net.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720
  1. /*
  2. * IPv4 over IEEE 1394, per RFC 2734
  3. *
  4. * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
  5. *
  6. * based on eth1394 by Ben Collins et al
  7. */
  8. #include <linux/bug.h>
  9. #include <linux/compiler.h>
  10. #include <linux/delay.h>
  11. #include <linux/device.h>
  12. #include <linux/ethtool.h>
  13. #include <linux/firewire.h>
  14. #include <linux/firewire-constants.h>
  15. #include <linux/highmem.h>
  16. #include <linux/in.h>
  17. #include <linux/ip.h>
  18. #include <linux/jiffies.h>
  19. #include <linux/mod_devicetable.h>
  20. #include <linux/module.h>
  21. #include <linux/moduleparam.h>
  22. #include <linux/mutex.h>
  23. #include <linux/netdevice.h>
  24. #include <linux/skbuff.h>
  25. #include <linux/slab.h>
  26. #include <linux/spinlock.h>
  27. #include <asm/unaligned.h>
  28. #include <net/arp.h>
  29. /* rx limits */
  30. #define FWNET_MAX_FRAGMENTS 30 /* arbitrary, > TX queue depth */
  31. #define FWNET_ISO_PAGE_COUNT (PAGE_SIZE < 16*1024 ? 4 : 2)
  32. /* tx limits */
  33. #define FWNET_MAX_QUEUED_DATAGRAMS 20 /* < 64 = number of tlabels */
  34. #define FWNET_MIN_QUEUED_DATAGRAMS 10 /* should keep AT DMA busy enough */
  35. #define FWNET_TX_QUEUE_LEN FWNET_MAX_QUEUED_DATAGRAMS /* ? */
  36. #define IEEE1394_BROADCAST_CHANNEL 31
  37. #define IEEE1394_ALL_NODES (0xffc0 | 0x003f)
  38. #define IEEE1394_MAX_PAYLOAD_S100 512
  39. #define FWNET_NO_FIFO_ADDR (~0ULL)
  40. #define IANA_SPECIFIER_ID 0x00005eU
  41. #define RFC2734_SW_VERSION 0x000001U
  42. #define IEEE1394_GASP_HDR_SIZE 8
  43. #define RFC2374_UNFRAG_HDR_SIZE 4
  44. #define RFC2374_FRAG_HDR_SIZE 8
  45. #define RFC2374_FRAG_OVERHEAD 4
  46. #define RFC2374_HDR_UNFRAG 0 /* unfragmented */
  47. #define RFC2374_HDR_FIRSTFRAG 1 /* first fragment */
  48. #define RFC2374_HDR_LASTFRAG 2 /* last fragment */
  49. #define RFC2374_HDR_INTFRAG 3 /* interior fragment */
  50. #define RFC2734_HW_ADDR_LEN 16
  51. struct rfc2734_arp {
  52. __be16 hw_type; /* 0x0018 */
  53. __be16 proto_type; /* 0x0806 */
  54. u8 hw_addr_len; /* 16 */
  55. u8 ip_addr_len; /* 4 */
  56. __be16 opcode; /* ARP Opcode */
  57. /* Above is exactly the same format as struct arphdr */
  58. __be64 s_uniq_id; /* Sender's 64bit EUI */
  59. u8 max_rec; /* Sender's max packet size */
  60. u8 sspd; /* Sender's max speed */
  61. __be16 fifo_hi; /* hi 16bits of sender's FIFO addr */
  62. __be32 fifo_lo; /* lo 32bits of sender's FIFO addr */
  63. __be32 sip; /* Sender's IP Address */
  64. __be32 tip; /* IP Address of requested hw addr */
  65. } __packed;
  66. /* This header format is specific to this driver implementation. */
  67. #define FWNET_ALEN 8
  68. #define FWNET_HLEN 10
  69. struct fwnet_header {
  70. u8 h_dest[FWNET_ALEN]; /* destination address */
  71. __be16 h_proto; /* packet type ID field */
  72. } __packed;
  73. /* IPv4 and IPv6 encapsulation header */
  74. struct rfc2734_header {
  75. u32 w0;
  76. u32 w1;
  77. };
  78. #define fwnet_get_hdr_lf(h) (((h)->w0 & 0xc0000000) >> 30)
  79. #define fwnet_get_hdr_ether_type(h) (((h)->w0 & 0x0000ffff))
  80. #define fwnet_get_hdr_dg_size(h) (((h)->w0 & 0x0fff0000) >> 16)
  81. #define fwnet_get_hdr_fg_off(h) (((h)->w0 & 0x00000fff))
  82. #define fwnet_get_hdr_dgl(h) (((h)->w1 & 0xffff0000) >> 16)
  83. #define fwnet_set_hdr_lf(lf) ((lf) << 30)
  84. #define fwnet_set_hdr_ether_type(et) (et)
  85. #define fwnet_set_hdr_dg_size(dgs) ((dgs) << 16)
  86. #define fwnet_set_hdr_fg_off(fgo) (fgo)
  87. #define fwnet_set_hdr_dgl(dgl) ((dgl) << 16)
  88. static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
  89. unsigned ether_type)
  90. {
  91. hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
  92. | fwnet_set_hdr_ether_type(ether_type);
  93. }
  94. static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
  95. unsigned ether_type, unsigned dg_size, unsigned dgl)
  96. {
  97. hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
  98. | fwnet_set_hdr_dg_size(dg_size)
  99. | fwnet_set_hdr_ether_type(ether_type);
  100. hdr->w1 = fwnet_set_hdr_dgl(dgl);
  101. }
  102. static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
  103. unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
  104. {
  105. hdr->w0 = fwnet_set_hdr_lf(lf)
  106. | fwnet_set_hdr_dg_size(dg_size)
  107. | fwnet_set_hdr_fg_off(fg_off);
  108. hdr->w1 = fwnet_set_hdr_dgl(dgl);
  109. }
  110. /* This list keeps track of what parts of the datagram have been filled in */
  111. struct fwnet_fragment_info {
  112. struct list_head fi_link;
  113. u16 offset;
  114. u16 len;
  115. };
  116. struct fwnet_partial_datagram {
  117. struct list_head pd_link;
  118. struct list_head fi_list;
  119. struct sk_buff *skb;
  120. /* FIXME Why not use skb->data? */
  121. char *pbuf;
  122. u16 datagram_label;
  123. u16 ether_type;
  124. u16 datagram_size;
  125. };
  126. static DEFINE_MUTEX(fwnet_device_mutex);
  127. static LIST_HEAD(fwnet_device_list);
  128. struct fwnet_device {
  129. struct list_head dev_link;
  130. spinlock_t lock;
  131. enum {
  132. FWNET_BROADCAST_ERROR,
  133. FWNET_BROADCAST_RUNNING,
  134. FWNET_BROADCAST_STOPPED,
  135. } broadcast_state;
  136. struct fw_iso_context *broadcast_rcv_context;
  137. struct fw_iso_buffer broadcast_rcv_buffer;
  138. void **broadcast_rcv_buffer_ptrs;
  139. unsigned broadcast_rcv_next_ptr;
  140. unsigned num_broadcast_rcv_ptrs;
  141. unsigned rcv_buffer_size;
  142. /*
  143. * This value is the maximum unfragmented datagram size that can be
  144. * sent by the hardware. It already has the GASP overhead and the
  145. * unfragmented datagram header overhead calculated into it.
  146. */
  147. unsigned broadcast_xmt_max_payload;
  148. u16 broadcast_xmt_datagramlabel;
  149. /*
  150. * The CSR address that remote nodes must send datagrams to for us to
  151. * receive them.
  152. */
  153. struct fw_address_handler handler;
  154. u64 local_fifo;
  155. /* Number of tx datagrams that have been queued but not yet acked */
  156. int queued_datagrams;
  157. int peer_count;
  158. struct list_head peer_list;
  159. struct fw_card *card;
  160. struct net_device *netdev;
  161. };
  162. struct fwnet_peer {
  163. struct list_head peer_link;
  164. struct fwnet_device *dev;
  165. u64 guid;
  166. u64 fifo;
  167. __be32 ip;
  168. /* guarded by dev->lock */
  169. struct list_head pd_list; /* received partial datagrams */
  170. unsigned pdg_size; /* pd_list size */
  171. u16 datagram_label; /* outgoing datagram label */
  172. u16 max_payload; /* includes RFC2374_FRAG_HDR_SIZE overhead */
  173. int node_id;
  174. int generation;
  175. unsigned speed;
  176. };
  177. /* This is our task struct. It's used for the packet complete callback. */
  178. struct fwnet_packet_task {
  179. struct fw_transaction transaction;
  180. struct rfc2734_header hdr;
  181. struct sk_buff *skb;
  182. struct fwnet_device *dev;
  183. int outstanding_pkts;
  184. u64 fifo_addr;
  185. u16 dest_node;
  186. u16 max_payload;
  187. u8 generation;
  188. u8 speed;
  189. u8 enqueued;
  190. };
  191. /*
  192. * saddr == NULL means use device source address.
  193. * daddr == NULL means leave destination address (eg unresolved arp).
  194. */
  195. static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
  196. unsigned short type, const void *daddr,
  197. const void *saddr, unsigned len)
  198. {
  199. struct fwnet_header *h;
  200. h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
  201. put_unaligned_be16(type, &h->h_proto);
  202. if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
  203. memset(h->h_dest, 0, net->addr_len);
  204. return net->hard_header_len;
  205. }
  206. if (daddr) {
  207. memcpy(h->h_dest, daddr, net->addr_len);
  208. return net->hard_header_len;
  209. }
  210. return -net->hard_header_len;
  211. }
  212. static int fwnet_header_rebuild(struct sk_buff *skb)
  213. {
  214. struct fwnet_header *h = (struct fwnet_header *)skb->data;
  215. if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
  216. return arp_find((unsigned char *)&h->h_dest, skb);
  217. fw_notify("%s: unable to resolve type %04x addresses\n",
  218. skb->dev->name, be16_to_cpu(h->h_proto));
  219. return 0;
  220. }
  221. static int fwnet_header_cache(const struct neighbour *neigh,
  222. struct hh_cache *hh, __be16 type)
  223. {
  224. struct net_device *net;
  225. struct fwnet_header *h;
  226. if (type == cpu_to_be16(ETH_P_802_3))
  227. return -1;
  228. net = neigh->dev;
  229. h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
  230. h->h_proto = type;
  231. memcpy(h->h_dest, neigh->ha, net->addr_len);
  232. hh->hh_len = FWNET_HLEN;
  233. return 0;
  234. }
  235. /* Called by Address Resolution module to notify changes in address. */
  236. static void fwnet_header_cache_update(struct hh_cache *hh,
  237. const struct net_device *net, const unsigned char *haddr)
  238. {
  239. memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
  240. }
  241. static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
  242. {
  243. memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
  244. return FWNET_ALEN;
  245. }
  246. static const struct header_ops fwnet_header_ops = {
  247. .create = fwnet_header_create,
  248. .rebuild = fwnet_header_rebuild,
  249. .cache = fwnet_header_cache,
  250. .cache_update = fwnet_header_cache_update,
  251. .parse = fwnet_header_parse,
  252. };
  253. /* FIXME: is this correct for all cases? */
  254. static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
  255. unsigned offset, unsigned len)
  256. {
  257. struct fwnet_fragment_info *fi;
  258. unsigned end = offset + len;
  259. list_for_each_entry(fi, &pd->fi_list, fi_link)
  260. if (offset < fi->offset + fi->len && end > fi->offset)
  261. return true;
  262. return false;
  263. }
  264. /* Assumes that new fragment does not overlap any existing fragments */
  265. static struct fwnet_fragment_info *fwnet_frag_new(
  266. struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
  267. {
  268. struct fwnet_fragment_info *fi, *fi2, *new;
  269. struct list_head *list;
  270. list = &pd->fi_list;
  271. list_for_each_entry(fi, &pd->fi_list, fi_link) {
  272. if (fi->offset + fi->len == offset) {
  273. /* The new fragment can be tacked on to the end */
  274. /* Did the new fragment plug a hole? */
  275. fi2 = list_entry(fi->fi_link.next,
  276. struct fwnet_fragment_info, fi_link);
  277. if (fi->offset + fi->len == fi2->offset) {
  278. /* glue fragments together */
  279. fi->len += len + fi2->len;
  280. list_del(&fi2->fi_link);
  281. kfree(fi2);
  282. } else {
  283. fi->len += len;
  284. }
  285. return fi;
  286. }
  287. if (offset + len == fi->offset) {
  288. /* The new fragment can be tacked on to the beginning */
  289. /* Did the new fragment plug a hole? */
  290. fi2 = list_entry(fi->fi_link.prev,
  291. struct fwnet_fragment_info, fi_link);
  292. if (fi2->offset + fi2->len == fi->offset) {
  293. /* glue fragments together */
  294. fi2->len += fi->len + len;
  295. list_del(&fi->fi_link);
  296. kfree(fi);
  297. return fi2;
  298. }
  299. fi->offset = offset;
  300. fi->len += len;
  301. return fi;
  302. }
  303. if (offset > fi->offset + fi->len) {
  304. list = &fi->fi_link;
  305. break;
  306. }
  307. if (offset + len < fi->offset) {
  308. list = fi->fi_link.prev;
  309. break;
  310. }
  311. }
  312. new = kmalloc(sizeof(*new), GFP_ATOMIC);
  313. if (!new) {
  314. fw_error("out of memory\n");
  315. return NULL;
  316. }
  317. new->offset = offset;
  318. new->len = len;
  319. list_add(&new->fi_link, list);
  320. return new;
  321. }
  322. static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
  323. struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
  324. void *frag_buf, unsigned frag_off, unsigned frag_len)
  325. {
  326. struct fwnet_partial_datagram *new;
  327. struct fwnet_fragment_info *fi;
  328. new = kmalloc(sizeof(*new), GFP_ATOMIC);
  329. if (!new)
  330. goto fail;
  331. INIT_LIST_HEAD(&new->fi_list);
  332. fi = fwnet_frag_new(new, frag_off, frag_len);
  333. if (fi == NULL)
  334. goto fail_w_new;
  335. new->datagram_label = datagram_label;
  336. new->datagram_size = dg_size;
  337. new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
  338. if (new->skb == NULL)
  339. goto fail_w_fi;
  340. skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
  341. new->pbuf = skb_put(new->skb, dg_size);
  342. memcpy(new->pbuf + frag_off, frag_buf, frag_len);
  343. list_add_tail(&new->pd_link, &peer->pd_list);
  344. return new;
  345. fail_w_fi:
  346. kfree(fi);
  347. fail_w_new:
  348. kfree(new);
  349. fail:
  350. fw_error("out of memory\n");
  351. return NULL;
  352. }
  353. static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
  354. u16 datagram_label)
  355. {
  356. struct fwnet_partial_datagram *pd;
  357. list_for_each_entry(pd, &peer->pd_list, pd_link)
  358. if (pd->datagram_label == datagram_label)
  359. return pd;
  360. return NULL;
  361. }
  362. static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
  363. {
  364. struct fwnet_fragment_info *fi, *n;
  365. list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
  366. kfree(fi);
  367. list_del(&old->pd_link);
  368. dev_kfree_skb_any(old->skb);
  369. kfree(old);
  370. }
  371. static bool fwnet_pd_update(struct fwnet_peer *peer,
  372. struct fwnet_partial_datagram *pd, void *frag_buf,
  373. unsigned frag_off, unsigned frag_len)
  374. {
  375. if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
  376. return false;
  377. memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
  378. /*
  379. * Move list entry to beginning of list so that oldest partial
  380. * datagrams percolate to the end of the list
  381. */
  382. list_move_tail(&pd->pd_link, &peer->pd_list);
  383. return true;
  384. }
  385. static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
  386. {
  387. struct fwnet_fragment_info *fi;
  388. fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
  389. return fi->len == pd->datagram_size;
  390. }
  391. /* caller must hold dev->lock */
  392. static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
  393. u64 guid)
  394. {
  395. struct fwnet_peer *peer;
  396. list_for_each_entry(peer, &dev->peer_list, peer_link)
  397. if (peer->guid == guid)
  398. return peer;
  399. return NULL;
  400. }
  401. /* caller must hold dev->lock */
  402. static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
  403. int node_id, int generation)
  404. {
  405. struct fwnet_peer *peer;
  406. list_for_each_entry(peer, &dev->peer_list, peer_link)
  407. if (peer->node_id == node_id &&
  408. peer->generation == generation)
  409. return peer;
  410. return NULL;
  411. }
  412. /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
  413. static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
  414. {
  415. max_rec = min(max_rec, speed + 8);
  416. max_rec = clamp(max_rec, 8U, 11U); /* 512...4096 */
  417. return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
  418. }
  419. static int fwnet_finish_incoming_packet(struct net_device *net,
  420. struct sk_buff *skb, u16 source_node_id,
  421. bool is_broadcast, u16 ether_type)
  422. {
  423. struct fwnet_device *dev;
  424. static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
  425. int status;
  426. __be64 guid;
  427. dev = netdev_priv(net);
  428. /* Write metadata, and then pass to the receive level */
  429. skb->dev = net;
  430. skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
  431. /*
  432. * Parse the encapsulation header. This actually does the job of
  433. * converting to an ethernet frame header, as well as arp
  434. * conversion if needed. ARP conversion is easier in this
  435. * direction, since we are using ethernet as our backend.
  436. */
  437. /*
  438. * If this is an ARP packet, convert it. First, we want to make
  439. * use of some of the fields, since they tell us a little bit
  440. * about the sending machine.
  441. */
  442. if (ether_type == ETH_P_ARP) {
  443. struct rfc2734_arp *arp1394;
  444. struct arphdr *arp;
  445. unsigned char *arp_ptr;
  446. u64 fifo_addr;
  447. u64 peer_guid;
  448. unsigned sspd;
  449. u16 max_payload;
  450. struct fwnet_peer *peer;
  451. unsigned long flags;
  452. arp1394 = (struct rfc2734_arp *)skb->data;
  453. arp = (struct arphdr *)skb->data;
  454. arp_ptr = (unsigned char *)(arp + 1);
  455. peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
  456. fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
  457. | get_unaligned_be32(&arp1394->fifo_lo);
  458. sspd = arp1394->sspd;
  459. /* Sanity check. OS X 10.3 PPC reportedly sends 131. */
  460. if (sspd > SCODE_3200) {
  461. fw_notify("sspd %x out of range\n", sspd);
  462. sspd = SCODE_3200;
  463. }
  464. max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
  465. spin_lock_irqsave(&dev->lock, flags);
  466. peer = fwnet_peer_find_by_guid(dev, peer_guid);
  467. if (peer) {
  468. peer->fifo = fifo_addr;
  469. if (peer->speed > sspd)
  470. peer->speed = sspd;
  471. if (peer->max_payload > max_payload)
  472. peer->max_payload = max_payload;
  473. peer->ip = arp1394->sip;
  474. }
  475. spin_unlock_irqrestore(&dev->lock, flags);
  476. if (!peer) {
  477. fw_notify("No peer for ARP packet from %016llx\n",
  478. (unsigned long long)peer_guid);
  479. goto no_peer;
  480. }
  481. /*
  482. * Now that we're done with the 1394 specific stuff, we'll
  483. * need to alter some of the data. Believe it or not, all
  484. * that needs to be done is sender_IP_address needs to be
  485. * moved, the destination hardware address get stuffed
  486. * in and the hardware address length set to 8.
  487. *
  488. * IMPORTANT: The code below overwrites 1394 specific data
  489. * needed above so keep the munging of the data for the
  490. * higher level IP stack last.
  491. */
  492. arp->ar_hln = 8;
  493. /* skip over sender unique id */
  494. arp_ptr += arp->ar_hln;
  495. /* move sender IP addr */
  496. put_unaligned(arp1394->sip, (u32 *)arp_ptr);
  497. /* skip over sender IP addr */
  498. arp_ptr += arp->ar_pln;
  499. if (arp->ar_op == htons(ARPOP_REQUEST))
  500. memset(arp_ptr, 0, sizeof(u64));
  501. else
  502. memcpy(arp_ptr, net->dev_addr, sizeof(u64));
  503. }
  504. /* Now add the ethernet header. */
  505. guid = cpu_to_be64(dev->card->guid);
  506. if (dev_hard_header(skb, net, ether_type,
  507. is_broadcast ? &broadcast_hw : &guid,
  508. NULL, skb->len) >= 0) {
  509. struct fwnet_header *eth;
  510. u16 *rawp;
  511. __be16 protocol;
  512. skb_reset_mac_header(skb);
  513. skb_pull(skb, sizeof(*eth));
  514. eth = (struct fwnet_header *)skb_mac_header(skb);
  515. if (*eth->h_dest & 1) {
  516. if (memcmp(eth->h_dest, net->broadcast,
  517. net->addr_len) == 0)
  518. skb->pkt_type = PACKET_BROADCAST;
  519. #if 0
  520. else
  521. skb->pkt_type = PACKET_MULTICAST;
  522. #endif
  523. } else {
  524. if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
  525. skb->pkt_type = PACKET_OTHERHOST;
  526. }
  527. if (ntohs(eth->h_proto) >= 1536) {
  528. protocol = eth->h_proto;
  529. } else {
  530. rawp = (u16 *)skb->data;
  531. if (*rawp == 0xffff)
  532. protocol = htons(ETH_P_802_3);
  533. else
  534. protocol = htons(ETH_P_802_2);
  535. }
  536. skb->protocol = protocol;
  537. }
  538. status = netif_rx(skb);
  539. if (status == NET_RX_DROP) {
  540. net->stats.rx_errors++;
  541. net->stats.rx_dropped++;
  542. } else {
  543. net->stats.rx_packets++;
  544. net->stats.rx_bytes += skb->len;
  545. }
  546. return 0;
  547. no_peer:
  548. net->stats.rx_errors++;
  549. net->stats.rx_dropped++;
  550. dev_kfree_skb_any(skb);
  551. return -ENOENT;
  552. }
  553. static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
  554. int source_node_id, int generation,
  555. bool is_broadcast)
  556. {
  557. struct sk_buff *skb;
  558. struct net_device *net = dev->netdev;
  559. struct rfc2734_header hdr;
  560. unsigned lf;
  561. unsigned long flags;
  562. struct fwnet_peer *peer;
  563. struct fwnet_partial_datagram *pd;
  564. int fg_off;
  565. int dg_size;
  566. u16 datagram_label;
  567. int retval;
  568. u16 ether_type;
  569. hdr.w0 = be32_to_cpu(buf[0]);
  570. lf = fwnet_get_hdr_lf(&hdr);
  571. if (lf == RFC2374_HDR_UNFRAG) {
  572. /*
  573. * An unfragmented datagram has been received by the ieee1394
  574. * bus. Build an skbuff around it so we can pass it to the
  575. * high level network layer.
  576. */
  577. ether_type = fwnet_get_hdr_ether_type(&hdr);
  578. buf++;
  579. len -= RFC2374_UNFRAG_HDR_SIZE;
  580. skb = dev_alloc_skb(len + net->hard_header_len + 15);
  581. if (unlikely(!skb)) {
  582. fw_error("out of memory\n");
  583. net->stats.rx_dropped++;
  584. return -ENOMEM;
  585. }
  586. skb_reserve(skb, (net->hard_header_len + 15) & ~15);
  587. memcpy(skb_put(skb, len), buf, len);
  588. return fwnet_finish_incoming_packet(net, skb, source_node_id,
  589. is_broadcast, ether_type);
  590. }
  591. /* A datagram fragment has been received, now the fun begins. */
  592. hdr.w1 = ntohl(buf[1]);
  593. buf += 2;
  594. len -= RFC2374_FRAG_HDR_SIZE;
  595. if (lf == RFC2374_HDR_FIRSTFRAG) {
  596. ether_type = fwnet_get_hdr_ether_type(&hdr);
  597. fg_off = 0;
  598. } else {
  599. ether_type = 0;
  600. fg_off = fwnet_get_hdr_fg_off(&hdr);
  601. }
  602. datagram_label = fwnet_get_hdr_dgl(&hdr);
  603. dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
  604. spin_lock_irqsave(&dev->lock, flags);
  605. peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
  606. if (!peer) {
  607. retval = -ENOENT;
  608. goto fail;
  609. }
  610. pd = fwnet_pd_find(peer, datagram_label);
  611. if (pd == NULL) {
  612. while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
  613. /* remove the oldest */
  614. fwnet_pd_delete(list_first_entry(&peer->pd_list,
  615. struct fwnet_partial_datagram, pd_link));
  616. peer->pdg_size--;
  617. }
  618. pd = fwnet_pd_new(net, peer, datagram_label,
  619. dg_size, buf, fg_off, len);
  620. if (pd == NULL) {
  621. retval = -ENOMEM;
  622. goto fail;
  623. }
  624. peer->pdg_size++;
  625. } else {
  626. if (fwnet_frag_overlap(pd, fg_off, len) ||
  627. pd->datagram_size != dg_size) {
  628. /*
  629. * Differing datagram sizes or overlapping fragments,
  630. * discard old datagram and start a new one.
  631. */
  632. fwnet_pd_delete(pd);
  633. pd = fwnet_pd_new(net, peer, datagram_label,
  634. dg_size, buf, fg_off, len);
  635. if (pd == NULL) {
  636. peer->pdg_size--;
  637. retval = -ENOMEM;
  638. goto fail;
  639. }
  640. } else {
  641. if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
  642. /*
  643. * Couldn't save off fragment anyway
  644. * so might as well obliterate the
  645. * datagram now.
  646. */
  647. fwnet_pd_delete(pd);
  648. peer->pdg_size--;
  649. retval = -ENOMEM;
  650. goto fail;
  651. }
  652. }
  653. } /* new datagram or add to existing one */
  654. if (lf == RFC2374_HDR_FIRSTFRAG)
  655. pd->ether_type = ether_type;
  656. if (fwnet_pd_is_complete(pd)) {
  657. ether_type = pd->ether_type;
  658. peer->pdg_size--;
  659. skb = skb_get(pd->skb);
  660. fwnet_pd_delete(pd);
  661. spin_unlock_irqrestore(&dev->lock, flags);
  662. return fwnet_finish_incoming_packet(net, skb, source_node_id,
  663. false, ether_type);
  664. }
  665. /*
  666. * Datagram is not complete, we're done for the
  667. * moment.
  668. */
  669. retval = 0;
  670. fail:
  671. spin_unlock_irqrestore(&dev->lock, flags);
  672. return retval;
  673. }
  674. static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
  675. int tcode, int destination, int source, int generation,
  676. unsigned long long offset, void *payload, size_t length,
  677. void *callback_data)
  678. {
  679. struct fwnet_device *dev = callback_data;
  680. int rcode;
  681. if (destination == IEEE1394_ALL_NODES) {
  682. kfree(r);
  683. return;
  684. }
  685. if (offset != dev->handler.offset)
  686. rcode = RCODE_ADDRESS_ERROR;
  687. else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
  688. rcode = RCODE_TYPE_ERROR;
  689. else if (fwnet_incoming_packet(dev, payload, length,
  690. source, generation, false) != 0) {
  691. fw_error("Incoming packet failure\n");
  692. rcode = RCODE_CONFLICT_ERROR;
  693. } else
  694. rcode = RCODE_COMPLETE;
  695. fw_send_response(card, r, rcode);
  696. }
  697. static void fwnet_receive_broadcast(struct fw_iso_context *context,
  698. u32 cycle, size_t header_length, void *header, void *data)
  699. {
  700. struct fwnet_device *dev;
  701. struct fw_iso_packet packet;
  702. struct fw_card *card;
  703. __be16 *hdr_ptr;
  704. __be32 *buf_ptr;
  705. int retval;
  706. u32 length;
  707. u16 source_node_id;
  708. u32 specifier_id;
  709. u32 ver;
  710. unsigned long offset;
  711. unsigned long flags;
  712. dev = data;
  713. card = dev->card;
  714. hdr_ptr = header;
  715. length = be16_to_cpup(hdr_ptr);
  716. spin_lock_irqsave(&dev->lock, flags);
  717. offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
  718. buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
  719. if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
  720. dev->broadcast_rcv_next_ptr = 0;
  721. spin_unlock_irqrestore(&dev->lock, flags);
  722. specifier_id = (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
  723. | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
  724. ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
  725. source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
  726. if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
  727. buf_ptr += 2;
  728. length -= IEEE1394_GASP_HDR_SIZE;
  729. fwnet_incoming_packet(dev, buf_ptr, length,
  730. source_node_id, -1, true);
  731. }
  732. packet.payload_length = dev->rcv_buffer_size;
  733. packet.interrupt = 1;
  734. packet.skip = 0;
  735. packet.tag = 3;
  736. packet.sy = 0;
  737. packet.header_length = IEEE1394_GASP_HDR_SIZE;
  738. spin_lock_irqsave(&dev->lock, flags);
  739. retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
  740. &dev->broadcast_rcv_buffer, offset);
  741. spin_unlock_irqrestore(&dev->lock, flags);
  742. if (retval >= 0)
  743. fw_iso_context_queue_flush(dev->broadcast_rcv_context);
  744. else
  745. fw_error("requeue failed\n");
  746. }
  747. static struct kmem_cache *fwnet_packet_task_cache;
  748. static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
  749. {
  750. dev_kfree_skb_any(ptask->skb);
  751. kmem_cache_free(fwnet_packet_task_cache, ptask);
  752. }
  753. /* Caller must hold dev->lock. */
  754. static void dec_queued_datagrams(struct fwnet_device *dev)
  755. {
  756. if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
  757. netif_wake_queue(dev->netdev);
  758. }
  759. static int fwnet_send_packet(struct fwnet_packet_task *ptask);
  760. static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
  761. {
  762. struct fwnet_device *dev = ptask->dev;
  763. struct sk_buff *skb = ptask->skb;
  764. unsigned long flags;
  765. bool free;
  766. spin_lock_irqsave(&dev->lock, flags);
  767. ptask->outstanding_pkts--;
  768. /* Check whether we or the networking TX soft-IRQ is last user. */
  769. free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
  770. if (free)
  771. dec_queued_datagrams(dev);
  772. if (ptask->outstanding_pkts == 0) {
  773. dev->netdev->stats.tx_packets++;
  774. dev->netdev->stats.tx_bytes += skb->len;
  775. }
  776. spin_unlock_irqrestore(&dev->lock, flags);
  777. if (ptask->outstanding_pkts > 0) {
  778. u16 dg_size;
  779. u16 fg_off;
  780. u16 datagram_label;
  781. u16 lf;
  782. /* Update the ptask to point to the next fragment and send it */
  783. lf = fwnet_get_hdr_lf(&ptask->hdr);
  784. switch (lf) {
  785. case RFC2374_HDR_LASTFRAG:
  786. case RFC2374_HDR_UNFRAG:
  787. default:
  788. fw_error("Outstanding packet %x lf %x, header %x,%x\n",
  789. ptask->outstanding_pkts, lf, ptask->hdr.w0,
  790. ptask->hdr.w1);
  791. BUG();
  792. case RFC2374_HDR_FIRSTFRAG:
  793. /* Set frag type here for future interior fragments */
  794. dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
  795. fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
  796. datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
  797. break;
  798. case RFC2374_HDR_INTFRAG:
  799. dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
  800. fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
  801. + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
  802. datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
  803. break;
  804. }
  805. skb_pull(skb, ptask->max_payload);
  806. if (ptask->outstanding_pkts > 1) {
  807. fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
  808. dg_size, fg_off, datagram_label);
  809. } else {
  810. fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
  811. dg_size, fg_off, datagram_label);
  812. ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
  813. }
  814. fwnet_send_packet(ptask);
  815. }
  816. if (free)
  817. fwnet_free_ptask(ptask);
  818. }
  819. static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
  820. {
  821. struct fwnet_device *dev = ptask->dev;
  822. unsigned long flags;
  823. bool free;
  824. spin_lock_irqsave(&dev->lock, flags);
  825. /* One fragment failed; don't try to send remaining fragments. */
  826. ptask->outstanding_pkts = 0;
  827. /* Check whether we or the networking TX soft-IRQ is last user. */
  828. free = ptask->enqueued;
  829. if (free)
  830. dec_queued_datagrams(dev);
  831. dev->netdev->stats.tx_dropped++;
  832. dev->netdev->stats.tx_errors++;
  833. spin_unlock_irqrestore(&dev->lock, flags);
  834. if (free)
  835. fwnet_free_ptask(ptask);
  836. }
  837. static void fwnet_write_complete(struct fw_card *card, int rcode,
  838. void *payload, size_t length, void *data)
  839. {
  840. struct fwnet_packet_task *ptask = data;
  841. static unsigned long j;
  842. static int last_rcode, errors_skipped;
  843. if (rcode == RCODE_COMPLETE) {
  844. fwnet_transmit_packet_done(ptask);
  845. } else {
  846. fwnet_transmit_packet_failed(ptask);
  847. if (printk_timed_ratelimit(&j, 1000) || rcode != last_rcode) {
  848. fw_error("fwnet_write_complete: "
  849. "failed: %x (skipped %d)\n", rcode, errors_skipped);
  850. errors_skipped = 0;
  851. last_rcode = rcode;
  852. } else
  853. errors_skipped++;
  854. }
  855. }
  856. static int fwnet_send_packet(struct fwnet_packet_task *ptask)
  857. {
  858. struct fwnet_device *dev;
  859. unsigned tx_len;
  860. struct rfc2734_header *bufhdr;
  861. unsigned long flags;
  862. bool free;
  863. dev = ptask->dev;
  864. tx_len = ptask->max_payload;
  865. switch (fwnet_get_hdr_lf(&ptask->hdr)) {
  866. case RFC2374_HDR_UNFRAG:
  867. bufhdr = (struct rfc2734_header *)
  868. skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
  869. put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
  870. break;
  871. case RFC2374_HDR_FIRSTFRAG:
  872. case RFC2374_HDR_INTFRAG:
  873. case RFC2374_HDR_LASTFRAG:
  874. bufhdr = (struct rfc2734_header *)
  875. skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
  876. put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
  877. put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
  878. break;
  879. default:
  880. BUG();
  881. }
  882. if (ptask->dest_node == IEEE1394_ALL_NODES) {
  883. u8 *p;
  884. int generation;
  885. int node_id;
  886. /* ptask->generation may not have been set yet */
  887. generation = dev->card->generation;
  888. smp_rmb();
  889. node_id = dev->card->node_id;
  890. p = skb_push(ptask->skb, 8);
  891. put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
  892. put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
  893. | RFC2734_SW_VERSION, &p[4]);
  894. /* We should not transmit if broadcast_channel.valid == 0. */
  895. fw_send_request(dev->card, &ptask->transaction,
  896. TCODE_STREAM_DATA,
  897. fw_stream_packet_destination_id(3,
  898. IEEE1394_BROADCAST_CHANNEL, 0),
  899. generation, SCODE_100, 0ULL, ptask->skb->data,
  900. tx_len + 8, fwnet_write_complete, ptask);
  901. spin_lock_irqsave(&dev->lock, flags);
  902. /* If the AT tasklet already ran, we may be last user. */
  903. free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
  904. if (!free)
  905. ptask->enqueued = true;
  906. else
  907. dec_queued_datagrams(dev);
  908. spin_unlock_irqrestore(&dev->lock, flags);
  909. goto out;
  910. }
  911. fw_send_request(dev->card, &ptask->transaction,
  912. TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
  913. ptask->generation, ptask->speed, ptask->fifo_addr,
  914. ptask->skb->data, tx_len, fwnet_write_complete, ptask);
  915. spin_lock_irqsave(&dev->lock, flags);
  916. /* If the AT tasklet already ran, we may be last user. */
  917. free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
  918. if (!free)
  919. ptask->enqueued = true;
  920. else
  921. dec_queued_datagrams(dev);
  922. spin_unlock_irqrestore(&dev->lock, flags);
  923. dev->netdev->trans_start = jiffies;
  924. out:
  925. if (free)
  926. fwnet_free_ptask(ptask);
  927. return 0;
  928. }
  929. static int fwnet_broadcast_start(struct fwnet_device *dev)
  930. {
  931. struct fw_iso_context *context;
  932. int retval;
  933. unsigned num_packets;
  934. unsigned max_receive;
  935. struct fw_iso_packet packet;
  936. unsigned long offset;
  937. unsigned u;
  938. if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
  939. dev->handler.length = 4096;
  940. dev->handler.address_callback = fwnet_receive_packet;
  941. dev->handler.callback_data = dev;
  942. retval = fw_core_add_address_handler(&dev->handler,
  943. &fw_high_memory_region);
  944. if (retval < 0)
  945. goto failed_initial;
  946. dev->local_fifo = dev->handler.offset;
  947. }
  948. max_receive = 1U << (dev->card->max_receive + 1);
  949. num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
  950. if (!dev->broadcast_rcv_context) {
  951. void **ptrptr;
  952. context = fw_iso_context_create(dev->card,
  953. FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL,
  954. dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
  955. if (IS_ERR(context)) {
  956. retval = PTR_ERR(context);
  957. goto failed_context_create;
  958. }
  959. retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer,
  960. dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
  961. if (retval < 0)
  962. goto failed_buffer_init;
  963. ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
  964. if (!ptrptr) {
  965. retval = -ENOMEM;
  966. goto failed_ptrs_alloc;
  967. }
  968. dev->broadcast_rcv_buffer_ptrs = ptrptr;
  969. for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
  970. void *ptr;
  971. unsigned v;
  972. ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
  973. for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
  974. *ptrptr++ = (void *)
  975. ((char *)ptr + v * max_receive);
  976. }
  977. dev->broadcast_rcv_context = context;
  978. } else {
  979. context = dev->broadcast_rcv_context;
  980. }
  981. packet.payload_length = max_receive;
  982. packet.interrupt = 1;
  983. packet.skip = 0;
  984. packet.tag = 3;
  985. packet.sy = 0;
  986. packet.header_length = IEEE1394_GASP_HDR_SIZE;
  987. offset = 0;
  988. for (u = 0; u < num_packets; u++) {
  989. retval = fw_iso_context_queue(context, &packet,
  990. &dev->broadcast_rcv_buffer, offset);
  991. if (retval < 0)
  992. goto failed_rcv_queue;
  993. offset += max_receive;
  994. }
  995. dev->num_broadcast_rcv_ptrs = num_packets;
  996. dev->rcv_buffer_size = max_receive;
  997. dev->broadcast_rcv_next_ptr = 0U;
  998. retval = fw_iso_context_start(context, -1, 0,
  999. FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
  1000. if (retval < 0)
  1001. goto failed_rcv_queue;
  1002. /* FIXME: adjust it according to the min. speed of all known peers? */
  1003. dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
  1004. - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
  1005. dev->broadcast_state = FWNET_BROADCAST_RUNNING;
  1006. return 0;
  1007. failed_rcv_queue:
  1008. kfree(dev->broadcast_rcv_buffer_ptrs);
  1009. dev->broadcast_rcv_buffer_ptrs = NULL;
  1010. failed_ptrs_alloc:
  1011. fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
  1012. failed_buffer_init:
  1013. fw_iso_context_destroy(context);
  1014. dev->broadcast_rcv_context = NULL;
  1015. failed_context_create:
  1016. fw_core_remove_address_handler(&dev->handler);
  1017. failed_initial:
  1018. dev->local_fifo = FWNET_NO_FIFO_ADDR;
  1019. return retval;
  1020. }
  1021. static void set_carrier_state(struct fwnet_device *dev)
  1022. {
  1023. if (dev->peer_count > 1)
  1024. netif_carrier_on(dev->netdev);
  1025. else
  1026. netif_carrier_off(dev->netdev);
  1027. }
  1028. /* ifup */
  1029. static int fwnet_open(struct net_device *net)
  1030. {
  1031. struct fwnet_device *dev = netdev_priv(net);
  1032. int ret;
  1033. if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
  1034. ret = fwnet_broadcast_start(dev);
  1035. if (ret)
  1036. return ret;
  1037. }
  1038. netif_start_queue(net);
  1039. spin_lock_irq(&dev->lock);
  1040. set_carrier_state(dev);
  1041. spin_unlock_irq(&dev->lock);
  1042. return 0;
  1043. }
  1044. /* ifdown */
  1045. static int fwnet_stop(struct net_device *net)
  1046. {
  1047. netif_stop_queue(net);
  1048. /* Deallocate iso context for use by other applications? */
  1049. return 0;
  1050. }
  1051. static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
  1052. {
  1053. struct fwnet_header hdr_buf;
  1054. struct fwnet_device *dev = netdev_priv(net);
  1055. __be16 proto;
  1056. u16 dest_node;
  1057. unsigned max_payload;
  1058. u16 dg_size;
  1059. u16 *datagram_label_ptr;
  1060. struct fwnet_packet_task *ptask;
  1061. struct fwnet_peer *peer;
  1062. unsigned long flags;
  1063. spin_lock_irqsave(&dev->lock, flags);
  1064. /* Can this happen? */
  1065. if (netif_queue_stopped(dev->netdev)) {
  1066. spin_unlock_irqrestore(&dev->lock, flags);
  1067. return NETDEV_TX_BUSY;
  1068. }
  1069. ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
  1070. if (ptask == NULL)
  1071. goto fail;
  1072. skb = skb_share_check(skb, GFP_ATOMIC);
  1073. if (!skb)
  1074. goto fail;
  1075. /*
  1076. * Make a copy of the driver-specific header.
  1077. * We might need to rebuild the header on tx failure.
  1078. */
  1079. memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
  1080. skb_pull(skb, sizeof(hdr_buf));
  1081. proto = hdr_buf.h_proto;
  1082. dg_size = skb->len;
  1083. /*
  1084. * Set the transmission type for the packet. ARP packets and IP
  1085. * broadcast packets are sent via GASP.
  1086. */
  1087. if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
  1088. || proto == htons(ETH_P_ARP)
  1089. || (proto == htons(ETH_P_IP)
  1090. && IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
  1091. max_payload = dev->broadcast_xmt_max_payload;
  1092. datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
  1093. ptask->fifo_addr = FWNET_NO_FIFO_ADDR;
  1094. ptask->generation = 0;
  1095. ptask->dest_node = IEEE1394_ALL_NODES;
  1096. ptask->speed = SCODE_100;
  1097. } else {
  1098. __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
  1099. u8 generation;
  1100. peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
  1101. if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
  1102. goto fail;
  1103. generation = peer->generation;
  1104. dest_node = peer->node_id;
  1105. max_payload = peer->max_payload;
  1106. datagram_label_ptr = &peer->datagram_label;
  1107. ptask->fifo_addr = peer->fifo;
  1108. ptask->generation = generation;
  1109. ptask->dest_node = dest_node;
  1110. ptask->speed = peer->speed;
  1111. }
  1112. /* If this is an ARP packet, convert it */
  1113. if (proto == htons(ETH_P_ARP)) {
  1114. struct arphdr *arp = (struct arphdr *)skb->data;
  1115. unsigned char *arp_ptr = (unsigned char *)(arp + 1);
  1116. struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
  1117. __be32 ipaddr;
  1118. ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
  1119. arp1394->hw_addr_len = RFC2734_HW_ADDR_LEN;
  1120. arp1394->max_rec = dev->card->max_receive;
  1121. arp1394->sspd = dev->card->link_speed;
  1122. put_unaligned_be16(dev->local_fifo >> 32,
  1123. &arp1394->fifo_hi);
  1124. put_unaligned_be32(dev->local_fifo & 0xffffffff,
  1125. &arp1394->fifo_lo);
  1126. put_unaligned(ipaddr, &arp1394->sip);
  1127. }
  1128. ptask->hdr.w0 = 0;
  1129. ptask->hdr.w1 = 0;
  1130. ptask->skb = skb;
  1131. ptask->dev = dev;
  1132. /* Does it all fit in one packet? */
  1133. if (dg_size <= max_payload) {
  1134. fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
  1135. ptask->outstanding_pkts = 1;
  1136. max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
  1137. } else {
  1138. u16 datagram_label;
  1139. max_payload -= RFC2374_FRAG_OVERHEAD;
  1140. datagram_label = (*datagram_label_ptr)++;
  1141. fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
  1142. datagram_label);
  1143. ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
  1144. max_payload += RFC2374_FRAG_HDR_SIZE;
  1145. }
  1146. if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
  1147. netif_stop_queue(dev->netdev);
  1148. spin_unlock_irqrestore(&dev->lock, flags);
  1149. ptask->max_payload = max_payload;
  1150. ptask->enqueued = 0;
  1151. fwnet_send_packet(ptask);
  1152. return NETDEV_TX_OK;
  1153. fail:
  1154. spin_unlock_irqrestore(&dev->lock, flags);
  1155. if (ptask)
  1156. kmem_cache_free(fwnet_packet_task_cache, ptask);
  1157. if (skb != NULL)
  1158. dev_kfree_skb(skb);
  1159. net->stats.tx_dropped++;
  1160. net->stats.tx_errors++;
  1161. /*
  1162. * FIXME: According to a patch from 2003-02-26, "returning non-zero
  1163. * causes serious problems" here, allegedly. Before that patch,
  1164. * -ERRNO was returned which is not appropriate under Linux 2.6.
  1165. * Perhaps more needs to be done? Stop the queue in serious
  1166. * conditions and restart it elsewhere?
  1167. */
  1168. return NETDEV_TX_OK;
  1169. }
  1170. static int fwnet_change_mtu(struct net_device *net, int new_mtu)
  1171. {
  1172. if (new_mtu < 68)
  1173. return -EINVAL;
  1174. net->mtu = new_mtu;
  1175. return 0;
  1176. }
  1177. static const struct ethtool_ops fwnet_ethtool_ops = {
  1178. .get_link = ethtool_op_get_link,
  1179. };
  1180. static const struct net_device_ops fwnet_netdev_ops = {
  1181. .ndo_open = fwnet_open,
  1182. .ndo_stop = fwnet_stop,
  1183. .ndo_start_xmit = fwnet_tx,
  1184. .ndo_change_mtu = fwnet_change_mtu,
  1185. };
  1186. static void fwnet_init_dev(struct net_device *net)
  1187. {
  1188. net->header_ops = &fwnet_header_ops;
  1189. net->netdev_ops = &fwnet_netdev_ops;
  1190. net->watchdog_timeo = 2 * HZ;
  1191. net->flags = IFF_BROADCAST | IFF_MULTICAST;
  1192. net->features = NETIF_F_HIGHDMA;
  1193. net->addr_len = FWNET_ALEN;
  1194. net->hard_header_len = FWNET_HLEN;
  1195. net->type = ARPHRD_IEEE1394;
  1196. net->tx_queue_len = FWNET_TX_QUEUE_LEN;
  1197. net->ethtool_ops = &fwnet_ethtool_ops;
  1198. }
  1199. /* caller must hold fwnet_device_mutex */
  1200. static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
  1201. {
  1202. struct fwnet_device *dev;
  1203. list_for_each_entry(dev, &fwnet_device_list, dev_link)
  1204. if (dev->card == card)
  1205. return dev;
  1206. return NULL;
  1207. }
  1208. static int fwnet_add_peer(struct fwnet_device *dev,
  1209. struct fw_unit *unit, struct fw_device *device)
  1210. {
  1211. struct fwnet_peer *peer;
  1212. peer = kmalloc(sizeof(*peer), GFP_KERNEL);
  1213. if (!peer)
  1214. return -ENOMEM;
  1215. dev_set_drvdata(&unit->device, peer);
  1216. peer->dev = dev;
  1217. peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
  1218. peer->fifo = FWNET_NO_FIFO_ADDR;
  1219. peer->ip = 0;
  1220. INIT_LIST_HEAD(&peer->pd_list);
  1221. peer->pdg_size = 0;
  1222. peer->datagram_label = 0;
  1223. peer->speed = device->max_speed;
  1224. peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
  1225. peer->generation = device->generation;
  1226. smp_rmb();
  1227. peer->node_id = device->node_id;
  1228. spin_lock_irq(&dev->lock);
  1229. list_add_tail(&peer->peer_link, &dev->peer_list);
  1230. dev->peer_count++;
  1231. set_carrier_state(dev);
  1232. spin_unlock_irq(&dev->lock);
  1233. return 0;
  1234. }
  1235. static int fwnet_probe(struct device *_dev)
  1236. {
  1237. struct fw_unit *unit = fw_unit(_dev);
  1238. struct fw_device *device = fw_parent_device(unit);
  1239. struct fw_card *card = device->card;
  1240. struct net_device *net;
  1241. bool allocated_netdev = false;
  1242. struct fwnet_device *dev;
  1243. unsigned max_mtu;
  1244. int ret;
  1245. mutex_lock(&fwnet_device_mutex);
  1246. dev = fwnet_dev_find(card);
  1247. if (dev) {
  1248. net = dev->netdev;
  1249. goto have_dev;
  1250. }
  1251. net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
  1252. if (net == NULL) {
  1253. ret = -ENOMEM;
  1254. goto out;
  1255. }
  1256. allocated_netdev = true;
  1257. SET_NETDEV_DEV(net, card->device);
  1258. dev = netdev_priv(net);
  1259. spin_lock_init(&dev->lock);
  1260. dev->broadcast_state = FWNET_BROADCAST_ERROR;
  1261. dev->broadcast_rcv_context = NULL;
  1262. dev->broadcast_xmt_max_payload = 0;
  1263. dev->broadcast_xmt_datagramlabel = 0;
  1264. dev->local_fifo = FWNET_NO_FIFO_ADDR;
  1265. dev->queued_datagrams = 0;
  1266. INIT_LIST_HEAD(&dev->peer_list);
  1267. dev->card = card;
  1268. dev->netdev = net;
  1269. /*
  1270. * Use the RFC 2734 default 1500 octets or the maximum payload
  1271. * as initial MTU
  1272. */
  1273. max_mtu = (1 << (card->max_receive + 1))
  1274. - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
  1275. net->mtu = min(1500U, max_mtu);
  1276. /* Set our hardware address while we're at it */
  1277. put_unaligned_be64(card->guid, net->dev_addr);
  1278. put_unaligned_be64(~0ULL, net->broadcast);
  1279. ret = register_netdev(net);
  1280. if (ret) {
  1281. fw_error("Cannot register the driver\n");
  1282. goto out;
  1283. }
  1284. list_add_tail(&dev->dev_link, &fwnet_device_list);
  1285. fw_notify("%s: IPv4 over FireWire on device %016llx\n",
  1286. net->name, (unsigned long long)card->guid);
  1287. have_dev:
  1288. ret = fwnet_add_peer(dev, unit, device);
  1289. if (ret && allocated_netdev) {
  1290. unregister_netdev(net);
  1291. list_del(&dev->dev_link);
  1292. }
  1293. out:
  1294. if (ret && allocated_netdev)
  1295. free_netdev(net);
  1296. mutex_unlock(&fwnet_device_mutex);
  1297. return ret;
  1298. }
  1299. static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev)
  1300. {
  1301. struct fwnet_partial_datagram *pd, *pd_next;
  1302. spin_lock_irq(&dev->lock);
  1303. list_del(&peer->peer_link);
  1304. dev->peer_count--;
  1305. set_carrier_state(dev);
  1306. spin_unlock_irq(&dev->lock);
  1307. list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
  1308. fwnet_pd_delete(pd);
  1309. kfree(peer);
  1310. }
  1311. static int fwnet_remove(struct device *_dev)
  1312. {
  1313. struct fwnet_peer *peer = dev_get_drvdata(_dev);
  1314. struct fwnet_device *dev = peer->dev;
  1315. struct net_device *net;
  1316. int i;
  1317. mutex_lock(&fwnet_device_mutex);
  1318. net = dev->netdev;
  1319. if (net && peer->ip)
  1320. arp_invalidate(net, peer->ip);
  1321. fwnet_remove_peer(peer, dev);
  1322. if (list_empty(&dev->peer_list)) {
  1323. unregister_netdev(net);
  1324. if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
  1325. fw_core_remove_address_handler(&dev->handler);
  1326. if (dev->broadcast_rcv_context) {
  1327. fw_iso_context_stop(dev->broadcast_rcv_context);
  1328. fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer,
  1329. dev->card);
  1330. fw_iso_context_destroy(dev->broadcast_rcv_context);
  1331. }
  1332. for (i = 0; dev->queued_datagrams && i < 5; i++)
  1333. ssleep(1);
  1334. WARN_ON(dev->queued_datagrams);
  1335. list_del(&dev->dev_link);
  1336. free_netdev(net);
  1337. }
  1338. mutex_unlock(&fwnet_device_mutex);
  1339. return 0;
  1340. }
  1341. /*
  1342. * FIXME abort partially sent fragmented datagrams,
  1343. * discard partially received fragmented datagrams
  1344. */
  1345. static void fwnet_update(struct fw_unit *unit)
  1346. {
  1347. struct fw_device *device = fw_parent_device(unit);
  1348. struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
  1349. int generation;
  1350. generation = device->generation;
  1351. spin_lock_irq(&peer->dev->lock);
  1352. peer->node_id = device->node_id;
  1353. peer->generation = generation;
  1354. spin_unlock_irq(&peer->dev->lock);
  1355. }
  1356. static const struct ieee1394_device_id fwnet_id_table[] = {
  1357. {
  1358. .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
  1359. IEEE1394_MATCH_VERSION,
  1360. .specifier_id = IANA_SPECIFIER_ID,
  1361. .version = RFC2734_SW_VERSION,
  1362. },
  1363. { }
  1364. };
  1365. static struct fw_driver fwnet_driver = {
  1366. .driver = {
  1367. .owner = THIS_MODULE,
  1368. .name = "net",
  1369. .bus = &fw_bus_type,
  1370. .probe = fwnet_probe,
  1371. .remove = fwnet_remove,
  1372. },
  1373. .update = fwnet_update,
  1374. .id_table = fwnet_id_table,
  1375. };
  1376. static const u32 rfc2374_unit_directory_data[] = {
  1377. 0x00040000, /* directory_length */
  1378. 0x1200005e, /* unit_specifier_id: IANA */
  1379. 0x81000003, /* textual descriptor offset */
  1380. 0x13000001, /* unit_sw_version: RFC 2734 */
  1381. 0x81000005, /* textual descriptor offset */
  1382. 0x00030000, /* descriptor_length */
  1383. 0x00000000, /* text */
  1384. 0x00000000, /* minimal ASCII, en */
  1385. 0x49414e41, /* I A N A */
  1386. 0x00030000, /* descriptor_length */
  1387. 0x00000000, /* text */
  1388. 0x00000000, /* minimal ASCII, en */
  1389. 0x49507634, /* I P v 4 */
  1390. };
  1391. static struct fw_descriptor rfc2374_unit_directory = {
  1392. .length = ARRAY_SIZE(rfc2374_unit_directory_data),
  1393. .key = (CSR_DIRECTORY | CSR_UNIT) << 24,
  1394. .data = rfc2374_unit_directory_data
  1395. };
  1396. static int __init fwnet_init(void)
  1397. {
  1398. int err;
  1399. err = fw_core_add_descriptor(&rfc2374_unit_directory);
  1400. if (err)
  1401. return err;
  1402. fwnet_packet_task_cache = kmem_cache_create("packet_task",
  1403. sizeof(struct fwnet_packet_task), 0, 0, NULL);
  1404. if (!fwnet_packet_task_cache) {
  1405. err = -ENOMEM;
  1406. goto out;
  1407. }
  1408. err = driver_register(&fwnet_driver.driver);
  1409. if (!err)
  1410. return 0;
  1411. kmem_cache_destroy(fwnet_packet_task_cache);
  1412. out:
  1413. fw_core_remove_descriptor(&rfc2374_unit_directory);
  1414. return err;
  1415. }
  1416. module_init(fwnet_init);
  1417. static void __exit fwnet_cleanup(void)
  1418. {
  1419. driver_unregister(&fwnet_driver.driver);
  1420. kmem_cache_destroy(fwnet_packet_task_cache);
  1421. fw_core_remove_descriptor(&rfc2374_unit_directory);
  1422. }
  1423. module_exit(fwnet_cleanup);
  1424. MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
  1425. MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
  1426. MODULE_LICENSE("GPL");
  1427. MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);