbt decriptors overlap with our ecc
  823. * hardware, so define some i.MX specific ones.
  824. */
  825. static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
  826. static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
  827. static struct nand_bbt_descr bbt_main_descr = {
  828. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  829. | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
  830. .offs = 0,
  831. .len = 4,
  832. .veroffs = 4,
  833. .maxblocks = 4,
  834. .pattern = bbt_pattern,
  835. };
  836. static struct nand_bbt_descr bbt_mirror_descr = {
  837. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  838. | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
  839. .offs = 0,
  840. .len = 4,
  841. .veroffs = 4,
  842. .maxblocks = 4,
  843. .pattern = mirror_pattern,
  844. };
  845. static int __init mxcnd_probe(struct platform_device *pdev)
  846. {
  847. struct nand_chip *this;
  848. struct mtd_info *mtd;
  849. struct mxc_nand_platform_data *pdata = pdev->dev.platform_data;
  850. struct mxc_nand_host *host;
  851. struct resource *res;
  852. int err = 0;
  853. struct nand_ecclayout *oob_smallpage, *oob_largepage;
  854. /* Allocate memory for MTD device structure and private data */
  855. host = kzalloc(sizeof(struct mxc_nand_host) + NAND_MAX_PAGESIZE +
  856. NAND_MAX_OOBSIZE, GFP_KERNEL);
  857. if (!host)
  858. return -ENOMEM;
  859. host->data_buf = (uint8_t *)(host + 1);
  860. host->dev = &pdev->dev;
  861. /* structures must be linked */
  862. this = &host->nand;
  863. mtd = &host->mtd;
  864. mtd->priv = this;
  865. mtd->owner = THIS_MODULE;
  866. mtd->dev.parent = &pdev->dev;
  867. mtd->name = DRIVER_NAME;
  868. /* 50 us command delay time */
  869. this->chip_delay = 5;
  870. this->priv = host;
  871. this->dev_ready = mxc_nand_dev_ready;
  872. this->cmdfunc = mxc_nand_command;
  873. this->select_chip = mxc_nand_select_chip;
  874. this->read_byte = mxc_nand_read_byte;
  875. this->read_word = mxc_nand_read_word;
  876. this->write_buf = mxc_nand_write_buf;
  877. this->read_buf = mxc_nand_read_buf;
  878. this->verify_buf = mxc_nand_verify_buf;
  879. host->clk = clk_get(&pdev->dev, "nfc");
  880. if (IS_ERR(host->clk)) {
  881. err = PTR_ERR(host->clk);
  882. goto eclk;
  883. }
  884. clk_enable(host->clk);
  885. host->clk_act = 1;
  886. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  887. if (!res) {
  888. err = -ENODEV;
  889. goto eres;
  890. }
  891. host->base = ioremap(res->start, resource_size(res));
  892. if (!host->base) {
  893. err = -ENOMEM;
  894. goto eres;
  895. }
  896. host->main_area0 = host->base;
  897. if (nfc_is_v1() || nfc_is_v21()) {
  898. host->preset = preset_v1_v2;
  899. host->send_cmd = send_cmd_v1_v2;
  900. host->send_addr = send_addr_v1_v2;
  901. host->send_page = send_page_v1_v2;
  902. host->send_read_id = send_read_id_v1_v2;
  903. host->get_dev_status = get_dev_status_v1_v2;
  904. host->check_int = check_int_v1_v2;
  905. if (cpu_is_mx21())
  906. host->irq_control = irq_control_mx21;
  907. else
  908. host->irq_control = irq_control_v1_v2;
  909. }
  910. if (nfc_is_v21()) {
  911. host->regs = host->base + 0x1e00;
  912. host->spare0 = host->base + 0x1000;
  913. host->spare_len = 64;
  914. oob_smallpage = &nandv2_hw_eccoob_smallpage;
  915. oob_largepage = &nandv2_hw_eccoob_largepage;
  916. this->ecc.bytes = 9;
  917. } else if (nfc_is_v1()) {
  918. host->regs = host->base + 0xe00;
  919. host->spare0 = host->base + 0x800;
  920. host->spare_len = 16;
  921. oob_smallpage = &nandv1_hw_eccoob_smallpage;
  922. oob_largepage = &nandv1_hw_eccoob_largepage;
  923. this->ecc.bytes = 3;
  924. host->eccsize = 1;
  925. } else if (nfc_is_v3_2()) {
  926. res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  927. if (!res) {
  928. err = -ENODEV;
  929. goto eirq;
  930. }
  931. host->regs_ip = ioremap(res->start, resource_size(res));
  932. if (!host->regs_ip) {
  933. err = -ENOMEM;
  934. goto eirq;
  935. }
  936. host->regs_axi = host->base + 0x1e00;
  937. host->spare0 = host->base + 0x1000;
  938. host->spare_len = 64;
  939. host->preset = preset_v3;
  940. host->send_cmd = send_cmd_v3;
  941. host->send_addr = send_addr_v3;
  942. host->send_page = send_page_v3;
  943. host->send_read_id = send_read_id_v3;
  944. host->check_int = check_int_v3;
  945. host->get_dev_status = get_dev_status_v3;
  946. host->irq_control = irq_control_v3;
  947. oob_smallpage = &nandv2_hw_eccoob_smallpage;
  948. oob_largepage = &nandv2_hw_eccoob_largepage;
  949. } else
  950. BUG();
  951. this->ecc.size = 512;
  952. this->ecc.layout = oob_smallpage;
  953. if (pdata->hw_ecc) {
  954. this->ecc.calculate = mxc_nand_calculate_ecc;
  955. this->ecc.hwctl = mxc_nand_enable_hwecc;
  956. if (nfc_is_v1())
  957. this->ecc.correct = mxc_nand_correct_data_v1;
  958. else
  959. this->ecc.correct = mxc_nand_correct_data_v2_v3;
  960. this->ecc.mode = NAND_ECC_HW;
  961. } else {
  962. this->ecc.mode = NAND_ECC_SOFT;
  963. }
  964. /* NAND bus width determines access funtions used by upper layer */
  965. if (pdata->width == 2)
  966. this->options |= NAND_BUSWIDTH_16;
  967. if (pdata->flash_bbt) {
  968. this->bbt_td = &bbt_main_descr;
  969. this->bbt_md = &bbt_mirror_descr;
  970. /* update flash based bbt */
  971. this->bbt_options |= NAND_BBT_USE_FLASH;
  972. }
  973. init_completion(&host->op_completion);
  974. host->irq = platform_get_irq(pdev, 0);
  975. /*
  976. * mask the interrupt. For i.MX21 explicitely call
  977. * irq_control_v1_v2 to use the mask bit. We can't call
  978. * disable_irq_nosync() for an interrupt we do not own yet.
  979. */
  980. if (cpu_is_mx21())
  981. irq_control_v1_v2(host, 0);
  982. else
  983. host->irq_control(host, 0);
  984. err = request_irq(host->irq, mxc_nfc_irq, IRQF_DISABLED, DRIVER_NAME, host);
  985. if (err)
  986. goto eirq;
  987. host->irq_control(host, 0);
  988. /*
  989. * Now that the interrupt is disabled make sure the interrupt
  990. * mask bit is cleared on i.MX21. Otherwise we can't read
  991. * the interrupt status bit on this machine.
  992. */
  993. if (cpu_is_mx21())
  994. irq_control_v1_v2(host, 1);
  995. /* first scan to find the device and get the page size */
  996. if (nand_scan_ident(mtd, nfc_is_v21() ? 4 : 1, NULL)) {
  997. err = -ENXIO;
  998. goto escan;
  999. }
  1000. /* Call preset again, with correct writesize this time */
  1001. host->preset(mtd);
  1002. if (mtd->writesize == 2048)
  1003. this->ecc.layout = oob_largepage;
  1004. if (nfc_is_v21() && mtd->writesize == 4096)
  1005. this->ecc.layout = &nandv2_hw_eccoob_4k;
  1006. /* second phase scan */
  1007. if (nand_scan_tail(mtd)) {
  1008. err = -ENXIO;
  1009. goto escan;
  1010. }
  1011. /* Register the partitions */
  1012. mtd_device_parse_register(mtd, part_probes, 0,
  1013. pdata->parts, pdata->nr_parts);
  1014. platform_set_drvdata(pdev, host);
  1015. return 0;
  1016. escan:
  1017. free_irq(host->irq, host);
  1018. eirq:
  1019. if (host->regs_ip)
  1020. iounmap(host->regs_ip);
  1021. iounmap(host->base);
  1022. eres:
  1023. clk_put(host->clk);
  1024. eclk:
  1025. kfree(host);
  1026. return err;
  1027. }
  1028. static int __devexit mxcnd_remove(struct platform_device *pdev)
  1029. {
  1030. struct mxc_nand_host *host = platform_get_drvdata(pdev);
  1031. clk_put(host->clk);
  1032. platform_set_drvdata(pdev, NULL);
  1033. nand_release(&host->mtd);
  1034. free_irq(host->irq, host);
  1035. if (host->regs_ip)
  1036. iounmap(host->regs_ip);
  1037. iounmap(host->base);
  1038. kfree(host);
  1039. return 0;
  1040. }
  1041. static struct platform_driver mxcnd_driver = {
  1042. .driver = {
  1043. .name = DRIVER_NAME,
  1044. },
  1045. .remove = __devexit_p(mxcnd_remove),
  1046. };
  1047. static int __init mxc_nd_init(void)
  1048. {
  1049. return platform_driver_probe(&mxcnd_driver, mxcnd_probe);
  1050. }
  1051. static void __exit mxc_nd_cleanup(void)
  1052. {
  1053. /* Unregister the device structure */
  1054. platform_driver_unregister(&mxcnd_driver);
  1055. }
  1056. module_init(mxc_nd_init);
  1057. module_exit(mxc_nd_cleanup);
  1058. MODULE_AUTHOR("Freescale Semiconductor, Inc.");
  1059. MODULE_DESCRIPTION("MXC NAND MTD driver");
  1060. MODULE_LICENSE("GPL");