fsl_elbc_nand.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989
  1. /* Freescale Enhanced Local Bus Controller NAND driver
  2. *
  3. * Copyright © 2006-2007, 2010 Freescale Semiconductor
  4. *
  5. * Authors: Nick Spence <nick.spence@freescale.com>,
  6. * Scott Wood <scottwood@freescale.com>
  7. * Jack Lan <jack.lan@freescale.com>
  8. * Roy Zang <tie-fei.zang@freescale.com>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 2 of the License, or
  13. * (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  23. */
  24. #include <linux/module.h>
  25. #include <linux/types.h>
  26. #include <linux/init.h>
  27. #include <linux/kernel.h>
  28. #include <linux/string.h>
  29. #include <linux/ioport.h>
  30. #include <linux/of_platform.h>
  31. #include <linux/platform_device.h>
  32. #include <linux/slab.h>
  33. #include <linux/interrupt.h>
  34. #include <linux/mtd/mtd.h>
  35. #include <linux/mtd/nand.h>
  36. #include <linux/mtd/nand_ecc.h>
  37. #include <linux/mtd/partitions.h>
  38. #include <asm/io.h>
  39. #include <asm/fsl_lbc.h>
  40. #define MAX_BANKS 8
  41. #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
  42. #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
  43. /* mtd information per set */
  44. struct fsl_elbc_mtd {
  45. struct mtd_info mtd;
  46. struct nand_chip chip;
  47. struct fsl_lbc_ctrl *ctrl;
  48. struct device *dev;
  49. int bank; /* Chip select bank number */
  50. u8 __iomem *vbase; /* Chip select base virtual address */
  51. int page_size; /* NAND page size (0=512, 1=2048) */
  52. unsigned int fmr; /* FCM Flash Mode Register value */
  53. };
  54. /* Freescale eLBC FCM controller information */
  55. struct fsl_elbc_fcm_ctrl {
  56. struct nand_hw_control controller;
  57. struct fsl_elbc_mtd *chips[MAX_BANKS];
  58. u8 __iomem *addr; /* Address of assigned FCM buffer */
  59. unsigned int page; /* Last page written to / read from */
  60. unsigned int read_bytes; /* Number of bytes read during command */
  61. unsigned int column; /* Saved column from SEQIN */
  62. unsigned int index; /* Pointer to next byte to 'read' */
  63. unsigned int status; /* status read from LTESR after last op */
  64. unsigned int mdr; /* UPM/FCM Data Register value */
  65. unsigned int use_mdr; /* Non zero if the MDR is to be set */
  66. unsigned int oob; /* Non zero if operating on OOB data */
  67. unsigned int counter; /* counter for the initializations */
  68. };
  69. /* These map to the positions used by the FCM hardware ECC generator */
  70. /* Small Page FLASH with FMR[ECCM] = 0 */
  71. static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
  72. .eccbytes = 3,
  73. .eccpos = {6, 7, 8},
  74. .oobfree = { {0, 5}, {9, 7} },
  75. };
  76. /* Small Page FLASH with FMR[ECCM] = 1 */
  77. static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
  78. .eccbytes = 3,
  79. .eccpos = {8, 9, 10},
  80. .oobfree = { {0, 5}, {6, 2}, {11, 5} },
  81. };
  82. /* Large Page FLASH with FMR[ECCM] = 0 */
  83. static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
  84. .eccbytes = 12,
  85. .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
  86. .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
  87. };
  88. /* Large Page FLASH with FMR[ECCM] = 1 */
  89. static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
  90. .eccbytes = 12,
  91. .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
  92. .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
  93. };
  94. /*
  95. * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
  96. * 1, so we have to adjust bad block pattern. This pattern should be used for
  97. * x8 chips only. So far hardware does not support x16 chips anyway.
  98. */
  99. static u8 scan_ff_pattern[] = { 0xff, };
  100. static struct nand_bbt_descr largepage_memorybased = {
  101. .options = 0,
  102. .offs = 0,
  103. .len = 1,
  104. .pattern = scan_ff_pattern,
  105. };
  106. /*
  107. * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
  108. * interfere with ECC positions, that's why we implement our own descriptors.
  109. * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
  110. */
  111. static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
  112. static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
  113. static struct nand_bbt_descr bbt_main_descr = {
  114. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
  115. NAND_BBT_2BIT | NAND_BBT_VERSION,
  116. .offs = 11,
  117. .len = 4,
  118. .veroffs = 15,
  119. .maxblocks = 4,
  120. .pattern = bbt_pattern,
  121. };
  122. static struct nand_bbt_descr bbt_mirror_descr = {
  123. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
  124. NAND_BBT_2BIT | NAND_BBT_VERSION,
  125. .offs = 11,
  126. .len = 4,
  127. .veroffs = 15,
  128. .maxblocks = 4,
  129. .pattern = mirror_pattern,
  130. };
  131. /*=================================*/
  132. /*
  133. * Set up the FCM hardware block and page address fields, and the fcm
  134. * structure addr field to point to the correct FCM buffer in memory
  135. */
  136. static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
  137. {
  138. struct nand_chip *chip = mtd->priv;
  139. struct fsl_elbc_mtd *priv = chip->priv;
  140. struct fsl_lbc_ctrl *ctrl = priv->ctrl;
  141. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  142. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
  143. int buf_num;
  144. elbc_fcm_ctrl->page = page_addr;
  145. out_be32(&lbc->fbar,
  146. page_addr >> (chip->phys_erase_shift - chip->page_shift));
  147. if (priv->page_size) {
  148. out_be32(&lbc->fpar,
  149. ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
  150. (oob ? FPAR_LP_MS : 0) | column);
  151. buf_num = (page_addr & 1) << 2;
  152. } else {
  153. out_be32(&lbc->fpar,
  154. ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
  155. (oob ? FPAR_SP_MS : 0) | column);
  156. buf_num = page_addr & 7;
  157. }
  158. elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
  159. elbc_fcm_ctrl->index = column;
  160. /* for OOB data point to the second half of the buffer */
  161. if (oob)
  162. elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
  163. dev_vdbg(priv->dev, "set_addr: bank=%d, "
  164. "elbc_fcm_ctrl->addr=0x%p (0x%p), "
  165. "index %x, pes %d ps %d\n",
  166. buf_num, elbc_fcm_ctrl->addr, priv->vbase,
  167. elbc_fcm_ctrl->index,
  168. chip->phys_erase_shift, chip->page_shift);
  169. }
  170. /*
  171. * execute FCM command and wait for it to complete
  172. */
  173. static int fsl_elbc_run_command(struct mtd_info *mtd)
  174. {
  175. struct nand_chip *chip = mtd->priv;
  176. struct fsl_elbc_mtd *priv = chip->priv;
  177. struct fsl_lbc_ctrl *ctrl = priv->ctrl;
  178. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
  179. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  180. /* Setup the FMR[OP] to execute without write protection */
  181. out_be32(&lbc->fmr, priv->fmr | 3);
  182. if (elbc_fcm_ctrl->use_mdr)
  183. out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
  184. dev_vdbg(priv->dev,
  185. "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
  186. in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
  187. dev_vdbg(priv->dev,
  188. "fsl_elbc_run_command: fbar=%08x fpar=%08x "
  189. "fbcr=%08x bank=%d\n",
  190. in_be32(&lbc->fbar), in_be32(&lbc->fpar),
  191. in_be32(&lbc->fbcr), priv->bank);
  192. ctrl->irq_status = 0;
  193. /* execute special operation */
  194. out_be32(&lbc->lsor, priv->bank);
  195. /* wait for FCM complete flag or timeout */
  196. wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
  197. FCM_TIMEOUT_MSECS * HZ/1000);
  198. elbc_fcm_ctrl->status = ctrl->irq_status;
  199. /* store mdr value in case it was needed */
  200. if (elbc_fcm_ctrl->use_mdr)
  201. elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
  202. elbc_fcm_ctrl->use_mdr = 0;
  203. if (elbc_fcm_ctrl->status != LTESR_CC) {
  204. dev_info(priv->dev,
  205. "command failed: fir %x fcr %x status %x mdr %x\n",
  206. in_be32(&lbc->fir), in_be32(&lbc->fcr),
  207. elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
  208. return -EIO;
  209. }
  210. if (chip->ecc.mode != NAND_ECC_HW)
  211. return 0;
  212. if (elbc_fcm_ctrl->read_bytes == mtd->writesize + mtd->oobsize) {
  213. uint32_t lteccr = in_be32(&lbc->lteccr);
  214. /*
  215. * if command was a full page read and the ELBC
  216. * has the LTECCR register, then bits 12-15 (ppc order) of
  217. * LTECCR indicates which 512 byte sub-pages had fixed errors.
  218. * bits 28-31 are uncorrectable errors, marked elsewhere.
  219. * for small page nand only 1 bit is used.
  220. * if the ELBC doesn't have the lteccr register it reads 0
  221. */
  222. if (lteccr & 0x000F000F)
  223. out_be32(&lbc->lteccr, 0x000F000F); /* clear lteccr */
  224. if (lteccr & 0x000F0000)
  225. mtd->ecc_stats.corrected++;
  226. }
  227. return 0;
  228. }
  229. static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
  230. {
  231. struct fsl_elbc_mtd *priv = chip->priv;
  232. struct fsl_lbc_ctrl *ctrl = priv->ctrl;
  233. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  234. if (priv->page_size) {
  235. out_be32(&lbc->fir,
  236. (FIR_OP_CM0 << FIR_OP0_SHIFT) |
  237. (FIR_OP_CA << FIR_OP1_SHIFT) |
  238. (FIR_OP_PA << FIR_OP2_SHIFT) |
  239. (FIR_OP_CM1 << FIR_OP3_SHIFT) |
  240. (FIR_OP_RBW << FIR_OP4_SHIFT));
  241. out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
  242. (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
  243. } else {
  244. out_be32(&lbc->fir,
  245. (FIR_OP_CM0 << FIR_OP0_SHIFT) |
  246. (FIR_OP_CA << FIR_OP1_SHIFT) |
  247. (FIR_OP_PA << FIR_OP2_SHIFT) |
  248. (FIR_OP_RBW << FIR_OP3_SHIFT));
  249. if (oob)
  250. out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
  251. else
  252. out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
  253. }
  254. }
  255. /* cmdfunc send commands to the FCM */
  256. static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
  257. int column, int page_addr)
  258. {
  259. struct nand_chip *chip = mtd->priv;
  260. struct fsl_elbc_mtd *priv = chip->priv;
  261. struct fsl_lbc_ctrl *ctrl = priv->ctrl;
  262. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
  263. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  264. elbc_fcm_ctrl->use_mdr = 0;
  265. /* clear the read buffer */
  266. elbc_fcm_ctrl->read_bytes = 0;
  267. if (command != NAND_CMD_PAGEPROG)
  268. elbc_fcm_ctrl->index = 0;
  269. switch (command) {
  270. /* READ0 and READ1 read the entire buffer to use hardware ECC. */
  271. case NAND_CMD_READ1:
  272. column += 256;
  273. /* fall-through */
  274. case NAND_CMD_READ0:
  275. dev_dbg(priv->dev,
  276. "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
  277. " 0x%x, column: 0x%x.\n", page_addr, column);
  278. out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
  279. set_addr(mtd, 0, page_addr, 0);
  280. elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
  281. elbc_fcm_ctrl->index += column;
  282. fsl_elbc_do_read(chip, 0);
  283. fsl_elbc_run_command(mtd);
  284. return;
  285. /* READOOB reads only the OOB because no ECC is performed. */
  286. case NAND_CMD_READOOB:
  287. dev_vdbg(priv->dev,
  288. "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
  289. " 0x%x, column: 0x%x.\n", page_addr, column);
  290. out_be32(&lbc->fbcr, mtd->oobsize - column);
  291. set_addr(mtd, column, page_addr, 1);
  292. elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
  293. fsl_elbc_do_read(chip, 1);
  294. fsl_elbc_run_command(mtd);
  295. return;
  296. /* READID must read all 5 possible bytes while CEB is active */
  297. case NAND_CMD_READID:
  298. dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
  299. out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
  300. (FIR_OP_UA << FIR_OP1_SHIFT) |
  301. (FIR_OP_RBW << FIR_OP2_SHIFT));
  302. out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
  303. /* nand_get_flash_type() reads 8 bytes of entire ID string */
  304. out_be32(&lbc->fbcr, 8);
  305. elbc_fcm_ctrl->read_bytes = 8;
  306. elbc_fcm_ctrl->use_mdr = 1;
  307. elbc_fcm_ctrl->mdr = 0;
  308. set_addr(mtd, 0, 0, 0);
  309. fsl_elbc_run_command(mtd);
  310. return;
  311. /* ERASE1 stores the block and page address */
  312. case NAND_CMD_ERASE1:
  313. dev_vdbg(priv->dev,
  314. "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
  315. "page_addr: 0x%x.\n", page_addr);
  316. set_addr(mtd, 0, page_addr, 0);
  317. return;
  318. /* ERASE2 uses the block and page address from ERASE1 */
  319. case NAND_CMD_ERASE2:
  320. dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
  321. out_be32(&lbc->fir,
  322. (FIR_OP_CM0 << FIR_OP0_SHIFT) |
  323. (FIR_OP_PA << FIR_OP1_SHIFT) |
  324. (FIR_OP_CM2 << FIR_OP2_SHIFT) |
  325. (FIR_OP_CW1 << FIR_OP3_SHIFT) |
  326. (FIR_OP_RS << FIR_OP4_SHIFT));
  327. out_be32(&lbc->fcr,
  328. (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
  329. (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
  330. (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
  331. out_be32(&lbc->fbcr, 0);
  332. elbc_fcm_ctrl->read_bytes = 0;
  333. elbc_fcm_ctrl->use_mdr = 1;
  334. fsl_elbc_run_command(mtd);
  335. return;
  336. /* SEQIN sets up the addr buffer and all registers except the length */
  337. case NAND_CMD_SEQIN: {
  338. __be32 fcr;
  339. dev_vdbg(priv->dev,
  340. "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
  341. "page_addr: 0x%x, column: 0x%x.\n",
  342. page_addr, column);
  343. elbc_fcm_ctrl->column = column;
  344. elbc_fcm_ctrl->oob = 0;
  345. elbc_fcm_ctrl->use_mdr = 1;
  346. fcr = (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
  347. (NAND_CMD_SEQIN << FCR_CMD2_SHIFT) |
  348. (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
  349. if (priv->page_size) {
  350. out_be32(&lbc->fir,
  351. (FIR_OP_CM2 << FIR_OP0_SHIFT) |
  352. (FIR_OP_CA << FIR_OP1_SHIFT) |
  353. (FIR_OP_PA << FIR_OP2_SHIFT) |
  354. (FIR_OP_WB << FIR_OP3_SHIFT) |
  355. (FIR_OP_CM3 << FIR_OP4_SHIFT) |
  356. (FIR_OP_CW1 << FIR_OP5_SHIFT) |
  357. (FIR_OP_RS << FIR_OP6_SHIFT));
  358. } else {
  359. out_be32(&lbc->fir,
  360. (FIR_OP_CM0 << FIR_OP0_SHIFT) |
  361. (FIR_OP_CM2 << FIR_OP1_SHIFT) |
  362. (FIR_OP_CA << FIR_OP2_SHIFT) |
  363. (FIR_OP_PA << FIR_OP3_SHIFT) |
  364. (FIR_OP_WB << FIR_OP4_SHIFT) |
  365. (FIR_OP_CM3 << FIR_OP5_SHIFT) |
  366. (FIR_OP_CW1 << FIR_OP6_SHIFT) |
  367. (FIR_OP_RS << FIR_OP7_SHIFT));
  368. if (column >= mtd->writesize) {
  369. /* OOB area --> READOOB */
  370. column -= mtd->writesize;
  371. fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
  372. elbc_fcm_ctrl->oob = 1;
  373. } else {
  374. WARN_ON(column != 0);
  375. /* First 256 bytes --> READ0 */
  376. fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
  377. }
  378. }
  379. out_be32(&lbc->fcr, fcr);
  380. set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
  381. return;
  382. }
  383. /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
  384. case NAND_CMD_PAGEPROG: {
  385. dev_vdbg(priv->dev,
  386. "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
  387. "writing %d bytes.\n", elbc_fcm_ctrl->index);
  388. /* if the write did not start at 0 or is not a full page
  389. * then set the exact length, otherwise use a full page
  390. * write so the HW generates the ECC.
  391. */
  392. if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
  393. elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize)
  394. out_be32(&lbc->fbcr, elbc_fcm_ctrl->index);
  395. else
  396. out_be32(&lbc->fbcr, 0);
  397. fsl_elbc_run_command(mtd);
  398. return;
  399. }
  400. /* CMD_STATUS must read the status byte while CEB is active */
  401. /* Note - it does not wait for the ready line */
  402. case NAND_CMD_STATUS:
  403. out_be32(&lbc->fir,
  404. (FIR_OP_CM0 << FIR_OP0_SHIFT) |
  405. (FIR_OP_RBW << FIR_OP1_SHIFT));
  406. out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
  407. out_be32(&lbc->fbcr, 1);
  408. set_addr(mtd, 0, 0, 0);
  409. elbc_fcm_ctrl->read_bytes = 1;
  410. fsl_elbc_run_command(mtd);
  411. /* The chip always seems to report that it is
  412. * write-protected, even when it is not.
  413. */
  414. setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
  415. return;
  416. /* RESET without waiting for the ready line */
  417. case NAND_CMD_RESET:
  418. dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
  419. out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
  420. out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
  421. fsl_elbc_run_command(mtd);
  422. return;
  423. default:
  424. dev_err(priv->dev,
  425. "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
  426. command);
  427. }
  428. }
  429. static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
  430. {
  431. /* The hardware does not seem to support multiple
  432. * chips per bank.
  433. */
  434. }
  435. /*
  436. * Write buf to the FCM Controller Data Buffer
  437. */
  438. static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
  439. {
  440. struct nand_chip *chip = mtd->priv;
  441. struct fsl_elbc_mtd *priv = chip->priv;
  442. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
  443. unsigned int bufsize = mtd->writesize + mtd->oobsize;
  444. if (len <= 0) {
  445. dev_err(priv->dev, "write_buf of %d bytes", len);
  446. elbc_fcm_ctrl->status = 0;
  447. return;
  448. }
  449. if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
  450. dev_err(priv->dev,
  451. "write_buf beyond end of buffer "
  452. "(%d requested, %u available)\n",
  453. len, bufsize - elbc_fcm_ctrl->index);
  454. len = bufsize - elbc_fcm_ctrl->index;
  455. }
  456. memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
  457. /*
  458. * This is workaround for the weird elbc hangs during nand write,
  459. * Scott Wood says: "...perhaps difference in how long it takes a
  460. * write to make it through the localbus compared to a write to IMMR
  461. * is causing problems, and sync isn't helping for some reason."
  462. * Reading back the last byte helps though.
  463. */
  464. in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
  465. elbc_fcm_ctrl->index += len;
  466. }
  467. /*
  468. * read a byte from either the FCM hardware buffer if it has any data left
  469. * otherwise issue a command to read a single byte.
  470. */
  471. static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
  472. {
  473. struct nand_chip *chip = mtd->priv;
  474. struct fsl_elbc_mtd *priv = chip->priv;
  475. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
  476. /* If there are still bytes in the FCM, then use the next byte. */
  477. if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
  478. return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
  479. dev_err(priv->dev, "read_byte beyond end of buffer\n");
  480. return ERR_BYTE;
  481. }
  482. /*
  483. * Read from the FCM Controller Data Buffer
  484. */
  485. static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
  486. {
  487. struct nand_chip *chip = mtd->priv;
  488. struct fsl_elbc_mtd *priv = chip->priv;
  489. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
  490. int avail;
  491. if (len < 0)
  492. return;
  493. avail = min((unsigned int)len,
  494. elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
  495. memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
  496. elbc_fcm_ctrl->index += avail;
  497. if (len > avail)
  498. dev_err(priv->dev,
  499. "read_buf beyond end of buffer "
  500. "(%d requested, %d available)\n",
  501. len, avail);
  502. }
  503. /*
  504. * Verify buffer against the FCM Controller Data Buffer
  505. */
  506. static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
  507. {
  508. struct nand_chip *chip = mtd->priv;
  509. struct fsl_elbc_mtd *priv = chip->priv;
  510. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
  511. int i;
  512. if (len < 0) {
  513. dev_err(priv->dev, "write_buf of %d bytes", len);
  514. return -EINVAL;
  515. }
  516. if ((unsigned int)len >
  517. elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index) {
  518. dev_err(priv->dev,
  519. "verify_buf beyond end of buffer "
  520. "(%d requested, %u available)\n",
  521. len, elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
  522. elbc_fcm_ctrl->index = elbc_fcm_ctrl->read_bytes;
  523. return -EINVAL;
  524. }
  525. for (i = 0; i < len; i++)
  526. if (in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index + i])
  527. != buf[i])
  528. break;
  529. elbc_fcm_ctrl->index += len;
  530. return i == len && elbc_fcm_ctrl->status == LTESR_CC ? 0 : -EIO;
  531. }
  532. /* This function is called after Program and Erase Operations to
  533. * check for success or failure.
  534. */
  535. static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
  536. {
  537. struct fsl_elbc_mtd *priv = chip->priv;
  538. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
  539. if (elbc_fcm_ctrl->status != LTESR_CC)
  540. return NAND_STATUS_FAIL;
  541. /* The chip always seems to report that it is
  542. * write-protected, even when it is not.
  543. */
  544. return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
  545. }
  546. static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
  547. {
  548. struct nand_chip *chip = mtd->priv;
  549. struct fsl_elbc_mtd *priv = chip->priv;
  550. struct fsl_lbc_ctrl *ctrl = priv->ctrl;
  551. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  552. unsigned int al;
  553. /* calculate FMR Address Length field */
  554. al = 0;
  555. if (chip->pagemask & 0xffff0000)
  556. al++;
  557. if (chip->pagemask & 0xff000000)
  558. al++;
  559. /* add to ECCM mode set in fsl_elbc_init */
  560. priv->fmr |= (12 << FMR_CWTO_SHIFT) | /* Timeout > 12 ms */
  561. (al << FMR_AL_SHIFT);
  562. dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
  563. chip->numchips);
  564. dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
  565. chip->chipsize);
  566. dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
  567. chip->pagemask);
  568. dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
  569. chip->chip_delay);
  570. dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
  571. chip->badblockpos);
  572. dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
  573. chip->chip_shift);
  574. dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
  575. chip->page_shift);
  576. dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
  577. chip->phys_erase_shift);
  578. dev_dbg(priv->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
  579. chip->ecclayout);
  580. dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
  581. chip->ecc.mode);
  582. dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
  583. chip->ecc.steps);
  584. dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
  585. chip->ecc.bytes);
  586. dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
  587. chip->ecc.total);
  588. dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
  589. chip->ecc.layout);
  590. dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
  591. dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
  592. dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
  593. mtd->erasesize);
  594. dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
  595. mtd->writesize);
  596. dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
  597. mtd->oobsize);
  598. /* adjust Option Register and ECC to match Flash page size */
  599. if (mtd->writesize == 512) {
  600. priv->page_size = 0;
  601. clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
  602. } else if (mtd->writesize == 2048) {
  603. priv->page_size = 1;
  604. setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
  605. /* adjust ecc setup if needed */
  606. if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
  607. BR_DECC_CHK_GEN) {
  608. chip->ecc.size = 512;
  609. chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
  610. &fsl_elbc_oob_lp_eccm1 :
  611. &fsl_elbc_oob_lp_eccm0;
  612. chip->badblock_pattern = &largepage_memorybased;
  613. }
  614. } else {
  615. dev_err(priv->dev,
  616. "fsl_elbc_init: page size %d is not supported\n",
  617. mtd->writesize);
  618. return -1;
  619. }
  620. return 0;
  621. }
  622. static int fsl_elbc_read_page(struct mtd_info *mtd,
  623. struct nand_chip *chip,
  624. uint8_t *buf,
  625. int page)
  626. {
  627. fsl_elbc_read_buf(mtd, buf, mtd->writesize);
  628. fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
  629. if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
  630. mtd->ecc_stats.failed++;
  631. return 0;
  632. }
  633. /* ECC will be calculated automatically, and errors will be detected in
  634. * waitfunc.
  635. */
  636. static void fsl_elbc_write_page(struct mtd_info *mtd,
  637. struct nand_chip *chip,
  638. const uint8_t *buf)
  639. {
  640. fsl_elbc_write_buf(mtd, buf, mtd->writesize);
  641. fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
  642. }
  643. static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
  644. {
  645. struct fsl_lbc_ctrl *ctrl = priv->ctrl;
  646. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  647. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
  648. struct nand_chip *chip = &priv->chip;
  649. dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
  650. /* Fill in fsl_elbc_mtd structure */
  651. priv->mtd.priv = chip;
  652. priv->mtd.owner = THIS_MODULE;
  653. /* Set the ECCM according to the settings in bootloader.*/
  654. priv->fmr = in_be32(&lbc->fmr) & FMR_ECCM;
  655. /* fill in nand_chip structure */
  656. /* set up function call table */
  657. chip->read_byte = fsl_elbc_read_byte;
  658. chip->write_buf = fsl_elbc_write_buf;
  659. chip->read_buf = fsl_elbc_read_buf;
  660. chip->verify_buf = fsl_elbc_verify_buf;
  661. chip->select_chip = fsl_elbc_select_chip;
  662. chip->cmdfunc = fsl_elbc_cmdfunc;
  663. chip->waitfunc = fsl_elbc_wait;
  664. chip->bbt_td = &bbt_main_descr;
  665. chip->bbt_md = &bbt_mirror_descr;
  666. /* set up nand options */
  667. chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR;
  668. chip->bbt_options = NAND_BBT_USE_FLASH;
  669. chip->controller = &elbc_fcm_ctrl->controller;
  670. chip->priv = priv;
  671. chip->ecc.read_page = fsl_elbc_read_page;
  672. chip->ecc.write_page = fsl_elbc_write_page;
  673. /* If CS Base Register selects full hardware ECC then use it */
  674. if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
  675. BR_DECC_CHK_GEN) {
  676. chip->ecc.mode = NAND_ECC_HW;
  677. /* put in small page settings and adjust later if needed */
  678. chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
  679. &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
  680. chip->ecc.size = 512;
  681. chip->ecc.bytes = 3;
  682. } else {
  683. /* otherwise fall back to default software ECC */
  684. chip->ecc.mode = NAND_ECC_SOFT;
  685. }
  686. return 0;
  687. }
  688. static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
  689. {
  690. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
  691. nand_release(&priv->mtd);
  692. kfree(priv->mtd.name);
  693. if (priv->vbase)
  694. iounmap(priv->vbase);
  695. elbc_fcm_ctrl->chips[priv->bank] = NULL;
  696. kfree(priv);
  697. return 0;
  698. }
  699. static DEFINE_MUTEX(fsl_elbc_nand_mutex);
  700. static int __devinit fsl_elbc_nand_probe(struct platform_device *pdev)
  701. {
  702. struct fsl_lbc_regs __iomem *lbc;
  703. struct fsl_elbc_mtd *priv;
  704. struct resource res;
  705. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
  706. static const char *part_probe_types[]
  707. = { "cmdlinepart", "RedBoot", "ofpart", NULL };
  708. int ret;
  709. int bank;
  710. struct device *dev;
  711. struct device_node *node = pdev->dev.of_node;
  712. struct mtd_part_parser_data ppdata;
  713. ppdata.of_node = pdev->dev.of_node;
  714. if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
  715. return -ENODEV;
  716. lbc = fsl_lbc_ctrl_dev->regs;
  717. dev = fsl_lbc_ctrl_dev->dev;
  718. /* get, allocate and map the memory resource */
  719. ret = of_address_to_resource(node, 0, &res);
  720. if (ret) {
  721. dev_err(dev, "failed to get resource\n");
  722. return ret;
  723. }
  724. /* find which chip select it is connected to */
  725. for (bank = 0; bank < MAX_BANKS; bank++)
  726. if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
  727. (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
  728. (in_be32(&lbc->bank[bank].br) &
  729. in_be32(&lbc->bank[bank].or) & BR_BA)
  730. == fsl_lbc_addr(res.start))
  731. break;
  732. if (bank >= MAX_BANKS) {
  733. dev_err(dev, "address did not match any chip selects\n");
  734. return -ENODEV;
  735. }
  736. priv = kzalloc(sizeof(*priv), GFP_KERNEL);
  737. if (!priv)
  738. return -ENOMEM;
  739. mutex_lock(&fsl_elbc_nand_mutex);
  740. if (!fsl_lbc_ctrl_dev->nand) {
  741. elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
  742. if (!elbc_fcm_ctrl) {
  743. dev_err(dev, "failed to allocate memory\n");
  744. mutex_unlock(&fsl_elbc_nand_mutex);
  745. ret = -ENOMEM;
  746. goto err;
  747. }
  748. elbc_fcm_ctrl->counter++;
  749. spin_lock_init(&elbc_fcm_ctrl->controller.lock);
  750. init_waitqueue_head(&elbc_fcm_ctrl->controller.wq);
  751. fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
  752. } else {
  753. elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
  754. }
  755. mutex_unlock(&fsl_elbc_nand_mutex);
  756. elbc_fcm_ctrl->chips[bank] = priv;
  757. priv->bank = bank;
  758. priv->ctrl = fsl_lbc_ctrl_dev;
  759. priv->dev = dev;
  760. priv->vbase = ioremap(res.start, resource_size(&res));
  761. if (!priv->vbase) {
  762. dev_err(dev, "failed to map chip region\n");
  763. ret = -ENOMEM;
  764. goto err;
  765. }
  766. priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
  767. if (!priv->mtd.name) {
  768. ret = -ENOMEM;
  769. goto err;
  770. }
  771. ret = fsl_elbc_chip_init(priv);
  772. if (ret)
  773. goto err;
  774. ret = nand_scan_ident(&priv->mtd, 1, NULL);
  775. if (ret)
  776. goto err;
  777. ret = fsl_elbc_chip_init_tail(&priv->mtd);
  778. if (ret)
  779. goto err;
  780. ret = nand_scan_tail(&priv->mtd);
  781. if (ret)
  782. goto err;
  783. /* First look for RedBoot table or partitions on the command
  784. * line, these take precedence over device tree information */
  785. mtd_device_parse_register(&priv->mtd, part_probe_types, &ppdata,
  786. NULL, 0);
  787. printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
  788. (unsigned long long)res.start, priv->bank);
  789. return 0;
  790. err:
  791. fsl_elbc_chip_remove(priv);
  792. return ret;
  793. }
  794. static int fsl_elbc_nand_remove(struct platform_device *pdev)
  795. {
  796. int i;
  797. struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
  798. for (i = 0; i < MAX_BANKS; i++)
  799. if (elbc_fcm_ctrl->chips[i])
  800. fsl_elbc_chip_remove(elbc_fcm_ctrl->chips[i]);
  801. mutex_lock(&fsl_elbc_nand_mutex);
  802. elbc_fcm_ctrl->counter--;
  803. if (!elbc_fcm_ctrl->counter) {
  804. fsl_lbc_ctrl_dev->nand = NULL;
  805. kfree(elbc_fcm_ctrl);
  806. }
  807. mutex_unlock(&fsl_elbc_nand_mutex);
  808. return 0;
  809. }
  810. static const struct of_device_id fsl_elbc_nand_match[] = {
  811. { .compatible = "fsl,elbc-fcm-nand", },
  812. {}
  813. };
  814. static struct platform_driver fsl_elbc_nand_driver = {
  815. .driver = {
  816. .name = "fsl,elbc-fcm-nand",
  817. .owner = THIS_MODULE,
  818. .of_match_table = fsl_elbc_nand_match,
  819. },
  820. .probe = fsl_elbc_nand_probe,
  821. .remove = fsl_elbc_nand_remove,
  822. };
  823. static int __init fsl_elbc_nand_init(void)
  824. {
  825. return platform_driver_register(&fsl_elbc_nand_driver);
  826. }
  827. static void __exit fsl_elbc_nand_exit(void)
  828. {
  829. platform_driver_unregister(&fsl_elbc_nand_driver);
  830. }
  831. module_init(fsl_elbc_nand_init);
  832. module_exit(fsl_elbc_nand_exit);
  833. MODULE_LICENSE("GPL");
  834. MODULE_AUTHOR("Freescale");
  835. MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");