atmel_nand.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687
  1. /*
  2. * Copyright (C) 2003 Rick Bronson
  3. *
  4. * Derived from drivers/mtd/nand/autcpu12.c
  5. * Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de)
  6. *
  7. * Derived from drivers/mtd/spia.c
  8. * Copyright (C) 2000 Steven J. Hill (sjhill@cotw.com)
  9. *
  10. *
  11. * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
  12. * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright (C) 2007
  13. *
  14. * Derived from Das U-Boot source code
  15. * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
  16. * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
  17. *
  18. *
  19. * This program is free software; you can redistribute it and/or modify
  20. * it under the terms of the GNU General Public License version 2 as
  21. * published by the Free Software Foundation.
  22. *
  23. */
  24. #include <linux/dma-mapping.h>
  25. #include <linux/slab.h>
  26. #include <linux/module.h>
  27. #include <linux/moduleparam.h>
  28. #include <linux/platform_device.h>
  29. #include <linux/mtd/mtd.h>
  30. #include <linux/mtd/nand.h>
  31. #include <linux/mtd/partitions.h>
  32. #include <linux/dmaengine.h>
  33. #include <linux/gpio.h>
  34. #include <linux/io.h>
  35. #include <mach/board.h>
  36. #include <mach/cpu.h>
  37. #ifdef CONFIG_MTD_NAND_ATMEL_ECC_HW
  38. #define hard_ecc 1
  39. #else
  40. #define hard_ecc 0
  41. #endif
  42. #ifdef CONFIG_MTD_NAND_ATMEL_ECC_NONE
  43. #define no_ecc 1
  44. #else
  45. #define no_ecc 0
  46. #endif
  47. static int use_dma = 1;
  48. module_param(use_dma, int, 0);
  49. static int on_flash_bbt = 0;
  50. module_param(on_flash_bbt, int, 0);
  51. /* Register access macros */
  52. #define ecc_readl(add, reg) \
  53. __raw_readl(add + ATMEL_ECC_##reg)
  54. #define ecc_writel(add, reg, value) \
  55. __raw_writel((value), add + ATMEL_ECC_##reg)
  56. #include "atmel_nand_ecc.h" /* Hardware ECC registers */
  57. /* oob layout for large page size
  58. * bad block info is on bytes 0 and 1
  59. * the bytes have to be consecutives to avoid
  60. * several NAND_CMD_RNDOUT during read
  61. */
  62. static struct nand_ecclayout atmel_oobinfo_large = {
  63. .eccbytes = 4,
  64. .eccpos = {60, 61, 62, 63},
  65. .oobfree = {
  66. {2, 58}
  67. },
  68. };
  69. /* oob layout for small page size
  70. * bad block info is on bytes 4 and 5
  71. * the bytes have to be consecutives to avoid
  72. * several NAND_CMD_RNDOUT during read
  73. */
  74. static struct nand_ecclayout atmel_oobinfo_small = {
  75. .eccbytes = 4,
  76. .eccpos = {0, 1, 2, 3},
  77. .oobfree = {
  78. {6, 10}
  79. },
  80. };
  81. struct atmel_nand_host {
  82. struct nand_chip nand_chip;
  83. struct mtd_info mtd;
  84. void __iomem *io_base;
  85. dma_addr_t io_phys;
  86. struct atmel_nand_data *board;
  87. struct device *dev;
  88. void __iomem *ecc;
  89. struct completion comp;
  90. struct dma_chan *dma_chan;
  91. };
  92. static int cpu_has_dma(void)
  93. {
  94. return cpu_is_at91sam9rl() || cpu_is_at91sam9g45();
  95. }
  96. /*
  97. * Enable NAND.
  98. */
  99. static void atmel_nand_enable(struct atmel_nand_host *host)
  100. {
  101. if (host->board->enable_pin)
  102. gpio_set_value(host->board->enable_pin, 0);
  103. }
  104. /*
  105. * Disable NAND.
  106. */
  107. static void atmel_nand_disable(struct atmel_nand_host *host)
  108. {
  109. if (host->board->enable_pin)
  110. gpio_set_value(host->board->enable_pin, 1);
  111. }
  112. /*
  113. * Hardware specific access to control-lines
  114. */
  115. static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
  116. {
  117. struct nand_chip *nand_chip = mtd->priv;
  118. struct atmel_nand_host *host = nand_chip->priv;
  119. if (ctrl & NAND_CTRL_CHANGE) {
  120. if (ctrl & NAND_NCE)
  121. atmel_nand_enable(host);
  122. else
  123. atmel_nand_disable(host);
  124. }
  125. if (cmd == NAND_CMD_NONE)
  126. return;
  127. if (ctrl & NAND_CLE)
  128. writeb(cmd, host->io_base + (1 << host->board->cle));
  129. else
  130. writeb(cmd, host->io_base + (1 << host->board->ale));
  131. }
  132. /*
  133. * Read the Device Ready pin.
  134. */
  135. static int atmel_nand_device_ready(struct mtd_info *mtd)
  136. {
  137. struct nand_chip *nand_chip = mtd->priv;
  138. struct atmel_nand_host *host = nand_chip->priv;
  139. return gpio_get_value(host->board->rdy_pin) ^
  140. !!host->board->rdy_pin_active_low;
  141. }
  142. static void dma_complete_func(void *completion)
  143. {
  144. complete(completion);
  145. }
  146. static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
  147. int is_read)
  148. {
  149. struct dma_device *dma_dev;
  150. enum dma_ctrl_flags flags;
  151. dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
  152. struct dma_async_tx_descriptor *tx = NULL;
  153. dma_cookie_t cookie;
  154. struct nand_chip *chip = mtd->priv;
  155. struct atmel_nand_host *host = chip->priv;
  156. void *p = buf;
  157. int err = -EIO;
  158. enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
  159. if (buf >= high_memory)
  160. goto err_buf;
  161. dma_dev = host->dma_chan->device;
  162. flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT | DMA_COMPL_SKIP_SRC_UNMAP |
  163. DMA_COMPL_SKIP_DEST_UNMAP;
  164. phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
  165. if (dma_mapping_error(dma_dev->dev, phys_addr)) {
  166. dev_err(host->dev, "Failed to dma_map_single\n");
  167. goto err_buf;
  168. }
  169. if (is_read) {
  170. dma_src_addr = host->io_phys;
  171. dma_dst_addr = phys_addr;
  172. } else {
  173. dma_src_addr = phys_addr;
  174. dma_dst_addr = host->io_phys;
  175. }
  176. tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
  177. dma_src_addr, len, flags);
  178. if (!tx) {
  179. dev_err(host->dev, "Failed to prepare DMA memcpy\n");
  180. goto err_dma;
  181. }
  182. init_completion(&host->comp);
  183. tx->callback = dma_complete_func;
  184. tx->callback_param = &host->comp;
  185. cookie = tx->tx_submit(tx);
  186. if (dma_submit_error(cookie)) {
  187. dev_err(host->dev, "Failed to do DMA tx_submit\n");
  188. goto err_dma;
  189. }
  190. dma_async_issue_pending(host->dma_chan);
  191. wait_for_completion(&host->comp);
  192. err = 0;
  193. err_dma:
  194. dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
  195. err_buf:
  196. if (err != 0)
  197. dev_warn(host->dev, "Fall back to CPU I/O\n");
  198. return err;
  199. }
  200. static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
  201. {
  202. struct nand_chip *chip = mtd->priv;
  203. if (use_dma && len > mtd->oobsize)
  204. /* only use DMA for bigger than oob size: better performances */
  205. if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
  206. return;
  207. /* if no DMA operation possible, use PIO */
  208. memcpy_fromio(buf, chip->IO_ADDR_R, len);
  209. }
  210. static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
  211. {
  212. struct nand_chip *chip = mtd->priv;
  213. if (use_dma && len > mtd->oobsize)
  214. /* only use DMA for bigger than oob size: better performances */
  215. if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
  216. return;
  217. /* if no DMA operation possible, use PIO */
  218. memcpy_toio(chip->IO_ADDR_W, buf, len);
  219. }
  220. /*
  221. * Calculate HW ECC
  222. *
  223. * function called after a write
  224. *
  225. * mtd: MTD block structure
  226. * dat: raw data (unused)
  227. * ecc_code: buffer for ECC
  228. */
  229. static int atmel_nand_calculate(struct mtd_info *mtd,
  230. const u_char *dat, unsigned char *ecc_code)
  231. {
  232. struct nand_chip *nand_chip = mtd->priv;
  233. struct atmel_nand_host *host = nand_chip->priv;
  234. unsigned int ecc_value;
  235. /* get the first 2 ECC bytes */
  236. ecc_value = ecc_readl(host->ecc, PR);
  237. ecc_code[0] = ecc_value & 0xFF;
  238. ecc_code[1] = (ecc_value >> 8) & 0xFF;
  239. /* get the last 2 ECC bytes */
  240. ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
  241. ecc_code[2] = ecc_value & 0xFF;
  242. ecc_code[3] = (ecc_value >> 8) & 0xFF;
  243. return 0;
  244. }
  245. /*
  246. * HW ECC read page function
  247. *
  248. * mtd: mtd info structure
  249. * chip: nand chip info structure
  250. * buf: buffer to store read data
  251. */
  252. static int atmel_nand_read_page(struct mtd_info *mtd,
  253. struct nand_chip *chip, uint8_t *buf, int page)
  254. {
  255. int eccsize = chip->ecc.size;
  256. int eccbytes = chip->ecc.bytes;
  257. uint32_t *eccpos = chip->ecc.layout->eccpos;
  258. uint8_t *p = buf;
  259. uint8_t *oob = chip->oob_poi;
  260. uint8_t *ecc_pos;
  261. int stat;
  262. /*
  263. * Errata: ALE is incorrectly wired up to the ECC controller
  264. * on the AP7000, so it will include the address cycles in the
  265. * ECC calculation.
  266. *
  267. * Workaround: Reset the parity registers before reading the
  268. * actual data.
  269. */
  270. if (cpu_is_at32ap7000()) {
  271. struct atmel_nand_host *host = chip->priv;
  272. ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
  273. }
  274. /* read the page */
  275. chip->read_buf(mtd, p, eccsize);
  276. /* move to ECC position if needed */
  277. if (eccpos[0] != 0) {
  278. /* This only works on large pages
  279. * because the ECC controller waits for
  280. * NAND_CMD_RNDOUTSTART after the
  281. * NAND_CMD_RNDOUT.
  282. * anyway, for small pages, the eccpos[0] == 0
  283. */
  284. chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
  285. mtd->writesize + eccpos[0], -1);
  286. }
  287. /* the ECC controller needs to read the ECC just after the data */
  288. ecc_pos = oob + eccpos[0];
  289. chip->read_buf(mtd, ecc_pos, eccbytes);
  290. /* check if there's an error */
  291. stat = chip->ecc.correct(mtd, p, oob, NULL);
  292. if (stat < 0)
  293. mtd->ecc_stats.failed++;
  294. else
  295. mtd->ecc_stats.corrected += stat;
  296. /* get back to oob start (end of page) */
  297. chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
  298. /* read the oob */
  299. chip->read_buf(mtd, oob, mtd->oobsize);
  300. return 0;
  301. }
  302. /*
  303. * HW ECC Correction
  304. *
  305. * function called after a read
  306. *
  307. * mtd: MTD block structure
  308. * dat: raw data read from the chip
  309. * read_ecc: ECC from the chip (unused)
  310. * isnull: unused
  311. *
  312. * Detect and correct a 1 bit error for a page
  313. */
  314. static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
  315. u_char *read_ecc, u_char *isnull)
  316. {
  317. struct nand_chip *nand_chip = mtd->priv;
  318. struct atmel_nand_host *host = nand_chip->priv;
  319. unsigned int ecc_status;
  320. unsigned int ecc_word, ecc_bit;
  321. /* get the status from the Status Register */
  322. ecc_status = ecc_readl(host->ecc, SR);
  323. /* if there's no error */
  324. if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
  325. return 0;
  326. /* get error bit offset (4 bits) */
  327. ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
  328. /* get word address (12 bits) */
  329. ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
  330. ecc_word >>= 4;
  331. /* if there are multiple errors */
  332. if (ecc_status & ATMEL_ECC_MULERR) {
  333. /* check if it is a freshly erased block
  334. * (filled with 0xff) */
  335. if ((ecc_bit == ATMEL_ECC_BITADDR)
  336. && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
  337. /* the block has just been erased, return OK */
  338. return 0;
  339. }
  340. /* it doesn't seems to be a freshly
  341. * erased block.
  342. * We can't correct so many errors */
  343. dev_dbg(host->dev, "atmel_nand : multiple errors detected."
  344. " Unable to correct.\n");
  345. return -EIO;
  346. }
  347. /* if there's a single bit error : we can correct it */
  348. if (ecc_status & ATMEL_ECC_ECCERR) {
  349. /* there's nothing much to do here.
  350. * the bit error is on the ECC itself.
  351. */
  352. dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
  353. " Nothing to correct\n");
  354. return 0;
  355. }
  356. dev_dbg(host->dev, "atmel_nand : one bit error on data."
  357. " (word offset in the page :"
  358. " 0x%x bit offset : 0x%x)\n",
  359. ecc_word, ecc_bit);
  360. /* correct the error */
  361. if (nand_chip->options & NAND_BUSWIDTH_16) {
  362. /* 16 bits words */
  363. ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
  364. } else {
  365. /* 8 bits words */
  366. dat[ecc_word] ^= (1 << ecc_bit);
  367. }
  368. dev_dbg(host->dev, "atmel_nand : error corrected\n");
  369. return 1;
  370. }
  371. /*
  372. * Enable HW ECC : unused on most chips
  373. */
  374. static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
  375. {
  376. if (cpu_is_at32ap7000()) {
  377. struct nand_chip *nand_chip = mtd->priv;
  378. struct atmel_nand_host *host = nand_chip->priv;
  379. ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
  380. }
  381. }
  382. /*
  383. * Probe for the NAND device.
  384. */
  385. static int __init atmel_nand_probe(struct platform_device *pdev)
  386. {
  387. struct atmel_nand_host *host;
  388. struct mtd_info *mtd;
  389. struct nand_chip *nand_chip;
  390. struct resource *regs;
  391. struct resource *mem;
  392. int res;
  393. mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  394. if (!mem) {
  395. printk(KERN_ERR "atmel_nand: can't get I/O resource mem\n");
  396. return -ENXIO;
  397. }
  398. /* Allocate memory for the device structure (and zero it) */
  399. host = kzalloc(sizeof(struct atmel_nand_host), GFP_KERNEL);
  400. if (!host) {
  401. printk(KERN_ERR "atmel_nand: failed to allocate device structure.\n");
  402. return -ENOMEM;
  403. }
  404. host->io_phys = (dma_addr_t)mem->start;
  405. host->io_base = ioremap(mem->start, resource_size(mem));
  406. if (host->io_base == NULL) {
  407. printk(KERN_ERR "atmel_nand: ioremap failed\n");
  408. res = -EIO;
  409. goto err_nand_ioremap;
  410. }
  411. mtd = &host->mtd;
  412. nand_chip = &host->nand_chip;
  413. host->board = pdev->dev.platform_data;
  414. host->dev = &pdev->dev;
  415. nand_chip->priv = host; /* link the private data structures */
  416. mtd->priv = nand_chip;
  417. mtd->owner = THIS_MODULE;
  418. /* Set address of NAND IO lines */
  419. nand_chip->IO_ADDR_R = host->io_base;
  420. nand_chip->IO_ADDR_W = host->io_base;
  421. nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
  422. if (host->board->rdy_pin)
  423. nand_chip->dev_ready = atmel_nand_device_ready;
  424. regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  425. if (!regs && hard_ecc) {
  426. printk(KERN_ERR "atmel_nand: can't get I/O resource "
  427. "regs\nFalling back on software ECC\n");
  428. }
  429. nand_chip->ecc.mode = NAND_ECC_SOFT; /* enable ECC */
  430. if (no_ecc)
  431. nand_chip->ecc.mode = NAND_ECC_NONE;
  432. if (hard_ecc && regs) {
  433. host->ecc = ioremap(regs->start, resource_size(regs));
  434. if (host->ecc == NULL) {
  435. printk(KERN_ERR "atmel_nand: ioremap failed\n");
  436. res = -EIO;
  437. goto err_ecc_ioremap;
  438. }
  439. nand_chip->ecc.mode = NAND_ECC_HW;
  440. nand_chip->ecc.calculate = atmel_nand_calculate;
  441. nand_chip->ecc.correct = atmel_nand_correct;
  442. nand_chip->ecc.hwctl = atmel_nand_hwctl;
  443. nand_chip->ecc.read_page = atmel_nand_read_page;
  444. nand_chip->ecc.bytes = 4;
  445. }
  446. nand_chip->chip_delay = 20; /* 20us command delay time */
  447. if (host->board->bus_width_16) /* 16-bit bus width */
  448. nand_chip->options |= NAND_BUSWIDTH_16;
  449. nand_chip->read_buf = atmel_read_buf;
  450. nand_chip->write_buf = atmel_write_buf;
  451. platform_set_drvdata(pdev, host);
  452. atmel_nand_enable(host);
  453. if (host->board->det_pin) {
  454. if (gpio_get_value(host->board->det_pin)) {
  455. printk(KERN_INFO "No SmartMedia card inserted.\n");
  456. res = -ENXIO;
  457. goto err_no_card;
  458. }
  459. }
  460. if (on_flash_bbt) {
  461. printk(KERN_INFO "atmel_nand: Use On Flash BBT\n");
  462. nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
  463. }
  464. if (!cpu_has_dma())
  465. use_dma = 0;
  466. if (use_dma) {
  467. dma_cap_mask_t mask;
  468. dma_cap_zero(mask);
  469. dma_cap_set(DMA_MEMCPY, mask);
  470. host->dma_chan = dma_request_channel(mask, NULL, NULL);
  471. if (!host->dma_chan) {
  472. dev_err(host->dev, "Failed to request DMA channel\n");
  473. use_dma = 0;
  474. }
  475. }
  476. if (use_dma)
  477. dev_info(host->dev, "Using %s for DMA transfers.\n",
  478. dma_chan_name(host->dma_chan));
  479. else
  480. dev_info(host->dev, "No DMA support for NAND access.\n");
  481. /* first scan to find the device and get the page size */
  482. if (nand_scan_ident(mtd, 1, NULL)) {
  483. res = -ENXIO;
  484. goto err_scan_ident;
  485. }
  486. if (nand_chip->ecc.mode == NAND_ECC_HW) {
  487. /* ECC is calculated for the whole page (1 step) */
  488. nand_chip->ecc.size = mtd->writesize;
  489. /* set ECC page size and oob layout */
  490. switch (mtd->writesize) {
  491. case 512:
  492. nand_chip->ecc.layout = &atmel_oobinfo_small;
  493. ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
  494. break;
  495. case 1024:
  496. nand_chip->ecc.layout = &atmel_oobinfo_large;
  497. ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
  498. break;
  499. case 2048:
  500. nand_chip->ecc.layout = &atmel_oobinfo_large;
  501. ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
  502. break;
  503. case 4096:
  504. nand_chip->ecc.layout = &atmel_oobinfo_large;
  505. ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
  506. break;
  507. default:
  508. /* page size not handled by HW ECC */
  509. /* switching back to soft ECC */
  510. nand_chip->ecc.mode = NAND_ECC_SOFT;
  511. nand_chip->ecc.calculate = NULL;
  512. nand_chip->ecc.correct = NULL;
  513. nand_chip->ecc.hwctl = NULL;
  514. nand_chip->ecc.read_page = NULL;
  515. nand_chip->ecc.postpad = 0;
  516. nand_chip->ecc.prepad = 0;
  517. nand_chip->ecc.bytes = 0;
  518. break;
  519. }
  520. }
  521. /* second phase scan */
  522. if (nand_scan_tail(mtd)) {
  523. res = -ENXIO;
  524. goto err_scan_tail;
  525. }
  526. mtd->name = "atmel_nand";
  527. res = mtd_device_parse_register(mtd, NULL, 0,
  528. host->board->parts, host->board->num_parts);
  529. if (!res)
  530. return res;
  531. err_scan_tail:
  532. err_scan_ident:
  533. err_no_card:
  534. atmel_nand_disable(host);
  535. platform_set_drvdata(pdev, NULL);
  536. if (host->dma_chan)
  537. dma_release_channel(host->dma_chan);
  538. if (host->ecc)
  539. iounmap(host->ecc);
  540. err_ecc_ioremap:
  541. iounmap(host->io_base);
  542. err_nand_ioremap:
  543. kfree(host);
  544. return res;
  545. }
  546. /*
  547. * Remove a NAND device.
  548. */
  549. static int __exit atmel_nand_remove(struct platform_device *pdev)
  550. {
  551. struct atmel_nand_host *host = platform_get_drvdata(pdev);
  552. struct mtd_info *mtd = &host->mtd;
  553. nand_release(mtd);
  554. atmel_nand_disable(host);
  555. if (host->ecc)
  556. iounmap(host->ecc);
  557. if (host->dma_chan)
  558. dma_release_channel(host->dma_chan);
  559. iounmap(host->io_base);
  560. kfree(host);
  561. return 0;
  562. }
  563. static struct platform_driver atmel_nand_driver = {
  564. .remove = __exit_p(atmel_nand_remove),
  565. .driver = {
  566. .name = "atmel_nand",
  567. .owner = THIS_MODULE,
  568. },
  569. };
  570. static int __init atmel_nand_init(void)
  571. {
  572. return platform_driver_probe(&atmel_nand_driver, atmel_nand_probe);
  573. }
  574. static void __exit atmel_nand_exit(void)
  575. {
  576. platform_driver_unregister(&atmel_nand_driver);
  577. }
  578. module_init(atmel_nand_init);
  579. module_exit(atmel_nand_exit);
  580. MODULE_LICENSE("GPL");
  581. MODULE_AUTHOR("Rick Bronson");
  582. MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
  583. MODULE_ALIAS("platform:atmel_nand");