amd64_edac.c 72 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827
  1. #include "amd64_edac.h"
  2. #include <asm/amd_nb.h>
  3. static struct edac_pci_ctl_info *amd64_ctl_pci;
  4. static int report_gart_errors;
  5. module_param(report_gart_errors, int, 0644);
  6. /*
  7. * Set by command line parameter. If BIOS has enabled the ECC, this override is
  8. * cleared to prevent re-enabling the hardware by this driver.
  9. */
  10. static int ecc_enable_override;
  11. module_param(ecc_enable_override, int, 0644);
  12. static struct msr __percpu *msrs;
  13. /*
  14. * count successfully initialized driver instances for setup_pci_device()
  15. */
  16. static atomic_t drv_instances = ATOMIC_INIT(0);
  17. /* Per-node driver instances */
  18. static struct mem_ctl_info **mcis;
  19. static struct ecc_settings **ecc_stngs;
  20. /*
  21. * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
  22. * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
  23. * or higher value'.
  24. *
  25. *FIXME: Produce a better mapping/linearisation.
  26. */
  27. struct scrubrate {
  28. u32 scrubval; /* bit pattern for scrub rate */
  29. u32 bandwidth; /* bandwidth consumed (bytes/sec) */
  30. } scrubrates[] = {
  31. { 0x01, 1600000000UL},
  32. { 0x02, 800000000UL},
  33. { 0x03, 400000000UL},
  34. { 0x04, 200000000UL},
  35. { 0x05, 100000000UL},
  36. { 0x06, 50000000UL},
  37. { 0x07, 25000000UL},
  38. { 0x08, 12284069UL},
  39. { 0x09, 6274509UL},
  40. { 0x0A, 3121951UL},
  41. { 0x0B, 1560975UL},
  42. { 0x0C, 781440UL},
  43. { 0x0D, 390720UL},
  44. { 0x0E, 195300UL},
  45. { 0x0F, 97650UL},
  46. { 0x10, 48854UL},
  47. { 0x11, 24427UL},
  48. { 0x12, 12213UL},
  49. { 0x13, 6101UL},
  50. { 0x14, 3051UL},
  51. { 0x15, 1523UL},
  52. { 0x16, 761UL},
  53. { 0x00, 0UL}, /* scrubbing off */
  54. };
  55. static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
  56. u32 *val, const char *func)
  57. {
  58. int err = 0;
  59. err = pci_read_config_dword(pdev, offset, val);
  60. if (err)
  61. amd64_warn("%s: error reading F%dx%03x.\n",
  62. func, PCI_FUNC(pdev->devfn), offset);
  63. return err;
  64. }
  65. int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
  66. u32 val, const char *func)
  67. {
  68. int err = 0;
  69. err = pci_write_config_dword(pdev, offset, val);
  70. if (err)
  71. amd64_warn("%s: error writing to F%dx%03x.\n",
  72. func, PCI_FUNC(pdev->devfn), offset);
  73. return err;
  74. }
  75. /*
  76. *
  77. * Depending on the family, F2 DCT reads need special handling:
  78. *
  79. * K8: has a single DCT only
  80. *
  81. * F10h: each DCT has its own set of regs
  82. * DCT0 -> F2x040..
  83. * DCT1 -> F2x140..
  84. *
  85. * F15h: we select which DCT we access using F1x10C[DctCfgSel]
  86. *
  87. */
  88. static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  89. const char *func)
  90. {
  91. if (addr >= 0x100)
  92. return -EINVAL;
  93. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  94. }
  95. static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  96. const char *func)
  97. {
  98. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  99. }
  100. /*
  101. * Select DCT to which PCI cfg accesses are routed
  102. */
  103. static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
  104. {
  105. u32 reg = 0;
  106. amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
  107. reg &= 0xfffffffe;
  108. reg |= dct;
  109. amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
  110. }
  111. static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  112. const char *func)
  113. {
  114. u8 dct = 0;
  115. if (addr >= 0x140 && addr <= 0x1a0) {
  116. dct = 1;
  117. addr -= 0x100;
  118. }
  119. f15h_select_dct(pvt, dct);
  120. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  121. }
  122. /*
  123. * Memory scrubber control interface. For K8, memory scrubbing is handled by
  124. * hardware and can involve L2 cache, dcache as well as the main memory. With
  125. * F10, this is extended to L3 cache scrubbing on CPU models sporting that
  126. * functionality.
  127. *
  128. * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
  129. * (dram) over to cache lines. This is nasty, so we will use bandwidth in
  130. * bytes/sec for the setting.
  131. *
  132. * Currently, we only do dram scrubbing. If the scrubbing is done in software on
  133. * other archs, we might not have access to the caches directly.
  134. */
  135. /*
  136. * scan the scrub rate mapping table for a close or matching bandwidth value to
  137. * issue. If requested is too big, then use last maximum value found.
  138. */
  139. static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
  140. {
  141. u32 scrubval;
  142. int i;
  143. /*
  144. * map the configured rate (new_bw) to a value specific to the AMD64
  145. * memory controller and apply to register. Search for the first
  146. * bandwidth entry that is greater or equal than the setting requested
  147. * and program that. If at last entry, turn off DRAM scrubbing.
  148. */
  149. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  150. /*
  151. * skip scrub rates which aren't recommended
  152. * (see F10 BKDG, F3x58)
  153. */
  154. if (scrubrates[i].scrubval < min_rate)
  155. continue;
  156. if (scrubrates[i].bandwidth <= new_bw)
  157. break;
  158. /*
  159. * if no suitable bandwidth found, turn off DRAM scrubbing
  160. * entirely by falling back to the last element in the
  161. * scrubrates array.
  162. */
  163. }
  164. scrubval = scrubrates[i].scrubval;
  165. pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
  166. if (scrubval)
  167. return scrubrates[i].bandwidth;
  168. return 0;
  169. }
  170. static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
  171. {
  172. struct amd64_pvt *pvt = mci->pvt_info;
  173. u32 min_scrubrate = 0x5;
  174. if (boot_cpu_data.x86 == 0xf)
  175. min_scrubrate = 0x0;
  176. /* F15h Erratum #505 */
  177. if (boot_cpu_data.x86 == 0x15)
  178. f15h_select_dct(pvt, 0);
  179. return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
  180. }
  181. static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
  182. {
  183. struct amd64_pvt *pvt = mci->pvt_info;
  184. u32 scrubval = 0;
  185. int i, retval = -EINVAL;
  186. /* F15h Erratum #505 */
  187. if (boot_cpu_data.x86 == 0x15)
  188. f15h_select_dct(pvt, 0);
  189. amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
  190. scrubval = scrubval & 0x001F;
  191. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  192. if (scrubrates[i].scrubval == scrubval) {
  193. retval = scrubrates[i].bandwidth;
  194. break;
  195. }
  196. }
  197. return retval;
  198. }
  199. /*
  200. * returns true if the SysAddr given by sys_addr matches the
  201. * DRAM base/limit associated with node_id
  202. */
  203. static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
  204. unsigned nid)
  205. {
  206. u64 addr;
  207. /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
  208. * all ones if the most significant implemented address bit is 1.
  209. * Here we discard bits 63-40. See section 3.4.2 of AMD publication
  210. * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
  211. * Application Programming.
  212. */
  213. addr = sys_addr & 0x000000ffffffffffull;
  214. return ((addr >= get_dram_base(pvt, nid)) &&
  215. (addr <= get_dram_limit(pvt, nid)));
  216. }
  217. /*
  218. * Attempt to map a SysAddr to a node. On success, return a pointer to the
  219. * mem_ctl_info structure for the node that the SysAddr maps to.
  220. *
  221. * On failure, return NULL.
  222. */
  223. static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
  224. u64 sys_addr)
  225. {
  226. struct amd64_pvt *pvt;
  227. unsigned node_id;
  228. u32 intlv_en, bits;
  229. /*
  230. * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
  231. * 3.4.4.2) registers to map the SysAddr to a node ID.
  232. */
  233. pvt = mci->pvt_info;
  234. /*
  235. * The value of this field should be the same for all DRAM Base
  236. * registers. Therefore we arbitrarily choose to read it from the
  237. * register for node 0.
  238. */
  239. intlv_en = dram_intlv_en(pvt, 0);
  240. if (intlv_en == 0) {
  241. for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
  242. if (amd64_base_limit_match(pvt, sys_addr, node_id))
  243. goto found;
  244. }
  245. goto err_no_match;
  246. }
  247. if (unlikely((intlv_en != 0x01) &&
  248. (intlv_en != 0x03) &&
  249. (intlv_en != 0x07))) {
  250. amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
  251. return NULL;
  252. }
  253. bits = (((u32) sys_addr) >> 12) & intlv_en;
  254. for (node_id = 0; ; ) {
  255. if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
  256. break; /* intlv_sel field matches */
  257. if (++node_id >= DRAM_RANGES)
  258. goto err_no_match;
  259. }
  260. /* sanity test for sys_addr */
  261. if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
  262. amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
  263. "range for node %d with node interleaving enabled.\n",
  264. __func__, sys_addr, node_id);
  265. return NULL;
  266. }
  267. found:
  268. return edac_mc_find((int)node_id);
  269. err_no_match:
  270. debugf2("sys_addr 0x%lx doesn't match any node\n",
  271. (unsigned long)sys_addr);
  272. return NULL;
  273. }
  274. /*
  275. * compute the CS base address of the @csrow on the DRAM controller @dct.
  276. * For details see F2x[5C:40] in the processor's BKDG
  277. */
  278. static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
  279. u64 *base, u64 *mask)
  280. {
  281. u64 csbase, csmask, base_bits, mask_bits;
  282. u8 addr_shift;
  283. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
  284. csbase = pvt->csels[dct].csbases[csrow];
  285. csmask = pvt->csels[dct].csmasks[csrow];
  286. base_bits = GENMASK(21, 31) | GENMASK(9, 15);
  287. mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
  288. addr_shift = 4;
  289. } else {
  290. csbase = pvt->csels[dct].csbases[csrow];
  291. csmask = pvt->csels[dct].csmasks[csrow >> 1];
  292. addr_shift = 8;
  293. if (boot_cpu_data.x86 == 0x15)
  294. base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
  295. else
  296. base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
  297. }
  298. *base = (csbase & base_bits) << addr_shift;
  299. *mask = ~0ULL;
  300. /* poke holes for the csmask */
  301. *mask &= ~(mask_bits << addr_shift);
  302. /* OR them in */
  303. *mask |= (csmask & mask_bits) << addr_shift;
  304. }
  305. #define for_each_chip_select(i, dct, pvt) \
  306. for (i = 0; i < pvt->csels[dct].b_cnt; i++)
  307. #define chip_select_base(i, dct, pvt) \
  308. pvt->csels[dct].csbases[i]
  309. #define for_each_chip_select_mask(i, dct, pvt) \
  310. for (i = 0; i < pvt->csels[dct].m_cnt; i++)
  311. /*
  312. * @input_addr is an InputAddr associated with the node given by mci. Return the
  313. * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
  314. */
  315. static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
  316. {
  317. struct amd64_pvt *pvt;
  318. int csrow;
  319. u64 base, mask;
  320. pvt = mci->pvt_info;
  321. for_each_chip_select(csrow, 0, pvt) {
  322. if (!csrow_enabled(csrow, 0, pvt))
  323. continue;
  324. get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
  325. mask = ~mask;
  326. if ((input_addr & mask) == (base & mask)) {
  327. debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
  328. (unsigned long)input_addr, csrow,
  329. pvt->mc_node_id);
  330. return csrow;
  331. }
  332. }
  333. debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
  334. (unsigned long)input_addr, pvt->mc_node_id);
  335. return -1;
  336. }
  337. /*
  338. * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
  339. * for the node represented by mci. Info is passed back in *hole_base,
  340. * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
  341. * info is invalid. Info may be invalid for either of the following reasons:
  342. *
  343. * - The revision of the node is not E or greater. In this case, the DRAM Hole
  344. * Address Register does not exist.
  345. *
  346. * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
  347. * indicating that its contents are not valid.
  348. *
  349. * The values passed back in *hole_base, *hole_offset, and *hole_size are
  350. * complete 32-bit values despite the fact that the bitfields in the DHAR
  351. * only represent bits 31-24 of the base and offset values.
  352. */
  353. int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
  354. u64 *hole_offset, u64 *hole_size)
  355. {
  356. struct amd64_pvt *pvt = mci->pvt_info;
  357. u64 base;
  358. /* only revE and later have the DRAM Hole Address Register */
  359. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
  360. debugf1(" revision %d for node %d does not support DHAR\n",
  361. pvt->ext_model, pvt->mc_node_id);
  362. return 1;
  363. }
  364. /* valid for Fam10h and above */
  365. if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
  366. debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
  367. return 1;
  368. }
  369. if (!dhar_valid(pvt)) {
  370. debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
  371. pvt->mc_node_id);
  372. return 1;
  373. }
  374. /* This node has Memory Hoisting */
  375. /* +------------------+--------------------+--------------------+-----
  376. * | memory | DRAM hole | relocated |
  377. * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
  378. * | | | DRAM hole |
  379. * | | | [0x100000000, |
  380. * | | | (0x100000000+ |
  381. * | | | (0xffffffff-x))] |
  382. * +------------------+--------------------+--------------------+-----
  383. *
  384. * Above is a diagram of physical memory showing the DRAM hole and the
  385. * relocated addresses from the DRAM hole. As shown, the DRAM hole
  386. * starts at address x (the base address) and extends through address
  387. * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
  388. * addresses in the hole so that they start at 0x100000000.
  389. */
  390. base = dhar_base(pvt);
  391. *hole_base = base;
  392. *hole_size = (0x1ull << 32) - base;
  393. if (boot_cpu_data.x86 > 0xf)
  394. *hole_offset = f10_dhar_offset(pvt);
  395. else
  396. *hole_offset = k8_dhar_offset(pvt);
  397. debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
  398. pvt->mc_node_id, (unsigned long)*hole_base,
  399. (unsigned long)*hole_offset, (unsigned long)*hole_size);
  400. return 0;
  401. }
  402. EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
  403. /*
  404. * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
  405. * assumed that sys_addr maps to the node given by mci.
  406. *
  407. * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
  408. * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
  409. * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
  410. * then it is also involved in translating a SysAddr to a DramAddr. Sections
  411. * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
  412. * These parts of the documentation are unclear. I interpret them as follows:
  413. *
  414. * When node n receives a SysAddr, it processes the SysAddr as follows:
  415. *
  416. * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
  417. * Limit registers for node n. If the SysAddr is not within the range
  418. * specified by the base and limit values, then node n ignores the Sysaddr
  419. * (since it does not map to node n). Otherwise continue to step 2 below.
  420. *
  421. * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
  422. * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
  423. * the range of relocated addresses (starting at 0x100000000) from the DRAM
  424. * hole. If not, skip to step 3 below. Else get the value of the
  425. * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
  426. * offset defined by this value from the SysAddr.
  427. *
  428. * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
  429. * Base register for node n. To obtain the DramAddr, subtract the base
  430. * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
  431. */
  432. static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
  433. {
  434. struct amd64_pvt *pvt = mci->pvt_info;
  435. u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
  436. int ret = 0;
  437. dram_base = get_dram_base(pvt, pvt->mc_node_id);
  438. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  439. &hole_size);
  440. if (!ret) {
  441. if ((sys_addr >= (1ull << 32)) &&
  442. (sys_addr < ((1ull << 32) + hole_size))) {
  443. /* use DHAR to translate SysAddr to DramAddr */
  444. dram_addr = sys_addr - hole_offset;
  445. debugf2("using DHAR to translate SysAddr 0x%lx to "
  446. "DramAddr 0x%lx\n",
  447. (unsigned long)sys_addr,
  448. (unsigned long)dram_addr);
  449. return dram_addr;
  450. }
  451. }
  452. /*
  453. * Translate the SysAddr to a DramAddr as shown near the start of
  454. * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
  455. * only deals with 40-bit values. Therefore we discard bits 63-40 of
  456. * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
  457. * discard are all 1s. Otherwise the bits we discard are all 0s. See
  458. * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
  459. * Programmer's Manual Volume 1 Application Programming.
  460. */
  461. dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
  462. debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
  463. "DramAddr 0x%lx\n", (unsigned long)sys_addr,
  464. (unsigned long)dram_addr);
  465. return dram_addr;
  466. }
  467. /*
  468. * @intlv_en is the value of the IntlvEn field from a DRAM Base register
  469. * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
  470. * for node interleaving.
  471. */
  472. static int num_node_interleave_bits(unsigned intlv_en)
  473. {
  474. static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
  475. int n;
  476. BUG_ON(intlv_en > 7);
  477. n = intlv_shift_table[intlv_en];
  478. return n;
  479. }
  480. /* Translate the DramAddr given by @dram_addr to an InputAddr. */
  481. static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
  482. {
  483. struct amd64_pvt *pvt;
  484. int intlv_shift;
  485. u64 input_addr;
  486. pvt = mci->pvt_info;
  487. /*
  488. * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  489. * concerning translating a DramAddr to an InputAddr.
  490. */
  491. intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
  492. input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
  493. (dram_addr & 0xfff);
  494. debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
  495. intlv_shift, (unsigned long)dram_addr,
  496. (unsigned long)input_addr);
  497. return input_addr;
  498. }
  499. /*
  500. * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
  501. * assumed that @sys_addr maps to the node given by mci.
  502. */
  503. static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
  504. {
  505. u64 input_addr;
  506. input_addr =
  507. dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
  508. debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
  509. (unsigned long)sys_addr, (unsigned long)input_addr);
  510. return input_addr;
  511. }
  512. /*
  513. * @input_addr is an InputAddr associated with the node represented by mci.
  514. * Translate @input_addr to a DramAddr and return the result.
  515. */
  516. static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
  517. {
  518. struct amd64_pvt *pvt;
  519. unsigned node_id, intlv_shift;
  520. u64 bits, dram_addr;
  521. u32 intlv_sel;
  522. /*
  523. * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  524. * shows how to translate a DramAddr to an InputAddr. Here we reverse
  525. * this procedure. When translating from a DramAddr to an InputAddr, the
  526. * bits used for node interleaving are discarded. Here we recover these
  527. * bits from the IntlvSel field of the DRAM Limit register (section
  528. * 3.4.4.2) for the node that input_addr is associated with.
  529. */
  530. pvt = mci->pvt_info;
  531. node_id = pvt->mc_node_id;
  532. BUG_ON(node_id > 7);
  533. intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
  534. if (intlv_shift == 0) {
  535. debugf1(" InputAddr 0x%lx translates to DramAddr of "
  536. "same value\n", (unsigned long)input_addr);
  537. return input_addr;
  538. }
  539. bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
  540. (input_addr & 0xfff);
  541. intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
  542. dram_addr = bits + (intlv_sel << 12);
  543. debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
  544. "(%d node interleave bits)\n", (unsigned long)input_addr,
  545. (unsigned long)dram_addr, intlv_shift);
  546. return dram_addr;
  547. }
  548. /*
  549. * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
  550. * @dram_addr to a SysAddr.
  551. */
  552. static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
  553. {
  554. struct amd64_pvt *pvt = mci->pvt_info;
  555. u64 hole_base, hole_offset, hole_size, base, sys_addr;
  556. int ret = 0;
  557. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  558. &hole_size);
  559. if (!ret) {
  560. if ((dram_addr >= hole_base) &&
  561. (dram_addr < (hole_base + hole_size))) {
  562. sys_addr = dram_addr + hole_offset;
  563. debugf1("using DHAR to translate DramAddr 0x%lx to "
  564. "SysAddr 0x%lx\n", (unsigned long)dram_addr,
  565. (unsigned long)sys_addr);
  566. return sys_addr;
  567. }
  568. }
  569. base = get_dram_base(pvt, pvt->mc_node_id);
  570. sys_addr = dram_addr + base;
  571. /*
  572. * The sys_addr we have computed up to this point is a 40-bit value
  573. * because the k8 deals with 40-bit values. However, the value we are
  574. * supposed to return is a full 64-bit physical address. The AMD
  575. * x86-64 architecture specifies that the most significant implemented
  576. * address bit through bit 63 of a physical address must be either all
  577. * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
  578. * 64-bit value below. See section 3.4.2 of AMD publication 24592:
  579. * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
  580. * Programming.
  581. */
  582. sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
  583. debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
  584. pvt->mc_node_id, (unsigned long)dram_addr,
  585. (unsigned long)sys_addr);
  586. return sys_addr;
  587. }
  588. /*
  589. * @input_addr is an InputAddr associated with the node given by mci. Translate
  590. * @input_addr to a SysAddr.
  591. */
  592. static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
  593. u64 input_addr)
  594. {
  595. return dram_addr_to_sys_addr(mci,
  596. input_addr_to_dram_addr(mci, input_addr));
  597. }
  598. /*
  599. * Find the minimum and maximum InputAddr values that map to the given @csrow.
  600. * Pass back these values in *input_addr_min and *input_addr_max.
  601. */
  602. static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
  603. u64 *input_addr_min, u64 *input_addr_max)
  604. {
  605. struct amd64_pvt *pvt;
  606. u64 base, mask;
  607. pvt = mci->pvt_info;
  608. BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
  609. get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
  610. *input_addr_min = base & ~mask;
  611. *input_addr_max = base | mask;
  612. }
  613. /* Map the Error address to a PAGE and PAGE OFFSET. */
  614. static inline void error_address_to_page_and_offset(u64 error_address,
  615. u32 *page, u32 *offset)
  616. {
  617. *page = (u32) (error_address >> PAGE_SHIFT);
  618. *offset = ((u32) error_address) & ~PAGE_MASK;
  619. }
  620. /*
  621. * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
  622. * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
  623. * of a node that detected an ECC memory error. mci represents the node that
  624. * the error address maps to (possibly different from the node that detected
  625. * the error). Return the number of the csrow that sys_addr maps to, or -1 on
  626. * error.
  627. */
  628. static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
  629. {
  630. int csrow;
  631. csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
  632. if (csrow == -1)
  633. amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
  634. "address 0x%lx\n", (unsigned long)sys_addr);
  635. return csrow;
  636. }
  637. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
  638. /*
  639. * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
  640. * are ECC capable.
  641. */
  642. static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
  643. {
  644. u8 bit;
  645. unsigned long edac_cap = EDAC_FLAG_NONE;
  646. bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
  647. ? 19
  648. : 17;
  649. if (pvt->dclr0 & BIT(bit))
  650. edac_cap = EDAC_FLAG_SECDED;
  651. return edac_cap;
  652. }
  653. static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
  654. static void amd64_dump_dramcfg_low(u32 dclr, int chan)
  655. {
  656. debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
  657. debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
  658. (dclr & BIT(16)) ? "un" : "",
  659. (dclr & BIT(19)) ? "yes" : "no");
  660. debugf1(" PAR/ERR parity: %s\n",
  661. (dclr & BIT(8)) ? "enabled" : "disabled");
  662. if (boot_cpu_data.x86 == 0x10)
  663. debugf1(" DCT 128bit mode width: %s\n",
  664. (dclr & BIT(11)) ? "128b" : "64b");
  665. debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
  666. (dclr & BIT(12)) ? "yes" : "no",
  667. (dclr & BIT(13)) ? "yes" : "no",
  668. (dclr & BIT(14)) ? "yes" : "no",
  669. (dclr & BIT(15)) ? "yes" : "no");
  670. }
  671. /* Display and decode various NB registers for debug purposes. */
  672. static void dump_misc_regs(struct amd64_pvt *pvt)
  673. {
  674. debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
  675. debugf1(" NB two channel DRAM capable: %s\n",
  676. (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
  677. debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
  678. (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
  679. (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
  680. amd64_dump_dramcfg_low(pvt->dclr0, 0);
  681. debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
  682. debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
  683. "offset: 0x%08x\n",
  684. pvt->dhar, dhar_base(pvt),
  685. (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
  686. : f10_dhar_offset(pvt));
  687. debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
  688. amd64_debug_display_dimm_sizes(pvt, 0);
  689. /* everything below this point is Fam10h and above */
  690. if (boot_cpu_data.x86 == 0xf)
  691. return;
  692. amd64_debug_display_dimm_sizes(pvt, 1);
  693. amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
  694. /* Only if NOT ganged does dclr1 have valid info */
  695. if (!dct_ganging_enabled(pvt))
  696. amd64_dump_dramcfg_low(pvt->dclr1, 1);
  697. }
  698. /*
  699. * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
  700. */
  701. static void prep_chip_selects(struct amd64_pvt *pvt)
  702. {
  703. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
  704. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  705. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
  706. } else {
  707. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  708. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
  709. }
  710. }
  711. /*
  712. * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
  713. */
  714. static void read_dct_base_mask(struct amd64_pvt *pvt)
  715. {
  716. int cs;
  717. prep_chip_selects(pvt);
  718. for_each_chip_select(cs, 0, pvt) {
  719. int reg0 = DCSB0 + (cs * 4);
  720. int reg1 = DCSB1 + (cs * 4);
  721. u32 *base0 = &pvt->csels[0].csbases[cs];
  722. u32 *base1 = &pvt->csels[1].csbases[cs];
  723. if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
  724. debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
  725. cs, *base0, reg0);
  726. if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
  727. continue;
  728. if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
  729. debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
  730. cs, *base1, reg1);
  731. }
  732. for_each_chip_select_mask(cs, 0, pvt) {
  733. int reg0 = DCSM0 + (cs * 4);
  734. int reg1 = DCSM1 + (cs * 4);
  735. u32 *mask0 = &pvt->csels[0].csmasks[cs];
  736. u32 *mask1 = &pvt->csels[1].csmasks[cs];
  737. if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
  738. debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
  739. cs, *mask0, reg0);
  740. if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
  741. continue;
  742. if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
  743. debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
  744. cs, *mask1, reg1);
  745. }
  746. }
  747. static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
  748. {
  749. enum mem_type type;
  750. /* F15h supports only DDR3 */
  751. if (boot_cpu_data.x86 >= 0x15)
  752. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  753. else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
  754. if (pvt->dchr0 & DDR3_MODE)
  755. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  756. else
  757. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
  758. } else {
  759. type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
  760. }
  761. amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
  762. return type;
  763. }
  764. /* Get the number of DCT channels the memory controller is using. */
  765. static int k8_early_channel_count(struct amd64_pvt *pvt)
  766. {
  767. int flag;
  768. if (pvt->ext_model >= K8_REV_F)
  769. /* RevF (NPT) and later */
  770. flag = pvt->dclr0 & WIDTH_128;
  771. else
  772. /* RevE and earlier */
  773. flag = pvt->dclr0 & REVE_WIDTH_128;
  774. /* not used */
  775. pvt->dclr1 = 0;
  776. return (flag) ? 2 : 1;
  777. }
  778. /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
  779. static u64 get_error_address(struct mce *m)
  780. {
  781. struct cpuinfo_x86 *c = &boot_cpu_data;
  782. u64 addr;
  783. u8 start_bit = 1;
  784. u8 end_bit = 47;
  785. if (c->x86 == 0xf) {
  786. start_bit = 3;
  787. end_bit = 39;
  788. }
  789. addr = m->addr & GENMASK(start_bit, end_bit);
  790. /*
  791. * Erratum 637 workaround
  792. */
  793. if (c->x86 == 0x15) {
  794. struct amd64_pvt *pvt;
  795. u64 cc6_base, tmp_addr;
  796. u32 tmp;
  797. u8 mce_nid, intlv_en;
  798. if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
  799. return addr;
  800. mce_nid = amd_get_nb_id(m->extcpu);
  801. pvt = mcis[mce_nid]->pvt_info;
  802. amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
  803. intlv_en = tmp >> 21 & 0x7;
  804. /* add [47:27] + 3 trailing bits */
  805. cc6_base = (tmp & GENMASK(0, 20)) << 3;
  806. /* reverse and add DramIntlvEn */
  807. cc6_base |= intlv_en ^ 0x7;
  808. /* pin at [47:24] */
  809. cc6_base <<= 24;
  810. if (!intlv_en)
  811. return cc6_base | (addr & GENMASK(0, 23));
  812. amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
  813. /* faster log2 */
  814. tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
  815. /* OR DramIntlvSel into bits [14:12] */
  816. tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
  817. /* add remaining [11:0] bits from original MC4_ADDR */
  818. tmp_addr |= addr & GENMASK(0, 11);
  819. return cc6_base | tmp_addr;
  820. }
  821. return addr;
  822. }
  823. static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
  824. {
  825. struct cpuinfo_x86 *c = &boot_cpu_data;
  826. int off = range << 3;
  827. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
  828. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
  829. if (c->x86 == 0xf)
  830. return;
  831. if (!dram_rw(pvt, range))
  832. return;
  833. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
  834. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
  835. /* Factor in CC6 save area by reading dst node's limit reg */
  836. if (c->x86 == 0x15) {
  837. struct pci_dev *f1 = NULL;
  838. u8 nid = dram_dst_node(pvt, range);
  839. u32 llim;
  840. f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
  841. if (WARN_ON(!f1))
  842. return;
  843. amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
  844. pvt->ranges[range].lim.lo &= GENMASK(0, 15);
  845. /* {[39:27],111b} */
  846. pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
  847. pvt->ranges[range].lim.hi &= GENMASK(0, 7);
  848. /* [47:40] */
  849. pvt->ranges[range].lim.hi |= llim >> 13;
  850. pci_dev_put(f1);
  851. }
  852. }
  853. static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
  854. u16 syndrome)
  855. {
  856. struct mem_ctl_info *src_mci;
  857. struct amd64_pvt *pvt = mci->pvt_info;
  858. int channel, csrow;
  859. u32 page, offset;
  860. /* CHIPKILL enabled */
  861. if (pvt->nbcfg & NBCFG_CHIPKILL) {
  862. channel = get_channel_from_ecc_syndrome(mci, syndrome);
  863. if (channel < 0) {
  864. /*
  865. * Syndrome didn't map, so we don't know which of the
  866. * 2 DIMMs is in error. So we need to ID 'both' of them
  867. * as suspect.
  868. */
  869. amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
  870. "error reporting race\n", syndrome);
  871. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  872. return;
  873. }
  874. } else {
  875. /*
  876. * non-chipkill ecc mode
  877. *
  878. * The k8 documentation is unclear about how to determine the
  879. * channel number when using non-chipkill memory. This method
  880. * was obtained from email communication with someone at AMD.
  881. * (Wish the email was placed in this comment - norsk)
  882. */
  883. channel = ((sys_addr & BIT(3)) != 0);
  884. }
  885. /*
  886. * Find out which node the error address belongs to. This may be
  887. * different from the node that detected the error.
  888. */
  889. src_mci = find_mc_by_sys_addr(mci, sys_addr);
  890. if (!src_mci) {
  891. amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
  892. (unsigned long)sys_addr);
  893. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  894. return;
  895. }
  896. /* Now map the sys_addr to a CSROW */
  897. csrow = sys_addr_to_csrow(src_mci, sys_addr);
  898. if (csrow < 0) {
  899. edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
  900. } else {
  901. error_address_to_page_and_offset(sys_addr, &page, &offset);
  902. edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
  903. channel, EDAC_MOD_STR);
  904. }
  905. }
  906. static int ddr2_cs_size(unsigned i, bool dct_width)
  907. {
  908. unsigned shift = 0;
  909. if (i <= 2)
  910. shift = i;
  911. else if (!(i & 0x1))
  912. shift = i >> 1;
  913. else
  914. shift = (i + 1) >> 1;
  915. return 128 << (shift + !!dct_width);
  916. }
  917. static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  918. unsigned cs_mode)
  919. {
  920. u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
  921. if (pvt->ext_model >= K8_REV_F) {
  922. WARN_ON(cs_mode > 11);
  923. return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
  924. }
  925. else if (pvt->ext_model >= K8_REV_D) {
  926. WARN_ON(cs_mode > 10);
  927. if (cs_mode == 3 || cs_mode == 8)
  928. return 32 << (cs_mode - 1);
  929. else
  930. return 32 << cs_mode;
  931. }
  932. else {
  933. WARN_ON(cs_mode > 6);
  934. return 32 << cs_mode;
  935. }
  936. }
  937. /*
  938. * Get the number of DCT channels in use.
  939. *
  940. * Return:
  941. * number of Memory Channels in operation
  942. * Pass back:
  943. * contents of the DCL0_LOW register
  944. */
  945. static int f1x_early_channel_count(struct amd64_pvt *pvt)
  946. {
  947. int i, j, channels = 0;
  948. /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
  949. if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
  950. return 2;
  951. /*
  952. * Need to check if in unganged mode: In such, there are 2 channels,
  953. * but they are not in 128 bit mode and thus the above 'dclr0' status
  954. * bit will be OFF.
  955. *
  956. * Need to check DCT0[0] and DCT1[0] to see if only one of them has
  957. * their CSEnable bit on. If so, then SINGLE DIMM case.
  958. */
  959. debugf0("Data width is not 128 bits - need more decoding\n");
  960. /*
  961. * Check DRAM Bank Address Mapping values for each DIMM to see if there
  962. * is more than just one DIMM present in unganged mode. Need to check
  963. * both controllers since DIMMs can be placed in either one.
  964. */
  965. for (i = 0; i < 2; i++) {
  966. u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
  967. for (j = 0; j < 4; j++) {
  968. if (DBAM_DIMM(j, dbam) > 0) {
  969. channels++;
  970. break;
  971. }
  972. }
  973. }
  974. if (channels > 2)
  975. channels = 2;
  976. amd64_info("MCT channel count: %d\n", channels);
  977. return channels;
  978. }
  979. static int ddr3_cs_size(unsigned i, bool dct_width)
  980. {
  981. unsigned shift = 0;
  982. int cs_size = 0;
  983. if (i == 0 || i == 3 || i == 4)
  984. cs_size = -1;
  985. else if (i <= 2)
  986. shift = i;
  987. else if (i == 12)
  988. shift = 7;
  989. else if (!(i & 0x1))
  990. shift = i >> 1;
  991. else
  992. shift = (i + 1) >> 1;
  993. if (cs_size != -1)
  994. cs_size = (128 * (1 << !!dct_width)) << shift;
  995. return cs_size;
  996. }
  997. static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  998. unsigned cs_mode)
  999. {
  1000. u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
  1001. WARN_ON(cs_mode > 11);
  1002. if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
  1003. return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
  1004. else
  1005. return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
  1006. }
  1007. /*
  1008. * F15h supports only 64bit DCT interfaces
  1009. */
  1010. static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  1011. unsigned cs_mode)
  1012. {
  1013. WARN_ON(cs_mode > 12);
  1014. return ddr3_cs_size(cs_mode, false);
  1015. }
  1016. static void read_dram_ctl_register(struct amd64_pvt *pvt)
  1017. {
  1018. if (boot_cpu_data.x86 == 0xf)
  1019. return;
  1020. if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
  1021. debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
  1022. pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
  1023. debugf0(" DCTs operate in %s mode.\n",
  1024. (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
  1025. if (!dct_ganging_enabled(pvt))
  1026. debugf0(" Address range split per DCT: %s\n",
  1027. (dct_high_range_enabled(pvt) ? "yes" : "no"));
  1028. debugf0(" data interleave for ECC: %s, "
  1029. "DRAM cleared since last warm reset: %s\n",
  1030. (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
  1031. (dct_memory_cleared(pvt) ? "yes" : "no"));
  1032. debugf0(" channel interleave: %s, "
  1033. "interleave bits selector: 0x%x\n",
  1034. (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
  1035. dct_sel_interleave_addr(pvt));
  1036. }
  1037. amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
  1038. }
  1039. /*
  1040. * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
  1041. * Interleaving Modes.
  1042. */
  1043. static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  1044. bool hi_range_sel, u8 intlv_en)
  1045. {
  1046. u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
  1047. if (dct_ganging_enabled(pvt))
  1048. return 0;
  1049. if (hi_range_sel)
  1050. return dct_sel_high;
  1051. /*
  1052. * see F2x110[DctSelIntLvAddr] - channel interleave mode
  1053. */
  1054. if (dct_interleave_enabled(pvt)) {
  1055. u8 intlv_addr = dct_sel_interleave_addr(pvt);
  1056. /* return DCT select function: 0=DCT0, 1=DCT1 */
  1057. if (!intlv_addr)
  1058. return sys_addr >> 6 & 1;
  1059. if (intlv_addr & 0x2) {
  1060. u8 shift = intlv_addr & 0x1 ? 9 : 6;
  1061. u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
  1062. return ((sys_addr >> shift) & 1) ^ temp;
  1063. }
  1064. return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
  1065. }
  1066. if (dct_high_range_enabled(pvt))
  1067. return ~dct_sel_high & 1;
  1068. return 0;
  1069. }
  1070. /* Convert the sys_addr to the normalized DCT address */
  1071. static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
  1072. u64 sys_addr, bool hi_rng,
  1073. u32 dct_sel_base_addr)
  1074. {
  1075. u64 chan_off;
  1076. u64 dram_base = get_dram_base(pvt, range);
  1077. u64 hole_off = f10_dhar_offset(pvt);
  1078. u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
  1079. if (hi_rng) {
  1080. /*
  1081. * if
  1082. * base address of high range is below 4Gb
  1083. * (bits [47:27] at [31:11])
  1084. * DRAM address space on this DCT is hoisted above 4Gb &&
  1085. * sys_addr > 4Gb
  1086. *
  1087. * remove hole offset from sys_addr
  1088. * else
  1089. * remove high range offset from sys_addr
  1090. */
  1091. if ((!(dct_sel_base_addr >> 16) ||
  1092. dct_sel_base_addr < dhar_base(pvt)) &&
  1093. dhar_valid(pvt) &&
  1094. (sys_addr >= BIT_64(32)))
  1095. chan_off = hole_off;
  1096. else
  1097. chan_off = dct_sel_base_off;
  1098. } else {
  1099. /*
  1100. * if
  1101. * we have a valid hole &&
  1102. * sys_addr > 4Gb
  1103. *
  1104. * remove hole
  1105. * else
  1106. * remove dram base to normalize to DCT address
  1107. */
  1108. if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
  1109. chan_off = hole_off;
  1110. else
  1111. chan_off = dram_base;
  1112. }
  1113. return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
  1114. }
  1115. /*
  1116. * checks if the csrow passed in is marked as SPARED, if so returns the new
  1117. * spare row
  1118. */
  1119. static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
  1120. {
  1121. int tmp_cs;
  1122. if (online_spare_swap_done(pvt, dct) &&
  1123. csrow == online_spare_bad_dramcs(pvt, dct)) {
  1124. for_each_chip_select(tmp_cs, dct, pvt) {
  1125. if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
  1126. csrow = tmp_cs;
  1127. break;
  1128. }
  1129. }
  1130. }
  1131. return csrow;
  1132. }
  1133. /*
  1134. * Iterate over the DRAM DCT "base" and "mask" registers looking for a
  1135. * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
  1136. *
  1137. * Return:
  1138. * -EINVAL: NOT FOUND
  1139. * 0..csrow = Chip-Select Row
  1140. */
  1141. static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
  1142. {
  1143. struct mem_ctl_info *mci;
  1144. struct amd64_pvt *pvt;
  1145. u64 cs_base, cs_mask;
  1146. int cs_found = -EINVAL;
  1147. int csrow;
  1148. mci = mcis[nid];
  1149. if (!mci)
  1150. return cs_found;
  1151. pvt = mci->pvt_info;
  1152. debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
  1153. for_each_chip_select(csrow, dct, pvt) {
  1154. if (!csrow_enabled(csrow, dct, pvt))
  1155. continue;
  1156. get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
  1157. debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
  1158. csrow, cs_base, cs_mask);
  1159. cs_mask = ~cs_mask;
  1160. debugf1(" (InputAddr & ~CSMask)=0x%llx "
  1161. "(CSBase & ~CSMask)=0x%llx\n",
  1162. (in_addr & cs_mask), (cs_base & cs_mask));
  1163. if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
  1164. cs_found = f10_process_possible_spare(pvt, dct, csrow);
  1165. debugf1(" MATCH csrow=%d\n", cs_found);
  1166. break;
  1167. }
  1168. }
  1169. return cs_found;
  1170. }
  1171. /*
  1172. * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
  1173. * swapped with a region located at the bottom of memory so that the GPU can use
  1174. * the interleaved region and thus two channels.
  1175. */
  1176. static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
  1177. {
  1178. u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
  1179. if (boot_cpu_data.x86 == 0x10) {
  1180. /* only revC3 and revE have that feature */
  1181. if (boot_cpu_data.x86_model < 4 ||
  1182. (boot_cpu_data.x86_model < 0xa &&
  1183. boot_cpu_data.x86_mask < 3))
  1184. return sys_addr;
  1185. }
  1186. amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
  1187. if (!(swap_reg & 0x1))
  1188. return sys_addr;
  1189. swap_base = (swap_reg >> 3) & 0x7f;
  1190. swap_limit = (swap_reg >> 11) & 0x7f;
  1191. rgn_size = (swap_reg >> 20) & 0x7f;
  1192. tmp_addr = sys_addr >> 27;
  1193. if (!(sys_addr >> 34) &&
  1194. (((tmp_addr >= swap_base) &&
  1195. (tmp_addr <= swap_limit)) ||
  1196. (tmp_addr < rgn_size)))
  1197. return sys_addr ^ (u64)swap_base << 27;
  1198. return sys_addr;
  1199. }
  1200. /* For a given @dram_range, check if @sys_addr falls within it. */
  1201. static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
  1202. u64 sys_addr, int *nid, int *chan_sel)
  1203. {
  1204. int cs_found = -EINVAL;
  1205. u64 chan_addr;
  1206. u32 dct_sel_base;
  1207. u8 channel;
  1208. bool high_range = false;
  1209. u8 node_id = dram_dst_node(pvt, range);
  1210. u8 intlv_en = dram_intlv_en(pvt, range);
  1211. u32 intlv_sel = dram_intlv_sel(pvt, range);
  1212. debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
  1213. range, sys_addr, get_dram_limit(pvt, range));
  1214. if (dhar_valid(pvt) &&
  1215. dhar_base(pvt) <= sys_addr &&
  1216. sys_addr < BIT_64(32)) {
  1217. amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
  1218. sys_addr);
  1219. return -EINVAL;
  1220. }
  1221. if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
  1222. return -EINVAL;
  1223. sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
  1224. dct_sel_base = dct_sel_baseaddr(pvt);
  1225. /*
  1226. * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
  1227. * select between DCT0 and DCT1.
  1228. */
  1229. if (dct_high_range_enabled(pvt) &&
  1230. !dct_ganging_enabled(pvt) &&
  1231. ((sys_addr >> 27) >= (dct_sel_base >> 11)))
  1232. high_range = true;
  1233. channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
  1234. chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
  1235. high_range, dct_sel_base);
  1236. /* Remove node interleaving, see F1x120 */
  1237. if (intlv_en)
  1238. chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
  1239. (chan_addr & 0xfff);
  1240. /* remove channel interleave */
  1241. if (dct_interleave_enabled(pvt) &&
  1242. !dct_high_range_enabled(pvt) &&
  1243. !dct_ganging_enabled(pvt)) {
  1244. if (dct_sel_interleave_addr(pvt) != 1) {
  1245. if (dct_sel_interleave_addr(pvt) == 0x3)
  1246. /* hash 9 */
  1247. chan_addr = ((chan_addr >> 10) << 9) |
  1248. (chan_addr & 0x1ff);
  1249. else
  1250. /* A[6] or hash 6 */
  1251. chan_addr = ((chan_addr >> 7) << 6) |
  1252. (chan_addr & 0x3f);
  1253. } else
  1254. /* A[12] */
  1255. chan_addr = ((chan_addr >> 13) << 12) |
  1256. (chan_addr & 0xfff);
  1257. }
  1258. debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr);
  1259. cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
  1260. if (cs_found >= 0) {
  1261. *nid = node_id;
  1262. *chan_sel = channel;
  1263. }
  1264. return cs_found;
  1265. }
  1266. static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
  1267. int *node, int *chan_sel)
  1268. {
  1269. int cs_found = -EINVAL;
  1270. unsigned range;
  1271. for (range = 0; range < DRAM_RANGES; range++) {
  1272. if (!dram_rw(pvt, range))
  1273. continue;
  1274. if ((get_dram_base(pvt, range) <= sys_addr) &&
  1275. (get_dram_limit(pvt, range) >= sys_addr)) {
  1276. cs_found = f1x_match_to_this_node(pvt, range,
  1277. sys_addr, node,
  1278. chan_sel);
  1279. if (cs_found >= 0)
  1280. break;
  1281. }
  1282. }
  1283. return cs_found;
  1284. }
  1285. /*
  1286. * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
  1287. * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
  1288. *
  1289. * The @sys_addr is usually an error address received from the hardware
  1290. * (MCX_ADDR).
  1291. */
  1292. static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
  1293. u16 syndrome)
  1294. {
  1295. struct amd64_pvt *pvt = mci->pvt_info;
  1296. u32 page, offset;
  1297. int nid, csrow, chan = 0;
  1298. csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
  1299. if (csrow < 0) {
  1300. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1301. return;
  1302. }
  1303. error_address_to_page_and_offset(sys_addr, &page, &offset);
  1304. /*
  1305. * We need the syndromes for channel detection only when we're
  1306. * ganged. Otherwise @chan should already contain the channel at
  1307. * this point.
  1308. */
  1309. if (dct_ganging_enabled(pvt))
  1310. chan = get_channel_from_ecc_syndrome(mci, syndrome);
  1311. if (chan >= 0)
  1312. edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
  1313. EDAC_MOD_STR);
  1314. else
  1315. /*
  1316. * Channel unknown, report all channels on this CSROW as failed.
  1317. */
  1318. for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
  1319. edac_mc_handle_ce(mci, page, offset, syndrome,
  1320. csrow, chan, EDAC_MOD_STR);
  1321. }
  1322. /*
  1323. * debug routine to display the memory sizes of all logical DIMMs and its
  1324. * CSROWs
  1325. */
  1326. static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
  1327. {
  1328. int dimm, size0, size1, factor = 0;
  1329. u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
  1330. u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
  1331. if (boot_cpu_data.x86 == 0xf) {
  1332. if (pvt->dclr0 & WIDTH_128)
  1333. factor = 1;
  1334. /* K8 families < revF not supported yet */
  1335. if (pvt->ext_model < K8_REV_F)
  1336. return;
  1337. else
  1338. WARN_ON(ctrl != 0);
  1339. }
  1340. dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
  1341. dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
  1342. : pvt->csels[0].csbases;
  1343. debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
  1344. edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
  1345. /* Dump memory sizes for DIMM and its CSROWs */
  1346. for (dimm = 0; dimm < 4; dimm++) {
  1347. size0 = 0;
  1348. if (dcsb[dimm*2] & DCSB_CS_ENABLE)
  1349. size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
  1350. DBAM_DIMM(dimm, dbam));
  1351. size1 = 0;
  1352. if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
  1353. size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
  1354. DBAM_DIMM(dimm, dbam));
  1355. amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
  1356. dimm * 2, size0 << factor,
  1357. dimm * 2 + 1, size1 << factor);
  1358. }
  1359. }
  1360. static struct amd64_family_type amd64_family_types[] = {
  1361. [K8_CPUS] = {
  1362. .ctl_name = "K8",
  1363. .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
  1364. .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
  1365. .ops = {
  1366. .early_channel_count = k8_early_channel_count,
  1367. .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
  1368. .dbam_to_cs = k8_dbam_to_chip_select,
  1369. .read_dct_pci_cfg = k8_read_dct_pci_cfg,
  1370. }
  1371. },
  1372. [F10_CPUS] = {
  1373. .ctl_name = "F10h",
  1374. .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
  1375. .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
  1376. .ops = {
  1377. .early_channel_count = f1x_early_channel_count,
  1378. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1379. .dbam_to_cs = f10_dbam_to_chip_select,
  1380. .read_dct_pci_cfg = f10_read_dct_pci_cfg,
  1381. }
  1382. },
  1383. [F15_CPUS] = {
  1384. .ctl_name = "F15h",
  1385. .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
  1386. .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
  1387. .ops = {
  1388. .early_channel_count = f1x_early_channel_count,
  1389. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1390. .dbam_to_cs = f15_dbam_to_chip_select,
  1391. .read_dct_pci_cfg = f15_read_dct_pci_cfg,
  1392. }
  1393. },
  1394. };
  1395. static struct pci_dev *pci_get_related_function(unsigned int vendor,
  1396. unsigned int device,
  1397. struct pci_dev *related)
  1398. {
  1399. struct pci_dev *dev = NULL;
  1400. dev = pci_get_device(vendor, device, dev);
  1401. while (dev) {
  1402. if ((dev->bus->number == related->bus->number) &&
  1403. (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
  1404. break;
  1405. dev = pci_get_device(vendor, device, dev);
  1406. }
  1407. return dev;
  1408. }
  1409. /*
  1410. * These are tables of eigenvectors (one per line) which can be used for the
  1411. * construction of the syndrome tables. The modified syndrome search algorithm
  1412. * uses those to find the symbol in error and thus the DIMM.
  1413. *
  1414. * Algorithm courtesy of Ross LaFetra from AMD.
  1415. */
  1416. static u16 x4_vectors[] = {
  1417. 0x2f57, 0x1afe, 0x66cc, 0xdd88,
  1418. 0x11eb, 0x3396, 0x7f4c, 0xeac8,
  1419. 0x0001, 0x0002, 0x0004, 0x0008,
  1420. 0x1013, 0x3032, 0x4044, 0x8088,
  1421. 0x106b, 0x30d6, 0x70fc, 0xe0a8,
  1422. 0x4857, 0xc4fe, 0x13cc, 0x3288,
  1423. 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
  1424. 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
  1425. 0x15c1, 0x2a42, 0x89ac, 0x4758,
  1426. 0x2b03, 0x1602, 0x4f0c, 0xca08,
  1427. 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
  1428. 0x8ba7, 0x465e, 0x244c, 0x1cc8,
  1429. 0x2b87, 0x164e, 0x642c, 0xdc18,
  1430. 0x40b9, 0x80de, 0x1094, 0x20e8,
  1431. 0x27db, 0x1eb6, 0x9dac, 0x7b58,
  1432. 0x11c1, 0x2242, 0x84ac, 0x4c58,
  1433. 0x1be5, 0x2d7a, 0x5e34, 0xa718,
  1434. 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
  1435. 0x4c97, 0xc87e, 0x11fc, 0x33a8,
  1436. 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
  1437. 0x16b3, 0x3d62, 0x4f34, 0x8518,
  1438. 0x1e2f, 0x391a, 0x5cac, 0xf858,
  1439. 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
  1440. 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
  1441. 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
  1442. 0x4397, 0xc27e, 0x17fc, 0x3ea8,
  1443. 0x1617, 0x3d3e, 0x6464, 0xb8b8,
  1444. 0x23ff, 0x12aa, 0xab6c, 0x56d8,
  1445. 0x2dfb, 0x1ba6, 0x913c, 0x7328,
  1446. 0x185d, 0x2ca6, 0x7914, 0x9e28,
  1447. 0x171b, 0x3e36, 0x7d7c, 0xebe8,
  1448. 0x4199, 0x82ee, 0x19f4, 0x2e58,
  1449. 0x4807, 0xc40e, 0x130c, 0x3208,
  1450. 0x1905, 0x2e0a, 0x5804, 0xac08,
  1451. 0x213f, 0x132a, 0xadfc, 0x5ba8,
  1452. 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
  1453. };
  1454. static u16 x8_vectors[] = {
  1455. 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
  1456. 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
  1457. 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
  1458. 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
  1459. 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
  1460. 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
  1461. 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
  1462. 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
  1463. 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
  1464. 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
  1465. 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
  1466. 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
  1467. 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
  1468. 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
  1469. 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
  1470. 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
  1471. 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
  1472. 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
  1473. 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
  1474. };
  1475. static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
  1476. unsigned v_dim)
  1477. {
  1478. unsigned int i, err_sym;
  1479. for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
  1480. u16 s = syndrome;
  1481. unsigned v_idx = err_sym * v_dim;
  1482. unsigned v_end = (err_sym + 1) * v_dim;
  1483. /* walk over all 16 bits of the syndrome */
  1484. for (i = 1; i < (1U << 16); i <<= 1) {
  1485. /* if bit is set in that eigenvector... */
  1486. if (v_idx < v_end && vectors[v_idx] & i) {
  1487. u16 ev_comp = vectors[v_idx++];
  1488. /* ... and bit set in the modified syndrome, */
  1489. if (s & i) {
  1490. /* remove it. */
  1491. s ^= ev_comp;
  1492. if (!s)
  1493. return err_sym;
  1494. }
  1495. } else if (s & i)
  1496. /* can't get to zero, move to next symbol */
  1497. break;
  1498. }
  1499. }
  1500. debugf0("syndrome(%x) not found\n", syndrome);
  1501. return -1;
  1502. }
  1503. static int map_err_sym_to_channel(int err_sym, int sym_size)
  1504. {
  1505. if (sym_size == 4)
  1506. switch (err_sym) {
  1507. case 0x20:
  1508. case 0x21:
  1509. return 0;
  1510. break;
  1511. case 0x22:
  1512. case 0x23:
  1513. return 1;
  1514. break;
  1515. default:
  1516. return err_sym >> 4;
  1517. break;
  1518. }
  1519. /* x8 symbols */
  1520. else
  1521. switch (err_sym) {
  1522. /* imaginary bits not in a DIMM */
  1523. case 0x10:
  1524. WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
  1525. err_sym);
  1526. return -1;
  1527. break;
  1528. case 0x11:
  1529. return 0;
  1530. break;
  1531. case 0x12:
  1532. return 1;
  1533. break;
  1534. default:
  1535. return err_sym >> 3;
  1536. break;
  1537. }
  1538. return -1;
  1539. }
  1540. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
  1541. {
  1542. struct amd64_pvt *pvt = mci->pvt_info;
  1543. int err_sym = -1;
  1544. if (pvt->ecc_sym_sz == 8)
  1545. err_sym = decode_syndrome(syndrome, x8_vectors,
  1546. ARRAY_SIZE(x8_vectors),
  1547. pvt->ecc_sym_sz);
  1548. else if (pvt->ecc_sym_sz == 4)
  1549. err_sym = decode_syndrome(syndrome, x4_vectors,
  1550. ARRAY_SIZE(x4_vectors),
  1551. pvt->ecc_sym_sz);
  1552. else {
  1553. amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
  1554. return err_sym;
  1555. }
  1556. return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
  1557. }
  1558. /*
  1559. * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
  1560. * ADDRESS and process.
  1561. */
  1562. static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
  1563. {
  1564. struct amd64_pvt *pvt = mci->pvt_info;
  1565. u64 sys_addr;
  1566. u16 syndrome;
  1567. /* Ensure that the Error Address is VALID */
  1568. if (!(m->status & MCI_STATUS_ADDRV)) {
  1569. amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
  1570. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1571. return;
  1572. }
  1573. sys_addr = get_error_address(m);
  1574. syndrome = extract_syndrome(m->status);
  1575. amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
  1576. pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
  1577. }
  1578. /* Handle any Un-correctable Errors (UEs) */
  1579. static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
  1580. {
  1581. struct mem_ctl_info *log_mci, *src_mci = NULL;
  1582. int csrow;
  1583. u64 sys_addr;
  1584. u32 page, offset;
  1585. log_mci = mci;
  1586. if (!(m->status & MCI_STATUS_ADDRV)) {
  1587. amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
  1588. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1589. return;
  1590. }
  1591. sys_addr = get_error_address(m);
  1592. /*
  1593. * Find out which node the error address belongs to. This may be
  1594. * different from the node that detected the error.
  1595. */
  1596. src_mci = find_mc_by_sys_addr(mci, sys_addr);
  1597. if (!src_mci) {
  1598. amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
  1599. (unsigned long)sys_addr);
  1600. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1601. return;
  1602. }
  1603. log_mci = src_mci;
  1604. csrow = sys_addr_to_csrow(log_mci, sys_addr);
  1605. if (csrow < 0) {
  1606. amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
  1607. (unsigned long)sys_addr);
  1608. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1609. } else {
  1610. error_address_to_page_and_offset(sys_addr, &page, &offset);
  1611. edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
  1612. }
  1613. }
  1614. static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
  1615. struct mce *m)
  1616. {
  1617. u16 ec = EC(m->status);
  1618. u8 xec = XEC(m->status, 0x1f);
  1619. u8 ecc_type = (m->status >> 45) & 0x3;
  1620. /* Bail early out if this was an 'observed' error */
  1621. if (PP(ec) == NBSL_PP_OBS)
  1622. return;
  1623. /* Do only ECC errors */
  1624. if (xec && xec != F10_NBSL_EXT_ERR_ECC)
  1625. return;
  1626. if (ecc_type == 2)
  1627. amd64_handle_ce(mci, m);
  1628. else if (ecc_type == 1)
  1629. amd64_handle_ue(mci, m);
  1630. }
  1631. void amd64_decode_bus_error(int node_id, struct mce *m)
  1632. {
  1633. __amd64_decode_bus_error(mcis[node_id], m);
  1634. }
  1635. /*
  1636. * Use pvt->F2 which contains the F2 CPU PCI device to get the related
  1637. * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
  1638. */
  1639. static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
  1640. {
  1641. /* Reserve the ADDRESS MAP Device */
  1642. pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
  1643. if (!pvt->F1) {
  1644. amd64_err("error address map device not found: "
  1645. "vendor %x device 0x%x (broken BIOS?)\n",
  1646. PCI_VENDOR_ID_AMD, f1_id);
  1647. return -ENODEV;
  1648. }
  1649. /* Reserve the MISC Device */
  1650. pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
  1651. if (!pvt->F3) {
  1652. pci_dev_put(pvt->F1);
  1653. pvt->F1 = NULL;
  1654. amd64_err("error F3 device not found: "
  1655. "vendor %x device 0x%x (broken BIOS?)\n",
  1656. PCI_VENDOR_ID_AMD, f3_id);
  1657. return -ENODEV;
  1658. }
  1659. debugf1("F1: %s\n", pci_name(pvt->F1));
  1660. debugf1("F2: %s\n", pci_name(pvt->F2));
  1661. debugf1("F3: %s\n", pci_name(pvt->F3));
  1662. return 0;
  1663. }
  1664. static void free_mc_sibling_devs(struct amd64_pvt *pvt)
  1665. {
  1666. pci_dev_put(pvt->F1);
  1667. pci_dev_put(pvt->F3);
  1668. }
  1669. /*
  1670. * Retrieve the hardware registers of the memory controller (this includes the
  1671. * 'Address Map' and 'Misc' device regs)
  1672. */
  1673. static void read_mc_regs(struct amd64_pvt *pvt)
  1674. {
  1675. struct cpuinfo_x86 *c = &boot_cpu_data;
  1676. u64 msr_val;
  1677. u32 tmp;
  1678. unsigned range;
  1679. /*
  1680. * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
  1681. * those are Read-As-Zero
  1682. */
  1683. rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
  1684. debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
  1685. /* check first whether TOP_MEM2 is enabled */
  1686. rdmsrl(MSR_K8_SYSCFG, msr_val);
  1687. if (msr_val & (1U << 21)) {
  1688. rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
  1689. debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
  1690. } else
  1691. debugf0(" TOP_MEM2 disabled.\n");
  1692. amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
  1693. read_dram_ctl_register(pvt);
  1694. for (range = 0; range < DRAM_RANGES; range++) {
  1695. u8 rw;
  1696. /* read settings for this DRAM range */
  1697. read_dram_base_limit_regs(pvt, range);
  1698. rw = dram_rw(pvt, range);
  1699. if (!rw)
  1700. continue;
  1701. debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
  1702. range,
  1703. get_dram_base(pvt, range),
  1704. get_dram_limit(pvt, range));
  1705. debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
  1706. dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
  1707. (rw & 0x1) ? "R" : "-",
  1708. (rw & 0x2) ? "W" : "-",
  1709. dram_intlv_sel(pvt, range),
  1710. dram_dst_node(pvt, range));
  1711. }
  1712. read_dct_base_mask(pvt);
  1713. amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
  1714. amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
  1715. amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
  1716. amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
  1717. amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
  1718. if (!dct_ganging_enabled(pvt)) {
  1719. amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
  1720. amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
  1721. }
  1722. pvt->ecc_sym_sz = 4;
  1723. if (c->x86 >= 0x10) {
  1724. amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
  1725. amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
  1726. /* F10h, revD and later can do x8 ECC too */
  1727. if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
  1728. pvt->ecc_sym_sz = 8;
  1729. }
  1730. dump_misc_regs(pvt);
  1731. }
  1732. /*
  1733. * NOTE: CPU Revision Dependent code
  1734. *
  1735. * Input:
  1736. * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
  1737. * k8 private pointer to -->
  1738. * DRAM Bank Address mapping register
  1739. * node_id
  1740. * DCL register where dual_channel_active is
  1741. *
  1742. * The DBAM register consists of 4 sets of 4 bits each definitions:
  1743. *
  1744. * Bits: CSROWs
  1745. * 0-3 CSROWs 0 and 1
  1746. * 4-7 CSROWs 2 and 3
  1747. * 8-11 CSROWs 4 and 5
  1748. * 12-15 CSROWs 6 and 7
  1749. *
  1750. * Values range from: 0 to 15
  1751. * The meaning of the values depends on CPU revision and dual-channel state,
  1752. * see relevant BKDG more info.
  1753. *
  1754. * The memory controller provides for total of only 8 CSROWs in its current
  1755. * architecture. Each "pair" of CSROWs normally represents just one DIMM in
  1756. * single channel or two (2) DIMMs in dual channel mode.
  1757. *
  1758. * The following code logic collapses the various tables for CSROW based on CPU
  1759. * revision.
  1760. *
  1761. * Returns:
  1762. * The number of PAGE_SIZE pages on the specified CSROW number it
  1763. * encompasses
  1764. *
  1765. */
  1766. static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
  1767. {
  1768. u32 cs_mode, nr_pages;
  1769. /*
  1770. * The math on this doesn't look right on the surface because x/2*4 can
  1771. * be simplified to x*2 but this expression makes use of the fact that
  1772. * it is integral math where 1/2=0. This intermediate value becomes the
  1773. * number of bits to shift the DBAM register to extract the proper CSROW
  1774. * field.
  1775. */
  1776. cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
  1777. nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
  1778. /*
  1779. * If dual channel then double the memory size of single channel.
  1780. * Channel count is 1 or 2
  1781. */
  1782. nr_pages <<= (pvt->channel_count - 1);
  1783. debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
  1784. debugf0(" nr_pages= %u channel-count = %d\n",
  1785. nr_pages, pvt->channel_count);
  1786. return nr_pages;
  1787. }
  1788. /*
  1789. * Initialize the array of csrow attribute instances, based on the values
  1790. * from pci config hardware registers.
  1791. */
  1792. static int init_csrows(struct mem_ctl_info *mci)
  1793. {
  1794. struct csrow_info *csrow;
  1795. struct amd64_pvt *pvt = mci->pvt_info;
  1796. u64 input_addr_min, input_addr_max, sys_addr, base, mask;
  1797. u32 val;
  1798. int i, empty = 1;
  1799. amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
  1800. pvt->nbcfg = val;
  1801. debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
  1802. pvt->mc_node_id, val,
  1803. !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
  1804. for_each_chip_select(i, 0, pvt) {
  1805. csrow = &mci->csrows[i];
  1806. if (!csrow_enabled(i, 0, pvt)) {
  1807. debugf1("----CSROW %d EMPTY for node %d\n", i,
  1808. pvt->mc_node_id);
  1809. continue;
  1810. }
  1811. debugf1("----CSROW %d VALID for MC node %d\n",
  1812. i, pvt->mc_node_id);
  1813. empty = 0;
  1814. csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
  1815. find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
  1816. sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
  1817. csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
  1818. sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
  1819. csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
  1820. get_cs_base_and_mask(pvt, i, 0, &base, &mask);
  1821. csrow->page_mask = ~mask;
  1822. /* 8 bytes of resolution */
  1823. csrow->mtype = amd64_determine_memory_type(pvt, i);
  1824. debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
  1825. debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
  1826. (unsigned long)input_addr_min,
  1827. (unsigned long)input_addr_max);
  1828. debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
  1829. (unsigned long)sys_addr, csrow->page_mask);
  1830. debugf1(" nr_pages: %u first_page: 0x%lx "
  1831. "last_page: 0x%lx\n",
  1832. (unsigned)csrow->nr_pages,
  1833. csrow->first_page, csrow->last_page);
  1834. /*
  1835. * determine whether CHIPKILL or JUST ECC or NO ECC is operating
  1836. */
  1837. if (pvt->nbcfg & NBCFG_ECC_ENABLE)
  1838. csrow->edac_mode =
  1839. (pvt->nbcfg & NBCFG_CHIPKILL) ?
  1840. EDAC_S4ECD4ED : EDAC_SECDED;
  1841. else
  1842. csrow->edac_mode = EDAC_NONE;
  1843. }
  1844. return empty;
  1845. }
  1846. /* get all cores on this DCT */
  1847. static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
  1848. {
  1849. int cpu;
  1850. for_each_online_cpu(cpu)
  1851. if (amd_get_nb_id(cpu) == nid)
  1852. cpumask_set_cpu(cpu, mask);
  1853. }
  1854. /* check MCG_CTL on all the cpus on this node */
  1855. static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
  1856. {
  1857. cpumask_var_t mask;
  1858. int cpu, nbe;
  1859. bool ret = false;
  1860. if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
  1861. amd64_warn("%s: Error allocating mask\n", __func__);
  1862. return false;
  1863. }
  1864. get_cpus_on_this_dct_cpumask(mask, nid);
  1865. rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
  1866. for_each_cpu(cpu, mask) {
  1867. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1868. nbe = reg->l & MSR_MCGCTL_NBE;
  1869. debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
  1870. cpu, reg->q,
  1871. (nbe ? "enabled" : "disabled"));
  1872. if (!nbe)
  1873. goto out;
  1874. }
  1875. ret = true;
  1876. out:
  1877. free_cpumask_var(mask);
  1878. return ret;
  1879. }
  1880. static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
  1881. {
  1882. cpumask_var_t cmask;
  1883. int cpu;
  1884. if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
  1885. amd64_warn("%s: error allocating mask\n", __func__);
  1886. return false;
  1887. }
  1888. get_cpus_on_this_dct_cpumask(cmask, nid);
  1889. rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1890. for_each_cpu(cpu, cmask) {
  1891. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1892. if (on) {
  1893. if (reg->l & MSR_MCGCTL_NBE)
  1894. s->flags.nb_mce_enable = 1;
  1895. reg->l |= MSR_MCGCTL_NBE;
  1896. } else {
  1897. /*
  1898. * Turn off NB MCE reporting only when it was off before
  1899. */
  1900. if (!s->flags.nb_mce_enable)
  1901. reg->l &= ~MSR_MCGCTL_NBE;
  1902. }
  1903. }
  1904. wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1905. free_cpumask_var(cmask);
  1906. return 0;
  1907. }
  1908. static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
  1909. struct pci_dev *F3)
  1910. {
  1911. bool ret = true;
  1912. u32 value, mask = 0x3; /* UECC/CECC enable */
  1913. if (toggle_ecc_err_reporting(s, nid, ON)) {
  1914. amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
  1915. return false;
  1916. }
  1917. amd64_read_pci_cfg(F3, NBCTL, &value);
  1918. s->old_nbctl = value & mask;
  1919. s->nbctl_valid = true;
  1920. value |= mask;
  1921. amd64_write_pci_cfg(F3, NBCTL, value);
  1922. amd64_read_pci_cfg(F3, NBCFG, &value);
  1923. debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
  1924. nid, value, !!(value & NBCFG_ECC_ENABLE));
  1925. if (!(value & NBCFG_ECC_ENABLE)) {
  1926. amd64_warn("DRAM ECC disabled on this node, enabling...\n");
  1927. s->flags.nb_ecc_prev = 0;
  1928. /* Attempt to turn on DRAM ECC Enable */
  1929. value |= NBCFG_ECC_ENABLE;
  1930. amd64_write_pci_cfg(F3, NBCFG, value);
  1931. amd64_read_pci_cfg(F3, NBCFG, &value);
  1932. if (!(value & NBCFG_ECC_ENABLE)) {
  1933. amd64_warn("Hardware rejected DRAM ECC enable,"
  1934. "check memory DIMM configuration.\n");
  1935. ret = false;
  1936. } else {
  1937. amd64_info("Hardware accepted DRAM ECC Enable\n");
  1938. }
  1939. } else {
  1940. s->flags.nb_ecc_prev = 1;
  1941. }
  1942. debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
  1943. nid, value, !!(value & NBCFG_ECC_ENABLE));
  1944. return ret;
  1945. }
  1946. static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
  1947. struct pci_dev *F3)
  1948. {
  1949. u32 value, mask = 0x3; /* UECC/CECC enable */
  1950. if (!s->nbctl_valid)
  1951. return;
  1952. amd64_read_pci_cfg(F3, NBCTL, &value);
  1953. value &= ~mask;
  1954. value |= s->old_nbctl;
  1955. amd64_write_pci_cfg(F3, NBCTL, value);
  1956. /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
  1957. if (!s->flags.nb_ecc_prev) {
  1958. amd64_read_pci_cfg(F3, NBCFG, &value);
  1959. value &= ~NBCFG_ECC_ENABLE;
  1960. amd64_write_pci_cfg(F3, NBCFG, value);
  1961. }
  1962. /* restore the NB Enable MCGCTL bit */
  1963. if (toggle_ecc_err_reporting(s, nid, OFF))
  1964. amd64_warn("Error restoring NB MCGCTL settings!\n");
  1965. }
  1966. /*
  1967. * EDAC requires that the BIOS have ECC enabled before
  1968. * taking over the processing of ECC errors. A command line
  1969. * option allows to force-enable hardware ECC later in
  1970. * enable_ecc_error_reporting().
  1971. */
  1972. static const char *ecc_msg =
  1973. "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
  1974. " Either enable ECC checking or force module loading by setting "
  1975. "'ecc_enable_override'.\n"
  1976. " (Note that use of the override may cause unknown side effects.)\n";
  1977. static bool ecc_enabled(struct pci_dev *F3, u8 nid)
  1978. {
  1979. u32 value;
  1980. u8 ecc_en = 0;
  1981. bool nb_mce_en = false;
  1982. amd64_read_pci_cfg(F3, NBCFG, &value);
  1983. ecc_en = !!(value & NBCFG_ECC_ENABLE);
  1984. amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
  1985. nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
  1986. if (!nb_mce_en)
  1987. amd64_notice("NB MCE bank disabled, set MSR "
  1988. "0x%08x[4] on node %d to enable.\n",
  1989. MSR_IA32_MCG_CTL, nid);
  1990. if (!ecc_en || !nb_mce_en) {
  1991. amd64_notice("%s", ecc_msg);
  1992. return false;
  1993. }
  1994. return true;
  1995. }
  1996. struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
  1997. ARRAY_SIZE(amd64_inj_attrs) +
  1998. 1];
  1999. struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
  2000. static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
  2001. {
  2002. unsigned int i = 0, j = 0;
  2003. for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
  2004. sysfs_attrs[i] = amd64_dbg_attrs[i];
  2005. if (boot_cpu_data.x86 >= 0x10)
  2006. for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
  2007. sysfs_attrs[i] = amd64_inj_attrs[j];
  2008. sysfs_attrs[i] = terminator;
  2009. mci->mc_driver_sysfs_attributes = sysfs_attrs;
  2010. }
  2011. static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
  2012. struct amd64_family_type *fam)
  2013. {
  2014. struct amd64_pvt *pvt = mci->pvt_info;
  2015. mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
  2016. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  2017. if (pvt->nbcap & NBCAP_SECDED)
  2018. mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
  2019. if (pvt->nbcap & NBCAP_CHIPKILL)
  2020. mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
  2021. mci->edac_cap = amd64_determine_edac_cap(pvt);
  2022. mci->mod_name = EDAC_MOD_STR;
  2023. mci->mod_ver = EDAC_AMD64_VERSION;
  2024. mci->ctl_name = fam->ctl_name;
  2025. mci->dev_name = pci_name(pvt->F2);
  2026. mci->ctl_page_to_phys = NULL;
  2027. /* memory scrubber interface */
  2028. mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
  2029. mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
  2030. }
  2031. /*
  2032. * returns a pointer to the family descriptor on success, NULL otherwise.
  2033. */
  2034. static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
  2035. {
  2036. u8 fam = boot_cpu_data.x86;
  2037. struct amd64_family_type *fam_type = NULL;
  2038. switch (fam) {
  2039. case 0xf:
  2040. fam_type = &amd64_family_types[K8_CPUS];
  2041. pvt->ops = &amd64_family_types[K8_CPUS].ops;
  2042. break;
  2043. case 0x10:
  2044. fam_type = &amd64_family_types[F10_CPUS];
  2045. pvt->ops = &amd64_family_types[F10_CPUS].ops;
  2046. break;
  2047. case 0x15:
  2048. fam_type = &amd64_family_types[F15_CPUS];
  2049. pvt->ops = &amd64_family_types[F15_CPUS].ops;
  2050. break;
  2051. default:
  2052. amd64_err("Unsupported family!\n");
  2053. return NULL;
  2054. }
  2055. pvt->ext_model = boot_cpu_data.x86_model >> 4;
  2056. amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
  2057. (fam == 0xf ?
  2058. (pvt->ext_model >= K8_REV_F ? "revF or later "
  2059. : "revE or earlier ")
  2060. : ""), pvt->mc_node_id);
  2061. return fam_type;
  2062. }
  2063. static int amd64_init_one_instance(struct pci_dev *F2)
  2064. {
  2065. struct amd64_pvt *pvt = NULL;
  2066. struct amd64_family_type *fam_type = NULL;
  2067. struct mem_ctl_info *mci = NULL;
  2068. int err = 0, ret;
  2069. u8 nid = get_node_id(F2);
  2070. ret = -ENOMEM;
  2071. pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
  2072. if (!pvt)
  2073. goto err_ret;
  2074. pvt->mc_node_id = nid;
  2075. pvt->F2 = F2;
  2076. ret = -EINVAL;
  2077. fam_type = amd64_per_family_init(pvt);
  2078. if (!fam_type)
  2079. goto err_free;
  2080. ret = -ENODEV;
  2081. err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
  2082. if (err)
  2083. goto err_free;
  2084. read_mc_regs(pvt);
  2085. /*
  2086. * We need to determine how many memory channels there are. Then use
  2087. * that information for calculating the size of the dynamic instance
  2088. * tables in the 'mci' structure.
  2089. */
  2090. ret = -EINVAL;
  2091. pvt->channel_count = pvt->ops->early_channel_count(pvt);
  2092. if (pvt->channel_count < 0)
  2093. goto err_siblings;
  2094. ret = -ENOMEM;
  2095. mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
  2096. if (!mci)
  2097. goto err_siblings;
  2098. mci->pvt_info = pvt;
  2099. mci->dev = &pvt->F2->dev;
  2100. setup_mci_misc_attrs(mci, fam_type);
  2101. if (init_csrows(mci))
  2102. mci->edac_cap = EDAC_FLAG_NONE;
  2103. set_mc_sysfs_attrs(mci);
  2104. ret = -ENODEV;
  2105. if (edac_mc_add_mc(mci)) {
  2106. debugf1("failed edac_mc_add_mc()\n");
  2107. goto err_add_mc;
  2108. }
  2109. /* register stuff with EDAC MCE */
  2110. if (report_gart_errors)
  2111. amd_report_gart_errors(true);
  2112. amd_register_ecc_decoder(amd64_decode_bus_error);
  2113. mcis[nid] = mci;
  2114. atomic_inc(&drv_instances);
  2115. return 0;
  2116. err_add_mc:
  2117. edac_mc_free(mci);
  2118. err_siblings:
  2119. free_mc_sibling_devs(pvt);
  2120. err_free:
  2121. kfree(pvt);
  2122. err_ret:
  2123. return ret;
  2124. }
  2125. static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
  2126. const struct pci_device_id *mc_type)
  2127. {
  2128. u8 nid = get_node_id(pdev);
  2129. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2130. struct ecc_settings *s;
  2131. int ret = 0;
  2132. ret = pci_enable_device(pdev);
  2133. if (ret < 0) {
  2134. debugf0("ret=%d\n", ret);
  2135. return -EIO;
  2136. }
  2137. ret = -ENOMEM;
  2138. s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
  2139. if (!s)
  2140. goto err_out;
  2141. ecc_stngs[nid] = s;
  2142. if (!ecc_enabled(F3, nid)) {
  2143. ret = -ENODEV;
  2144. if (!ecc_enable_override)
  2145. goto err_enable;
  2146. amd64_warn("Forcing ECC on!\n");
  2147. if (!enable_ecc_error_reporting(s, nid, F3))
  2148. goto err_enable;
  2149. }
  2150. ret = amd64_init_one_instance(pdev);
  2151. if (ret < 0) {
  2152. amd64_err("Error probing instance: %d\n", nid);
  2153. restore_ecc_error_reporting(s, nid, F3);
  2154. }
  2155. return ret;
  2156. err_enable:
  2157. kfree(s);
  2158. ecc_stngs[nid] = NULL;
  2159. err_out:
  2160. return ret;
  2161. }
  2162. static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
  2163. {
  2164. struct mem_ctl_info *mci;
  2165. struct amd64_pvt *pvt;
  2166. u8 nid = get_node_id(pdev);
  2167. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2168. struct ecc_settings *s = ecc_stngs[nid];
  2169. /* Remove from EDAC CORE tracking list */
  2170. mci = edac_mc_del_mc(&pdev->dev);
  2171. if (!mci)
  2172. return;
  2173. pvt = mci->pvt_info;
  2174. restore_ecc_error_reporting(s, nid, F3);
  2175. free_mc_sibling_devs(pvt);
  2176. /* unregister from EDAC MCE */
  2177. amd_report_gart_errors(false);
  2178. amd_unregister_ecc_decoder(amd64_decode_bus_error);
  2179. kfree(ecc_stngs[nid]);
  2180. ecc_stngs[nid] = NULL;
  2181. /* Free the EDAC CORE resources */
  2182. mci->pvt_info = NULL;
  2183. mcis[nid] = NULL;
  2184. kfree(pvt);
  2185. edac_mc_free(mci);
  2186. }
  2187. /*
  2188. * This table is part of the interface for loading drivers for PCI devices. The
  2189. * PCI core identifies what devices are on a system during boot, and then
  2190. * inquiry this table to see if this driver is for a given device found.
  2191. */
  2192. static const struct pci_device_id amd64_pci_table[] __devinitdata = {
  2193. {
  2194. .vendor = PCI_VENDOR_ID_AMD,
  2195. .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
  2196. .subvendor = PCI_ANY_ID,
  2197. .subdevice = PCI_ANY_ID,
  2198. .class = 0,
  2199. .class_mask = 0,
  2200. },
  2201. {
  2202. .vendor = PCI_VENDOR_ID_AMD,
  2203. .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
  2204. .subvendor = PCI_ANY_ID,
  2205. .subdevice = PCI_ANY_ID,
  2206. .class = 0,
  2207. .class_mask = 0,
  2208. },
  2209. {
  2210. .vendor = PCI_VENDOR_ID_AMD,
  2211. .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
  2212. .subvendor = PCI_ANY_ID,
  2213. .subdevice = PCI_ANY_ID,
  2214. .class = 0,
  2215. .class_mask = 0,
  2216. },
  2217. {0, }
  2218. };
  2219. MODULE_DEVICE_TABLE(pci, amd64_pci_table);
  2220. static struct pci_driver amd64_pci_driver = {
  2221. .name = EDAC_MOD_STR,
  2222. .probe = amd64_probe_one_instance,
  2223. .remove = __devexit_p(amd64_remove_one_instance),
  2224. .id_table = amd64_pci_table,
  2225. };
  2226. static void setup_pci_device(void)
  2227. {
  2228. struct mem_ctl_info *mci;
  2229. struct amd64_pvt *pvt;
  2230. if (amd64_ctl_pci)
  2231. return;
  2232. mci = mcis[0];
  2233. if (mci) {
  2234. pvt = mci->pvt_info;
  2235. amd64_ctl_pci =
  2236. edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
  2237. if (!amd64_ctl_pci) {
  2238. pr_warning("%s(): Unable to create PCI control\n",
  2239. __func__);
  2240. pr_warning("%s(): PCI error report via EDAC not set\n",
  2241. __func__);
  2242. }
  2243. }
  2244. }
  2245. static int __init amd64_edac_init(void)
  2246. {
  2247. int err = -ENODEV;
  2248. printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
  2249. opstate_init();
  2250. if (amd_cache_northbridges() < 0)
  2251. goto err_ret;
  2252. err = -ENOMEM;
  2253. mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
  2254. ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
  2255. if (!(mcis && ecc_stngs))
  2256. goto err_free;
  2257. msrs = msrs_alloc();
  2258. if (!msrs)
  2259. goto err_free;
  2260. err = pci_register_driver(&amd64_pci_driver);
  2261. if (err)
  2262. goto err_pci;
  2263. err = -ENODEV;
  2264. if (!atomic_read(&drv_instances))
  2265. goto err_no_instances;
  2266. setup_pci_device();
  2267. return 0;
  2268. err_no_instances:
  2269. pci_unregister_driver(&amd64_pci_driver);
  2270. err_pci:
  2271. msrs_free(msrs);
  2272. msrs = NULL;
  2273. err_free:
  2274. kfree(mcis);
  2275. mcis = NULL;
  2276. kfree(ecc_stngs);
  2277. ecc_stngs = NULL;
  2278. err_ret:
  2279. return err;
  2280. }
  2281. static void __exit amd64_edac_exit(void)
  2282. {
  2283. if (amd64_ctl_pci)
  2284. edac_pci_release_generic_ctl(amd64_ctl_pci);
  2285. pci_unregister_driver(&amd64_pci_driver);
  2286. kfree(ecc_stngs);
  2287. ecc_stngs = NULL;
  2288. kfree(mcis);
  2289. mcis = NULL;
  2290. msrs_free(msrs);
  2291. msrs = NULL;
  2292. }
  2293. module_init(amd64_edac_init);
  2294. module_exit(amd64_edac_exit);
  2295. MODULE_LICENSE("GPL");
  2296. MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
  2297. "Dave Peterson, Thayne Harbaugh");
  2298. MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
  2299. EDAC_AMD64_VERSION);
  2300. module_param(edac_op_state, int, 0444);
  2301. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");