intel_ringbuffer.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "i915_drv.h"
  32. #include "i915_drm.h"
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. /*
  36. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  37. * over cache flushing.
  38. */
  39. struct pipe_control {
  40. struct drm_i915_gem_object *obj;
  41. volatile u32 *cpu_page;
  42. u32 gtt_offset;
  43. };
  44. static inline int ring_space(struct intel_ring_buffer *ring)
  45. {
  46. int space = (ring->head & HEAD_ADDR) - (ring->tail + 8);
  47. if (space < 0)
  48. space += ring->size;
  49. return space;
  50. }
  51. static u32 i915_gem_get_seqno(struct drm_device *dev)
  52. {
  53. drm_i915_private_t *dev_priv = dev->dev_private;
  54. u32 seqno;
  55. seqno = dev_priv->next_seqno;
  56. /* reserve 0 for non-seqno */
  57. if (++dev_priv->next_seqno == 0)
  58. dev_priv->next_seqno = 1;
  59. return seqno;
  60. }
  61. static int
  62. render_ring_flush(struct intel_ring_buffer *ring,
  63. u32 invalidate_domains,
  64. u32 flush_domains)
  65. {
  66. struct drm_device *dev = ring->dev;
  67. u32 cmd;
  68. int ret;
  69. /*
  70. * read/write caches:
  71. *
  72. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  73. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  74. * also flushed at 2d versus 3d pipeline switches.
  75. *
  76. * read-only caches:
  77. *
  78. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  79. * MI_READ_FLUSH is set, and is always flushed on 965.
  80. *
  81. * I915_GEM_DOMAIN_COMMAND may not exist?
  82. *
  83. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  84. * invalidated when MI_EXE_FLUSH is set.
  85. *
  86. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  87. * invalidated with every MI_FLUSH.
  88. *
  89. * TLBs:
  90. *
  91. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  92. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  93. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  94. * are flushed at any MI_FLUSH.
  95. */
  96. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  97. if ((invalidate_domains|flush_domains) &
  98. I915_GEM_DOMAIN_RENDER)
  99. cmd &= ~MI_NO_WRITE_FLUSH;
  100. if (INTEL_INFO(dev)->gen < 4) {
  101. /*
  102. * On the 965, the sampler cache always gets flushed
  103. * and this bit is reserved.
  104. */
  105. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  106. cmd |= MI_READ_FLUSH;
  107. }
  108. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  109. cmd |= MI_EXE_FLUSH;
  110. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  111. (IS_G4X(dev) || IS_GEN5(dev)))
  112. cmd |= MI_INVALIDATE_ISP;
  113. ret = intel_ring_begin(ring, 2);
  114. if (ret)
  115. return ret;
  116. intel_ring_emit(ring, cmd);
  117. intel_ring_emit(ring, MI_NOOP);
  118. intel_ring_advance(ring);
  119. return 0;
  120. }
  121. /**
  122. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  123. * implementing two workarounds on gen6. From section 1.4.7.1
  124. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  125. *
  126. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  127. * produced by non-pipelined state commands), software needs to first
  128. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  129. * 0.
  130. *
  131. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  132. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  133. *
  134. * And the workaround for these two requires this workaround first:
  135. *
  136. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  137. * BEFORE the pipe-control with a post-sync op and no write-cache
  138. * flushes.
  139. *
  140. * And this last workaround is tricky because of the requirements on
  141. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  142. * volume 2 part 1:
  143. *
  144. * "1 of the following must also be set:
  145. * - Render Target Cache Flush Enable ([12] of DW1)
  146. * - Depth Cache Flush Enable ([0] of DW1)
  147. * - Stall at Pixel Scoreboard ([1] of DW1)
  148. * - Depth Stall ([13] of DW1)
  149. * - Post-Sync Operation ([13] of DW1)
  150. * - Notify Enable ([8] of DW1)"
  151. *
  152. * The cache flushes require the workaround flush that triggered this
  153. * one, so we can't use it. Depth stall would trigger the same.
  154. * Post-sync nonzero is what triggered this second workaround, so we
  155. * can't use that one either. Notify enable is IRQs, which aren't
  156. * really our business. That leaves only stall at scoreboard.
  157. */
  158. static int
  159. intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
  160. {
  161. struct pipe_control *pc = ring->private;
  162. u32 scratch_addr = pc->gtt_offset + 128;
  163. int ret;
  164. ret = intel_ring_begin(ring, 6);
  165. if (ret)
  166. return ret;
  167. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  168. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  169. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  170. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  171. intel_ring_emit(ring, 0); /* low dword */
  172. intel_ring_emit(ring, 0); /* high dword */
  173. intel_ring_emit(ring, MI_NOOP);
  174. intel_ring_advance(ring);
  175. ret = intel_ring_begin(ring, 6);
  176. if (ret)
  177. return ret;
  178. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  179. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  180. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  181. intel_ring_emit(ring, 0);
  182. intel_ring_emit(ring, 0);
  183. intel_ring_emit(ring, MI_NOOP);
  184. intel_ring_advance(ring);
  185. return 0;
  186. }
  187. static int
  188. gen6_render_ring_flush(struct intel_ring_buffer *ring,
  189. u32 invalidate_domains, u32 flush_domains)
  190. {
  191. u32 flags = 0;
  192. struct pipe_control *pc = ring->private;
  193. u32 scratch_addr = pc->gtt_offset + 128;
  194. int ret;
  195. /* Force SNB workarounds for PIPE_CONTROL flushes */
  196. intel_emit_post_sync_nonzero_flush(ring);
  197. /* Just flush everything. Experiments have shown that reducing the
  198. * number of bits based on the write domains has little performance
  199. * impact.
  200. */
  201. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  202. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  203. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  204. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  205. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  206. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  207. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  208. ret = intel_ring_begin(ring, 6);
  209. if (ret)
  210. return ret;
  211. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  212. intel_ring_emit(ring, flags);
  213. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  214. intel_ring_emit(ring, 0); /* lower dword */
  215. intel_ring_emit(ring, 0); /* uppwer dword */
  216. intel_ring_emit(ring, MI_NOOP);
  217. intel_ring_advance(ring);
  218. return 0;
  219. }
  220. static void ring_write_tail(struct intel_ring_buffer *ring,
  221. u32 value)
  222. {
  223. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  224. I915_WRITE_TAIL(ring, value);
  225. }
  226. u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
  227. {
  228. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  229. u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
  230. RING_ACTHD(ring->mmio_base) : ACTHD;
  231. return I915_READ(acthd_reg);
  232. }
  233. static int init_ring_common(struct intel_ring_buffer *ring)
  234. {
  235. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  236. struct drm_i915_gem_object *obj = ring->obj;
  237. u32 head;
  238. /* Stop the ring if it's running. */
  239. I915_WRITE_CTL(ring, 0);
  240. I915_WRITE_HEAD(ring, 0);
  241. ring->write_tail(ring, 0);
  242. /* Initialize the ring. */
  243. I915_WRITE_START(ring, obj->gtt_offset);
  244. head = I915_READ_HEAD(ring) & HEAD_ADDR;
  245. /* G45 ring initialization fails to reset head to zero */
  246. if (head != 0) {
  247. DRM_DEBUG_KMS("%s head not reset to zero "
  248. "ctl %08x head %08x tail %08x start %08x\n",
  249. ring->name,
  250. I915_READ_CTL(ring),
  251. I915_READ_HEAD(ring),
  252. I915_READ_TAIL(ring),
  253. I915_READ_START(ring));
  254. I915_WRITE_HEAD(ring, 0);
  255. if (I915_READ_HEAD(ring) & HEAD_ADDR) {
  256. DRM_ERROR("failed to set %s head to zero "
  257. "ctl %08x head %08x tail %08x start %08x\n",
  258. ring->name,
  259. I915_READ_CTL(ring),
  260. I915_READ_HEAD(ring),
  261. I915_READ_TAIL(ring),
  262. I915_READ_START(ring));
  263. }
  264. }
  265. I915_WRITE_CTL(ring,
  266. ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
  267. | RING_REPORT_64K | RING_VALID);
  268. /* If the head is still not zero, the ring is dead */
  269. if ((I915_READ_CTL(ring) & RING_VALID) == 0 ||
  270. I915_READ_START(ring) != obj->gtt_offset ||
  271. (I915_READ_HEAD(ring) & HEAD_ADDR) != 0) {
  272. DRM_ERROR("%s initialization failed "
  273. "ctl %08x head %08x tail %08x start %08x\n",
  274. ring->name,
  275. I915_READ_CTL(ring),
  276. I915_READ_HEAD(ring),
  277. I915_READ_TAIL(ring),
  278. I915_READ_START(ring));
  279. return -EIO;
  280. }
  281. if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
  282. i915_kernel_lost_context(ring->dev);
  283. else {
  284. ring->head = I915_READ_HEAD(ring);
  285. ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  286. ring->space = ring_space(ring);
  287. }
  288. return 0;
  289. }
  290. static int
  291. init_pipe_control(struct intel_ring_buffer *ring)
  292. {
  293. struct pipe_control *pc;
  294. struct drm_i915_gem_object *obj;
  295. int ret;
  296. if (ring->private)
  297. return 0;
  298. pc = kmalloc(sizeof(*pc), GFP_KERNEL);
  299. if (!pc)
  300. return -ENOMEM;
  301. obj = i915_gem_alloc_object(ring->dev, 4096);
  302. if (obj == NULL) {
  303. DRM_ERROR("Failed to allocate seqno page\n");
  304. ret = -ENOMEM;
  305. goto err;
  306. }
  307. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  308. ret = i915_gem_object_pin(obj, 4096, true);
  309. if (ret)
  310. goto err_unref;
  311. pc->gtt_offset = obj->gtt_offset;
  312. pc->cpu_page = kmap(obj->pages[0]);
  313. if (pc->cpu_page == NULL)
  314. goto err_unpin;
  315. pc->obj = obj;
  316. ring->private = pc;
  317. return 0;
  318. err_unpin:
  319. i915_gem_object_unpin(obj);
  320. err_unref:
  321. drm_gem_object_unreference(&obj->base);
  322. err:
  323. kfree(pc);
  324. return ret;
  325. }
  326. static void
  327. cleanup_pipe_control(struct intel_ring_buffer *ring)
  328. {
  329. struct pipe_control *pc = ring->private;
  330. struct drm_i915_gem_object *obj;
  331. if (!ring->private)
  332. return;
  333. obj = pc->obj;
  334. kunmap(obj->pages[0]);
  335. i915_gem_object_unpin(obj);
  336. drm_gem_object_unreference(&obj->base);
  337. kfree(pc);
  338. ring->private = NULL;
  339. }
  340. static int init_render_ring(struct intel_ring_buffer *ring)
  341. {
  342. struct drm_device *dev = ring->dev;
  343. struct drm_i915_private *dev_priv = dev->dev_private;
  344. int ret = init_ring_common(ring);
  345. if (INTEL_INFO(dev)->gen > 3) {
  346. int mode = VS_TIMER_DISPATCH << 16 | VS_TIMER_DISPATCH;
  347. if (IS_GEN6(dev) || IS_GEN7(dev))
  348. mode |= MI_FLUSH_ENABLE << 16 | MI_FLUSH_ENABLE;
  349. I915_WRITE(MI_MODE, mode);
  350. if (IS_GEN7(dev))
  351. I915_WRITE(GFX_MODE_GEN7,
  352. GFX_MODE_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
  353. GFX_MODE_ENABLE(GFX_REPLAY_MODE));
  354. }
  355. if (INTEL_INFO(dev)->gen >= 5) {
  356. ret = init_pipe_control(ring);
  357. if (ret)
  358. return ret;
  359. }
  360. return ret;
  361. }
  362. static void render_ring_cleanup(struct intel_ring_buffer *ring)
  363. {
  364. if (!ring->private)
  365. return;
  366. cleanup_pipe_control(ring);
  367. }
  368. static void
  369. update_mboxes(struct intel_ring_buffer *ring,
  370. u32 seqno,
  371. u32 mmio_offset)
  372. {
  373. intel_ring_emit(ring, MI_SEMAPHORE_MBOX |
  374. MI_SEMAPHORE_GLOBAL_GTT |
  375. MI_SEMAPHORE_REGISTER |
  376. MI_SEMAPHORE_UPDATE);
  377. intel_ring_emit(ring, seqno);
  378. intel_ring_emit(ring, mmio_offset);
  379. }
  380. /**
  381. * gen6_add_request - Update the semaphore mailbox registers
  382. *
  383. * @ring - ring that is adding a request
  384. * @seqno - return seqno stuck into the ring
  385. *
  386. * Update the mailbox registers in the *other* rings with the current seqno.
  387. * This acts like a signal in the canonical semaphore.
  388. */
  389. static int
  390. gen6_add_request(struct intel_ring_buffer *ring,
  391. u32 *seqno)
  392. {
  393. u32 mbox1_reg;
  394. u32 mbox2_reg;
  395. int ret;
  396. ret = intel_ring_begin(ring, 10);
  397. if (ret)
  398. return ret;
  399. mbox1_reg = ring->signal_mbox[0];
  400. mbox2_reg = ring->signal_mbox[1];
  401. *seqno = i915_gem_get_seqno(ring->dev);
  402. update_mboxes(ring, *seqno, mbox1_reg);
  403. update_mboxes(ring, *seqno, mbox2_reg);
  404. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  405. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  406. intel_ring_emit(ring, *seqno);
  407. intel_ring_emit(ring, MI_USER_INTERRUPT);
  408. intel_ring_advance(ring);
  409. return 0;
  410. }
  411. /**
  412. * intel_ring_sync - sync the waiter to the signaller on seqno
  413. *
  414. * @waiter - ring that is waiting
  415. * @signaller - ring which has, or will signal
  416. * @seqno - seqno which the waiter will block on
  417. */
  418. static int
  419. intel_ring_sync(struct intel_ring_buffer *waiter,
  420. struct intel_ring_buffer *signaller,
  421. int ring,
  422. u32 seqno)
  423. {
  424. int ret;
  425. u32 dw1 = MI_SEMAPHORE_MBOX |
  426. MI_SEMAPHORE_COMPARE |
  427. MI_SEMAPHORE_REGISTER;
  428. ret = intel_ring_begin(waiter, 4);
  429. if (ret)
  430. return ret;
  431. intel_ring_emit(waiter, dw1 | signaller->semaphore_register[ring]);
  432. intel_ring_emit(waiter, seqno);
  433. intel_ring_emit(waiter, 0);
  434. intel_ring_emit(waiter, MI_NOOP);
  435. intel_ring_advance(waiter);
  436. return 0;
  437. }
  438. /* VCS->RCS (RVSYNC) or BCS->RCS (RBSYNC) */
  439. int
  440. render_ring_sync_to(struct intel_ring_buffer *waiter,
  441. struct intel_ring_buffer *signaller,
  442. u32 seqno)
  443. {
  444. WARN_ON(signaller->semaphore_register[RCS] == MI_SEMAPHORE_SYNC_INVALID);
  445. return intel_ring_sync(waiter,
  446. signaller,
  447. RCS,
  448. seqno);
  449. }
  450. /* RCS->VCS (VRSYNC) or BCS->VCS (VBSYNC) */
  451. int
  452. gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
  453. struct intel_ring_buffer *signaller,
  454. u32 seqno)
  455. {
  456. WARN_ON(signaller->semaphore_register[VCS] == MI_SEMAPHORE_SYNC_INVALID);
  457. return intel_ring_sync(waiter,
  458. signaller,
  459. VCS,
  460. seqno);
  461. }
  462. /* RCS->BCS (BRSYNC) or VCS->BCS (BVSYNC) */
  463. int
  464. gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
  465. struct intel_ring_buffer *signaller,
  466. u32 seqno)
  467. {
  468. WARN_ON(signaller->semaphore_register[BCS] == MI_SEMAPHORE_SYNC_INVALID);
  469. return intel_ring_sync(waiter,
  470. signaller,
  471. BCS,
  472. seqno);
  473. }
  474. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  475. do { \
  476. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  477. PIPE_CONTROL_DEPTH_STALL); \
  478. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  479. intel_ring_emit(ring__, 0); \
  480. intel_ring_emit(ring__, 0); \
  481. } while (0)
  482. static int
  483. pc_render_add_request(struct intel_ring_buffer *ring,
  484. u32 *result)
  485. {
  486. struct drm_device *dev = ring->dev;
  487. u32 seqno = i915_gem_get_seqno(dev);
  488. struct pipe_control *pc = ring->private;
  489. u32 scratch_addr = pc->gtt_offset + 128;
  490. int ret;
  491. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  492. * incoherent with writes to memory, i.e. completely fubar,
  493. * so we need to use PIPE_NOTIFY instead.
  494. *
  495. * However, we also need to workaround the qword write
  496. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  497. * memory before requesting an interrupt.
  498. */
  499. ret = intel_ring_begin(ring, 32);
  500. if (ret)
  501. return ret;
  502. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  503. PIPE_CONTROL_WRITE_FLUSH |
  504. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  505. intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  506. intel_ring_emit(ring, seqno);
  507. intel_ring_emit(ring, 0);
  508. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  509. scratch_addr += 128; /* write to separate cachelines */
  510. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  511. scratch_addr += 128;
  512. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  513. scratch_addr += 128;
  514. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  515. scratch_addr += 128;
  516. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  517. scratch_addr += 128;
  518. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  519. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  520. PIPE_CONTROL_WRITE_FLUSH |
  521. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  522. PIPE_CONTROL_NOTIFY);
  523. intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  524. intel_ring_emit(ring, seqno);
  525. intel_ring_emit(ring, 0);
  526. intel_ring_advance(ring);
  527. *result = seqno;
  528. return 0;
  529. }
  530. static int
  531. render_ring_add_request(struct intel_ring_buffer *ring,
  532. u32 *result)
  533. {
  534. struct drm_device *dev = ring->dev;
  535. u32 seqno = i915_gem_get_seqno(dev);
  536. int ret;
  537. ret = intel_ring_begin(ring, 4);
  538. if (ret)
  539. return ret;
  540. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  541. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  542. intel_ring_emit(ring, seqno);
  543. intel_ring_emit(ring, MI_USER_INTERRUPT);
  544. intel_ring_advance(ring);
  545. *result = seqno;
  546. return 0;
  547. }
  548. static u32
  549. ring_get_seqno(struct intel_ring_buffer *ring)
  550. {
  551. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  552. }
  553. static u32
  554. pc_render_get_seqno(struct intel_ring_buffer *ring)
  555. {
  556. struct pipe_control *pc = ring->private;
  557. return pc->cpu_page[0];
  558. }
  559. static void
  560. ironlake_enable_irq(drm_i915_private_t *dev_priv, u32 mask)
  561. {
  562. dev_priv->gt_irq_mask &= ~mask;
  563. I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
  564. POSTING_READ(GTIMR);
  565. }
  566. static void
  567. ironlake_disable_irq(drm_i915_private_t *dev_priv, u32 mask)
  568. {
  569. dev_priv->gt_irq_mask |= mask;
  570. I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
  571. POSTING_READ(GTIMR);
  572. }
  573. static void
  574. i915_enable_irq(drm_i915_private_t *dev_priv, u32 mask)
  575. {
  576. dev_priv->irq_mask &= ~mask;
  577. I915_WRITE(IMR, dev_priv->irq_mask);
  578. POSTING_READ(IMR);
  579. }
  580. static void
  581. i915_disable_irq(drm_i915_private_t *dev_priv, u32 mask)
  582. {
  583. dev_priv->irq_mask |= mask;
  584. I915_WRITE(IMR, dev_priv->irq_mask);
  585. POSTING_READ(IMR);
  586. }
  587. static bool
  588. render_ring_get_irq(struct intel_ring_buffer *ring)
  589. {
  590. struct drm_device *dev = ring->dev;
  591. drm_i915_private_t *dev_priv = dev->dev_private;
  592. if (!dev->irq_enabled)
  593. return false;
  594. spin_lock(&ring->irq_lock);
  595. if (ring->irq_refcount++ == 0) {
  596. if (HAS_PCH_SPLIT(dev))
  597. ironlake_enable_irq(dev_priv,
  598. GT_PIPE_NOTIFY | GT_USER_INTERRUPT);
  599. else
  600. i915_enable_irq(dev_priv, I915_USER_INTERRUPT);
  601. }
  602. spin_unlock(&ring->irq_lock);
  603. return true;
  604. }
  605. static void
  606. render_ring_put_irq(struct intel_ring_buffer *ring)
  607. {
  608. struct drm_device *dev = ring->dev;
  609. drm_i915_private_t *dev_priv = dev->dev_private;
  610. spin_lock(&ring->irq_lock);
  611. if (--ring->irq_refcount == 0) {
  612. if (HAS_PCH_SPLIT(dev))
  613. ironlake_disable_irq(dev_priv,
  614. GT_USER_INTERRUPT |
  615. GT_PIPE_NOTIFY);
  616. else
  617. i915_disable_irq(dev_priv, I915_USER_INTERRUPT);
  618. }
  619. spin_unlock(&ring->irq_lock);
  620. }
  621. void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
  622. {
  623. struct drm_device *dev = ring->dev;
  624. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  625. u32 mmio = 0;
  626. /* The ring status page addresses are no longer next to the rest of
  627. * the ring registers as of gen7.
  628. */
  629. if (IS_GEN7(dev)) {
  630. switch (ring->id) {
  631. case RING_RENDER:
  632. mmio = RENDER_HWS_PGA_GEN7;
  633. break;
  634. case RING_BLT:
  635. mmio = BLT_HWS_PGA_GEN7;
  636. break;
  637. case RING_BSD:
  638. mmio = BSD_HWS_PGA_GEN7;
  639. break;
  640. }
  641. } else if (IS_GEN6(ring->dev)) {
  642. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  643. } else {
  644. mmio = RING_HWS_PGA(ring->mmio_base);
  645. }
  646. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  647. POSTING_READ(mmio);
  648. }
  649. static int
  650. bsd_ring_flush(struct intel_ring_buffer *ring,
  651. u32 invalidate_domains,
  652. u32 flush_domains)
  653. {
  654. int ret;
  655. ret = intel_ring_begin(ring, 2);
  656. if (ret)
  657. return ret;
  658. intel_ring_emit(ring, MI_FLUSH);
  659. intel_ring_emit(ring, MI_NOOP);
  660. intel_ring_advance(ring);
  661. return 0;
  662. }
  663. static int
  664. ring_add_request(struct intel_ring_buffer *ring,
  665. u32 *result)
  666. {
  667. u32 seqno;
  668. int ret;
  669. ret = intel_ring_begin(ring, 4);
  670. if (ret)
  671. return ret;
  672. seqno = i915_gem_get_seqno(ring->dev);
  673. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  674. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  675. intel_ring_emit(ring, seqno);
  676. intel_ring_emit(ring, MI_USER_INTERRUPT);
  677. intel_ring_advance(ring);
  678. *result = seqno;
  679. return 0;
  680. }
  681. static bool
  682. gen6_ring_get_irq(struct intel_ring_buffer *ring, u32 gflag, u32 rflag)
  683. {
  684. struct drm_device *dev = ring->dev;
  685. drm_i915_private_t *dev_priv = dev->dev_private;
  686. if (!dev->irq_enabled)
  687. return false;
  688. spin_lock(&ring->irq_lock);
  689. if (ring->irq_refcount++ == 0) {
  690. ring->irq_mask &= ~rflag;
  691. I915_WRITE_IMR(ring, ring->irq_mask);
  692. ironlake_enable_irq(dev_priv, gflag);
  693. }
  694. spin_unlock(&ring->irq_lock);
  695. return true;
  696. }
  697. static void
  698. gen6_ring_put_irq(struct intel_ring_buffer *ring, u32 gflag, u32 rflag)
  699. {
  700. struct drm_device *dev = ring->dev;
  701. drm_i915_private_t *dev_priv = dev->dev_private;
  702. spin_lock(&ring->irq_lock);
  703. if (--ring->irq_refcount == 0) {
  704. ring->irq_mask |= rflag;
  705. I915_WRITE_IMR(ring, ring->irq_mask);
  706. ironlake_disable_irq(dev_priv, gflag);
  707. }
  708. spin_unlock(&ring->irq_lock);
  709. }
  710. static bool
  711. bsd_ring_get_irq(struct intel_ring_buffer *ring)
  712. {
  713. struct drm_device *dev = ring->dev;
  714. drm_i915_private_t *dev_priv = dev->dev_private;
  715. if (!dev->irq_enabled)
  716. return false;
  717. spin_lock(&ring->irq_lock);
  718. if (ring->irq_refcount++ == 0) {
  719. if (IS_G4X(dev))
  720. i915_enable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
  721. else
  722. ironlake_enable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
  723. }
  724. spin_unlock(&ring->irq_lock);
  725. return true;
  726. }
  727. static void
  728. bsd_ring_put_irq(struct intel_ring_buffer *ring)
  729. {
  730. struct drm_device *dev = ring->dev;
  731. drm_i915_private_t *dev_priv = dev->dev_private;
  732. spin_lock(&ring->irq_lock);
  733. if (--ring->irq_refcount == 0) {
  734. if (IS_G4X(dev))
  735. i915_disable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
  736. else
  737. ironlake_disable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
  738. }
  739. spin_unlock(&ring->irq_lock);
  740. }
  741. static int
  742. ring_dispatch_execbuffer(struct intel_ring_buffer *ring, u32 offset, u32 length)
  743. {
  744. int ret;
  745. ret = intel_ring_begin(ring, 2);
  746. if (ret)
  747. return ret;
  748. intel_ring_emit(ring,
  749. MI_BATCH_BUFFER_START | (2 << 6) |
  750. MI_BATCH_NON_SECURE_I965);
  751. intel_ring_emit(ring, offset);
  752. intel_ring_advance(ring);
  753. return 0;
  754. }
  755. static int
  756. render_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  757. u32 offset, u32 len)
  758. {
  759. struct drm_device *dev = ring->dev;
  760. int ret;
  761. if (IS_I830(dev) || IS_845G(dev)) {
  762. ret = intel_ring_begin(ring, 4);
  763. if (ret)
  764. return ret;
  765. intel_ring_emit(ring, MI_BATCH_BUFFER);
  766. intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
  767. intel_ring_emit(ring, offset + len - 8);
  768. intel_ring_emit(ring, 0);
  769. } else {
  770. ret = intel_ring_begin(ring, 2);
  771. if (ret)
  772. return ret;
  773. if (INTEL_INFO(dev)->gen >= 4) {
  774. intel_ring_emit(ring,
  775. MI_BATCH_BUFFER_START | (2 << 6) |
  776. MI_BATCH_NON_SECURE_I965);
  777. intel_ring_emit(ring, offset);
  778. } else {
  779. intel_ring_emit(ring,
  780. MI_BATCH_BUFFER_START | (2 << 6));
  781. intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
  782. }
  783. }
  784. intel_ring_advance(ring);
  785. return 0;
  786. }
  787. static void cleanup_status_page(struct intel_ring_buffer *ring)
  788. {
  789. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  790. struct drm_i915_gem_object *obj;
  791. obj = ring->status_page.obj;
  792. if (obj == NULL)
  793. return;
  794. kunmap(obj->pages[0]);
  795. i915_gem_object_unpin(obj);
  796. drm_gem_object_unreference(&obj->base);
  797. ring->status_page.obj = NULL;
  798. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  799. }
  800. static int init_status_page(struct intel_ring_buffer *ring)
  801. {
  802. struct drm_device *dev = ring->dev;
  803. drm_i915_private_t *dev_priv = dev->dev_private;
  804. struct drm_i915_gem_object *obj;
  805. int ret;
  806. obj = i915_gem_alloc_object(dev, 4096);
  807. if (obj == NULL) {
  808. DRM_ERROR("Failed to allocate status page\n");
  809. ret = -ENOMEM;
  810. goto err;
  811. }
  812. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  813. ret = i915_gem_object_pin(obj, 4096, true);
  814. if (ret != 0) {
  815. goto err_unref;
  816. }
  817. ring->status_page.gfx_addr = obj->gtt_offset;
  818. ring->status_page.page_addr = kmap(obj->pages[0]);
  819. if (ring->status_page.page_addr == NULL) {
  820. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  821. goto err_unpin;
  822. }
  823. ring->status_page.obj = obj;
  824. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  825. intel_ring_setup_status_page(ring);
  826. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  827. ring->name, ring->status_page.gfx_addr);
  828. return 0;
  829. err_unpin:
  830. i915_gem_object_unpin(obj);
  831. err_unref:
  832. drm_gem_object_unreference(&obj->base);
  833. err:
  834. return ret;
  835. }
  836. int intel_init_ring_buffer(struct drm_device *dev,
  837. struct intel_ring_buffer *ring)
  838. {
  839. struct drm_i915_gem_object *obj;
  840. int ret;
  841. ring->dev = dev;
  842. INIT_LIST_HEAD(&ring->active_list);
  843. INIT_LIST_HEAD(&ring->request_list);
  844. INIT_LIST_HEAD(&ring->gpu_write_list);
  845. init_waitqueue_head(&ring->irq_queue);
  846. spin_lock_init(&ring->irq_lock);
  847. ring->irq_mask = ~0;
  848. if (I915_NEED_GFX_HWS(dev)) {
  849. ret = init_status_page(ring);
  850. if (ret)
  851. return ret;
  852. }
  853. obj = i915_gem_alloc_object(dev, ring->size);
  854. if (obj == NULL) {
  855. DRM_ERROR("Failed to allocate ringbuffer\n");
  856. ret = -ENOMEM;
  857. goto err_hws;
  858. }
  859. ring->obj = obj;
  860. ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
  861. if (ret)
  862. goto err_unref;
  863. ring->map.size = ring->size;
  864. ring->map.offset = dev->agp->base + obj->gtt_offset;
  865. ring->map.type = 0;
  866. ring->map.flags = 0;
  867. ring->map.mtrr = 0;
  868. drm_core_ioremap_wc(&ring->map, dev);
  869. if (ring->map.handle == NULL) {
  870. DRM_ERROR("Failed to map ringbuffer.\n");
  871. ret = -EINVAL;
  872. goto err_unpin;
  873. }
  874. ring->virtual_start = ring->map.handle;
  875. ret = ring->init(ring);
  876. if (ret)
  877. goto err_unmap;
  878. /* Workaround an erratum on the i830 which causes a hang if
  879. * the TAIL pointer points to within the last 2 cachelines
  880. * of the buffer.
  881. */
  882. ring->effective_size = ring->size;
  883. if (IS_I830(ring->dev))
  884. ring->effective_size -= 128;
  885. return 0;
  886. err_unmap:
  887. drm_core_ioremapfree(&ring->map, dev);
  888. err_unpin:
  889. i915_gem_object_unpin(obj);
  890. err_unref:
  891. drm_gem_object_unreference(&obj->base);
  892. ring->obj = NULL;
  893. err_hws:
  894. cleanup_status_page(ring);
  895. return ret;
  896. }
  897. void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
  898. {
  899. struct drm_i915_private *dev_priv;
  900. int ret;
  901. if (ring->obj == NULL)
  902. return;
  903. /* Disable the ring buffer. The ring must be idle at this point */
  904. dev_priv = ring->dev->dev_private;
  905. ret = intel_wait_ring_idle(ring);
  906. if (ret)
  907. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  908. ring->name, ret);
  909. I915_WRITE_CTL(ring, 0);
  910. drm_core_ioremapfree(&ring->map, ring->dev);
  911. i915_gem_object_unpin(ring->obj);
  912. drm_gem_object_unreference(&ring->obj->base);
  913. ring->obj = NULL;
  914. if (ring->cleanup)
  915. ring->cleanup(ring);
  916. cleanup_status_page(ring);
  917. }
  918. static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
  919. {
  920. unsigned int *virt;
  921. int rem = ring->size - ring->tail;
  922. if (ring->space < rem) {
  923. int ret = intel_wait_ring_buffer(ring, rem);
  924. if (ret)
  925. return ret;
  926. }
  927. virt = (unsigned int *)(ring->virtual_start + ring->tail);
  928. rem /= 8;
  929. while (rem--) {
  930. *virt++ = MI_NOOP;
  931. *virt++ = MI_NOOP;
  932. }
  933. ring->tail = 0;
  934. ring->space = ring_space(ring);
  935. return 0;
  936. }
  937. int intel_wait_ring_buffer(struct intel_ring_buffer *ring, int n)
  938. {
  939. struct drm_device *dev = ring->dev;
  940. struct drm_i915_private *dev_priv = dev->dev_private;
  941. unsigned long end;
  942. u32 head;
  943. /* If the reported head position has wrapped or hasn't advanced,
  944. * fallback to the slow and accurate path.
  945. */
  946. head = intel_read_status_page(ring, 4);
  947. if (head > ring->head) {
  948. ring->head = head;
  949. ring->space = ring_space(ring);
  950. if (ring->space >= n)
  951. return 0;
  952. }
  953. trace_i915_ring_wait_begin(ring);
  954. end = jiffies + 3 * HZ;
  955. do {
  956. ring->head = I915_READ_HEAD(ring);
  957. ring->space = ring_space(ring);
  958. if (ring->space >= n) {
  959. trace_i915_ring_wait_end(ring);
  960. return 0;
  961. }
  962. if (dev->primary->master) {
  963. struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
  964. if (master_priv->sarea_priv)
  965. master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
  966. }
  967. msleep(1);
  968. if (atomic_read(&dev_priv->mm.wedged))
  969. return -EAGAIN;
  970. } while (!time_after(jiffies, end));
  971. trace_i915_ring_wait_end(ring);
  972. return -EBUSY;
  973. }
  974. int intel_ring_begin(struct intel_ring_buffer *ring,
  975. int num_dwords)
  976. {
  977. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  978. int n = 4*num_dwords;
  979. int ret;
  980. if (unlikely(atomic_read(&dev_priv->mm.wedged)))
  981. return -EIO;
  982. if (unlikely(ring->tail + n > ring->effective_size)) {
  983. ret = intel_wrap_ring_buffer(ring);
  984. if (unlikely(ret))
  985. return ret;
  986. }
  987. if (unlikely(ring->space < n)) {
  988. ret = intel_wait_ring_buffer(ring, n);
  989. if (unlikely(ret))
  990. return ret;
  991. }
  992. ring->space -= n;
  993. return 0;
  994. }
  995. void intel_ring_advance(struct intel_ring_buffer *ring)
  996. {
  997. ring->tail &= ring->size - 1;
  998. ring->write_tail(ring, ring->tail);
  999. }
  1000. static const struct intel_ring_buffer render_ring = {
  1001. .name = "render ring",
  1002. .id = RING_RENDER,
  1003. .mmio_base = RENDER_RING_BASE,
  1004. .size = 32 * PAGE_SIZE,
  1005. .init = init_render_ring,
  1006. .write_tail = ring_write_tail,
  1007. .flush = render_ring_flush,
  1008. .add_request = render_ring_add_request,
  1009. .get_seqno = ring_get_seqno,
  1010. .irq_get = render_ring_get_irq,
  1011. .irq_put = render_ring_put_irq,
  1012. .dispatch_execbuffer = render_ring_dispatch_execbuffer,
  1013. .cleanup = render_ring_cleanup,
  1014. .sync_to = render_ring_sync_to,
  1015. .semaphore_register = {MI_SEMAPHORE_SYNC_INVALID,
  1016. MI_SEMAPHORE_SYNC_RV,
  1017. MI_SEMAPHORE_SYNC_RB},
  1018. .signal_mbox = {GEN6_VRSYNC, GEN6_BRSYNC},
  1019. };
  1020. /* ring buffer for bit-stream decoder */
  1021. static const struct intel_ring_buffer bsd_ring = {
  1022. .name = "bsd ring",
  1023. .id = RING_BSD,
  1024. .mmio_base = BSD_RING_BASE,
  1025. .size = 32 * PAGE_SIZE,
  1026. .init = init_ring_common,
  1027. .write_tail = ring_write_tail,
  1028. .flush = bsd_ring_flush,
  1029. .add_request = ring_add_request,
  1030. .get_seqno = ring_get_seqno,
  1031. .irq_get = bsd_ring_get_irq,
  1032. .irq_put = bsd_ring_put_irq,
  1033. .dispatch_execbuffer = ring_dispatch_execbuffer,
  1034. };
  1035. static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
  1036. u32 value)
  1037. {
  1038. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1039. /* Every tail move must follow the sequence below */
  1040. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1041. GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
  1042. GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_DISABLE);
  1043. I915_WRITE(GEN6_BSD_RNCID, 0x0);
  1044. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1045. GEN6_BSD_SLEEP_PSMI_CONTROL_IDLE_INDICATOR) == 0,
  1046. 50))
  1047. DRM_ERROR("timed out waiting for IDLE Indicator\n");
  1048. I915_WRITE_TAIL(ring, value);
  1049. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1050. GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
  1051. GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_ENABLE);
  1052. }
  1053. static int gen6_ring_flush(struct intel_ring_buffer *ring,
  1054. u32 invalidate, u32 flush)
  1055. {
  1056. uint32_t cmd;
  1057. int ret;
  1058. ret = intel_ring_begin(ring, 4);
  1059. if (ret)
  1060. return ret;
  1061. cmd = MI_FLUSH_DW;
  1062. if (invalidate & I915_GEM_GPU_DOMAINS)
  1063. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  1064. intel_ring_emit(ring, cmd);
  1065. intel_ring_emit(ring, 0);
  1066. intel_ring_emit(ring, 0);
  1067. intel_ring_emit(ring, MI_NOOP);
  1068. intel_ring_advance(ring);
  1069. return 0;
  1070. }
  1071. static int
  1072. gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1073. u32 offset, u32 len)
  1074. {
  1075. int ret;
  1076. ret = intel_ring_begin(ring, 2);
  1077. if (ret)
  1078. return ret;
  1079. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965);
  1080. /* bit0-7 is the length on GEN6+ */
  1081. intel_ring_emit(ring, offset);
  1082. intel_ring_advance(ring);
  1083. return 0;
  1084. }
  1085. static bool
  1086. gen6_render_ring_get_irq(struct intel_ring_buffer *ring)
  1087. {
  1088. return gen6_ring_get_irq(ring,
  1089. GT_USER_INTERRUPT,
  1090. GEN6_RENDER_USER_INTERRUPT);
  1091. }
  1092. static void
  1093. gen6_render_ring_put_irq(struct intel_ring_buffer *ring)
  1094. {
  1095. return gen6_ring_put_irq(ring,
  1096. GT_USER_INTERRUPT,
  1097. GEN6_RENDER_USER_INTERRUPT);
  1098. }
  1099. static bool
  1100. gen6_bsd_ring_get_irq(struct intel_ring_buffer *ring)
  1101. {
  1102. return gen6_ring_get_irq(ring,
  1103. GT_GEN6_BSD_USER_INTERRUPT,
  1104. GEN6_BSD_USER_INTERRUPT);
  1105. }
  1106. static void
  1107. gen6_bsd_ring_put_irq(struct intel_ring_buffer *ring)
  1108. {
  1109. return gen6_ring_put_irq(ring,
  1110. GT_GEN6_BSD_USER_INTERRUPT,
  1111. GEN6_BSD_USER_INTERRUPT);
  1112. }
  1113. /* ring buffer for Video Codec for Gen6+ */
  1114. static const struct intel_ring_buffer gen6_bsd_ring = {
  1115. .name = "gen6 bsd ring",
  1116. .id = RING_BSD,
  1117. .mmio_base = GEN6_BSD_RING_BASE,
  1118. .size = 32 * PAGE_SIZE,
  1119. .init = init_ring_common,
  1120. .write_tail = gen6_bsd_ring_write_tail,
  1121. .flush = gen6_ring_flush,
  1122. .add_request = gen6_add_request,
  1123. .get_seqno = ring_get_seqno,
  1124. .irq_get = gen6_bsd_ring_get_irq,
  1125. .irq_put = gen6_bsd_ring_put_irq,
  1126. .dispatch_execbuffer = gen6_ring_dispatch_execbuffer,
  1127. .sync_to = gen6_bsd_ring_sync_to,
  1128. .semaphore_register = {MI_SEMAPHORE_SYNC_VR,
  1129. MI_SEMAPHORE_SYNC_INVALID,
  1130. MI_SEMAPHORE_SYNC_VB},
  1131. .signal_mbox = {GEN6_RVSYNC, GEN6_BVSYNC},
  1132. };
  1133. /* Blitter support (SandyBridge+) */
  1134. static bool
  1135. blt_ring_get_irq(struct intel_ring_buffer *ring)
  1136. {
  1137. return gen6_ring_get_irq(ring,
  1138. GT_BLT_USER_INTERRUPT,
  1139. GEN6_BLITTER_USER_INTERRUPT);
  1140. }
  1141. static void
  1142. blt_ring_put_irq(struct intel_ring_buffer *ring)
  1143. {
  1144. gen6_ring_put_irq(ring,
  1145. GT_BLT_USER_INTERRUPT,
  1146. GEN6_BLITTER_USER_INTERRUPT);
  1147. }
  1148. /* Workaround for some stepping of SNB,
  1149. * each time when BLT engine ring tail moved,
  1150. * the first command in the ring to be parsed
  1151. * should be MI_BATCH_BUFFER_START
  1152. */
  1153. #define NEED_BLT_WORKAROUND(dev) \
  1154. (IS_GEN6(dev) && (dev->pdev->revision < 8))
  1155. static inline struct drm_i915_gem_object *
  1156. to_blt_workaround(struct intel_ring_buffer *ring)
  1157. {
  1158. return ring->private;
  1159. }
  1160. static int blt_ring_init(struct intel_ring_buffer *ring)
  1161. {
  1162. if (NEED_BLT_WORKAROUND(ring->dev)) {
  1163. struct drm_i915_gem_object *obj;
  1164. u32 *ptr;
  1165. int ret;
  1166. obj = i915_gem_alloc_object(ring->dev, 4096);
  1167. if (obj == NULL)
  1168. return -ENOMEM;
  1169. ret = i915_gem_object_pin(obj, 4096, true);
  1170. if (ret) {
  1171. drm_gem_object_unreference(&obj->base);
  1172. return ret;
  1173. }
  1174. ptr = kmap(obj->pages[0]);
  1175. *ptr++ = MI_BATCH_BUFFER_END;
  1176. *ptr++ = MI_NOOP;
  1177. kunmap(obj->pages[0]);
  1178. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  1179. if (ret) {
  1180. i915_gem_object_unpin(obj);
  1181. drm_gem_object_unreference(&obj->base);
  1182. return ret;
  1183. }
  1184. ring->private = obj;
  1185. }
  1186. return init_ring_common(ring);
  1187. }
  1188. static int blt_ring_begin(struct intel_ring_buffer *ring,
  1189. int num_dwords)
  1190. {
  1191. if (ring->private) {
  1192. int ret = intel_ring_begin(ring, num_dwords+2);
  1193. if (ret)
  1194. return ret;
  1195. intel_ring_emit(ring, MI_BATCH_BUFFER_START);
  1196. intel_ring_emit(ring, to_blt_workaround(ring)->gtt_offset);
  1197. return 0;
  1198. } else
  1199. return intel_ring_begin(ring, 4);
  1200. }
  1201. static int blt_ring_flush(struct intel_ring_buffer *ring,
  1202. u32 invalidate, u32 flush)
  1203. {
  1204. uint32_t cmd;
  1205. int ret;
  1206. ret = blt_ring_begin(ring, 4);
  1207. if (ret)
  1208. return ret;
  1209. cmd = MI_FLUSH_DW;
  1210. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1211. cmd |= MI_INVALIDATE_TLB;
  1212. intel_ring_emit(ring, cmd);
  1213. intel_ring_emit(ring, 0);
  1214. intel_ring_emit(ring, 0);
  1215. intel_ring_emit(ring, MI_NOOP);
  1216. intel_ring_advance(ring);
  1217. return 0;
  1218. }
  1219. static void blt_ring_cleanup(struct intel_ring_buffer *ring)
  1220. {
  1221. if (!ring->private)
  1222. return;
  1223. i915_gem_object_unpin(ring->private);
  1224. drm_gem_object_unreference(ring->private);
  1225. ring->private = NULL;
  1226. }
  1227. static const struct intel_ring_buffer gen6_blt_ring = {
  1228. .name = "blt ring",
  1229. .id = RING_BLT,
  1230. .mmio_base = BLT_RING_BASE,
  1231. .size = 32 * PAGE_SIZE,
  1232. .init = blt_ring_init,
  1233. .write_tail = ring_write_tail,
  1234. .flush = blt_ring_flush,
  1235. .add_request = gen6_add_request,
  1236. .get_seqno = ring_get_seqno,
  1237. .irq_get = blt_ring_get_irq,
  1238. .irq_put = blt_ring_put_irq,
  1239. .dispatch_execbuffer = gen6_ring_dispatch_execbuffer,
  1240. .cleanup = blt_ring_cleanup,
  1241. .sync_to = gen6_blt_ring_sync_to,
  1242. .semaphore_register = {MI_SEMAPHORE_SYNC_BR,
  1243. MI_SEMAPHORE_SYNC_BV,
  1244. MI_SEMAPHORE_SYNC_INVALID},
  1245. .signal_mbox = {GEN6_RBSYNC, GEN6_VBSYNC},
  1246. };
  1247. int intel_init_render_ring_buffer(struct drm_device *dev)
  1248. {
  1249. drm_i915_private_t *dev_priv = dev->dev_private;
  1250. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  1251. *ring = render_ring;
  1252. if (INTEL_INFO(dev)->gen >= 6) {
  1253. ring->add_request = gen6_add_request;
  1254. ring->flush = gen6_render_ring_flush;
  1255. ring->irq_get = gen6_render_ring_get_irq;
  1256. ring->irq_put = gen6_render_ring_put_irq;
  1257. } else if (IS_GEN5(dev)) {
  1258. ring->add_request = pc_render_add_request;
  1259. ring->get_seqno = pc_render_get_seqno;
  1260. }
  1261. if (!I915_NEED_GFX_HWS(dev)) {
  1262. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1263. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1264. }
  1265. return intel_init_ring_buffer(dev, ring);
  1266. }
  1267. int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
  1268. {
  1269. drm_i915_private_t *dev_priv = dev->dev_private;
  1270. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  1271. *ring = render_ring;
  1272. if (INTEL_INFO(dev)->gen >= 6) {
  1273. ring->add_request = gen6_add_request;
  1274. ring->irq_get = gen6_render_ring_get_irq;
  1275. ring->irq_put = gen6_render_ring_put_irq;
  1276. } else if (IS_GEN5(dev)) {
  1277. ring->add_request = pc_render_add_request;
  1278. ring->get_seqno = pc_render_get_seqno;
  1279. }
  1280. if (!I915_NEED_GFX_HWS(dev))
  1281. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1282. ring->dev = dev;
  1283. INIT_LIST_HEAD(&ring->active_list);
  1284. INIT_LIST_HEAD(&ring->request_list);
  1285. INIT_LIST_HEAD(&ring->gpu_write_list);
  1286. ring->size = size;
  1287. ring->effective_size = ring->size;
  1288. if (IS_I830(ring->dev))
  1289. ring->effective_size -= 128;
  1290. ring->map.offset = start;
  1291. ring->map.size = size;
  1292. ring->map.type = 0;
  1293. ring->map.flags = 0;
  1294. ring->map.mtrr = 0;
  1295. drm_core_ioremap_wc(&ring->map, dev);
  1296. if (ring->map.handle == NULL) {
  1297. DRM_ERROR("can not ioremap virtual address for"
  1298. " ring buffer\n");
  1299. return -ENOMEM;
  1300. }
  1301. ring->virtual_start = (void __force __iomem *)ring->map.handle;
  1302. return 0;
  1303. }
  1304. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  1305. {
  1306. drm_i915_private_t *dev_priv = dev->dev_private;
  1307. struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
  1308. if (IS_GEN6(dev) || IS_GEN7(dev))
  1309. *ring = gen6_bsd_ring;
  1310. else
  1311. *ring = bsd_ring;
  1312. return intel_init_ring_buffer(dev, ring);
  1313. }
  1314. int intel_init_blt_ring_buffer(struct drm_device *dev)
  1315. {
  1316. drm_i915_private_t *dev_priv = dev->dev_private;
  1317. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  1318. *ring = gen6_blt_ring;
  1319. return intel_init_ring_buffer(dev, ring);
  1320. }