st_core.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880
  1. /*
  2. * Shared Transport Line discipline driver Core
  3. * This hooks up ST KIM driver and ST LL driver
  4. * Copyright (C) 2009-2010 Texas Instruments
  5. * Author: Pavan Savoy <pavan_savoy@ti.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. *
  20. */
  21. #define pr_fmt(fmt) "(stc): " fmt
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/init.h>
  25. #include <linux/tty.h>
  26. #include <linux/seq_file.h>
  27. #include <linux/skbuff.h>
  28. #include <linux/ti_wilink_st.h>
  29. /* function pointer pointing to either,
  30. * st_kim_recv during registration to receive fw download responses
  31. * st_int_recv after registration to receive proto stack responses
  32. */
  33. void (*st_recv) (void*, const unsigned char*, long);
  34. /********************************************************************/
  35. static void add_channel_to_table(struct st_data_s *st_gdata,
  36. struct st_proto_s *new_proto)
  37. {
  38. pr_info("%s: id %d\n", __func__, new_proto->chnl_id);
  39. /* list now has the channel id as index itself */
  40. st_gdata->list[new_proto->chnl_id] = new_proto;
  41. st_gdata->is_registered[new_proto->chnl_id] = true;
  42. }
  43. static void remove_channel_from_table(struct st_data_s *st_gdata,
  44. struct st_proto_s *proto)
  45. {
  46. pr_info("%s: id %d\n", __func__, proto->chnl_id);
  47. /* st_gdata->list[proto->chnl_id] = NULL; */
  48. st_gdata->is_registered[proto->chnl_id] = false;
  49. }
  50. /*
  51. * called from KIM during firmware download.
  52. *
  53. * This is a wrapper function to tty->ops->write_room.
  54. * It returns number of free space available in
  55. * uart tx buffer.
  56. */
  57. int st_get_uart_wr_room(struct st_data_s *st_gdata)
  58. {
  59. struct tty_struct *tty;
  60. if (unlikely(st_gdata == NULL || st_gdata->tty == NULL)) {
  61. pr_err("tty unavailable to perform write");
  62. return -1;
  63. }
  64. tty = st_gdata->tty;
  65. return tty->ops->write_room(tty);
  66. }
  67. /* can be called in from
  68. * -- KIM (during fw download)
  69. * -- ST Core (during st_write)
  70. *
  71. * This is the internal write function - a wrapper
  72. * to tty->ops->write
  73. */
  74. int st_int_write(struct st_data_s *st_gdata,
  75. const unsigned char *data, int count)
  76. {
  77. struct tty_struct *tty;
  78. if (unlikely(st_gdata == NULL || st_gdata->tty == NULL)) {
  79. pr_err("tty unavailable to perform write");
  80. return -EINVAL;
  81. }
  82. tty = st_gdata->tty;
  83. #ifdef VERBOSE
  84. print_hex_dump(KERN_DEBUG, "<out<", DUMP_PREFIX_NONE,
  85. 16, 1, data, count, 0);
  86. #endif
  87. return tty->ops->write(tty, data, count);
  88. }
  89. /*
  90. * push the skb received to relevant
  91. * protocol stacks
  92. */
  93. void st_send_frame(unsigned char chnl_id, struct st_data_s *st_gdata)
  94. {
  95. pr_debug(" %s(prot:%d) ", __func__, chnl_id);
  96. if (unlikely
  97. (st_gdata == NULL || st_gdata->rx_skb == NULL
  98. || st_gdata->is_registered[chnl_id] == false)) {
  99. pr_err("chnl_id %d not registered, no data to send?",
  100. chnl_id);
  101. kfree_skb(st_gdata->rx_skb);
  102. return;
  103. }
  104. /* this cannot fail
  105. * this shouldn't take long
  106. * - should be just skb_queue_tail for the
  107. * protocol stack driver
  108. */
  109. if (likely(st_gdata->list[chnl_id]->recv != NULL)) {
  110. if (unlikely
  111. (st_gdata->list[chnl_id]->recv
  112. (st_gdata->list[chnl_id]->priv_data, st_gdata->rx_skb)
  113. != 0)) {
  114. pr_err(" proto stack %d's ->recv failed", chnl_id);
  115. kfree_skb(st_gdata->rx_skb);
  116. return;
  117. }
  118. } else {
  119. pr_err(" proto stack %d's ->recv null", chnl_id);
  120. kfree_skb(st_gdata->rx_skb);
  121. }
  122. return;
  123. }
  124. /**
  125. * st_reg_complete -
  126. * to call registration complete callbacks
  127. * of all protocol stack drivers
  128. */
  129. void st_reg_complete(struct st_data_s *st_gdata, char err)
  130. {
  131. unsigned char i = 0;
  132. pr_info(" %s ", __func__);
  133. for (i = 0; i < ST_MAX_CHANNELS; i++) {
  134. if (likely(st_gdata != NULL &&
  135. st_gdata->is_registered[i] == true &&
  136. st_gdata->list[i]->reg_complete_cb != NULL)) {
  137. st_gdata->list[i]->reg_complete_cb
  138. (st_gdata->list[i]->priv_data, err);
  139. pr_info("protocol %d's cb sent %d\n", i, err);
  140. if (err) { /* cleanup registered protocol */
  141. st_gdata->protos_registered--;
  142. st_gdata->is_registered[i] = false;
  143. }
  144. }
  145. }
  146. }
  147. static inline int st_check_data_len(struct st_data_s *st_gdata,
  148. unsigned char chnl_id, int len)
  149. {
  150. int room = skb_tailroom(st_gdata->rx_skb);
  151. pr_debug("len %d room %d", len, room);
  152. if (!len) {
  153. /* Received packet has only packet header and
  154. * has zero length payload. So, ask ST CORE to
  155. * forward the packet to protocol driver (BT/FM/GPS)
  156. */
  157. st_send_frame(chnl_id, st_gdata);
  158. } else if (len > room) {
  159. /* Received packet's payload length is larger.
  160. * We can't accommodate it in created skb.
  161. */
  162. pr_err("Data length is too large len %d room %d", len,
  163. room);
  164. kfree_skb(st_gdata->rx_skb);
  165. } else {
  166. /* Packet header has non-zero payload length and
  167. * we have enough space in created skb. Lets read
  168. * payload data */
  169. st_gdata->rx_state = ST_W4_DATA;
  170. st_gdata->rx_count = len;
  171. return len;
  172. }
  173. /* Change ST state to continue to process next
  174. * packet */
  175. st_gdata->rx_state = ST_W4_PACKET_TYPE;
  176. st_gdata->rx_skb = NULL;
  177. st_gdata->rx_count = 0;
  178. st_gdata->rx_chnl = 0;
  179. return 0;
  180. }
  181. /**
  182. * st_wakeup_ack - internal function for action when wake-up ack
  183. * received
  184. */
  185. static inline void st_wakeup_ack(struct st_data_s *st_gdata,
  186. unsigned char cmd)
  187. {
  188. struct sk_buff *waiting_skb;
  189. unsigned long flags = 0;
  190. spin_lock_irqsave(&st_gdata->lock, flags);
  191. /* de-Q from waitQ and Q in txQ now that the
  192. * chip is awake
  193. */
  194. while ((waiting_skb = skb_dequeue(&st_gdata->tx_waitq)))
  195. skb_queue_tail(&st_gdata->txq, waiting_skb);
  196. /* state forwarded to ST LL */
  197. st_ll_sleep_state(st_gdata, (unsigned long)cmd);
  198. spin_unlock_irqrestore(&st_gdata->lock, flags);
  199. /* wake up to send the recently copied skbs from waitQ */
  200. st_tx_wakeup(st_gdata);
  201. }
  202. /**
  203. * st_int_recv - ST's internal receive function.
  204. * Decodes received RAW data and forwards to corresponding
  205. * client drivers (Bluetooth,FM,GPS..etc).
  206. * This can receive various types of packets,
  207. * HCI-Events, ACL, SCO, 4 types of HCI-LL PM packets
  208. * CH-8 packets from FM, CH-9 packets from GPS cores.
  209. */
  210. void st_int_recv(void *disc_data,
  211. const unsigned char *data, long count)
  212. {
  213. char *ptr;
  214. struct st_proto_s *proto;
  215. unsigned short payload_len = 0;
  216. int len = 0, type = 0;
  217. unsigned char *plen;
  218. struct st_data_s *st_gdata = (struct st_data_s *)disc_data;
  219. unsigned long flags;
  220. ptr = (char *)data;
  221. /* tty_receive sent null ? */
  222. if (unlikely(ptr == NULL) || (st_gdata == NULL)) {
  223. pr_err(" received null from TTY ");
  224. return;
  225. }
  226. pr_debug("count %ld rx_state %ld"
  227. "rx_count %ld", count, st_gdata->rx_state,
  228. st_gdata->rx_count);
  229. spin_lock_irqsave(&st_gdata->lock, flags);
  230. /* Decode received bytes here */
  231. while (count) {
  232. if (st_gdata->rx_count) {
  233. len = min_t(unsigned int, st_gdata->rx_count, count);
  234. memcpy(skb_put(st_gdata->rx_skb, len), ptr, len);
  235. st_gdata->rx_count -= len;
  236. count -= len;
  237. ptr += len;
  238. if (st_gdata->rx_count)
  239. continue;
  240. /* Check ST RX state machine , where are we? */
  241. switch (st_gdata->rx_state) {
  242. /* Waiting for complete packet ? */
  243. case ST_W4_DATA:
  244. pr_debug("Complete pkt received");
  245. /* Ask ST CORE to forward
  246. * the packet to protocol driver */
  247. st_send_frame(st_gdata->rx_chnl, st_gdata);
  248. st_gdata->rx_state = ST_W4_PACKET_TYPE;
  249. st_gdata->rx_skb = NULL;
  250. continue;
  251. /* parse the header to know details */
  252. case ST_W4_HEADER:
  253. proto = st_gdata->list[st_gdata->rx_chnl];
  254. plen =
  255. &st_gdata->rx_skb->data
  256. [proto->offset_len_in_hdr];
  257. pr_debug("plen pointing to %x\n", *plen);
  258. if (proto->len_size == 1)/* 1 byte len field */
  259. payload_len = *(unsigned char *)plen;
  260. else if (proto->len_size == 2)
  261. payload_len =
  262. __le16_to_cpu(*(unsigned short *)plen);
  263. else
  264. pr_info("%s: invalid length "
  265. "for id %d\n",
  266. __func__, proto->chnl_id);
  267. st_check_data_len(st_gdata, proto->chnl_id,
  268. payload_len);
  269. pr_debug("off %d, pay len %d\n",
  270. proto->offset_len_in_hdr, payload_len);
  271. continue;
  272. } /* end of switch rx_state */
  273. }
  274. /* end of if rx_count */
  275. /* Check first byte of packet and identify module
  276. * owner (BT/FM/GPS) */
  277. switch (*ptr) {
  278. case LL_SLEEP_IND:
  279. case LL_SLEEP_ACK:
  280. case LL_WAKE_UP_IND:
  281. pr_debug("PM packet");
  282. /* this takes appropriate action based on
  283. * sleep state received --
  284. */
  285. st_ll_sleep_state(st_gdata, *ptr);
  286. /* if WAKEUP_IND collides copy from waitq to txq
  287. * and assume chip awake
  288. */
  289. spin_unlock_irqrestore(&st_gdata->lock, flags);
  290. if (st_ll_getstate(st_gdata) == ST_LL_AWAKE)
  291. st_wakeup_ack(st_gdata, LL_WAKE_UP_ACK);
  292. spin_lock_irqsave(&st_gdata->lock, flags);
  293. ptr++;
  294. count--;
  295. continue;
  296. case LL_WAKE_UP_ACK:
  297. pr_debug("PM packet");
  298. spin_unlock_irqrestore(&st_gdata->lock, flags);
  299. /* wake up ack received */
  300. st_wakeup_ack(st_gdata, *ptr);
  301. spin_lock_irqsave(&st_gdata->lock, flags);
  302. ptr++;
  303. count--;
  304. continue;
  305. /* Unknow packet? */
  306. default:
  307. type = *ptr;
  308. if (st_gdata->list[type] == NULL) {
  309. pr_err("chip/interface misbehavior dropping"
  310. " frame starting with 0x%02x", type);
  311. goto done;
  312. }
  313. st_gdata->rx_skb = alloc_skb(
  314. st_gdata->list[type]->max_frame_size,
  315. GFP_ATOMIC);
  316. skb_reserve(st_gdata->rx_skb,
  317. st_gdata->list[type]->reserve);
  318. /* next 2 required for BT only */
  319. st_gdata->rx_skb->cb[0] = type; /*pkt_type*/
  320. st_gdata->rx_skb->cb[1] = 0; /*incoming*/
  321. st_gdata->rx_chnl = *ptr;
  322. st_gdata->rx_state = ST_W4_HEADER;
  323. st_gdata->rx_count = st_gdata->list[type]->hdr_len;
  324. pr_debug("rx_count %ld\n", st_gdata->rx_count);
  325. };
  326. ptr++;
  327. count--;
  328. }
  329. done:
  330. spin_unlock_irqrestore(&st_gdata->lock, flags);
  331. pr_debug("done %s", __func__);
  332. return;
  333. }
  334. /**
  335. * st_int_dequeue - internal de-Q function.
  336. * If the previous data set was not written
  337. * completely, return that skb which has the pending data.
  338. * In normal cases, return top of txq.
  339. */
  340. struct sk_buff *st_int_dequeue(struct st_data_s *st_gdata)
  341. {
  342. struct sk_buff *returning_skb;
  343. pr_debug("%s", __func__);
  344. if (st_gdata->tx_skb != NULL) {
  345. returning_skb = st_gdata->tx_skb;
  346. st_gdata->tx_skb = NULL;
  347. return returning_skb;
  348. }
  349. return skb_dequeue(&st_gdata->txq);
  350. }
  351. /**
  352. * st_int_enqueue - internal Q-ing function.
  353. * Will either Q the skb to txq or the tx_waitq
  354. * depending on the ST LL state.
  355. * If the chip is asleep, then Q it onto waitq and
  356. * wakeup the chip.
  357. * txq and waitq needs protection since the other contexts
  358. * may be sending data, waking up chip.
  359. */
  360. void st_int_enqueue(struct st_data_s *st_gdata, struct sk_buff *skb)
  361. {
  362. unsigned long flags = 0;
  363. pr_debug("%s", __func__);
  364. spin_lock_irqsave(&st_gdata->lock, flags);
  365. switch (st_ll_getstate(st_gdata)) {
  366. case ST_LL_AWAKE:
  367. pr_debug("ST LL is AWAKE, sending normally");
  368. skb_queue_tail(&st_gdata->txq, skb);
  369. break;
  370. case ST_LL_ASLEEP_TO_AWAKE:
  371. skb_queue_tail(&st_gdata->tx_waitq, skb);
  372. break;
  373. case ST_LL_AWAKE_TO_ASLEEP:
  374. pr_err("ST LL is illegal state(%ld),"
  375. "purging received skb.", st_ll_getstate(st_gdata));
  376. kfree_skb(skb);
  377. break;
  378. case ST_LL_ASLEEP:
  379. skb_queue_tail(&st_gdata->tx_waitq, skb);
  380. st_ll_wakeup(st_gdata);
  381. break;
  382. default:
  383. pr_err("ST LL is illegal state(%ld),"
  384. "purging received skb.", st_ll_getstate(st_gdata));
  385. kfree_skb(skb);
  386. break;
  387. }
  388. spin_unlock_irqrestore(&st_gdata->lock, flags);
  389. pr_debug("done %s", __func__);
  390. return;
  391. }
  392. /*
  393. * internal wakeup function
  394. * called from either
  395. * - TTY layer when write's finished
  396. * - st_write (in context of the protocol stack)
  397. */
  398. void st_tx_wakeup(struct st_data_s *st_data)
  399. {
  400. struct sk_buff *skb;
  401. unsigned long flags; /* for irq save flags */
  402. pr_debug("%s", __func__);
  403. /* check for sending & set flag sending here */
  404. if (test_and_set_bit(ST_TX_SENDING, &st_data->tx_state)) {
  405. pr_debug("ST already sending");
  406. /* keep sending */
  407. set_bit(ST_TX_WAKEUP, &st_data->tx_state);
  408. return;
  409. /* TX_WAKEUP will be checked in another
  410. * context
  411. */
  412. }
  413. do { /* come back if st_tx_wakeup is set */
  414. /* woke-up to write */
  415. clear_bit(ST_TX_WAKEUP, &st_data->tx_state);
  416. while ((skb = st_int_dequeue(st_data))) {
  417. int len;
  418. spin_lock_irqsave(&st_data->lock, flags);
  419. /* enable wake-up from TTY */
  420. set_bit(TTY_DO_WRITE_WAKEUP, &st_data->tty->flags);
  421. len = st_int_write(st_data, skb->data, skb->len);
  422. skb_pull(skb, len);
  423. /* if skb->len = len as expected, skb->len=0 */
  424. if (skb->len) {
  425. /* would be the next skb to be sent */
  426. st_data->tx_skb = skb;
  427. spin_unlock_irqrestore(&st_data->lock, flags);
  428. break;
  429. }
  430. kfree_skb(skb);
  431. spin_unlock_irqrestore(&st_data->lock, flags);
  432. }
  433. /* if wake-up is set in another context- restart sending */
  434. } while (test_bit(ST_TX_WAKEUP, &st_data->tx_state));
  435. /* clear flag sending */
  436. clear_bit(ST_TX_SENDING, &st_data->tx_state);
  437. }
  438. /********************************************************************/
  439. /* functions called from ST KIM
  440. */
  441. void kim_st_list_protocols(struct st_data_s *st_gdata, void *buf)
  442. {
  443. seq_printf(buf, "[%d]\nBT=%c\nFM=%c\nGPS=%c\n",
  444. st_gdata->protos_registered,
  445. st_gdata->is_registered[0x04] == true ? 'R' : 'U',
  446. st_gdata->is_registered[0x08] == true ? 'R' : 'U',
  447. st_gdata->is_registered[0x09] == true ? 'R' : 'U');
  448. }
  449. /********************************************************************/
  450. /*
  451. * functions called from protocol stack drivers
  452. * to be EXPORT-ed
  453. */
  454. long st_register(struct st_proto_s *new_proto)
  455. {
  456. struct st_data_s *st_gdata;
  457. long err = 0;
  458. unsigned long flags = 0;
  459. st_kim_ref(&st_gdata, 0);
  460. pr_info("%s(%d) ", __func__, new_proto->chnl_id);
  461. if (st_gdata == NULL || new_proto == NULL || new_proto->recv == NULL
  462. || new_proto->reg_complete_cb == NULL) {
  463. pr_err("gdata/new_proto/recv or reg_complete_cb not ready");
  464. return -EINVAL;
  465. }
  466. if (new_proto->chnl_id >= ST_MAX_CHANNELS) {
  467. pr_err("chnl_id %d not supported", new_proto->chnl_id);
  468. return -EPROTONOSUPPORT;
  469. }
  470. if (st_gdata->is_registered[new_proto->chnl_id] == true) {
  471. pr_err("chnl_id %d already registered", new_proto->chnl_id);
  472. return -EALREADY;
  473. }
  474. /* can be from process context only */
  475. spin_lock_irqsave(&st_gdata->lock, flags);
  476. if (test_bit(ST_REG_IN_PROGRESS, &st_gdata->st_state)) {
  477. pr_info(" ST_REG_IN_PROGRESS:%d ", new_proto->chnl_id);
  478. /* fw download in progress */
  479. add_channel_to_table(st_gdata, new_proto);
  480. st_gdata->protos_registered++;
  481. new_proto->write = st_write;
  482. set_bit(ST_REG_PENDING, &st_gdata->st_state);
  483. spin_unlock_irqrestore(&st_gdata->lock, flags);
  484. return -EINPROGRESS;
  485. } else if (st_gdata->protos_registered == ST_EMPTY) {
  486. pr_info(" chnl_id list empty :%d ", new_proto->chnl_id);
  487. set_bit(ST_REG_IN_PROGRESS, &st_gdata->st_state);
  488. st_recv = st_kim_recv;
  489. /* release lock previously held - re-locked below */
  490. spin_unlock_irqrestore(&st_gdata->lock, flags);
  491. /* enable the ST LL - to set default chip state */
  492. st_ll_enable(st_gdata);
  493. /* this may take a while to complete
  494. * since it involves BT fw download
  495. */
  496. err = st_kim_start(st_gdata->kim_data);
  497. if (err != 0) {
  498. clear_bit(ST_REG_IN_PROGRESS, &st_gdata->st_state);
  499. if ((st_gdata->protos_registered != ST_EMPTY) &&
  500. (test_bit(ST_REG_PENDING, &st_gdata->st_state))) {
  501. pr_err(" KIM failure complete callback ");
  502. st_reg_complete(st_gdata, err);
  503. }
  504. return -EINVAL;
  505. }
  506. clear_bit(ST_REG_IN_PROGRESS, &st_gdata->st_state);
  507. st_recv = st_int_recv;
  508. /* this is where all pending registration
  509. * are signalled to be complete by calling callback functions
  510. */
  511. if ((st_gdata->protos_registered != ST_EMPTY) &&
  512. (test_bit(ST_REG_PENDING, &st_gdata->st_state))) {
  513. pr_debug(" call reg complete callback ");
  514. st_reg_complete(st_gdata, 0);
  515. }
  516. clear_bit(ST_REG_PENDING, &st_gdata->st_state);
  517. /* check for already registered once more,
  518. * since the above check is old
  519. */
  520. if (st_gdata->is_registered[new_proto->chnl_id] == true) {
  521. pr_err(" proto %d already registered ",
  522. new_proto->chnl_id);
  523. return -EALREADY;
  524. }
  525. spin_lock_irqsave(&st_gdata->lock, flags);
  526. add_channel_to_table(st_gdata, new_proto);
  527. st_gdata->protos_registered++;
  528. new_proto->write = st_write;
  529. spin_unlock_irqrestore(&st_gdata->lock, flags);
  530. return err;
  531. }
  532. /* if fw is already downloaded & new stack registers protocol */
  533. else {
  534. add_channel_to_table(st_gdata, new_proto);
  535. st_gdata->protos_registered++;
  536. new_proto->write = st_write;
  537. /* lock already held before entering else */
  538. spin_unlock_irqrestore(&st_gdata->lock, flags);
  539. return err;
  540. }
  541. pr_debug("done %s(%d) ", __func__, new_proto->chnl_id);
  542. }
  543. EXPORT_SYMBOL_GPL(st_register);
  544. /* to unregister a protocol -
  545. * to be called from protocol stack driver
  546. */
  547. long st_unregister(struct st_proto_s *proto)
  548. {
  549. long err = 0;
  550. unsigned long flags = 0;
  551. struct st_data_s *st_gdata;
  552. pr_debug("%s: %d ", __func__, proto->chnl_id);
  553. st_kim_ref(&st_gdata, 0);
  554. if (!st_gdata || proto->chnl_id >= ST_MAX_CHANNELS) {
  555. pr_err(" chnl_id %d not supported", proto->chnl_id);
  556. return -EPROTONOSUPPORT;
  557. }
  558. spin_lock_irqsave(&st_gdata->lock, flags);
  559. if (st_gdata->list[proto->chnl_id] == NULL) {
  560. pr_err(" chnl_id %d not registered", proto->chnl_id);
  561. spin_unlock_irqrestore(&st_gdata->lock, flags);
  562. return -EPROTONOSUPPORT;
  563. }
  564. st_gdata->protos_registered--;
  565. remove_channel_from_table(st_gdata, proto);
  566. spin_unlock_irqrestore(&st_gdata->lock, flags);
  567. if ((st_gdata->protos_registered == ST_EMPTY) &&
  568. (!test_bit(ST_REG_PENDING, &st_gdata->st_state))) {
  569. pr_info(" all chnl_ids unregistered ");
  570. /* stop traffic on tty */
  571. if (st_gdata->tty) {
  572. tty_ldisc_flush(st_gdata->tty);
  573. stop_tty(st_gdata->tty);
  574. }
  575. /* all chnl_ids now unregistered */
  576. st_kim_stop(st_gdata->kim_data);
  577. /* disable ST LL */
  578. st_ll_disable(st_gdata);
  579. }
  580. return err;
  581. }
  582. /*
  583. * called in protocol stack drivers
  584. * via the write function pointer
  585. */
  586. long st_write(struct sk_buff *skb)
  587. {
  588. struct st_data_s *st_gdata;
  589. long len;
  590. st_kim_ref(&st_gdata, 0);
  591. if (unlikely(skb == NULL || st_gdata == NULL
  592. || st_gdata->tty == NULL)) {
  593. pr_err("data/tty unavailable to perform write");
  594. return -EINVAL;
  595. }
  596. pr_debug("%d to be written", skb->len);
  597. len = skb->len;
  598. /* st_ll to decide where to enqueue the skb */
  599. st_int_enqueue(st_gdata, skb);
  600. /* wake up */
  601. st_tx_wakeup(st_gdata);
  602. /* return number of bytes written */
  603. return len;
  604. }
  605. /* for protocols making use of shared transport */
  606. EXPORT_SYMBOL_GPL(st_unregister);
  607. /********************************************************************/
  608. /*
  609. * functions called from TTY layer
  610. */
  611. static int st_tty_open(struct tty_struct *tty)
  612. {
  613. int err = 0;
  614. struct st_data_s *st_gdata;
  615. pr_info("%s ", __func__);
  616. st_kim_ref(&st_gdata, 0);
  617. st_gdata->tty = tty;
  618. tty->disc_data = st_gdata;
  619. /* don't do an wakeup for now */
  620. clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
  621. /* mem already allocated
  622. */
  623. tty->receive_room = 65536;
  624. /* Flush any pending characters in the driver and discipline. */
  625. tty_ldisc_flush(tty);
  626. tty_driver_flush_buffer(tty);
  627. /*
  628. * signal to UIM via KIM that -
  629. * installation of N_TI_WL ldisc is complete
  630. */
  631. st_kim_complete(st_gdata->kim_data);
  632. pr_debug("done %s", __func__);
  633. return err;
  634. }
  635. static void st_tty_close(struct tty_struct *tty)
  636. {
  637. unsigned char i = ST_MAX_CHANNELS;
  638. unsigned long flags = 0;
  639. struct st_data_s *st_gdata = tty->disc_data;
  640. pr_info("%s ", __func__);
  641. /* TODO:
  642. * if a protocol has been registered & line discipline
  643. * un-installed for some reason - what should be done ?
  644. */
  645. spin_lock_irqsave(&st_gdata->lock, flags);
  646. for (i = ST_BT; i < ST_MAX_CHANNELS; i++) {
  647. if (st_gdata->is_registered[i] == true)
  648. pr_err("%d not un-registered", i);
  649. st_gdata->list[i] = NULL;
  650. st_gdata->is_registered[i] = false;
  651. }
  652. st_gdata->protos_registered = 0;
  653. spin_unlock_irqrestore(&st_gdata->lock, flags);
  654. /*
  655. * signal to UIM via KIM that -
  656. * N_TI_WL ldisc is un-installed
  657. */
  658. st_kim_complete(st_gdata->kim_data);
  659. st_gdata->tty = NULL;
  660. /* Flush any pending characters in the driver and discipline. */
  661. tty_ldisc_flush(tty);
  662. tty_driver_flush_buffer(tty);
  663. spin_lock_irqsave(&st_gdata->lock, flags);
  664. /* empty out txq and tx_waitq */
  665. skb_queue_purge(&st_gdata->txq);
  666. skb_queue_purge(&st_gdata->tx_waitq);
  667. /* reset the TTY Rx states of ST */
  668. st_gdata->rx_count = 0;
  669. st_gdata->rx_state = ST_W4_PACKET_TYPE;
  670. kfree_skb(st_gdata->rx_skb);
  671. st_gdata->rx_skb = NULL;
  672. spin_unlock_irqrestore(&st_gdata->lock, flags);
  673. pr_debug("%s: done ", __func__);
  674. }
  675. static void st_tty_receive(struct tty_struct *tty, const unsigned char *data,
  676. char *tty_flags, int count)
  677. {
  678. #ifdef VERBOSE
  679. print_hex_dump(KERN_DEBUG, ">in>", DUMP_PREFIX_NONE,
  680. 16, 1, data, count, 0);
  681. #endif
  682. /*
  683. * if fw download is in progress then route incoming data
  684. * to KIM for validation
  685. */
  686. st_recv(tty->disc_data, data, count);
  687. pr_debug("done %s", __func__);
  688. }
  689. /* wake-up function called in from the TTY layer
  690. * inside the internal wakeup function will be called
  691. */
  692. static void st_tty_wakeup(struct tty_struct *tty)
  693. {
  694. struct st_data_s *st_gdata = tty->disc_data;
  695. pr_debug("%s ", __func__);
  696. /* don't do an wakeup for now */
  697. clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
  698. /* call our internal wakeup */
  699. st_tx_wakeup((void *)st_gdata);
  700. }
  701. static void st_tty_flush_buffer(struct tty_struct *tty)
  702. {
  703. struct st_data_s *st_gdata = tty->disc_data;
  704. pr_debug("%s ", __func__);
  705. kfree_skb(st_gdata->tx_skb);
  706. st_gdata->tx_skb = NULL;
  707. tty->ops->flush_buffer(tty);
  708. return;
  709. }
  710. static struct tty_ldisc_ops st_ldisc_ops = {
  711. .magic = TTY_LDISC_MAGIC,
  712. .name = "n_st",
  713. .open = st_tty_open,
  714. .close = st_tty_close,
  715. .receive_buf = st_tty_receive,
  716. .write_wakeup = st_tty_wakeup,
  717. .flush_buffer = st_tty_flush_buffer,
  718. .owner = THIS_MODULE
  719. };
  720. /********************************************************************/
  721. int st_core_init(struct st_data_s **core_data)
  722. {
  723. struct st_data_s *st_gdata;
  724. long err;
  725. err = tty_register_ldisc(N_TI_WL, &st_ldisc_ops);
  726. if (err) {
  727. pr_err("error registering %d line discipline %ld",
  728. N_TI_WL, err);
  729. return err;
  730. }
  731. pr_debug("registered n_shared line discipline");
  732. st_gdata = kzalloc(sizeof(struct st_data_s), GFP_KERNEL);
  733. if (!st_gdata) {
  734. pr_err("memory allocation failed");
  735. err = tty_unregister_ldisc(N_TI_WL);
  736. if (err)
  737. pr_err("unable to un-register ldisc %ld", err);
  738. err = -ENOMEM;
  739. return err;
  740. }
  741. /* Initialize ST TxQ and Tx waitQ queue head. All BT/FM/GPS module skb's
  742. * will be pushed in this queue for actual transmission.
  743. */
  744. skb_queue_head_init(&st_gdata->txq);
  745. skb_queue_head_init(&st_gdata->tx_waitq);
  746. /* Locking used in st_int_enqueue() to avoid multiple execution */
  747. spin_lock_init(&st_gdata->lock);
  748. err = st_ll_init(st_gdata);
  749. if (err) {
  750. pr_err("error during st_ll initialization(%ld)", err);
  751. kfree(st_gdata);
  752. err = tty_unregister_ldisc(N_TI_WL);
  753. if (err)
  754. pr_err("unable to un-register ldisc");
  755. return err;
  756. }
  757. *core_data = st_gdata;
  758. return 0;
  759. }
  760. void st_core_exit(struct st_data_s *st_gdata)
  761. {
  762. long err;
  763. /* internal module cleanup */
  764. err = st_ll_deinit(st_gdata);
  765. if (err)
  766. pr_err("error during deinit of ST LL %ld", err);
  767. if (st_gdata != NULL) {
  768. /* Free ST Tx Qs and skbs */
  769. skb_queue_purge(&st_gdata->txq);
  770. skb_queue_purge(&st_gdata->tx_waitq);
  771. kfree_skb(st_gdata->rx_skb);
  772. kfree_skb(st_gdata->tx_skb);
  773. /* TTY ldisc cleanup */
  774. err = tty_unregister_ldisc(N_TI_WL);
  775. if (err)
  776. pr_err("unable to un-register ldisc %ld", err);
  777. /* free the global data pointer */
  778. kfree(st_gdata);
  779. }
  780. }