db8500-prcmu.c 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463
  1. /*
  2. * Copyright (C) STMicroelectronics 2009
  3. * Copyright (C) ST-Ericsson SA 2010
  4. *
  5. * License Terms: GNU General Public License v2
  6. * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
  7. * Author: Sundar Iyer <sundar.iyer@stericsson.com>
  8. * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
  9. *
  10. * U8500 PRCM Unit interface driver
  11. *
  12. */
  13. #include <linux/module.h>
  14. #include <linux/kernel.h>
  15. #include <linux/delay.h>
  16. #include <linux/errno.h>
  17. #include <linux/err.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/io.h>
  20. #include <linux/slab.h>
  21. #include <linux/mutex.h>
  22. #include <linux/completion.h>
  23. #include <linux/irq.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/bitops.h>
  26. #include <linux/fs.h>
  27. #include <linux/platform_device.h>
  28. #include <linux/uaccess.h>
  29. #include <linux/mfd/core.h>
  30. #include <linux/mfd/dbx500-prcmu.h>
  31. #include <linux/regulator/db8500-prcmu.h>
  32. #include <linux/regulator/machine.h>
  33. #include <mach/hardware.h>
  34. #include <mach/irqs.h>
  35. #include <mach/db8500-regs.h>
  36. #include <mach/id.h>
  37. #include "dbx500-prcmu-regs.h"
  38. /* Offset for the firmware version within the TCPM */
  39. #define PRCMU_FW_VERSION_OFFSET 0xA4
  40. /* PRCMU project numbers, defined by PRCMU FW */
  41. #define PRCMU_PROJECT_ID_8500V1_0 1
  42. #define PRCMU_PROJECT_ID_8500V2_0 2
  43. #define PRCMU_PROJECT_ID_8400V2_0 3
  44. /* Index of different voltages to be used when accessing AVSData */
  45. #define PRCM_AVS_BASE 0x2FC
  46. #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
  47. #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
  48. #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
  49. #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
  50. #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
  51. #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
  52. #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
  53. #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
  54. #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
  55. #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
  56. #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
  57. #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
  58. #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
  59. #define PRCM_AVS_VOLTAGE 0
  60. #define PRCM_AVS_VOLTAGE_MASK 0x3f
  61. #define PRCM_AVS_ISSLOWSTARTUP 6
  62. #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
  63. #define PRCM_AVS_ISMODEENABLE 7
  64. #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
  65. #define PRCM_BOOT_STATUS 0xFFF
  66. #define PRCM_ROMCODE_A2P 0xFFE
  67. #define PRCM_ROMCODE_P2A 0xFFD
  68. #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
  69. #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  70. #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
  71. #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
  72. #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
  73. #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
  74. #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
  75. #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
  76. #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
  77. #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
  78. /* Req Mailboxes */
  79. #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
  80. #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
  81. #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
  82. #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
  83. #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
  84. #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
  85. /* Ack Mailboxes */
  86. #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
  87. #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  88. #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  89. #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  90. #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
  91. #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
  92. /* Mailbox 0 headers */
  93. #define MB0H_POWER_STATE_TRANS 0
  94. #define MB0H_CONFIG_WAKEUPS_EXE 1
  95. #define MB0H_READ_WAKEUP_ACK 3
  96. #define MB0H_CONFIG_WAKEUPS_SLEEP 4
  97. #define MB0H_WAKEUP_EXE 2
  98. #define MB0H_WAKEUP_SLEEP 5
  99. /* Mailbox 0 REQs */
  100. #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
  101. #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
  102. #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
  103. #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
  104. #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
  105. #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
  106. /* Mailbox 0 ACKs */
  107. #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
  108. #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
  109. #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
  110. #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
  111. #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
  112. #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
  113. #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
  114. /* Mailbox 1 headers */
  115. #define MB1H_ARM_APE_OPP 0x0
  116. #define MB1H_RESET_MODEM 0x2
  117. #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
  118. #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
  119. #define MB1H_RELEASE_USB_WAKEUP 0x5
  120. #define MB1H_PLL_ON_OFF 0x6
  121. /* Mailbox 1 Requests */
  122. #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
  123. #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
  124. #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
  125. #define PLL_SOC1_OFF 0x4
  126. #define PLL_SOC1_ON 0x8
  127. /* Mailbox 1 ACKs */
  128. #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
  129. #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
  130. #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
  131. #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
  132. /* Mailbox 2 headers */
  133. #define MB2H_DPS 0x0
  134. #define MB2H_AUTO_PWR 0x1
  135. /* Mailbox 2 REQs */
  136. #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
  137. #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
  138. #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
  139. #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
  140. #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
  141. #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
  142. #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
  143. #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
  144. #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
  145. #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
  146. /* Mailbox 2 ACKs */
  147. #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
  148. #define HWACC_PWR_ST_OK 0xFE
  149. /* Mailbox 3 headers */
  150. #define MB3H_ANC 0x0
  151. #define MB3H_SIDETONE 0x1
  152. #define MB3H_SYSCLK 0xE
  153. /* Mailbox 3 Requests */
  154. #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
  155. #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
  156. #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
  157. #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
  158. #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
  159. #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
  160. #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
  161. /* Mailbox 4 headers */
  162. #define MB4H_DDR_INIT 0x0
  163. #define MB4H_MEM_ST 0x1
  164. #define MB4H_HOTDOG 0x12
  165. #define MB4H_HOTMON 0x13
  166. #define MB4H_HOT_PERIOD 0x14
  167. #define MB4H_A9WDOG_CONF 0x16
  168. #define MB4H_A9WDOG_EN 0x17
  169. #define MB4H_A9WDOG_DIS 0x18
  170. #define MB4H_A9WDOG_LOAD 0x19
  171. #define MB4H_A9WDOG_KICK 0x20
  172. /* Mailbox 4 Requests */
  173. #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
  174. #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
  175. #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
  176. #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
  177. #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
  178. #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
  179. #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
  180. #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
  181. #define HOTMON_CONFIG_LOW BIT(0)
  182. #define HOTMON_CONFIG_HIGH BIT(1)
  183. #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
  184. #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
  185. #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
  186. #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
  187. #define A9WDOG_AUTO_OFF_EN BIT(7)
  188. #define A9WDOG_AUTO_OFF_DIS 0
  189. #define A9WDOG_ID_MASK 0xf
  190. /* Mailbox 5 Requests */
  191. #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
  192. #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
  193. #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
  194. #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
  195. #define PRCMU_I2C_WRITE(slave) \
  196. (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
  197. #define PRCMU_I2C_READ(slave) \
  198. (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
  199. #define PRCMU_I2C_STOP_EN BIT(3)
  200. /* Mailbox 5 ACKs */
  201. #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
  202. #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
  203. #define I2C_WR_OK 0x1
  204. #define I2C_RD_OK 0x2
  205. #define NUM_MB 8
  206. #define MBOX_BIT BIT
  207. #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
  208. /*
  209. * Wakeups/IRQs
  210. */
  211. #define WAKEUP_BIT_RTC BIT(0)
  212. #define WAKEUP_BIT_RTT0 BIT(1)
  213. #define WAKEUP_BIT_RTT1 BIT(2)
  214. #define WAKEUP_BIT_HSI0 BIT(3)
  215. #define WAKEUP_BIT_HSI1 BIT(4)
  216. #define WAKEUP_BIT_CA_WAKE BIT(5)
  217. #define WAKEUP_BIT_USB BIT(6)
  218. #define WAKEUP_BIT_ABB BIT(7)
  219. #define WAKEUP_BIT_ABB_FIFO BIT(8)
  220. #define WAKEUP_BIT_SYSCLK_OK BIT(9)
  221. #define WAKEUP_BIT_CA_SLEEP BIT(10)
  222. #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
  223. #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
  224. #define WAKEUP_BIT_ANC_OK BIT(13)
  225. #define WAKEUP_BIT_SW_ERROR BIT(14)
  226. #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
  227. #define WAKEUP_BIT_ARM BIT(17)
  228. #define WAKEUP_BIT_HOTMON_LOW BIT(18)
  229. #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
  230. #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
  231. #define WAKEUP_BIT_GPIO0 BIT(23)
  232. #define WAKEUP_BIT_GPIO1 BIT(24)
  233. #define WAKEUP_BIT_GPIO2 BIT(25)
  234. #define WAKEUP_BIT_GPIO3 BIT(26)
  235. #define WAKEUP_BIT_GPIO4 BIT(27)
  236. #define WAKEUP_BIT_GPIO5 BIT(28)
  237. #define WAKEUP_BIT_GPIO6 BIT(29)
  238. #define WAKEUP_BIT_GPIO7 BIT(30)
  239. #define WAKEUP_BIT_GPIO8 BIT(31)
  240. /*
  241. * This vector maps irq numbers to the bits in the bit field used in
  242. * communication with the PRCMU firmware.
  243. *
  244. * The reason for having this is to keep the irq numbers contiguous even though
  245. * the bits in the bit field are not. (The bits also have a tendency to move
  246. * around, to further complicate matters.)
  247. */
  248. #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
  249. #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
  250. static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
  251. IRQ_ENTRY(RTC),
  252. IRQ_ENTRY(RTT0),
  253. IRQ_ENTRY(RTT1),
  254. IRQ_ENTRY(HSI0),
  255. IRQ_ENTRY(HSI1),
  256. IRQ_ENTRY(CA_WAKE),
  257. IRQ_ENTRY(USB),
  258. IRQ_ENTRY(ABB),
  259. IRQ_ENTRY(ABB_FIFO),
  260. IRQ_ENTRY(CA_SLEEP),
  261. IRQ_ENTRY(ARM),
  262. IRQ_ENTRY(HOTMON_LOW),
  263. IRQ_ENTRY(HOTMON_HIGH),
  264. IRQ_ENTRY(MODEM_SW_RESET_REQ),
  265. IRQ_ENTRY(GPIO0),
  266. IRQ_ENTRY(GPIO1),
  267. IRQ_ENTRY(GPIO2),
  268. IRQ_ENTRY(GPIO3),
  269. IRQ_ENTRY(GPIO4),
  270. IRQ_ENTRY(GPIO5),
  271. IRQ_ENTRY(GPIO6),
  272. IRQ_ENTRY(GPIO7),
  273. IRQ_ENTRY(GPIO8)
  274. };
  275. #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
  276. #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
  277. static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
  278. WAKEUP_ENTRY(RTC),
  279. WAKEUP_ENTRY(RTT0),
  280. WAKEUP_ENTRY(RTT1),
  281. WAKEUP_ENTRY(HSI0),
  282. WAKEUP_ENTRY(HSI1),
  283. WAKEUP_ENTRY(USB),
  284. WAKEUP_ENTRY(ABB),
  285. WAKEUP_ENTRY(ABB_FIFO),
  286. WAKEUP_ENTRY(ARM)
  287. };
  288. /*
  289. * mb0_transfer - state needed for mailbox 0 communication.
  290. * @lock: The transaction lock.
  291. * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
  292. * the request data.
  293. * @mask_work: Work structure used for (un)masking wakeup interrupts.
  294. * @req: Request data that need to persist between requests.
  295. */
  296. static struct {
  297. spinlock_t lock;
  298. spinlock_t dbb_irqs_lock;
  299. struct work_struct mask_work;
  300. struct mutex ac_wake_lock;
  301. struct completion ac_wake_work;
  302. struct {
  303. u32 dbb_irqs;
  304. u32 dbb_wakeups;
  305. u32 abb_events;
  306. } req;
  307. } mb0_transfer;
  308. /*
  309. * mb1_transfer - state needed for mailbox 1 communication.
  310. * @lock: The transaction lock.
  311. * @work: The transaction completion structure.
  312. * @ack: Reply ("acknowledge") data.
  313. */
  314. static struct {
  315. struct mutex lock;
  316. struct completion work;
  317. struct {
  318. u8 header;
  319. u8 arm_opp;
  320. u8 ape_opp;
  321. u8 ape_voltage_status;
  322. } ack;
  323. } mb1_transfer;
  324. /*
  325. * mb2_transfer - state needed for mailbox 2 communication.
  326. * @lock: The transaction lock.
  327. * @work: The transaction completion structure.
  328. * @auto_pm_lock: The autonomous power management configuration lock.
  329. * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
  330. * @req: Request data that need to persist between requests.
  331. * @ack: Reply ("acknowledge") data.
  332. */
  333. static struct {
  334. struct mutex lock;
  335. struct completion work;
  336. spinlock_t auto_pm_lock;
  337. bool auto_pm_enabled;
  338. struct {
  339. u8 status;
  340. } ack;
  341. } mb2_transfer;
  342. /*
  343. * mb3_transfer - state needed for mailbox 3 communication.
  344. * @lock: The request lock.
  345. * @sysclk_lock: A lock used to handle concurrent sysclk requests.
  346. * @sysclk_work: Work structure used for sysclk requests.
  347. */
  348. static struct {
  349. spinlock_t lock;
  350. struct mutex sysclk_lock;
  351. struct completion sysclk_work;
  352. } mb3_transfer;
  353. /*
  354. * mb4_transfer - state needed for mailbox 4 communication.
  355. * @lock: The transaction lock.
  356. * @work: The transaction completion structure.
  357. */
  358. static struct {
  359. struct mutex lock;
  360. struct completion work;
  361. } mb4_transfer;
  362. /*
  363. * mb5_transfer - state needed for mailbox 5 communication.
  364. * @lock: The transaction lock.
  365. * @work: The transaction completion structure.
  366. * @ack: Reply ("acknowledge") data.
  367. */
  368. static struct {
  369. struct mutex lock;
  370. struct completion work;
  371. struct {
  372. u8 status;
  373. u8 value;
  374. } ack;
  375. } mb5_transfer;
  376. static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
  377. /* Spinlocks */
  378. static DEFINE_SPINLOCK(clkout_lock);
  379. static DEFINE_SPINLOCK(gpiocr_lock);
  380. /* Global var to runtime determine TCDM base for v2 or v1 */
  381. static __iomem void *tcdm_base;
  382. struct clk_mgt {
  383. unsigned int offset;
  384. u32 pllsw;
  385. };
  386. static DEFINE_SPINLOCK(clk_mgt_lock);
  387. #define CLK_MGT_ENTRY(_name)[PRCMU_##_name] = { (PRCM_##_name##_MGT_OFF), 0 }
  388. struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
  389. CLK_MGT_ENTRY(SGACLK),
  390. CLK_MGT_ENTRY(UARTCLK),
  391. CLK_MGT_ENTRY(MSP02CLK),
  392. CLK_MGT_ENTRY(MSP1CLK),
  393. CLK_MGT_ENTRY(I2CCLK),
  394. CLK_MGT_ENTRY(SDMMCCLK),
  395. CLK_MGT_ENTRY(SLIMCLK),
  396. CLK_MGT_ENTRY(PER1CLK),
  397. CLK_MGT_ENTRY(PER2CLK),
  398. CLK_MGT_ENTRY(PER3CLK),
  399. CLK_MGT_ENTRY(PER5CLK),
  400. CLK_MGT_ENTRY(PER6CLK),
  401. CLK_MGT_ENTRY(PER7CLK),
  402. CLK_MGT_ENTRY(LCDCLK),
  403. CLK_MGT_ENTRY(BMLCLK),
  404. CLK_MGT_ENTRY(HSITXCLK),
  405. CLK_MGT_ENTRY(HSIRXCLK),
  406. CLK_MGT_ENTRY(HDMICLK),
  407. CLK_MGT_ENTRY(APEATCLK),
  408. CLK_MGT_ENTRY(APETRACECLK),
  409. CLK_MGT_ENTRY(MCDECLK),
  410. CLK_MGT_ENTRY(IPI2CCLK),
  411. CLK_MGT_ENTRY(DSIALTCLK),
  412. CLK_MGT_ENTRY(DMACLK),
  413. CLK_MGT_ENTRY(B2R2CLK),
  414. CLK_MGT_ENTRY(TVCLK),
  415. CLK_MGT_ENTRY(SSPCLK),
  416. CLK_MGT_ENTRY(RNGCLK),
  417. CLK_MGT_ENTRY(UICCCLK),
  418. };
  419. static struct regulator *hwacc_regulator[NUM_HW_ACC];
  420. static struct regulator *hwacc_ret_regulator[NUM_HW_ACC];
  421. static bool hwacc_enabled[NUM_HW_ACC];
  422. static bool hwacc_ret_enabled[NUM_HW_ACC];
  423. static const char *hwacc_regulator_name[NUM_HW_ACC] = {
  424. [HW_ACC_SVAMMDSP] = "hwacc-sva-mmdsp",
  425. [HW_ACC_SVAPIPE] = "hwacc-sva-pipe",
  426. [HW_ACC_SIAMMDSP] = "hwacc-sia-mmdsp",
  427. [HW_ACC_SIAPIPE] = "hwacc-sia-pipe",
  428. [HW_ACC_SGA] = "hwacc-sga",
  429. [HW_ACC_B2R2] = "hwacc-b2r2",
  430. [HW_ACC_MCDE] = "hwacc-mcde",
  431. [HW_ACC_ESRAM1] = "hwacc-esram1",
  432. [HW_ACC_ESRAM2] = "hwacc-esram2",
  433. [HW_ACC_ESRAM3] = "hwacc-esram3",
  434. [HW_ACC_ESRAM4] = "hwacc-esram4",
  435. };
  436. static const char *hwacc_ret_regulator_name[NUM_HW_ACC] = {
  437. [HW_ACC_SVAMMDSP] = "hwacc-sva-mmdsp-ret",
  438. [HW_ACC_SIAMMDSP] = "hwacc-sia-mmdsp-ret",
  439. [HW_ACC_ESRAM1] = "hwacc-esram1-ret",
  440. [HW_ACC_ESRAM2] = "hwacc-esram2-ret",
  441. [HW_ACC_ESRAM3] = "hwacc-esram3-ret",
  442. [HW_ACC_ESRAM4] = "hwacc-esram4-ret",
  443. };
  444. /*
  445. * Used by MCDE to setup all necessary PRCMU registers
  446. */
  447. #define PRCMU_RESET_DSIPLL 0x00004000
  448. #define PRCMU_UNCLAMP_DSIPLL 0x00400800
  449. #define PRCMU_CLK_PLL_DIV_SHIFT 0
  450. #define PRCMU_CLK_PLL_SW_SHIFT 5
  451. #define PRCMU_CLK_38 (1 << 9)
  452. #define PRCMU_CLK_38_SRC (1 << 10)
  453. #define PRCMU_CLK_38_DIV (1 << 11)
  454. /* PLLDIV=12, PLLSW=4 (PLLDDR) */
  455. #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
  456. /* PLLDIV=8, PLLSW=4 (PLLDDR) */
  457. #define PRCMU_DSI_CLOCK_SETTING_U8400 0x00000088
  458. /* DPI 50000000 Hz */
  459. #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
  460. (16 << PRCMU_CLK_PLL_DIV_SHIFT))
  461. #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
  462. /* D=101, N=1, R=4, SELDIV2=0 */
  463. #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
  464. /* D=70, N=1, R=3, SELDIV2=0 */
  465. #define PRCMU_PLLDSI_FREQ_SETTING_U8400 0x00030146
  466. #define PRCMU_ENABLE_PLLDSI 0x00000001
  467. #define PRCMU_DISABLE_PLLDSI 0x00000000
  468. #define PRCMU_RELEASE_RESET_DSS 0x0000400C
  469. #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
  470. /* ESC clk, div0=1, div1=1, div2=3 */
  471. #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
  472. #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
  473. #define PRCMU_DSI_RESET_SW 0x00000007
  474. #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
  475. static struct {
  476. u8 project_number;
  477. u8 api_version;
  478. u8 func_version;
  479. u8 errata;
  480. } prcmu_version;
  481. int db8500_prcmu_enable_dsipll(void)
  482. {
  483. int i;
  484. unsigned int plldsifreq;
  485. /* Clear DSIPLL_RESETN */
  486. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
  487. /* Unclamp DSIPLL in/out */
  488. writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
  489. if (prcmu_is_u8400())
  490. plldsifreq = PRCMU_PLLDSI_FREQ_SETTING_U8400;
  491. else
  492. plldsifreq = PRCMU_PLLDSI_FREQ_SETTING;
  493. /* Set DSI PLL FREQ */
  494. writel(plldsifreq, PRCM_PLLDSI_FREQ);
  495. writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
  496. /* Enable Escape clocks */
  497. writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  498. /* Start DSI PLL */
  499. writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  500. /* Reset DSI PLL */
  501. writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
  502. for (i = 0; i < 10; i++) {
  503. if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
  504. == PRCMU_PLLDSI_LOCKP_LOCKED)
  505. break;
  506. udelay(100);
  507. }
  508. /* Set DSIPLL_RESETN */
  509. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
  510. return 0;
  511. }
  512. int db8500_prcmu_disable_dsipll(void)
  513. {
  514. /* Disable dsi pll */
  515. writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  516. /* Disable escapeclock */
  517. writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  518. return 0;
  519. }
  520. int db8500_prcmu_set_display_clocks(void)
  521. {
  522. unsigned long flags;
  523. unsigned int dsiclk;
  524. if (prcmu_is_u8400())
  525. dsiclk = PRCMU_DSI_CLOCK_SETTING_U8400;
  526. else
  527. dsiclk = PRCMU_DSI_CLOCK_SETTING;
  528. spin_lock_irqsave(&clk_mgt_lock, flags);
  529. /* Grab the HW semaphore. */
  530. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  531. cpu_relax();
  532. writel(dsiclk, PRCM_HDMICLK_MGT);
  533. writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
  534. writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
  535. /* Release the HW semaphore. */
  536. writel(0, PRCM_SEM);
  537. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  538. return 0;
  539. }
  540. /**
  541. * prcmu_enable_spi2 - Enables pin muxing for SPI2 on OtherAlternateC1.
  542. */
  543. void prcmu_enable_spi2(void)
  544. {
  545. u32 reg;
  546. unsigned long flags;
  547. spin_lock_irqsave(&gpiocr_lock, flags);
  548. reg = readl(PRCM_GPIOCR);
  549. writel(reg | PRCM_GPIOCR_SPI2_SELECT, PRCM_GPIOCR);
  550. spin_unlock_irqrestore(&gpiocr_lock, flags);
  551. }
  552. /**
  553. * prcmu_disable_spi2 - Disables pin muxing for SPI2 on OtherAlternateC1.
  554. */
  555. void prcmu_disable_spi2(void)
  556. {
  557. u32 reg;
  558. unsigned long flags;
  559. spin_lock_irqsave(&gpiocr_lock, flags);
  560. reg = readl(PRCM_GPIOCR);
  561. writel(reg & ~PRCM_GPIOCR_SPI2_SELECT, PRCM_GPIOCR);
  562. spin_unlock_irqrestore(&gpiocr_lock, flags);
  563. }
  564. bool prcmu_has_arm_maxopp(void)
  565. {
  566. return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
  567. PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
  568. }
  569. bool prcmu_is_u8400(void)
  570. {
  571. return prcmu_version.project_number == PRCMU_PROJECT_ID_8400V2_0;
  572. }
  573. /**
  574. * prcmu_get_boot_status - PRCMU boot status checking
  575. * Returns: the current PRCMU boot status
  576. */
  577. int prcmu_get_boot_status(void)
  578. {
  579. return readb(tcdm_base + PRCM_BOOT_STATUS);
  580. }
  581. /**
  582. * prcmu_set_rc_a2p - This function is used to run few power state sequences
  583. * @val: Value to be set, i.e. transition requested
  584. * Returns: 0 on success, -EINVAL on invalid argument
  585. *
  586. * This function is used to run the following power state sequences -
  587. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  588. */
  589. int prcmu_set_rc_a2p(enum romcode_write val)
  590. {
  591. if (val < RDY_2_DS || val > RDY_2_XP70_RST)
  592. return -EINVAL;
  593. writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
  594. return 0;
  595. }
  596. /**
  597. * prcmu_get_rc_p2a - This function is used to get power state sequences
  598. * Returns: the power transition that has last happened
  599. *
  600. * This function can return the following transitions-
  601. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  602. */
  603. enum romcode_read prcmu_get_rc_p2a(void)
  604. {
  605. return readb(tcdm_base + PRCM_ROMCODE_P2A);
  606. }
  607. /**
  608. * prcmu_get_current_mode - Return the current XP70 power mode
  609. * Returns: Returns the current AP(ARM) power mode: init,
  610. * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
  611. */
  612. enum ap_pwrst prcmu_get_xp70_current_state(void)
  613. {
  614. return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
  615. }
  616. /**
  617. * prcmu_config_clkout - Configure one of the programmable clock outputs.
  618. * @clkout: The CLKOUT number (0 or 1).
  619. * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
  620. * @div: The divider to be applied.
  621. *
  622. * Configures one of the programmable clock outputs (CLKOUTs).
  623. * @div should be in the range [1,63] to request a configuration, or 0 to
  624. * inform that the configuration is no longer requested.
  625. */
  626. int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
  627. {
  628. static int requests[2];
  629. int r = 0;
  630. unsigned long flags;
  631. u32 val;
  632. u32 bits;
  633. u32 mask;
  634. u32 div_mask;
  635. BUG_ON(clkout > 1);
  636. BUG_ON(div > 63);
  637. BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
  638. if (!div && !requests[clkout])
  639. return -EINVAL;
  640. switch (clkout) {
  641. case 0:
  642. div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
  643. mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
  644. bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
  645. (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
  646. break;
  647. case 1:
  648. div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
  649. mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
  650. PRCM_CLKOCR_CLK1TYPE);
  651. bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
  652. (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
  653. break;
  654. }
  655. bits &= mask;
  656. spin_lock_irqsave(&clkout_lock, flags);
  657. val = readl(PRCM_CLKOCR);
  658. if (val & div_mask) {
  659. if (div) {
  660. if ((val & mask) != bits) {
  661. r = -EBUSY;
  662. goto unlock_and_return;
  663. }
  664. } else {
  665. if ((val & mask & ~div_mask) != bits) {
  666. r = -EINVAL;
  667. goto unlock_and_return;
  668. }
  669. }
  670. }
  671. writel((bits | (val & ~mask)), PRCM_CLKOCR);
  672. requests[clkout] += (div ? 1 : -1);
  673. unlock_and_return:
  674. spin_unlock_irqrestore(&clkout_lock, flags);
  675. return r;
  676. }
  677. int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
  678. {
  679. unsigned long flags;
  680. BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
  681. spin_lock_irqsave(&mb0_transfer.lock, flags);
  682. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  683. cpu_relax();
  684. writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  685. writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
  686. writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
  687. writeb((keep_ulp_clk ? 1 : 0),
  688. (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
  689. writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
  690. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  691. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  692. return 0;
  693. }
  694. /* This function should only be called while mb0_transfer.lock is held. */
  695. static void config_wakeups(void)
  696. {
  697. const u8 header[2] = {
  698. MB0H_CONFIG_WAKEUPS_EXE,
  699. MB0H_CONFIG_WAKEUPS_SLEEP
  700. };
  701. static u32 last_dbb_events;
  702. static u32 last_abb_events;
  703. u32 dbb_events;
  704. u32 abb_events;
  705. unsigned int i;
  706. dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
  707. dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
  708. abb_events = mb0_transfer.req.abb_events;
  709. if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
  710. return;
  711. for (i = 0; i < 2; i++) {
  712. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  713. cpu_relax();
  714. writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
  715. writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
  716. writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  717. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  718. }
  719. last_dbb_events = dbb_events;
  720. last_abb_events = abb_events;
  721. }
  722. void db8500_prcmu_enable_wakeups(u32 wakeups)
  723. {
  724. unsigned long flags;
  725. u32 bits;
  726. int i;
  727. BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
  728. for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
  729. if (wakeups & BIT(i))
  730. bits |= prcmu_wakeup_bit[i];
  731. }
  732. spin_lock_irqsave(&mb0_transfer.lock, flags);
  733. mb0_transfer.req.dbb_wakeups = bits;
  734. config_wakeups();
  735. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  736. }
  737. void db8500_prcmu_config_abb_event_readout(u32 abb_events)
  738. {
  739. unsigned long flags;
  740. spin_lock_irqsave(&mb0_transfer.lock, flags);
  741. mb0_transfer.req.abb_events = abb_events;
  742. config_wakeups();
  743. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  744. }
  745. void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
  746. {
  747. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  748. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
  749. else
  750. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
  751. }
  752. /**
  753. * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
  754. * @opp: The new ARM operating point to which transition is to be made
  755. * Returns: 0 on success, non-zero on failure
  756. *
  757. * This function sets the the operating point of the ARM.
  758. */
  759. int db8500_prcmu_set_arm_opp(u8 opp)
  760. {
  761. int r;
  762. if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
  763. return -EINVAL;
  764. r = 0;
  765. mutex_lock(&mb1_transfer.lock);
  766. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  767. cpu_relax();
  768. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  769. writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  770. writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  771. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  772. wait_for_completion(&mb1_transfer.work);
  773. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  774. (mb1_transfer.ack.arm_opp != opp))
  775. r = -EIO;
  776. mutex_unlock(&mb1_transfer.lock);
  777. return r;
  778. }
  779. /**
  780. * db8500_prcmu_get_arm_opp - get the current ARM OPP
  781. *
  782. * Returns: the current ARM OPP
  783. */
  784. int db8500_prcmu_get_arm_opp(void)
  785. {
  786. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
  787. }
  788. /**
  789. * prcmu_get_ddr_opp - get the current DDR OPP
  790. *
  791. * Returns: the current DDR OPP
  792. */
  793. int prcmu_get_ddr_opp(void)
  794. {
  795. return readb(PRCM_DDR_SUBSYS_APE_MINBW);
  796. }
  797. /**
  798. * set_ddr_opp - set the appropriate DDR OPP
  799. * @opp: The new DDR operating point to which transition is to be made
  800. * Returns: 0 on success, non-zero on failure
  801. *
  802. * This function sets the operating point of the DDR.
  803. */
  804. int prcmu_set_ddr_opp(u8 opp)
  805. {
  806. if (opp < DDR_100_OPP || opp > DDR_25_OPP)
  807. return -EINVAL;
  808. /* Changing the DDR OPP can hang the hardware pre-v21 */
  809. if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
  810. writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
  811. return 0;
  812. }
  813. /**
  814. * set_ape_opp - set the appropriate APE OPP
  815. * @opp: The new APE operating point to which transition is to be made
  816. * Returns: 0 on success, non-zero on failure
  817. *
  818. * This function sets the operating point of the APE.
  819. */
  820. int prcmu_set_ape_opp(u8 opp)
  821. {
  822. int r = 0;
  823. mutex_lock(&mb1_transfer.lock);
  824. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  825. cpu_relax();
  826. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  827. writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  828. writeb(opp, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  829. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  830. wait_for_completion(&mb1_transfer.work);
  831. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  832. (mb1_transfer.ack.ape_opp != opp))
  833. r = -EIO;
  834. mutex_unlock(&mb1_transfer.lock);
  835. return r;
  836. }
  837. /**
  838. * prcmu_get_ape_opp - get the current APE OPP
  839. *
  840. * Returns: the current APE OPP
  841. */
  842. int prcmu_get_ape_opp(void)
  843. {
  844. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
  845. }
  846. /**
  847. * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
  848. * @enable: true to request the higher voltage, false to drop a request.
  849. *
  850. * Calls to this function to enable and disable requests must be balanced.
  851. */
  852. int prcmu_request_ape_opp_100_voltage(bool enable)
  853. {
  854. int r = 0;
  855. u8 header;
  856. static unsigned int requests;
  857. mutex_lock(&mb1_transfer.lock);
  858. if (enable) {
  859. if (0 != requests++)
  860. goto unlock_and_return;
  861. header = MB1H_REQUEST_APE_OPP_100_VOLT;
  862. } else {
  863. if (requests == 0) {
  864. r = -EIO;
  865. goto unlock_and_return;
  866. } else if (1 != requests--) {
  867. goto unlock_and_return;
  868. }
  869. header = MB1H_RELEASE_APE_OPP_100_VOLT;
  870. }
  871. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  872. cpu_relax();
  873. writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  874. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  875. wait_for_completion(&mb1_transfer.work);
  876. if ((mb1_transfer.ack.header != header) ||
  877. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  878. r = -EIO;
  879. unlock_and_return:
  880. mutex_unlock(&mb1_transfer.lock);
  881. return r;
  882. }
  883. /**
  884. * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
  885. *
  886. * This function releases the power state requirements of a USB wakeup.
  887. */
  888. int prcmu_release_usb_wakeup_state(void)
  889. {
  890. int r = 0;
  891. mutex_lock(&mb1_transfer.lock);
  892. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  893. cpu_relax();
  894. writeb(MB1H_RELEASE_USB_WAKEUP,
  895. (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  896. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  897. wait_for_completion(&mb1_transfer.work);
  898. if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
  899. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  900. r = -EIO;
  901. mutex_unlock(&mb1_transfer.lock);
  902. return r;
  903. }
  904. static int request_pll(u8 clock, bool enable)
  905. {
  906. int r = 0;
  907. if (clock == PRCMU_PLLSOC1)
  908. clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
  909. else
  910. return -EINVAL;
  911. mutex_lock(&mb1_transfer.lock);
  912. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  913. cpu_relax();
  914. writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  915. writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
  916. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  917. wait_for_completion(&mb1_transfer.work);
  918. if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
  919. r = -EIO;
  920. mutex_unlock(&mb1_transfer.lock);
  921. return r;
  922. }
  923. /**
  924. * prcmu_set_hwacc - set the power state of a h/w accelerator
  925. * @hwacc_dev: The hardware accelerator (enum hw_acc_dev).
  926. * @state: The new power state (enum hw_acc_state).
  927. *
  928. * This function sets the power state of a hardware accelerator.
  929. * This function should not be called from interrupt context.
  930. *
  931. * NOTE! Deprecated, to be removed when all users switched over to use the
  932. * regulator framework API.
  933. */
  934. int prcmu_set_hwacc(u16 hwacc_dev, u8 state)
  935. {
  936. int r = 0;
  937. bool ram_retention = false;
  938. bool enable, enable_ret;
  939. /* check argument */
  940. BUG_ON(hwacc_dev >= NUM_HW_ACC);
  941. /* get state of switches */
  942. enable = hwacc_enabled[hwacc_dev];
  943. enable_ret = hwacc_ret_enabled[hwacc_dev];
  944. /* set flag if retention is possible */
  945. switch (hwacc_dev) {
  946. case HW_ACC_SVAMMDSP:
  947. case HW_ACC_SIAMMDSP:
  948. case HW_ACC_ESRAM1:
  949. case HW_ACC_ESRAM2:
  950. case HW_ACC_ESRAM3:
  951. case HW_ACC_ESRAM4:
  952. ram_retention = true;
  953. break;
  954. }
  955. /* check argument */
  956. BUG_ON(state > HW_ON);
  957. BUG_ON(state == HW_OFF_RAMRET && !ram_retention);
  958. /* modify enable flags */
  959. switch (state) {
  960. case HW_OFF:
  961. enable_ret = false;
  962. enable = false;
  963. break;
  964. case HW_ON:
  965. enable = true;
  966. break;
  967. case HW_OFF_RAMRET:
  968. enable_ret = true;
  969. enable = false;
  970. break;
  971. }
  972. /* get regulator (lazy) */
  973. if (hwacc_regulator[hwacc_dev] == NULL) {
  974. hwacc_regulator[hwacc_dev] = regulator_get(NULL,
  975. hwacc_regulator_name[hwacc_dev]);
  976. if (IS_ERR(hwacc_regulator[hwacc_dev])) {
  977. pr_err("prcmu: failed to get supply %s\n",
  978. hwacc_regulator_name[hwacc_dev]);
  979. r = PTR_ERR(hwacc_regulator[hwacc_dev]);
  980. goto out;
  981. }
  982. }
  983. if (ram_retention) {
  984. if (hwacc_ret_regulator[hwacc_dev] == NULL) {
  985. hwacc_ret_regulator[hwacc_dev] = regulator_get(NULL,
  986. hwacc_ret_regulator_name[hwacc_dev]);
  987. if (IS_ERR(hwacc_ret_regulator[hwacc_dev])) {
  988. pr_err("prcmu: failed to get supply %s\n",
  989. hwacc_ret_regulator_name[hwacc_dev]);
  990. r = PTR_ERR(hwacc_ret_regulator[hwacc_dev]);
  991. goto out;
  992. }
  993. }
  994. }
  995. /* set regulators */
  996. if (ram_retention) {
  997. if (enable_ret && !hwacc_ret_enabled[hwacc_dev]) {
  998. r = regulator_enable(hwacc_ret_regulator[hwacc_dev]);
  999. if (r < 0) {
  1000. pr_err("prcmu_set_hwacc: ret enable failed\n");
  1001. goto out;
  1002. }
  1003. hwacc_ret_enabled[hwacc_dev] = true;
  1004. }
  1005. }
  1006. if (enable && !hwacc_enabled[hwacc_dev]) {
  1007. r = regulator_enable(hwacc_regulator[hwacc_dev]);
  1008. if (r < 0) {
  1009. pr_err("prcmu_set_hwacc: enable failed\n");
  1010. goto out;
  1011. }
  1012. hwacc_enabled[hwacc_dev] = true;
  1013. }
  1014. if (!enable && hwacc_enabled[hwacc_dev]) {
  1015. r = regulator_disable(hwacc_regulator[hwacc_dev]);
  1016. if (r < 0) {
  1017. pr_err("prcmu_set_hwacc: disable failed\n");
  1018. goto out;
  1019. }
  1020. hwacc_enabled[hwacc_dev] = false;
  1021. }
  1022. if (ram_retention) {
  1023. if (!enable_ret && hwacc_ret_enabled[hwacc_dev]) {
  1024. r = regulator_disable(hwacc_ret_regulator[hwacc_dev]);
  1025. if (r < 0) {
  1026. pr_err("prcmu_set_hwacc: ret disable failed\n");
  1027. goto out;
  1028. }
  1029. hwacc_ret_enabled[hwacc_dev] = false;
  1030. }
  1031. }
  1032. out:
  1033. return r;
  1034. }
  1035. EXPORT_SYMBOL(prcmu_set_hwacc);
  1036. /**
  1037. * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
  1038. * @epod_id: The EPOD to set
  1039. * @epod_state: The new EPOD state
  1040. *
  1041. * This function sets the state of a EPOD (power domain). It may not be called
  1042. * from interrupt context.
  1043. */
  1044. int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
  1045. {
  1046. int r = 0;
  1047. bool ram_retention = false;
  1048. int i;
  1049. /* check argument */
  1050. BUG_ON(epod_id >= NUM_EPOD_ID);
  1051. /* set flag if retention is possible */
  1052. switch (epod_id) {
  1053. case EPOD_ID_SVAMMDSP:
  1054. case EPOD_ID_SIAMMDSP:
  1055. case EPOD_ID_ESRAM12:
  1056. case EPOD_ID_ESRAM34:
  1057. ram_retention = true;
  1058. break;
  1059. }
  1060. /* check argument */
  1061. BUG_ON(epod_state > EPOD_STATE_ON);
  1062. BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
  1063. /* get lock */
  1064. mutex_lock(&mb2_transfer.lock);
  1065. /* wait for mailbox */
  1066. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
  1067. cpu_relax();
  1068. /* fill in mailbox */
  1069. for (i = 0; i < NUM_EPOD_ID; i++)
  1070. writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
  1071. writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
  1072. writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
  1073. writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
  1074. /*
  1075. * The current firmware version does not handle errors correctly,
  1076. * and we cannot recover if there is an error.
  1077. * This is expected to change when the firmware is updated.
  1078. */
  1079. if (!wait_for_completion_timeout(&mb2_transfer.work,
  1080. msecs_to_jiffies(20000))) {
  1081. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1082. __func__);
  1083. r = -EIO;
  1084. goto unlock_and_return;
  1085. }
  1086. if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
  1087. r = -EIO;
  1088. unlock_and_return:
  1089. mutex_unlock(&mb2_transfer.lock);
  1090. return r;
  1091. }
  1092. /**
  1093. * prcmu_configure_auto_pm - Configure autonomous power management.
  1094. * @sleep: Configuration for ApSleep.
  1095. * @idle: Configuration for ApIdle.
  1096. */
  1097. void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
  1098. struct prcmu_auto_pm_config *idle)
  1099. {
  1100. u32 sleep_cfg;
  1101. u32 idle_cfg;
  1102. unsigned long flags;
  1103. BUG_ON((sleep == NULL) || (idle == NULL));
  1104. sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
  1105. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
  1106. sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
  1107. sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
  1108. sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
  1109. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
  1110. idle_cfg = (idle->sva_auto_pm_enable & 0xF);
  1111. idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
  1112. idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
  1113. idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
  1114. idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
  1115. idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
  1116. spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
  1117. /*
  1118. * The autonomous power management configuration is done through
  1119. * fields in mailbox 2, but these fields are only used as shared
  1120. * variables - i.e. there is no need to send a message.
  1121. */
  1122. writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
  1123. writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
  1124. mb2_transfer.auto_pm_enabled =
  1125. ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1126. (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1127. (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1128. (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
  1129. spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
  1130. }
  1131. EXPORT_SYMBOL(prcmu_configure_auto_pm);
  1132. bool prcmu_is_auto_pm_enabled(void)
  1133. {
  1134. return mb2_transfer.auto_pm_enabled;
  1135. }
  1136. static int request_sysclk(bool enable)
  1137. {
  1138. int r;
  1139. unsigned long flags;
  1140. r = 0;
  1141. mutex_lock(&mb3_transfer.sysclk_lock);
  1142. spin_lock_irqsave(&mb3_transfer.lock, flags);
  1143. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
  1144. cpu_relax();
  1145. writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
  1146. writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
  1147. writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
  1148. spin_unlock_irqrestore(&mb3_transfer.lock, flags);
  1149. /*
  1150. * The firmware only sends an ACK if we want to enable the
  1151. * SysClk, and it succeeds.
  1152. */
  1153. if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
  1154. msecs_to_jiffies(20000))) {
  1155. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1156. __func__);
  1157. r = -EIO;
  1158. }
  1159. mutex_unlock(&mb3_transfer.sysclk_lock);
  1160. return r;
  1161. }
  1162. static int request_timclk(bool enable)
  1163. {
  1164. u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
  1165. if (!enable)
  1166. val |= PRCM_TCR_STOP_TIMERS;
  1167. writel(val, PRCM_TCR);
  1168. return 0;
  1169. }
  1170. static int request_reg_clock(u8 clock, bool enable)
  1171. {
  1172. u32 val;
  1173. unsigned long flags;
  1174. spin_lock_irqsave(&clk_mgt_lock, flags);
  1175. /* Grab the HW semaphore. */
  1176. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1177. cpu_relax();
  1178. val = readl(_PRCMU_BASE + clk_mgt[clock].offset);
  1179. if (enable) {
  1180. val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
  1181. } else {
  1182. clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1183. val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
  1184. }
  1185. writel(val, (_PRCMU_BASE + clk_mgt[clock].offset));
  1186. /* Release the HW semaphore. */
  1187. writel(0, PRCM_SEM);
  1188. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1189. return 0;
  1190. }
  1191. static int request_sga_clock(u8 clock, bool enable)
  1192. {
  1193. u32 val;
  1194. int ret;
  1195. if (enable) {
  1196. val = readl(PRCM_CGATING_BYPASS);
  1197. writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1198. }
  1199. ret = request_reg_clock(clock, enable);
  1200. if (!ret && !enable) {
  1201. val = readl(PRCM_CGATING_BYPASS);
  1202. writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1203. }
  1204. return ret;
  1205. }
  1206. /**
  1207. * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
  1208. * @clock: The clock for which the request is made.
  1209. * @enable: Whether the clock should be enabled (true) or disabled (false).
  1210. *
  1211. * This function should only be used by the clock implementation.
  1212. * Do not use it from any other place!
  1213. */
  1214. int db8500_prcmu_request_clock(u8 clock, bool enable)
  1215. {
  1216. switch(clock) {
  1217. case PRCMU_SGACLK:
  1218. return request_sga_clock(clock, enable);
  1219. case PRCMU_TIMCLK:
  1220. return request_timclk(enable);
  1221. case PRCMU_SYSCLK:
  1222. return request_sysclk(enable);
  1223. case PRCMU_PLLSOC1:
  1224. return request_pll(clock, enable);
  1225. default:
  1226. break;
  1227. }
  1228. if (clock < PRCMU_NUM_REG_CLOCKS)
  1229. return request_reg_clock(clock, enable);
  1230. return -EINVAL;
  1231. }
  1232. int db8500_prcmu_config_esram0_deep_sleep(u8 state)
  1233. {
  1234. if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
  1235. (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
  1236. return -EINVAL;
  1237. mutex_lock(&mb4_transfer.lock);
  1238. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1239. cpu_relax();
  1240. writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1241. writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
  1242. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
  1243. writeb(DDR_PWR_STATE_ON,
  1244. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
  1245. writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
  1246. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1247. wait_for_completion(&mb4_transfer.work);
  1248. mutex_unlock(&mb4_transfer.lock);
  1249. return 0;
  1250. }
  1251. int prcmu_config_hotdog(u8 threshold)
  1252. {
  1253. mutex_lock(&mb4_transfer.lock);
  1254. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1255. cpu_relax();
  1256. writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
  1257. writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1258. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1259. wait_for_completion(&mb4_transfer.work);
  1260. mutex_unlock(&mb4_transfer.lock);
  1261. return 0;
  1262. }
  1263. int prcmu_config_hotmon(u8 low, u8 high)
  1264. {
  1265. mutex_lock(&mb4_transfer.lock);
  1266. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1267. cpu_relax();
  1268. writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
  1269. writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
  1270. writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
  1271. (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
  1272. writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1273. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1274. wait_for_completion(&mb4_transfer.work);
  1275. mutex_unlock(&mb4_transfer.lock);
  1276. return 0;
  1277. }
  1278. static int config_hot_period(u16 val)
  1279. {
  1280. mutex_lock(&mb4_transfer.lock);
  1281. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1282. cpu_relax();
  1283. writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
  1284. writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1285. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1286. wait_for_completion(&mb4_transfer.work);
  1287. mutex_unlock(&mb4_transfer.lock);
  1288. return 0;
  1289. }
  1290. int prcmu_start_temp_sense(u16 cycles32k)
  1291. {
  1292. if (cycles32k == 0xFFFF)
  1293. return -EINVAL;
  1294. return config_hot_period(cycles32k);
  1295. }
  1296. int prcmu_stop_temp_sense(void)
  1297. {
  1298. return config_hot_period(0xFFFF);
  1299. }
  1300. static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
  1301. {
  1302. mutex_lock(&mb4_transfer.lock);
  1303. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1304. cpu_relax();
  1305. writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
  1306. writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
  1307. writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
  1308. writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
  1309. writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1310. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1311. wait_for_completion(&mb4_transfer.work);
  1312. mutex_unlock(&mb4_transfer.lock);
  1313. return 0;
  1314. }
  1315. int prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
  1316. {
  1317. BUG_ON(num == 0 || num > 0xf);
  1318. return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
  1319. sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
  1320. A9WDOG_AUTO_OFF_DIS);
  1321. }
  1322. int prcmu_enable_a9wdog(u8 id)
  1323. {
  1324. return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
  1325. }
  1326. int prcmu_disable_a9wdog(u8 id)
  1327. {
  1328. return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
  1329. }
  1330. int prcmu_kick_a9wdog(u8 id)
  1331. {
  1332. return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
  1333. }
  1334. /*
  1335. * timeout is 28 bit, in ms.
  1336. */
  1337. #define MAX_WATCHDOG_TIMEOUT 131000
  1338. int prcmu_load_a9wdog(u8 id, u32 timeout)
  1339. {
  1340. if (timeout > MAX_WATCHDOG_TIMEOUT)
  1341. /*
  1342. * Due to calculation bug in prcmu fw, timeouts
  1343. * can't be bigger than 131 seconds.
  1344. */
  1345. return -EINVAL;
  1346. return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
  1347. (id & A9WDOG_ID_MASK) |
  1348. /*
  1349. * Put the lowest 28 bits of timeout at
  1350. * offset 4. Four first bits are used for id.
  1351. */
  1352. (u8)((timeout << 4) & 0xf0),
  1353. (u8)((timeout >> 4) & 0xff),
  1354. (u8)((timeout >> 12) & 0xff),
  1355. (u8)((timeout >> 20) & 0xff));
  1356. }
  1357. /**
  1358. * prcmu_set_clock_divider() - Configure the clock divider.
  1359. * @clock: The clock for which the request is made.
  1360. * @divider: The clock divider. (< 32)
  1361. *
  1362. * This function should only be used by the clock implementation.
  1363. * Do not use it from any other place!
  1364. */
  1365. int prcmu_set_clock_divider(u8 clock, u8 divider)
  1366. {
  1367. u32 val;
  1368. unsigned long flags;
  1369. if ((clock >= PRCMU_NUM_REG_CLOCKS) || (divider < 1) || (31 < divider))
  1370. return -EINVAL;
  1371. spin_lock_irqsave(&clk_mgt_lock, flags);
  1372. /* Grab the HW semaphore. */
  1373. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1374. cpu_relax();
  1375. val = readl(_PRCMU_BASE + clk_mgt[clock].offset);
  1376. val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK);
  1377. val |= (u32)divider;
  1378. writel(val, (_PRCMU_BASE + clk_mgt[clock].offset));
  1379. /* Release the HW semaphore. */
  1380. writel(0, PRCM_SEM);
  1381. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1382. return 0;
  1383. }
  1384. /**
  1385. * prcmu_abb_read() - Read register value(s) from the ABB.
  1386. * @slave: The I2C slave address.
  1387. * @reg: The (start) register address.
  1388. * @value: The read out value(s).
  1389. * @size: The number of registers to read.
  1390. *
  1391. * Reads register value(s) from the ABB.
  1392. * @size has to be 1 for the current firmware version.
  1393. */
  1394. int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
  1395. {
  1396. int r;
  1397. if (size != 1)
  1398. return -EINVAL;
  1399. mutex_lock(&mb5_transfer.lock);
  1400. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1401. cpu_relax();
  1402. writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1403. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1404. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1405. writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1406. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1407. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1408. msecs_to_jiffies(20000))) {
  1409. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1410. __func__);
  1411. r = -EIO;
  1412. } else {
  1413. r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
  1414. }
  1415. if (!r)
  1416. *value = mb5_transfer.ack.value;
  1417. mutex_unlock(&mb5_transfer.lock);
  1418. return r;
  1419. }
  1420. /**
  1421. * prcmu_abb_write() - Write register value(s) to the ABB.
  1422. * @slave: The I2C slave address.
  1423. * @reg: The (start) register address.
  1424. * @value: The value(s) to write.
  1425. * @size: The number of registers to write.
  1426. *
  1427. * Reads register value(s) from the ABB.
  1428. * @size has to be 1 for the current firmware version.
  1429. */
  1430. int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
  1431. {
  1432. int r;
  1433. if (size != 1)
  1434. return -EINVAL;
  1435. mutex_lock(&mb5_transfer.lock);
  1436. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1437. cpu_relax();
  1438. writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1439. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1440. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1441. writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1442. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1443. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1444. msecs_to_jiffies(20000))) {
  1445. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1446. __func__);
  1447. r = -EIO;
  1448. } else {
  1449. r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
  1450. }
  1451. mutex_unlock(&mb5_transfer.lock);
  1452. return r;
  1453. }
  1454. /**
  1455. * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
  1456. */
  1457. void prcmu_ac_wake_req(void)
  1458. {
  1459. u32 val;
  1460. u32 status;
  1461. mutex_lock(&mb0_transfer.ac_wake_lock);
  1462. val = readl(PRCM_HOSTACCESS_REQ);
  1463. if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
  1464. goto unlock_and_return;
  1465. atomic_set(&ac_wake_req_state, 1);
  1466. retry:
  1467. writel((val | PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), PRCM_HOSTACCESS_REQ);
  1468. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1469. msecs_to_jiffies(5000))) {
  1470. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  1471. __func__);
  1472. goto unlock_and_return;
  1473. }
  1474. /*
  1475. * The modem can generate an AC_WAKE_ACK, and then still go to sleep.
  1476. * As a workaround, we wait, and then check that the modem is indeed
  1477. * awake (in terms of the value of the PRCM_MOD_AWAKE_STATUS
  1478. * register, which may not be the whole truth).
  1479. */
  1480. udelay(400);
  1481. status = (readl(PRCM_MOD_AWAKE_STATUS) & BITS(0, 2));
  1482. if (status != (PRCM_MOD_AWAKE_STATUS_PRCM_MOD_AAPD_AWAKE |
  1483. PRCM_MOD_AWAKE_STATUS_PRCM_MOD_COREPD_AWAKE)) {
  1484. pr_err("prcmu: %s received ack, but modem not awake (0x%X).\n",
  1485. __func__, status);
  1486. udelay(1200);
  1487. writel(val, PRCM_HOSTACCESS_REQ);
  1488. if (wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1489. msecs_to_jiffies(5000)))
  1490. goto retry;
  1491. pr_crit("prcmu: %s timed out (5 s) waiting for AC_SLEEP_ACK.\n",
  1492. __func__);
  1493. }
  1494. unlock_and_return:
  1495. mutex_unlock(&mb0_transfer.ac_wake_lock);
  1496. }
  1497. /**
  1498. * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
  1499. */
  1500. void prcmu_ac_sleep_req()
  1501. {
  1502. u32 val;
  1503. mutex_lock(&mb0_transfer.ac_wake_lock);
  1504. val = readl(PRCM_HOSTACCESS_REQ);
  1505. if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
  1506. goto unlock_and_return;
  1507. writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
  1508. PRCM_HOSTACCESS_REQ);
  1509. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1510. msecs_to_jiffies(5000))) {
  1511. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  1512. __func__);
  1513. }
  1514. atomic_set(&ac_wake_req_state, 0);
  1515. unlock_and_return:
  1516. mutex_unlock(&mb0_transfer.ac_wake_lock);
  1517. }
  1518. bool db8500_prcmu_is_ac_wake_requested(void)
  1519. {
  1520. return (atomic_read(&ac_wake_req_state) != 0);
  1521. }
  1522. /**
  1523. * db8500_prcmu_system_reset - System reset
  1524. *
  1525. * Saves the reset reason code and then sets the APE_SOFTRST register which
  1526. * fires interrupt to fw
  1527. */
  1528. void db8500_prcmu_system_reset(u16 reset_code)
  1529. {
  1530. writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
  1531. writel(1, PRCM_APE_SOFTRST);
  1532. }
  1533. /**
  1534. * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
  1535. *
  1536. * Retrieves the reset reason code stored by prcmu_system_reset() before
  1537. * last restart.
  1538. */
  1539. u16 db8500_prcmu_get_reset_code(void)
  1540. {
  1541. return readw(tcdm_base + PRCM_SW_RST_REASON);
  1542. }
  1543. /**
  1544. * prcmu_reset_modem - ask the PRCMU to reset modem
  1545. */
  1546. void prcmu_modem_reset(void)
  1547. {
  1548. mutex_lock(&mb1_transfer.lock);
  1549. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1550. cpu_relax();
  1551. writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1552. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1553. wait_for_completion(&mb1_transfer.work);
  1554. /*
  1555. * No need to check return from PRCMU as modem should go in reset state
  1556. * This state is already managed by upper layer
  1557. */
  1558. mutex_unlock(&mb1_transfer.lock);
  1559. }
  1560. static void ack_dbb_wakeup(void)
  1561. {
  1562. unsigned long flags;
  1563. spin_lock_irqsave(&mb0_transfer.lock, flags);
  1564. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  1565. cpu_relax();
  1566. writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  1567. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  1568. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  1569. }
  1570. static inline void print_unknown_header_warning(u8 n, u8 header)
  1571. {
  1572. pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
  1573. header, n);
  1574. }
  1575. static bool read_mailbox_0(void)
  1576. {
  1577. bool r;
  1578. u32 ev;
  1579. unsigned int n;
  1580. u8 header;
  1581. header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
  1582. switch (header) {
  1583. case MB0H_WAKEUP_EXE:
  1584. case MB0H_WAKEUP_SLEEP:
  1585. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  1586. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
  1587. else
  1588. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
  1589. if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
  1590. complete(&mb0_transfer.ac_wake_work);
  1591. if (ev & WAKEUP_BIT_SYSCLK_OK)
  1592. complete(&mb3_transfer.sysclk_work);
  1593. ev &= mb0_transfer.req.dbb_irqs;
  1594. for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
  1595. if (ev & prcmu_irq_bit[n])
  1596. generic_handle_irq(IRQ_PRCMU_BASE + n);
  1597. }
  1598. r = true;
  1599. break;
  1600. default:
  1601. print_unknown_header_warning(0, header);
  1602. r = false;
  1603. break;
  1604. }
  1605. writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
  1606. return r;
  1607. }
  1608. static bool read_mailbox_1(void)
  1609. {
  1610. mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
  1611. mb1_transfer.ack.arm_opp = readb(tcdm_base +
  1612. PRCM_ACK_MB1_CURRENT_ARM_OPP);
  1613. mb1_transfer.ack.ape_opp = readb(tcdm_base +
  1614. PRCM_ACK_MB1_CURRENT_APE_OPP);
  1615. mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
  1616. PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
  1617. writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
  1618. complete(&mb1_transfer.work);
  1619. return false;
  1620. }
  1621. static bool read_mailbox_2(void)
  1622. {
  1623. mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
  1624. writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
  1625. complete(&mb2_transfer.work);
  1626. return false;
  1627. }
  1628. static bool read_mailbox_3(void)
  1629. {
  1630. writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
  1631. return false;
  1632. }
  1633. static bool read_mailbox_4(void)
  1634. {
  1635. u8 header;
  1636. bool do_complete = true;
  1637. header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
  1638. switch (header) {
  1639. case MB4H_MEM_ST:
  1640. case MB4H_HOTDOG:
  1641. case MB4H_HOTMON:
  1642. case MB4H_HOT_PERIOD:
  1643. case MB4H_A9WDOG_CONF:
  1644. case MB4H_A9WDOG_EN:
  1645. case MB4H_A9WDOG_DIS:
  1646. case MB4H_A9WDOG_LOAD:
  1647. case MB4H_A9WDOG_KICK:
  1648. break;
  1649. default:
  1650. print_unknown_header_warning(4, header);
  1651. do_complete = false;
  1652. break;
  1653. }
  1654. writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
  1655. if (do_complete)
  1656. complete(&mb4_transfer.work);
  1657. return false;
  1658. }
  1659. static bool read_mailbox_5(void)
  1660. {
  1661. mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
  1662. mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
  1663. writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
  1664. complete(&mb5_transfer.work);
  1665. return false;
  1666. }
  1667. static bool read_mailbox_6(void)
  1668. {
  1669. writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
  1670. return false;
  1671. }
  1672. static bool read_mailbox_7(void)
  1673. {
  1674. writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
  1675. return false;
  1676. }
  1677. static bool (* const read_mailbox[NUM_MB])(void) = {
  1678. read_mailbox_0,
  1679. read_mailbox_1,
  1680. read_mailbox_2,
  1681. read_mailbox_3,
  1682. read_mailbox_4,
  1683. read_mailbox_5,
  1684. read_mailbox_6,
  1685. read_mailbox_7
  1686. };
  1687. static irqreturn_t prcmu_irq_handler(int irq, void *data)
  1688. {
  1689. u32 bits;
  1690. u8 n;
  1691. irqreturn_t r;
  1692. bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
  1693. if (unlikely(!bits))
  1694. return IRQ_NONE;
  1695. r = IRQ_HANDLED;
  1696. for (n = 0; bits; n++) {
  1697. if (bits & MBOX_BIT(n)) {
  1698. bits -= MBOX_BIT(n);
  1699. if (read_mailbox[n]())
  1700. r = IRQ_WAKE_THREAD;
  1701. }
  1702. }
  1703. return r;
  1704. }
  1705. static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
  1706. {
  1707. ack_dbb_wakeup();
  1708. return IRQ_HANDLED;
  1709. }
  1710. static void prcmu_mask_work(struct work_struct *work)
  1711. {
  1712. unsigned long flags;
  1713. spin_lock_irqsave(&mb0_transfer.lock, flags);
  1714. config_wakeups();
  1715. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  1716. }
  1717. static void prcmu_irq_mask(struct irq_data *d)
  1718. {
  1719. unsigned long flags;
  1720. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  1721. mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
  1722. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  1723. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  1724. schedule_work(&mb0_transfer.mask_work);
  1725. }
  1726. static void prcmu_irq_unmask(struct irq_data *d)
  1727. {
  1728. unsigned long flags;
  1729. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  1730. mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
  1731. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  1732. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  1733. schedule_work(&mb0_transfer.mask_work);
  1734. }
  1735. static void noop(struct irq_data *d)
  1736. {
  1737. }
  1738. static struct irq_chip prcmu_irq_chip = {
  1739. .name = "prcmu",
  1740. .irq_disable = prcmu_irq_mask,
  1741. .irq_ack = noop,
  1742. .irq_mask = prcmu_irq_mask,
  1743. .irq_unmask = prcmu_irq_unmask,
  1744. };
  1745. void __init db8500_prcmu_early_init(void)
  1746. {
  1747. unsigned int i;
  1748. if (cpu_is_u8500v1()) {
  1749. tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE_V1);
  1750. } else if (cpu_is_u8500v2()) {
  1751. void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
  1752. if (tcpm_base != NULL) {
  1753. int version;
  1754. version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
  1755. prcmu_version.project_number = version & 0xFF;
  1756. prcmu_version.api_version = (version >> 8) & 0xFF;
  1757. prcmu_version.func_version = (version >> 16) & 0xFF;
  1758. prcmu_version.errata = (version >> 24) & 0xFF;
  1759. pr_info("PRCMU firmware version %d.%d.%d\n",
  1760. (version >> 8) & 0xFF, (version >> 16) & 0xFF,
  1761. (version >> 24) & 0xFF);
  1762. iounmap(tcpm_base);
  1763. }
  1764. tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
  1765. } else {
  1766. pr_err("prcmu: Unsupported chip version\n");
  1767. BUG();
  1768. }
  1769. spin_lock_init(&mb0_transfer.lock);
  1770. spin_lock_init(&mb0_transfer.dbb_irqs_lock);
  1771. mutex_init(&mb0_transfer.ac_wake_lock);
  1772. init_completion(&mb0_transfer.ac_wake_work);
  1773. mutex_init(&mb1_transfer.lock);
  1774. init_completion(&mb1_transfer.work);
  1775. mutex_init(&mb2_transfer.lock);
  1776. init_completion(&mb2_transfer.work);
  1777. spin_lock_init(&mb2_transfer.auto_pm_lock);
  1778. spin_lock_init(&mb3_transfer.lock);
  1779. mutex_init(&mb3_transfer.sysclk_lock);
  1780. init_completion(&mb3_transfer.sysclk_work);
  1781. mutex_init(&mb4_transfer.lock);
  1782. init_completion(&mb4_transfer.work);
  1783. mutex_init(&mb5_transfer.lock);
  1784. init_completion(&mb5_transfer.work);
  1785. INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
  1786. /* Initalize irqs. */
  1787. for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
  1788. unsigned int irq;
  1789. irq = IRQ_PRCMU_BASE + i;
  1790. irq_set_chip_and_handler(irq, &prcmu_irq_chip,
  1791. handle_simple_irq);
  1792. set_irq_flags(irq, IRQF_VALID);
  1793. }
  1794. }
  1795. static void __init db8500_prcmu_init_clkforce(void)
  1796. {
  1797. u32 val;
  1798. val = readl(PRCM_A9PL_FORCE_CLKEN);
  1799. val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
  1800. PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
  1801. writel(val, (PRCM_A9PL_FORCE_CLKEN));
  1802. }
  1803. /*
  1804. * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
  1805. */
  1806. static struct regulator_consumer_supply db8500_vape_consumers[] = {
  1807. REGULATOR_SUPPLY("v-ape", NULL),
  1808. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
  1809. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
  1810. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
  1811. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
  1812. /* "v-mmc" changed to "vcore" in the mainline kernel */
  1813. REGULATOR_SUPPLY("vcore", "sdi0"),
  1814. REGULATOR_SUPPLY("vcore", "sdi1"),
  1815. REGULATOR_SUPPLY("vcore", "sdi2"),
  1816. REGULATOR_SUPPLY("vcore", "sdi3"),
  1817. REGULATOR_SUPPLY("vcore", "sdi4"),
  1818. REGULATOR_SUPPLY("v-dma", "dma40.0"),
  1819. REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
  1820. /* "v-uart" changed to "vcore" in the mainline kernel */
  1821. REGULATOR_SUPPLY("vcore", "uart0"),
  1822. REGULATOR_SUPPLY("vcore", "uart1"),
  1823. REGULATOR_SUPPLY("vcore", "uart2"),
  1824. REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
  1825. };
  1826. static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
  1827. /* CG2900 and CW1200 power to off-chip peripherals */
  1828. REGULATOR_SUPPLY("gbf_1v8", "cg2900-uart.0"),
  1829. REGULATOR_SUPPLY("wlan_1v8", "cw1200.0"),
  1830. REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
  1831. /* AV8100 regulator */
  1832. REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
  1833. };
  1834. static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
  1835. REGULATOR_SUPPLY("vsupply", "b2r2.0"),
  1836. REGULATOR_SUPPLY("vsupply", "mcde"),
  1837. };
  1838. /* SVA MMDSP regulator switch */
  1839. static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
  1840. REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
  1841. };
  1842. /* SVA pipe regulator switch */
  1843. static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
  1844. REGULATOR_SUPPLY("sva-pipe", "cm_control"),
  1845. };
  1846. /* SIA MMDSP regulator switch */
  1847. static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
  1848. REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
  1849. };
  1850. /* SIA pipe regulator switch */
  1851. static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
  1852. REGULATOR_SUPPLY("sia-pipe", "cm_control"),
  1853. };
  1854. static struct regulator_consumer_supply db8500_sga_consumers[] = {
  1855. REGULATOR_SUPPLY("v-mali", NULL),
  1856. };
  1857. /* ESRAM1 and 2 regulator switch */
  1858. static struct regulator_consumer_supply db8500_esram12_consumers[] = {
  1859. REGULATOR_SUPPLY("esram12", "cm_control"),
  1860. };
  1861. /* ESRAM3 and 4 regulator switch */
  1862. static struct regulator_consumer_supply db8500_esram34_consumers[] = {
  1863. REGULATOR_SUPPLY("v-esram34", "mcde"),
  1864. REGULATOR_SUPPLY("esram34", "cm_control"),
  1865. };
  1866. static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
  1867. [DB8500_REGULATOR_VAPE] = {
  1868. .constraints = {
  1869. .name = "db8500-vape",
  1870. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1871. },
  1872. .consumer_supplies = db8500_vape_consumers,
  1873. .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
  1874. },
  1875. [DB8500_REGULATOR_VARM] = {
  1876. .constraints = {
  1877. .name = "db8500-varm",
  1878. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1879. },
  1880. },
  1881. [DB8500_REGULATOR_VMODEM] = {
  1882. .constraints = {
  1883. .name = "db8500-vmodem",
  1884. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1885. },
  1886. },
  1887. [DB8500_REGULATOR_VPLL] = {
  1888. .constraints = {
  1889. .name = "db8500-vpll",
  1890. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1891. },
  1892. },
  1893. [DB8500_REGULATOR_VSMPS1] = {
  1894. .constraints = {
  1895. .name = "db8500-vsmps1",
  1896. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1897. },
  1898. },
  1899. [DB8500_REGULATOR_VSMPS2] = {
  1900. .constraints = {
  1901. .name = "db8500-vsmps2",
  1902. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1903. },
  1904. .consumer_supplies = db8500_vsmps2_consumers,
  1905. .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
  1906. },
  1907. [DB8500_REGULATOR_VSMPS3] = {
  1908. .constraints = {
  1909. .name = "db8500-vsmps3",
  1910. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1911. },
  1912. },
  1913. [DB8500_REGULATOR_VRF1] = {
  1914. .constraints = {
  1915. .name = "db8500-vrf1",
  1916. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1917. },
  1918. },
  1919. [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
  1920. .supply_regulator = "db8500-vape",
  1921. .constraints = {
  1922. .name = "db8500-sva-mmdsp",
  1923. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1924. },
  1925. .consumer_supplies = db8500_svammdsp_consumers,
  1926. .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
  1927. },
  1928. [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
  1929. .constraints = {
  1930. /* "ret" means "retention" */
  1931. .name = "db8500-sva-mmdsp-ret",
  1932. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1933. },
  1934. },
  1935. [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
  1936. .supply_regulator = "db8500-vape",
  1937. .constraints = {
  1938. .name = "db8500-sva-pipe",
  1939. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1940. },
  1941. .consumer_supplies = db8500_svapipe_consumers,
  1942. .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
  1943. },
  1944. [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
  1945. .supply_regulator = "db8500-vape",
  1946. .constraints = {
  1947. .name = "db8500-sia-mmdsp",
  1948. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1949. },
  1950. .consumer_supplies = db8500_siammdsp_consumers,
  1951. .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
  1952. },
  1953. [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
  1954. .constraints = {
  1955. .name = "db8500-sia-mmdsp-ret",
  1956. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1957. },
  1958. },
  1959. [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
  1960. .supply_regulator = "db8500-vape",
  1961. .constraints = {
  1962. .name = "db8500-sia-pipe",
  1963. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1964. },
  1965. .consumer_supplies = db8500_siapipe_consumers,
  1966. .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
  1967. },
  1968. [DB8500_REGULATOR_SWITCH_SGA] = {
  1969. .supply_regulator = "db8500-vape",
  1970. .constraints = {
  1971. .name = "db8500-sga",
  1972. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1973. },
  1974. .consumer_supplies = db8500_sga_consumers,
  1975. .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
  1976. },
  1977. [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
  1978. .supply_regulator = "db8500-vape",
  1979. .constraints = {
  1980. .name = "db8500-b2r2-mcde",
  1981. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1982. },
  1983. .consumer_supplies = db8500_b2r2_mcde_consumers,
  1984. .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
  1985. },
  1986. [DB8500_REGULATOR_SWITCH_ESRAM12] = {
  1987. .supply_regulator = "db8500-vape",
  1988. .constraints = {
  1989. .name = "db8500-esram12",
  1990. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1991. },
  1992. .consumer_supplies = db8500_esram12_consumers,
  1993. .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
  1994. },
  1995. [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
  1996. .constraints = {
  1997. .name = "db8500-esram12-ret",
  1998. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1999. },
  2000. },
  2001. [DB8500_REGULATOR_SWITCH_ESRAM34] = {
  2002. .supply_regulator = "db8500-vape",
  2003. .constraints = {
  2004. .name = "db8500-esram34",
  2005. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2006. },
  2007. .consumer_supplies = db8500_esram34_consumers,
  2008. .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
  2009. },
  2010. [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
  2011. .constraints = {
  2012. .name = "db8500-esram34-ret",
  2013. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2014. },
  2015. },
  2016. };
  2017. static struct mfd_cell db8500_prcmu_devs[] = {
  2018. {
  2019. .name = "db8500-prcmu-regulators",
  2020. .platform_data = &db8500_regulators,
  2021. .pdata_size = sizeof(db8500_regulators),
  2022. },
  2023. {
  2024. .name = "cpufreq-u8500",
  2025. },
  2026. };
  2027. /**
  2028. * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
  2029. *
  2030. */
  2031. static int __init db8500_prcmu_probe(struct platform_device *pdev)
  2032. {
  2033. int err = 0;
  2034. if (ux500_is_svp())
  2035. return -ENODEV;
  2036. db8500_prcmu_init_clkforce();
  2037. /* Clean up the mailbox interrupts after pre-kernel code. */
  2038. writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
  2039. err = request_threaded_irq(IRQ_DB8500_PRCMU1, prcmu_irq_handler,
  2040. prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
  2041. if (err < 0) {
  2042. pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
  2043. err = -EBUSY;
  2044. goto no_irq_return;
  2045. }
  2046. if (cpu_is_u8500v20_or_later())
  2047. prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
  2048. err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
  2049. ARRAY_SIZE(db8500_prcmu_devs), NULL,
  2050. 0);
  2051. if (err)
  2052. pr_err("prcmu: Failed to add subdevices\n");
  2053. else
  2054. pr_info("DB8500 PRCMU initialized\n");
  2055. no_irq_return:
  2056. return err;
  2057. }
  2058. static struct platform_driver db8500_prcmu_driver = {
  2059. .driver = {
  2060. .name = "db8500-prcmu",
  2061. .owner = THIS_MODULE,
  2062. },
  2063. };
  2064. static int __init db8500_prcmu_init(void)
  2065. {
  2066. return platform_driver_probe(&db8500_prcmu_driver, db8500_prcmu_probe);
  2067. }
  2068. arch_initcall(db8500_prcmu_init);
  2069. MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
  2070. MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
  2071. MODULE_LICENSE("GPL v2");