amba-pl08x.c 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073
  1. /*
  2. * Copyright (c) 2006 ARM Ltd.
  3. * Copyright (c) 2010 ST-Ericsson SA
  4. *
  5. * Author: Peter Pearse <peter.pearse@arm.com>
  6. * Author: Linus Walleij <linus.walleij@stericsson.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of the GNU General Public License as published by the Free
  10. * Software Foundation; either version 2 of the License, or (at your option)
  11. * any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful, but WITHOUT
  14. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  16. * more details.
  17. *
  18. * You should have received a copy of the GNU General Public License along with
  19. * this program; if not, write to the Free Software Foundation, Inc., 59
  20. * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  21. *
  22. * The full GNU General Public License is in this distribution in the file
  23. * called COPYING.
  24. *
  25. * Documentation: ARM DDI 0196G == PL080
  26. * Documentation: ARM DDI 0218E == PL081
  27. *
  28. * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
  29. * channel.
  30. *
  31. * The PL080 has 8 channels available for simultaneous use, and the PL081
  32. * has only two channels. So on these DMA controllers the number of channels
  33. * and the number of incoming DMA signals are two totally different things.
  34. * It is usually not possible to theoretically handle all physical signals,
  35. * so a multiplexing scheme with possible denial of use is necessary.
  36. *
  37. * The PL080 has a dual bus master, PL081 has a single master.
  38. *
  39. * Memory to peripheral transfer may be visualized as
  40. * Get data from memory to DMAC
  41. * Until no data left
  42. * On burst request from peripheral
  43. * Destination burst from DMAC to peripheral
  44. * Clear burst request
  45. * Raise terminal count interrupt
  46. *
  47. * For peripherals with a FIFO:
  48. * Source burst size == half the depth of the peripheral FIFO
  49. * Destination burst size == the depth of the peripheral FIFO
  50. *
  51. * (Bursts are irrelevant for mem to mem transfers - there are no burst
  52. * signals, the DMA controller will simply facilitate its AHB master.)
  53. *
  54. * ASSUMES default (little) endianness for DMA transfers
  55. *
  56. * The PL08x has two flow control settings:
  57. * - DMAC flow control: the transfer size defines the number of transfers
  58. * which occur for the current LLI entry, and the DMAC raises TC at the
  59. * end of every LLI entry. Observed behaviour shows the DMAC listening
  60. * to both the BREQ and SREQ signals (contrary to documented),
  61. * transferring data if either is active. The LBREQ and LSREQ signals
  62. * are ignored.
  63. *
  64. * - Peripheral flow control: the transfer size is ignored (and should be
  65. * zero). The data is transferred from the current LLI entry, until
  66. * after the final transfer signalled by LBREQ or LSREQ. The DMAC
  67. * will then move to the next LLI entry.
  68. *
  69. * Global TODO:
  70. * - Break out common code from arch/arm/mach-s3c64xx and share
  71. */
  72. #include <linux/amba/bus.h>
  73. #include <linux/amba/pl08x.h>
  74. #include <linux/debugfs.h>
  75. #include <linux/delay.h>
  76. #include <linux/device.h>
  77. #include <linux/dmaengine.h>
  78. #include <linux/dmapool.h>
  79. #include <linux/dma-mapping.h>
  80. #include <linux/init.h>
  81. #include <linux/interrupt.h>
  82. #include <linux/module.h>
  83. #include <linux/pm_runtime.h>
  84. #include <linux/seq_file.h>
  85. #include <linux/slab.h>
  86. #include <asm/hardware/pl080.h>
  87. #define DRIVER_NAME "pl08xdmac"
  88. static struct amba_driver pl08x_amba_driver;
  89. /**
  90. * struct vendor_data - vendor-specific config parameters for PL08x derivatives
  91. * @channels: the number of channels available in this variant
  92. * @dualmaster: whether this version supports dual AHB masters or not.
  93. */
  94. struct vendor_data {
  95. u8 channels;
  96. bool dualmaster;
  97. };
  98. /*
  99. * PL08X private data structures
  100. * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
  101. * start & end do not - their bus bit info is in cctl. Also note that these
  102. * are fixed 32-bit quantities.
  103. */
  104. struct pl08x_lli {
  105. u32 src;
  106. u32 dst;
  107. u32 lli;
  108. u32 cctl;
  109. };
  110. /**
  111. * struct pl08x_driver_data - the local state holder for the PL08x
  112. * @slave: slave engine for this instance
  113. * @memcpy: memcpy engine for this instance
  114. * @base: virtual memory base (remapped) for the PL08x
  115. * @adev: the corresponding AMBA (PrimeCell) bus entry
  116. * @vd: vendor data for this PL08x variant
  117. * @pd: platform data passed in from the platform/machine
  118. * @phy_chans: array of data for the physical channels
  119. * @pool: a pool for the LLI descriptors
  120. * @pool_ctr: counter of LLIs in the pool
  121. * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
  122. * fetches
  123. * @mem_buses: set to indicate memory transfers on AHB2.
  124. * @lock: a spinlock for this struct
  125. */
  126. struct pl08x_driver_data {
  127. struct dma_device slave;
  128. struct dma_device memcpy;
  129. void __iomem *base;
  130. struct amba_device *adev;
  131. const struct vendor_data *vd;
  132. struct pl08x_platform_data *pd;
  133. struct pl08x_phy_chan *phy_chans;
  134. struct dma_pool *pool;
  135. int pool_ctr;
  136. u8 lli_buses;
  137. u8 mem_buses;
  138. spinlock_t lock;
  139. };
  140. /*
  141. * PL08X specific defines
  142. */
  143. /* Size (bytes) of each LLI buffer allocated for one transfer */
  144. # define PL08X_LLI_TSFR_SIZE 0x2000
  145. /* Maximum times we call dma_pool_alloc on this pool without freeing */
  146. #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
  147. #define PL08X_ALIGN 8
  148. static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
  149. {
  150. return container_of(chan, struct pl08x_dma_chan, chan);
  151. }
  152. static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
  153. {
  154. return container_of(tx, struct pl08x_txd, tx);
  155. }
  156. /*
  157. * Physical channel handling
  158. */
  159. /* Whether a certain channel is busy or not */
  160. static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
  161. {
  162. unsigned int val;
  163. val = readl(ch->base + PL080_CH_CONFIG);
  164. return val & PL080_CONFIG_ACTIVE;
  165. }
  166. /*
  167. * Set the initial DMA register values i.e. those for the first LLI
  168. * The next LLI pointer and the configuration interrupt bit have
  169. * been set when the LLIs were constructed. Poke them into the hardware
  170. * and start the transfer.
  171. */
  172. static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
  173. struct pl08x_txd *txd)
  174. {
  175. struct pl08x_driver_data *pl08x = plchan->host;
  176. struct pl08x_phy_chan *phychan = plchan->phychan;
  177. struct pl08x_lli *lli = &txd->llis_va[0];
  178. u32 val;
  179. plchan->at = txd;
  180. /* Wait for channel inactive */
  181. while (pl08x_phy_channel_busy(phychan))
  182. cpu_relax();
  183. dev_vdbg(&pl08x->adev->dev,
  184. "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
  185. "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
  186. phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
  187. txd->ccfg);
  188. writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
  189. writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
  190. writel(lli->lli, phychan->base + PL080_CH_LLI);
  191. writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
  192. writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
  193. /* Enable the DMA channel */
  194. /* Do not access config register until channel shows as disabled */
  195. while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
  196. cpu_relax();
  197. /* Do not access config register until channel shows as inactive */
  198. val = readl(phychan->base + PL080_CH_CONFIG);
  199. while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
  200. val = readl(phychan->base + PL080_CH_CONFIG);
  201. writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
  202. }
  203. /*
  204. * Pause the channel by setting the HALT bit.
  205. *
  206. * For M->P transfers, pause the DMAC first and then stop the peripheral -
  207. * the FIFO can only drain if the peripheral is still requesting data.
  208. * (note: this can still timeout if the DMAC FIFO never drains of data.)
  209. *
  210. * For P->M transfers, disable the peripheral first to stop it filling
  211. * the DMAC FIFO, and then pause the DMAC.
  212. */
  213. static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
  214. {
  215. u32 val;
  216. int timeout;
  217. /* Set the HALT bit and wait for the FIFO to drain */
  218. val = readl(ch->base + PL080_CH_CONFIG);
  219. val |= PL080_CONFIG_HALT;
  220. writel(val, ch->base + PL080_CH_CONFIG);
  221. /* Wait for channel inactive */
  222. for (timeout = 1000; timeout; timeout--) {
  223. if (!pl08x_phy_channel_busy(ch))
  224. break;
  225. udelay(1);
  226. }
  227. if (pl08x_phy_channel_busy(ch))
  228. pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
  229. }
  230. static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
  231. {
  232. u32 val;
  233. /* Clear the HALT bit */
  234. val = readl(ch->base + PL080_CH_CONFIG);
  235. val &= ~PL080_CONFIG_HALT;
  236. writel(val, ch->base + PL080_CH_CONFIG);
  237. }
  238. /*
  239. * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
  240. * clears any pending interrupt status. This should not be used for
  241. * an on-going transfer, but as a method of shutting down a channel
  242. * (eg, when it's no longer used) or terminating a transfer.
  243. */
  244. static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
  245. struct pl08x_phy_chan *ch)
  246. {
  247. u32 val = readl(ch->base + PL080_CH_CONFIG);
  248. val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
  249. PL080_CONFIG_TC_IRQ_MASK);
  250. writel(val, ch->base + PL080_CH_CONFIG);
  251. writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
  252. writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
  253. }
  254. static inline u32 get_bytes_in_cctl(u32 cctl)
  255. {
  256. /* The source width defines the number of bytes */
  257. u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
  258. switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
  259. case PL080_WIDTH_8BIT:
  260. break;
  261. case PL080_WIDTH_16BIT:
  262. bytes *= 2;
  263. break;
  264. case PL080_WIDTH_32BIT:
  265. bytes *= 4;
  266. break;
  267. }
  268. return bytes;
  269. }
  270. /* The channel should be paused when calling this */
  271. static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
  272. {
  273. struct pl08x_phy_chan *ch;
  274. struct pl08x_txd *txd;
  275. unsigned long flags;
  276. size_t bytes = 0;
  277. spin_lock_irqsave(&plchan->lock, flags);
  278. ch = plchan->phychan;
  279. txd = plchan->at;
  280. /*
  281. * Follow the LLIs to get the number of remaining
  282. * bytes in the currently active transaction.
  283. */
  284. if (ch && txd) {
  285. u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
  286. /* First get the remaining bytes in the active transfer */
  287. bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
  288. if (clli) {
  289. struct pl08x_lli *llis_va = txd->llis_va;
  290. dma_addr_t llis_bus = txd->llis_bus;
  291. int index;
  292. BUG_ON(clli < llis_bus || clli >= llis_bus +
  293. sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
  294. /*
  295. * Locate the next LLI - as this is an array,
  296. * it's simple maths to find.
  297. */
  298. index = (clli - llis_bus) / sizeof(struct pl08x_lli);
  299. for (; index < MAX_NUM_TSFR_LLIS; index++) {
  300. bytes += get_bytes_in_cctl(llis_va[index].cctl);
  301. /*
  302. * A LLI pointer of 0 terminates the LLI list
  303. */
  304. if (!llis_va[index].lli)
  305. break;
  306. }
  307. }
  308. }
  309. /* Sum up all queued transactions */
  310. if (!list_empty(&plchan->pend_list)) {
  311. struct pl08x_txd *txdi;
  312. list_for_each_entry(txdi, &plchan->pend_list, node) {
  313. struct pl08x_sg *dsg;
  314. list_for_each_entry(dsg, &txd->dsg_list, node)
  315. bytes += dsg->len;
  316. }
  317. }
  318. spin_unlock_irqrestore(&plchan->lock, flags);
  319. return bytes;
  320. }
  321. /*
  322. * Allocate a physical channel for a virtual channel
  323. *
  324. * Try to locate a physical channel to be used for this transfer. If all
  325. * are taken return NULL and the requester will have to cope by using
  326. * some fallback PIO mode or retrying later.
  327. */
  328. static struct pl08x_phy_chan *
  329. pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
  330. struct pl08x_dma_chan *virt_chan)
  331. {
  332. struct pl08x_phy_chan *ch = NULL;
  333. unsigned long flags;
  334. int i;
  335. for (i = 0; i < pl08x->vd->channels; i++) {
  336. ch = &pl08x->phy_chans[i];
  337. spin_lock_irqsave(&ch->lock, flags);
  338. if (!ch->serving) {
  339. ch->serving = virt_chan;
  340. ch->signal = -1;
  341. spin_unlock_irqrestore(&ch->lock, flags);
  342. break;
  343. }
  344. spin_unlock_irqrestore(&ch->lock, flags);
  345. }
  346. if (i == pl08x->vd->channels) {
  347. /* No physical channel available, cope with it */
  348. return NULL;
  349. }
  350. pm_runtime_get_sync(&pl08x->adev->dev);
  351. return ch;
  352. }
  353. static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
  354. struct pl08x_phy_chan *ch)
  355. {
  356. unsigned long flags;
  357. spin_lock_irqsave(&ch->lock, flags);
  358. /* Stop the channel and clear its interrupts */
  359. pl08x_terminate_phy_chan(pl08x, ch);
  360. pm_runtime_put(&pl08x->adev->dev);
  361. /* Mark it as free */
  362. ch->serving = NULL;
  363. spin_unlock_irqrestore(&ch->lock, flags);
  364. }
  365. /*
  366. * LLI handling
  367. */
  368. static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
  369. {
  370. switch (coded) {
  371. case PL080_WIDTH_8BIT:
  372. return 1;
  373. case PL080_WIDTH_16BIT:
  374. return 2;
  375. case PL080_WIDTH_32BIT:
  376. return 4;
  377. default:
  378. break;
  379. }
  380. BUG();
  381. return 0;
  382. }
  383. static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
  384. size_t tsize)
  385. {
  386. u32 retbits = cctl;
  387. /* Remove all src, dst and transfer size bits */
  388. retbits &= ~PL080_CONTROL_DWIDTH_MASK;
  389. retbits &= ~PL080_CONTROL_SWIDTH_MASK;
  390. retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
  391. /* Then set the bits according to the parameters */
  392. switch (srcwidth) {
  393. case 1:
  394. retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
  395. break;
  396. case 2:
  397. retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
  398. break;
  399. case 4:
  400. retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
  401. break;
  402. default:
  403. BUG();
  404. break;
  405. }
  406. switch (dstwidth) {
  407. case 1:
  408. retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
  409. break;
  410. case 2:
  411. retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
  412. break;
  413. case 4:
  414. retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
  415. break;
  416. default:
  417. BUG();
  418. break;
  419. }
  420. retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
  421. return retbits;
  422. }
  423. struct pl08x_lli_build_data {
  424. struct pl08x_txd *txd;
  425. struct pl08x_bus_data srcbus;
  426. struct pl08x_bus_data dstbus;
  427. size_t remainder;
  428. u32 lli_bus;
  429. };
  430. /*
  431. * Autoselect a master bus to use for the transfer. Slave will be the chosen as
  432. * victim in case src & dest are not similarly aligned. i.e. If after aligning
  433. * masters address with width requirements of transfer (by sending few byte by
  434. * byte data), slave is still not aligned, then its width will be reduced to
  435. * BYTE.
  436. * - prefers the destination bus if both available
  437. * - prefers bus with fixed address (i.e. peripheral)
  438. */
  439. static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
  440. struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
  441. {
  442. if (!(cctl & PL080_CONTROL_DST_INCR)) {
  443. *mbus = &bd->dstbus;
  444. *sbus = &bd->srcbus;
  445. } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
  446. *mbus = &bd->srcbus;
  447. *sbus = &bd->dstbus;
  448. } else {
  449. if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
  450. *mbus = &bd->dstbus;
  451. *sbus = &bd->srcbus;
  452. } else {
  453. *mbus = &bd->srcbus;
  454. *sbus = &bd->dstbus;
  455. }
  456. }
  457. }
  458. /*
  459. * Fills in one LLI for a certain transfer descriptor and advance the counter
  460. */
  461. static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
  462. int num_llis, int len, u32 cctl)
  463. {
  464. struct pl08x_lli *llis_va = bd->txd->llis_va;
  465. dma_addr_t llis_bus = bd->txd->llis_bus;
  466. BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
  467. llis_va[num_llis].cctl = cctl;
  468. llis_va[num_llis].src = bd->srcbus.addr;
  469. llis_va[num_llis].dst = bd->dstbus.addr;
  470. llis_va[num_llis].lli = llis_bus + (num_llis + 1) *
  471. sizeof(struct pl08x_lli);
  472. llis_va[num_llis].lli |= bd->lli_bus;
  473. if (cctl & PL080_CONTROL_SRC_INCR)
  474. bd->srcbus.addr += len;
  475. if (cctl & PL080_CONTROL_DST_INCR)
  476. bd->dstbus.addr += len;
  477. BUG_ON(bd->remainder < len);
  478. bd->remainder -= len;
  479. }
  480. static inline void prep_byte_width_lli(struct pl08x_lli_build_data *bd,
  481. u32 *cctl, u32 len, int num_llis, size_t *total_bytes)
  482. {
  483. *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
  484. pl08x_fill_lli_for_desc(bd, num_llis, len, *cctl);
  485. (*total_bytes) += len;
  486. }
  487. /*
  488. * This fills in the table of LLIs for the transfer descriptor
  489. * Note that we assume we never have to change the burst sizes
  490. * Return 0 for error
  491. */
  492. static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
  493. struct pl08x_txd *txd)
  494. {
  495. struct pl08x_bus_data *mbus, *sbus;
  496. struct pl08x_lli_build_data bd;
  497. int num_llis = 0;
  498. u32 cctl, early_bytes = 0;
  499. size_t max_bytes_per_lli, total_bytes;
  500. struct pl08x_lli *llis_va;
  501. struct pl08x_sg *dsg;
  502. txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
  503. if (!txd->llis_va) {
  504. dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
  505. return 0;
  506. }
  507. pl08x->pool_ctr++;
  508. bd.txd = txd;
  509. bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
  510. cctl = txd->cctl;
  511. /* Find maximum width of the source bus */
  512. bd.srcbus.maxwidth =
  513. pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
  514. PL080_CONTROL_SWIDTH_SHIFT);
  515. /* Find maximum width of the destination bus */
  516. bd.dstbus.maxwidth =
  517. pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
  518. PL080_CONTROL_DWIDTH_SHIFT);
  519. list_for_each_entry(dsg, &txd->dsg_list, node) {
  520. total_bytes = 0;
  521. cctl = txd->cctl;
  522. bd.srcbus.addr = dsg->src_addr;
  523. bd.dstbus.addr = dsg->dst_addr;
  524. bd.remainder = dsg->len;
  525. bd.srcbus.buswidth = bd.srcbus.maxwidth;
  526. bd.dstbus.buswidth = bd.dstbus.maxwidth;
  527. pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
  528. dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
  529. bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
  530. bd.srcbus.buswidth,
  531. bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
  532. bd.dstbus.buswidth,
  533. bd.remainder);
  534. dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
  535. mbus == &bd.srcbus ? "src" : "dst",
  536. sbus == &bd.srcbus ? "src" : "dst");
  537. /*
  538. * Zero length is only allowed if all these requirements are
  539. * met:
  540. * - flow controller is peripheral.
  541. * - src.addr is aligned to src.width
  542. * - dst.addr is aligned to dst.width
  543. *
  544. * sg_len == 1 should be true, as there can be two cases here:
  545. *
  546. * - Memory addresses are contiguous and are not scattered.
  547. * Here, Only one sg will be passed by user driver, with
  548. * memory address and zero length. We pass this to controller
  549. * and after the transfer it will receive the last burst
  550. * request from peripheral and so transfer finishes.
  551. *
  552. * - Memory addresses are scattered and are not contiguous.
  553. * Here, Obviously as DMA controller doesn't know when a lli's
  554. * transfer gets over, it can't load next lli. So in this
  555. * case, there has to be an assumption that only one lli is
  556. * supported. Thus, we can't have scattered addresses.
  557. */
  558. if (!bd.remainder) {
  559. u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
  560. PL080_CONFIG_FLOW_CONTROL_SHIFT;
  561. if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
  562. (fc <= PL080_FLOW_SRC2DST_SRC))) {
  563. dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
  564. __func__);
  565. return 0;
  566. }
  567. if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
  568. (bd.srcbus.addr % bd.srcbus.buswidth)) {
  569. dev_err(&pl08x->adev->dev,
  570. "%s src & dst address must be aligned to src"
  571. " & dst width if peripheral is flow controller",
  572. __func__);
  573. return 0;
  574. }
  575. cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
  576. bd.dstbus.buswidth, 0);
  577. pl08x_fill_lli_for_desc(&bd, num_llis++, 0, cctl);
  578. break;
  579. }
  580. /*
  581. * Send byte by byte for following cases
  582. * - Less than a bus width available
  583. * - until master bus is aligned
  584. */
  585. if (bd.remainder < mbus->buswidth)
  586. early_bytes = bd.remainder;
  587. else if ((mbus->addr) % (mbus->buswidth)) {
  588. early_bytes = mbus->buswidth - (mbus->addr) %
  589. (mbus->buswidth);
  590. if ((bd.remainder - early_bytes) < mbus->buswidth)
  591. early_bytes = bd.remainder;
  592. }
  593. if (early_bytes) {
  594. dev_vdbg(&pl08x->adev->dev,
  595. "%s byte width LLIs (remain 0x%08x)\n",
  596. __func__, bd.remainder);
  597. prep_byte_width_lli(&bd, &cctl, early_bytes, num_llis++,
  598. &total_bytes);
  599. }
  600. if (bd.remainder) {
  601. /*
  602. * Master now aligned
  603. * - if slave is not then we must set its width down
  604. */
  605. if (sbus->addr % sbus->buswidth) {
  606. dev_dbg(&pl08x->adev->dev,
  607. "%s set down bus width to one byte\n",
  608. __func__);
  609. sbus->buswidth = 1;
  610. }
  611. /*
  612. * Bytes transferred = tsize * src width, not
  613. * MIN(buswidths)
  614. */
  615. max_bytes_per_lli = bd.srcbus.buswidth *
  616. PL080_CONTROL_TRANSFER_SIZE_MASK;
  617. dev_vdbg(&pl08x->adev->dev,
  618. "%s max bytes per lli = %zu\n",
  619. __func__, max_bytes_per_lli);
  620. /*
  621. * Make largest possible LLIs until less than one bus
  622. * width left
  623. */
  624. while (bd.remainder > (mbus->buswidth - 1)) {
  625. size_t lli_len, tsize, width;
  626. /*
  627. * If enough left try to send max possible,
  628. * otherwise try to send the remainder
  629. */
  630. lli_len = min(bd.remainder, max_bytes_per_lli);
  631. /*
  632. * Check against maximum bus alignment:
  633. * Calculate actual transfer size in relation to
  634. * bus width an get a maximum remainder of the
  635. * highest bus width - 1
  636. */
  637. width = max(mbus->buswidth, sbus->buswidth);
  638. lli_len = (lli_len / width) * width;
  639. tsize = lli_len / bd.srcbus.buswidth;
  640. dev_vdbg(&pl08x->adev->dev,
  641. "%s fill lli with single lli chunk of "
  642. "size 0x%08zx (remainder 0x%08zx)\n",
  643. __func__, lli_len, bd.remainder);
  644. cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
  645. bd.dstbus.buswidth, tsize);
  646. pl08x_fill_lli_for_desc(&bd, num_llis++,
  647. lli_len, cctl);
  648. total_bytes += lli_len;
  649. }
  650. /*
  651. * Send any odd bytes
  652. */
  653. if (bd.remainder) {
  654. dev_vdbg(&pl08x->adev->dev,
  655. "%s align with boundary, send odd bytes (remain %zu)\n",
  656. __func__, bd.remainder);
  657. prep_byte_width_lli(&bd, &cctl, bd.remainder,
  658. num_llis++, &total_bytes);
  659. }
  660. }
  661. if (total_bytes != dsg->len) {
  662. dev_err(&pl08x->adev->dev,
  663. "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
  664. __func__, total_bytes, dsg->len);
  665. return 0;
  666. }
  667. if (num_llis >= MAX_NUM_TSFR_LLIS) {
  668. dev_err(&pl08x->adev->dev,
  669. "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
  670. __func__, (u32) MAX_NUM_TSFR_LLIS);
  671. return 0;
  672. }
  673. }
  674. llis_va = txd->llis_va;
  675. /* The final LLI terminates the LLI. */
  676. llis_va[num_llis - 1].lli = 0;
  677. /* The final LLI element shall also fire an interrupt. */
  678. llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
  679. #ifdef VERBOSE_DEBUG
  680. {
  681. int i;
  682. dev_vdbg(&pl08x->adev->dev,
  683. "%-3s %-9s %-10s %-10s %-10s %s\n",
  684. "lli", "", "csrc", "cdst", "clli", "cctl");
  685. for (i = 0; i < num_llis; i++) {
  686. dev_vdbg(&pl08x->adev->dev,
  687. "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
  688. i, &llis_va[i], llis_va[i].src,
  689. llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
  690. );
  691. }
  692. }
  693. #endif
  694. return num_llis;
  695. }
  696. /* You should call this with the struct pl08x lock held */
  697. static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
  698. struct pl08x_txd *txd)
  699. {
  700. struct pl08x_sg *dsg, *_dsg;
  701. /* Free the LLI */
  702. if (txd->llis_va)
  703. dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
  704. pl08x->pool_ctr--;
  705. list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
  706. list_del(&dsg->node);
  707. kfree(dsg);
  708. }
  709. kfree(txd);
  710. }
  711. static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
  712. struct pl08x_dma_chan *plchan)
  713. {
  714. struct pl08x_txd *txdi = NULL;
  715. struct pl08x_txd *next;
  716. if (!list_empty(&plchan->pend_list)) {
  717. list_for_each_entry_safe(txdi,
  718. next, &plchan->pend_list, node) {
  719. list_del(&txdi->node);
  720. pl08x_free_txd(pl08x, txdi);
  721. }
  722. }
  723. }
  724. /*
  725. * The DMA ENGINE API
  726. */
  727. static int pl08x_alloc_chan_resources(struct dma_chan *chan)
  728. {
  729. return 0;
  730. }
  731. static void pl08x_free_chan_resources(struct dma_chan *chan)
  732. {
  733. }
  734. /*
  735. * This should be called with the channel plchan->lock held
  736. */
  737. static int prep_phy_channel(struct pl08x_dma_chan *plchan,
  738. struct pl08x_txd *txd)
  739. {
  740. struct pl08x_driver_data *pl08x = plchan->host;
  741. struct pl08x_phy_chan *ch;
  742. int ret;
  743. /* Check if we already have a channel */
  744. if (plchan->phychan)
  745. return 0;
  746. ch = pl08x_get_phy_channel(pl08x, plchan);
  747. if (!ch) {
  748. /* No physical channel available, cope with it */
  749. dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
  750. return -EBUSY;
  751. }
  752. /*
  753. * OK we have a physical channel: for memcpy() this is all we
  754. * need, but for slaves the physical signals may be muxed!
  755. * Can the platform allow us to use this channel?
  756. */
  757. if (plchan->slave && pl08x->pd->get_signal) {
  758. ret = pl08x->pd->get_signal(plchan);
  759. if (ret < 0) {
  760. dev_dbg(&pl08x->adev->dev,
  761. "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
  762. ch->id, plchan->name);
  763. /* Release physical channel & return */
  764. pl08x_put_phy_channel(pl08x, ch);
  765. return -EBUSY;
  766. }
  767. ch->signal = ret;
  768. /* Assign the flow control signal to this channel */
  769. if (txd->direction == DMA_TO_DEVICE)
  770. txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
  771. else if (txd->direction == DMA_FROM_DEVICE)
  772. txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
  773. }
  774. dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
  775. ch->id,
  776. ch->signal,
  777. plchan->name);
  778. plchan->phychan_hold++;
  779. plchan->phychan = ch;
  780. return 0;
  781. }
  782. static void release_phy_channel(struct pl08x_dma_chan *plchan)
  783. {
  784. struct pl08x_driver_data *pl08x = plchan->host;
  785. if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
  786. pl08x->pd->put_signal(plchan);
  787. plchan->phychan->signal = -1;
  788. }
  789. pl08x_put_phy_channel(pl08x, plchan->phychan);
  790. plchan->phychan = NULL;
  791. }
  792. static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
  793. {
  794. struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
  795. struct pl08x_txd *txd = to_pl08x_txd(tx);
  796. unsigned long flags;
  797. spin_lock_irqsave(&plchan->lock, flags);
  798. plchan->chan.cookie += 1;
  799. if (plchan->chan.cookie < 0)
  800. plchan->chan.cookie = 1;
  801. tx->cookie = plchan->chan.cookie;
  802. /* Put this onto the pending list */
  803. list_add_tail(&txd->node, &plchan->pend_list);
  804. /*
  805. * If there was no physical channel available for this memcpy,
  806. * stack the request up and indicate that the channel is waiting
  807. * for a free physical channel.
  808. */
  809. if (!plchan->slave && !plchan->phychan) {
  810. /* Do this memcpy whenever there is a channel ready */
  811. plchan->state = PL08X_CHAN_WAITING;
  812. plchan->waiting = txd;
  813. } else {
  814. plchan->phychan_hold--;
  815. }
  816. spin_unlock_irqrestore(&plchan->lock, flags);
  817. return tx->cookie;
  818. }
  819. static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
  820. struct dma_chan *chan, unsigned long flags)
  821. {
  822. struct dma_async_tx_descriptor *retval = NULL;
  823. return retval;
  824. }
  825. /*
  826. * Code accessing dma_async_is_complete() in a tight loop may give problems.
  827. * If slaves are relying on interrupts to signal completion this function
  828. * must not be called with interrupts disabled.
  829. */
  830. static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
  831. dma_cookie_t cookie, struct dma_tx_state *txstate)
  832. {
  833. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  834. dma_cookie_t last_used;
  835. dma_cookie_t last_complete;
  836. enum dma_status ret;
  837. u32 bytesleft = 0;
  838. last_used = plchan->chan.cookie;
  839. last_complete = plchan->lc;
  840. ret = dma_async_is_complete(cookie, last_complete, last_used);
  841. if (ret == DMA_SUCCESS) {
  842. dma_set_tx_state(txstate, last_complete, last_used, 0);
  843. return ret;
  844. }
  845. /*
  846. * This cookie not complete yet
  847. */
  848. last_used = plchan->chan.cookie;
  849. last_complete = plchan->lc;
  850. /* Get number of bytes left in the active transactions and queue */
  851. bytesleft = pl08x_getbytes_chan(plchan);
  852. dma_set_tx_state(txstate, last_complete, last_used,
  853. bytesleft);
  854. if (plchan->state == PL08X_CHAN_PAUSED)
  855. return DMA_PAUSED;
  856. /* Whether waiting or running, we're in progress */
  857. return DMA_IN_PROGRESS;
  858. }
  859. /* PrimeCell DMA extension */
  860. struct burst_table {
  861. u32 burstwords;
  862. u32 reg;
  863. };
  864. static const struct burst_table burst_sizes[] = {
  865. {
  866. .burstwords = 256,
  867. .reg = PL080_BSIZE_256,
  868. },
  869. {
  870. .burstwords = 128,
  871. .reg = PL080_BSIZE_128,
  872. },
  873. {
  874. .burstwords = 64,
  875. .reg = PL080_BSIZE_64,
  876. },
  877. {
  878. .burstwords = 32,
  879. .reg = PL080_BSIZE_32,
  880. },
  881. {
  882. .burstwords = 16,
  883. .reg = PL080_BSIZE_16,
  884. },
  885. {
  886. .burstwords = 8,
  887. .reg = PL080_BSIZE_8,
  888. },
  889. {
  890. .burstwords = 4,
  891. .reg = PL080_BSIZE_4,
  892. },
  893. {
  894. .burstwords = 0,
  895. .reg = PL080_BSIZE_1,
  896. },
  897. };
  898. /*
  899. * Given the source and destination available bus masks, select which
  900. * will be routed to each port. We try to have source and destination
  901. * on separate ports, but always respect the allowable settings.
  902. */
  903. static u32 pl08x_select_bus(u8 src, u8 dst)
  904. {
  905. u32 cctl = 0;
  906. if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
  907. cctl |= PL080_CONTROL_DST_AHB2;
  908. if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
  909. cctl |= PL080_CONTROL_SRC_AHB2;
  910. return cctl;
  911. }
  912. static u32 pl08x_cctl(u32 cctl)
  913. {
  914. cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
  915. PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
  916. PL080_CONTROL_PROT_MASK);
  917. /* Access the cell in privileged mode, non-bufferable, non-cacheable */
  918. return cctl | PL080_CONTROL_PROT_SYS;
  919. }
  920. static u32 pl08x_width(enum dma_slave_buswidth width)
  921. {
  922. switch (width) {
  923. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  924. return PL080_WIDTH_8BIT;
  925. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  926. return PL080_WIDTH_16BIT;
  927. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  928. return PL080_WIDTH_32BIT;
  929. default:
  930. return ~0;
  931. }
  932. }
  933. static u32 pl08x_burst(u32 maxburst)
  934. {
  935. int i;
  936. for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
  937. if (burst_sizes[i].burstwords <= maxburst)
  938. break;
  939. return burst_sizes[i].reg;
  940. }
  941. static int dma_set_runtime_config(struct dma_chan *chan,
  942. struct dma_slave_config *config)
  943. {
  944. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  945. struct pl08x_driver_data *pl08x = plchan->host;
  946. enum dma_slave_buswidth addr_width;
  947. u32 width, burst, maxburst;
  948. u32 cctl = 0;
  949. if (!plchan->slave)
  950. return -EINVAL;
  951. /* Transfer direction */
  952. plchan->runtime_direction = config->direction;
  953. if (config->direction == DMA_TO_DEVICE) {
  954. addr_width = config->dst_addr_width;
  955. maxburst = config->dst_maxburst;
  956. } else if (config->direction == DMA_FROM_DEVICE) {
  957. addr_width = config->src_addr_width;
  958. maxburst = config->src_maxburst;
  959. } else {
  960. dev_err(&pl08x->adev->dev,
  961. "bad runtime_config: alien transfer direction\n");
  962. return -EINVAL;
  963. }
  964. width = pl08x_width(addr_width);
  965. if (width == ~0) {
  966. dev_err(&pl08x->adev->dev,
  967. "bad runtime_config: alien address width\n");
  968. return -EINVAL;
  969. }
  970. cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
  971. cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
  972. /*
  973. * If this channel will only request single transfers, set this
  974. * down to ONE element. Also select one element if no maxburst
  975. * is specified.
  976. */
  977. if (plchan->cd->single)
  978. maxburst = 1;
  979. burst = pl08x_burst(maxburst);
  980. cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
  981. cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
  982. if (plchan->runtime_direction == DMA_FROM_DEVICE) {
  983. plchan->src_addr = config->src_addr;
  984. plchan->src_cctl = pl08x_cctl(cctl) | PL080_CONTROL_DST_INCR |
  985. pl08x_select_bus(plchan->cd->periph_buses,
  986. pl08x->mem_buses);
  987. } else {
  988. plchan->dst_addr = config->dst_addr;
  989. plchan->dst_cctl = pl08x_cctl(cctl) | PL080_CONTROL_SRC_INCR |
  990. pl08x_select_bus(pl08x->mem_buses,
  991. plchan->cd->periph_buses);
  992. }
  993. dev_dbg(&pl08x->adev->dev,
  994. "configured channel %s (%s) for %s, data width %d, "
  995. "maxburst %d words, LE, CCTL=0x%08x\n",
  996. dma_chan_name(chan), plchan->name,
  997. (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
  998. addr_width,
  999. maxburst,
  1000. cctl);
  1001. return 0;
  1002. }
  1003. /*
  1004. * Slave transactions callback to the slave device to allow
  1005. * synchronization of slave DMA signals with the DMAC enable
  1006. */
  1007. static void pl08x_issue_pending(struct dma_chan *chan)
  1008. {
  1009. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1010. unsigned long flags;
  1011. spin_lock_irqsave(&plchan->lock, flags);
  1012. /* Something is already active, or we're waiting for a channel... */
  1013. if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
  1014. spin_unlock_irqrestore(&plchan->lock, flags);
  1015. return;
  1016. }
  1017. /* Take the first element in the queue and execute it */
  1018. if (!list_empty(&plchan->pend_list)) {
  1019. struct pl08x_txd *next;
  1020. next = list_first_entry(&plchan->pend_list,
  1021. struct pl08x_txd,
  1022. node);
  1023. list_del(&next->node);
  1024. plchan->state = PL08X_CHAN_RUNNING;
  1025. pl08x_start_txd(plchan, next);
  1026. }
  1027. spin_unlock_irqrestore(&plchan->lock, flags);
  1028. }
  1029. static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
  1030. struct pl08x_txd *txd)
  1031. {
  1032. struct pl08x_driver_data *pl08x = plchan->host;
  1033. unsigned long flags;
  1034. int num_llis, ret;
  1035. num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
  1036. if (!num_llis) {
  1037. spin_lock_irqsave(&plchan->lock, flags);
  1038. pl08x_free_txd(pl08x, txd);
  1039. spin_unlock_irqrestore(&plchan->lock, flags);
  1040. return -EINVAL;
  1041. }
  1042. spin_lock_irqsave(&plchan->lock, flags);
  1043. /*
  1044. * See if we already have a physical channel allocated,
  1045. * else this is the time to try to get one.
  1046. */
  1047. ret = prep_phy_channel(plchan, txd);
  1048. if (ret) {
  1049. /*
  1050. * No physical channel was available.
  1051. *
  1052. * memcpy transfers can be sorted out at submission time.
  1053. *
  1054. * Slave transfers may have been denied due to platform
  1055. * channel muxing restrictions. Since there is no guarantee
  1056. * that this will ever be resolved, and the signal must be
  1057. * acquired AFTER acquiring the physical channel, we will let
  1058. * them be NACK:ed with -EBUSY here. The drivers can retry
  1059. * the prep() call if they are eager on doing this using DMA.
  1060. */
  1061. if (plchan->slave) {
  1062. pl08x_free_txd_list(pl08x, plchan);
  1063. pl08x_free_txd(pl08x, txd);
  1064. spin_unlock_irqrestore(&plchan->lock, flags);
  1065. return -EBUSY;
  1066. }
  1067. } else
  1068. /*
  1069. * Else we're all set, paused and ready to roll, status
  1070. * will switch to PL08X_CHAN_RUNNING when we call
  1071. * issue_pending(). If there is something running on the
  1072. * channel already we don't change its state.
  1073. */
  1074. if (plchan->state == PL08X_CHAN_IDLE)
  1075. plchan->state = PL08X_CHAN_PAUSED;
  1076. spin_unlock_irqrestore(&plchan->lock, flags);
  1077. return 0;
  1078. }
  1079. static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
  1080. unsigned long flags)
  1081. {
  1082. struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
  1083. if (txd) {
  1084. dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
  1085. txd->tx.flags = flags;
  1086. txd->tx.tx_submit = pl08x_tx_submit;
  1087. INIT_LIST_HEAD(&txd->node);
  1088. INIT_LIST_HEAD(&txd->dsg_list);
  1089. /* Always enable error and terminal interrupts */
  1090. txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
  1091. PL080_CONFIG_TC_IRQ_MASK;
  1092. }
  1093. return txd;
  1094. }
  1095. /*
  1096. * Initialize a descriptor to be used by memcpy submit
  1097. */
  1098. static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
  1099. struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  1100. size_t len, unsigned long flags)
  1101. {
  1102. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1103. struct pl08x_driver_data *pl08x = plchan->host;
  1104. struct pl08x_txd *txd;
  1105. struct pl08x_sg *dsg;
  1106. int ret;
  1107. txd = pl08x_get_txd(plchan, flags);
  1108. if (!txd) {
  1109. dev_err(&pl08x->adev->dev,
  1110. "%s no memory for descriptor\n", __func__);
  1111. return NULL;
  1112. }
  1113. dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
  1114. if (!dsg) {
  1115. pl08x_free_txd(pl08x, txd);
  1116. dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
  1117. __func__);
  1118. return NULL;
  1119. }
  1120. list_add_tail(&dsg->node, &txd->dsg_list);
  1121. txd->direction = DMA_NONE;
  1122. dsg->src_addr = src;
  1123. dsg->dst_addr = dest;
  1124. dsg->len = len;
  1125. /* Set platform data for m2m */
  1126. txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
  1127. txd->cctl = pl08x->pd->memcpy_channel.cctl &
  1128. ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
  1129. /* Both to be incremented or the code will break */
  1130. txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
  1131. if (pl08x->vd->dualmaster)
  1132. txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
  1133. pl08x->mem_buses);
  1134. ret = pl08x_prep_channel_resources(plchan, txd);
  1135. if (ret)
  1136. return NULL;
  1137. return &txd->tx;
  1138. }
  1139. static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
  1140. struct dma_chan *chan, struct scatterlist *sgl,
  1141. unsigned int sg_len, enum dma_data_direction direction,
  1142. unsigned long flags)
  1143. {
  1144. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1145. struct pl08x_driver_data *pl08x = plchan->host;
  1146. struct pl08x_txd *txd;
  1147. struct pl08x_sg *dsg;
  1148. struct scatterlist *sg;
  1149. dma_addr_t slave_addr;
  1150. int ret, tmp;
  1151. dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
  1152. __func__, sgl->length, plchan->name);
  1153. txd = pl08x_get_txd(plchan, flags);
  1154. if (!txd) {
  1155. dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
  1156. return NULL;
  1157. }
  1158. if (direction != plchan->runtime_direction)
  1159. dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
  1160. "the direction configured for the PrimeCell\n",
  1161. __func__);
  1162. /*
  1163. * Set up addresses, the PrimeCell configured address
  1164. * will take precedence since this may configure the
  1165. * channel target address dynamically at runtime.
  1166. */
  1167. txd->direction = direction;
  1168. if (direction == DMA_TO_DEVICE) {
  1169. txd->cctl = plchan->dst_cctl;
  1170. slave_addr = plchan->dst_addr;
  1171. } else if (direction == DMA_FROM_DEVICE) {
  1172. txd->cctl = plchan->src_cctl;
  1173. slave_addr = plchan->src_addr;
  1174. } else {
  1175. pl08x_free_txd(pl08x, txd);
  1176. dev_err(&pl08x->adev->dev,
  1177. "%s direction unsupported\n", __func__);
  1178. return NULL;
  1179. }
  1180. if (plchan->cd->device_fc)
  1181. tmp = (direction == DMA_TO_DEVICE) ? PL080_FLOW_MEM2PER_PER :
  1182. PL080_FLOW_PER2MEM_PER;
  1183. else
  1184. tmp = (direction == DMA_TO_DEVICE) ? PL080_FLOW_MEM2PER :
  1185. PL080_FLOW_PER2MEM;
  1186. txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
  1187. for_each_sg(sgl, sg, sg_len, tmp) {
  1188. dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
  1189. if (!dsg) {
  1190. pl08x_free_txd(pl08x, txd);
  1191. dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
  1192. __func__);
  1193. return NULL;
  1194. }
  1195. list_add_tail(&dsg->node, &txd->dsg_list);
  1196. dsg->len = sg_dma_len(sg);
  1197. if (direction == DMA_TO_DEVICE) {
  1198. dsg->src_addr = sg_phys(sg);
  1199. dsg->dst_addr = slave_addr;
  1200. } else {
  1201. dsg->src_addr = slave_addr;
  1202. dsg->dst_addr = sg_phys(sg);
  1203. }
  1204. }
  1205. ret = pl08x_prep_channel_resources(plchan, txd);
  1206. if (ret)
  1207. return NULL;
  1208. return &txd->tx;
  1209. }
  1210. static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  1211. unsigned long arg)
  1212. {
  1213. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1214. struct pl08x_driver_data *pl08x = plchan->host;
  1215. unsigned long flags;
  1216. int ret = 0;
  1217. /* Controls applicable to inactive channels */
  1218. if (cmd == DMA_SLAVE_CONFIG) {
  1219. return dma_set_runtime_config(chan,
  1220. (struct dma_slave_config *)arg);
  1221. }
  1222. /*
  1223. * Anything succeeds on channels with no physical allocation and
  1224. * no queued transfers.
  1225. */
  1226. spin_lock_irqsave(&plchan->lock, flags);
  1227. if (!plchan->phychan && !plchan->at) {
  1228. spin_unlock_irqrestore(&plchan->lock, flags);
  1229. return 0;
  1230. }
  1231. switch (cmd) {
  1232. case DMA_TERMINATE_ALL:
  1233. plchan->state = PL08X_CHAN_IDLE;
  1234. if (plchan->phychan) {
  1235. pl08x_terminate_phy_chan(pl08x, plchan->phychan);
  1236. /*
  1237. * Mark physical channel as free and free any slave
  1238. * signal
  1239. */
  1240. release_phy_channel(plchan);
  1241. }
  1242. /* Dequeue jobs and free LLIs */
  1243. if (plchan->at) {
  1244. pl08x_free_txd(pl08x, plchan->at);
  1245. plchan->at = NULL;
  1246. }
  1247. /* Dequeue jobs not yet fired as well */
  1248. pl08x_free_txd_list(pl08x, plchan);
  1249. break;
  1250. case DMA_PAUSE:
  1251. pl08x_pause_phy_chan(plchan->phychan);
  1252. plchan->state = PL08X_CHAN_PAUSED;
  1253. break;
  1254. case DMA_RESUME:
  1255. pl08x_resume_phy_chan(plchan->phychan);
  1256. plchan->state = PL08X_CHAN_RUNNING;
  1257. break;
  1258. default:
  1259. /* Unknown command */
  1260. ret = -ENXIO;
  1261. break;
  1262. }
  1263. spin_unlock_irqrestore(&plchan->lock, flags);
  1264. return ret;
  1265. }
  1266. bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
  1267. {
  1268. struct pl08x_dma_chan *plchan;
  1269. char *name = chan_id;
  1270. /* Reject channels for devices not bound to this driver */
  1271. if (chan->device->dev->driver != &pl08x_amba_driver.drv)
  1272. return false;
  1273. plchan = to_pl08x_chan(chan);
  1274. /* Check that the channel is not taken! */
  1275. if (!strcmp(plchan->name, name))
  1276. return true;
  1277. return false;
  1278. }
  1279. /*
  1280. * Just check that the device is there and active
  1281. * TODO: turn this bit on/off depending on the number of physical channels
  1282. * actually used, if it is zero... well shut it off. That will save some
  1283. * power. Cut the clock at the same time.
  1284. */
  1285. static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
  1286. {
  1287. writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
  1288. }
  1289. static void pl08x_unmap_buffers(struct pl08x_txd *txd)
  1290. {
  1291. struct device *dev = txd->tx.chan->device->dev;
  1292. struct pl08x_sg *dsg;
  1293. if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  1294. if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
  1295. list_for_each_entry(dsg, &txd->dsg_list, node)
  1296. dma_unmap_single(dev, dsg->src_addr, dsg->len,
  1297. DMA_TO_DEVICE);
  1298. else {
  1299. list_for_each_entry(dsg, &txd->dsg_list, node)
  1300. dma_unmap_page(dev, dsg->src_addr, dsg->len,
  1301. DMA_TO_DEVICE);
  1302. }
  1303. }
  1304. if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
  1305. if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
  1306. list_for_each_entry(dsg, &txd->dsg_list, node)
  1307. dma_unmap_single(dev, dsg->dst_addr, dsg->len,
  1308. DMA_FROM_DEVICE);
  1309. else
  1310. list_for_each_entry(dsg, &txd->dsg_list, node)
  1311. dma_unmap_page(dev, dsg->dst_addr, dsg->len,
  1312. DMA_FROM_DEVICE);
  1313. }
  1314. }
  1315. static void pl08x_tasklet(unsigned long data)
  1316. {
  1317. struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
  1318. struct pl08x_driver_data *pl08x = plchan->host;
  1319. struct pl08x_txd *txd;
  1320. unsigned long flags;
  1321. spin_lock_irqsave(&plchan->lock, flags);
  1322. txd = plchan->at;
  1323. plchan->at = NULL;
  1324. if (txd) {
  1325. /* Update last completed */
  1326. plchan->lc = txd->tx.cookie;
  1327. }
  1328. /* If a new descriptor is queued, set it up plchan->at is NULL here */
  1329. if (!list_empty(&plchan->pend_list)) {
  1330. struct pl08x_txd *next;
  1331. next = list_first_entry(&plchan->pend_list,
  1332. struct pl08x_txd,
  1333. node);
  1334. list_del(&next->node);
  1335. pl08x_start_txd(plchan, next);
  1336. } else if (plchan->phychan_hold) {
  1337. /*
  1338. * This channel is still in use - we have a new txd being
  1339. * prepared and will soon be queued. Don't give up the
  1340. * physical channel.
  1341. */
  1342. } else {
  1343. struct pl08x_dma_chan *waiting = NULL;
  1344. /*
  1345. * No more jobs, so free up the physical channel
  1346. * Free any allocated signal on slave transfers too
  1347. */
  1348. release_phy_channel(plchan);
  1349. plchan->state = PL08X_CHAN_IDLE;
  1350. /*
  1351. * And NOW before anyone else can grab that free:d up
  1352. * physical channel, see if there is some memcpy pending
  1353. * that seriously needs to start because of being stacked
  1354. * up while we were choking the physical channels with data.
  1355. */
  1356. list_for_each_entry(waiting, &pl08x->memcpy.channels,
  1357. chan.device_node) {
  1358. if (waiting->state == PL08X_CHAN_WAITING &&
  1359. waiting->waiting != NULL) {
  1360. int ret;
  1361. /* This should REALLY not fail now */
  1362. ret = prep_phy_channel(waiting,
  1363. waiting->waiting);
  1364. BUG_ON(ret);
  1365. waiting->phychan_hold--;
  1366. waiting->state = PL08X_CHAN_RUNNING;
  1367. waiting->waiting = NULL;
  1368. pl08x_issue_pending(&waiting->chan);
  1369. break;
  1370. }
  1371. }
  1372. }
  1373. spin_unlock_irqrestore(&plchan->lock, flags);
  1374. if (txd) {
  1375. dma_async_tx_callback callback = txd->tx.callback;
  1376. void *callback_param = txd->tx.callback_param;
  1377. /* Don't try to unmap buffers on slave channels */
  1378. if (!plchan->slave)
  1379. pl08x_unmap_buffers(txd);
  1380. /* Free the descriptor */
  1381. spin_lock_irqsave(&plchan->lock, flags);
  1382. pl08x_free_txd(pl08x, txd);
  1383. spin_unlock_irqrestore(&plchan->lock, flags);
  1384. /* Callback to signal completion */
  1385. if (callback)
  1386. callback(callback_param);
  1387. }
  1388. }
  1389. static irqreturn_t pl08x_irq(int irq, void *dev)
  1390. {
  1391. struct pl08x_driver_data *pl08x = dev;
  1392. u32 mask = 0, err, tc, i;
  1393. /* check & clear - ERR & TC interrupts */
  1394. err = readl(pl08x->base + PL080_ERR_STATUS);
  1395. if (err) {
  1396. dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
  1397. __func__, err);
  1398. writel(err, pl08x->base + PL080_ERR_CLEAR);
  1399. }
  1400. tc = readl(pl08x->base + PL080_INT_STATUS);
  1401. if (tc)
  1402. writel(tc, pl08x->base + PL080_TC_CLEAR);
  1403. if (!err && !tc)
  1404. return IRQ_NONE;
  1405. for (i = 0; i < pl08x->vd->channels; i++) {
  1406. if (((1 << i) & err) || ((1 << i) & tc)) {
  1407. /* Locate physical channel */
  1408. struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
  1409. struct pl08x_dma_chan *plchan = phychan->serving;
  1410. if (!plchan) {
  1411. dev_err(&pl08x->adev->dev,
  1412. "%s Error TC interrupt on unused channel: 0x%08x\n",
  1413. __func__, i);
  1414. continue;
  1415. }
  1416. /* Schedule tasklet on this channel */
  1417. tasklet_schedule(&plchan->tasklet);
  1418. mask |= (1 << i);
  1419. }
  1420. }
  1421. return mask ? IRQ_HANDLED : IRQ_NONE;
  1422. }
  1423. static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
  1424. {
  1425. u32 cctl = pl08x_cctl(chan->cd->cctl);
  1426. chan->slave = true;
  1427. chan->name = chan->cd->bus_id;
  1428. chan->src_addr = chan->cd->addr;
  1429. chan->dst_addr = chan->cd->addr;
  1430. chan->src_cctl = cctl | PL080_CONTROL_DST_INCR |
  1431. pl08x_select_bus(chan->cd->periph_buses, chan->host->mem_buses);
  1432. chan->dst_cctl = cctl | PL080_CONTROL_SRC_INCR |
  1433. pl08x_select_bus(chan->host->mem_buses, chan->cd->periph_buses);
  1434. }
  1435. /*
  1436. * Initialise the DMAC memcpy/slave channels.
  1437. * Make a local wrapper to hold required data
  1438. */
  1439. static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
  1440. struct dma_device *dmadev, unsigned int channels, bool slave)
  1441. {
  1442. struct pl08x_dma_chan *chan;
  1443. int i;
  1444. INIT_LIST_HEAD(&dmadev->channels);
  1445. /*
  1446. * Register as many many memcpy as we have physical channels,
  1447. * we won't always be able to use all but the code will have
  1448. * to cope with that situation.
  1449. */
  1450. for (i = 0; i < channels; i++) {
  1451. chan = kzalloc(sizeof(*chan), GFP_KERNEL);
  1452. if (!chan) {
  1453. dev_err(&pl08x->adev->dev,
  1454. "%s no memory for channel\n", __func__);
  1455. return -ENOMEM;
  1456. }
  1457. chan->host = pl08x;
  1458. chan->state = PL08X_CHAN_IDLE;
  1459. if (slave) {
  1460. chan->cd = &pl08x->pd->slave_channels[i];
  1461. pl08x_dma_slave_init(chan);
  1462. } else {
  1463. chan->cd = &pl08x->pd->memcpy_channel;
  1464. chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
  1465. if (!chan->name) {
  1466. kfree(chan);
  1467. return -ENOMEM;
  1468. }
  1469. }
  1470. if (chan->cd->circular_buffer) {
  1471. dev_err(&pl08x->adev->dev,
  1472. "channel %s: circular buffers not supported\n",
  1473. chan->name);
  1474. kfree(chan);
  1475. continue;
  1476. }
  1477. dev_dbg(&pl08x->adev->dev,
  1478. "initialize virtual channel \"%s\"\n",
  1479. chan->name);
  1480. chan->chan.device = dmadev;
  1481. chan->chan.cookie = 0;
  1482. chan->lc = 0;
  1483. spin_lock_init(&chan->lock);
  1484. INIT_LIST_HEAD(&chan->pend_list);
  1485. tasklet_init(&chan->tasklet, pl08x_tasklet,
  1486. (unsigned long) chan);
  1487. list_add_tail(&chan->chan.device_node, &dmadev->channels);
  1488. }
  1489. dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
  1490. i, slave ? "slave" : "memcpy");
  1491. return i;
  1492. }
  1493. static void pl08x_free_virtual_channels(struct dma_device *dmadev)
  1494. {
  1495. struct pl08x_dma_chan *chan = NULL;
  1496. struct pl08x_dma_chan *next;
  1497. list_for_each_entry_safe(chan,
  1498. next, &dmadev->channels, chan.device_node) {
  1499. list_del(&chan->chan.device_node);
  1500. kfree(chan);
  1501. }
  1502. }
  1503. #ifdef CONFIG_DEBUG_FS
  1504. static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
  1505. {
  1506. switch (state) {
  1507. case PL08X_CHAN_IDLE:
  1508. return "idle";
  1509. case PL08X_CHAN_RUNNING:
  1510. return "running";
  1511. case PL08X_CHAN_PAUSED:
  1512. return "paused";
  1513. case PL08X_CHAN_WAITING:
  1514. return "waiting";
  1515. default:
  1516. break;
  1517. }
  1518. return "UNKNOWN STATE";
  1519. }
  1520. static int pl08x_debugfs_show(struct seq_file *s, void *data)
  1521. {
  1522. struct pl08x_driver_data *pl08x = s->private;
  1523. struct pl08x_dma_chan *chan;
  1524. struct pl08x_phy_chan *ch;
  1525. unsigned long flags;
  1526. int i;
  1527. seq_printf(s, "PL08x physical channels:\n");
  1528. seq_printf(s, "CHANNEL:\tUSER:\n");
  1529. seq_printf(s, "--------\t-----\n");
  1530. for (i = 0; i < pl08x->vd->channels; i++) {
  1531. struct pl08x_dma_chan *virt_chan;
  1532. ch = &pl08x->phy_chans[i];
  1533. spin_lock_irqsave(&ch->lock, flags);
  1534. virt_chan = ch->serving;
  1535. seq_printf(s, "%d\t\t%s\n",
  1536. ch->id, virt_chan ? virt_chan->name : "(none)");
  1537. spin_unlock_irqrestore(&ch->lock, flags);
  1538. }
  1539. seq_printf(s, "\nPL08x virtual memcpy channels:\n");
  1540. seq_printf(s, "CHANNEL:\tSTATE:\n");
  1541. seq_printf(s, "--------\t------\n");
  1542. list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
  1543. seq_printf(s, "%s\t\t%s\n", chan->name,
  1544. pl08x_state_str(chan->state));
  1545. }
  1546. seq_printf(s, "\nPL08x virtual slave channels:\n");
  1547. seq_printf(s, "CHANNEL:\tSTATE:\n");
  1548. seq_printf(s, "--------\t------\n");
  1549. list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
  1550. seq_printf(s, "%s\t\t%s\n", chan->name,
  1551. pl08x_state_str(chan->state));
  1552. }
  1553. return 0;
  1554. }
  1555. static int pl08x_debugfs_open(struct inode *inode, struct file *file)
  1556. {
  1557. return single_open(file, pl08x_debugfs_show, inode->i_private);
  1558. }
  1559. static const struct file_operations pl08x_debugfs_operations = {
  1560. .open = pl08x_debugfs_open,
  1561. .read = seq_read,
  1562. .llseek = seq_lseek,
  1563. .release = single_release,
  1564. };
  1565. static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
  1566. {
  1567. /* Expose a simple debugfs interface to view all clocks */
  1568. (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
  1569. S_IFREG | S_IRUGO, NULL, pl08x,
  1570. &pl08x_debugfs_operations);
  1571. }
  1572. #else
  1573. static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
  1574. {
  1575. }
  1576. #endif
  1577. static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
  1578. {
  1579. struct pl08x_driver_data *pl08x;
  1580. const struct vendor_data *vd = id->data;
  1581. int ret = 0;
  1582. int i;
  1583. ret = amba_request_regions(adev, NULL);
  1584. if (ret)
  1585. return ret;
  1586. /* Create the driver state holder */
  1587. pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
  1588. if (!pl08x) {
  1589. ret = -ENOMEM;
  1590. goto out_no_pl08x;
  1591. }
  1592. pm_runtime_set_active(&adev->dev);
  1593. pm_runtime_enable(&adev->dev);
  1594. /* Initialize memcpy engine */
  1595. dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
  1596. pl08x->memcpy.dev = &adev->dev;
  1597. pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
  1598. pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
  1599. pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
  1600. pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
  1601. pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
  1602. pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
  1603. pl08x->memcpy.device_control = pl08x_control;
  1604. /* Initialize slave engine */
  1605. dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
  1606. pl08x->slave.dev = &adev->dev;
  1607. pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
  1608. pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
  1609. pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
  1610. pl08x->slave.device_tx_status = pl08x_dma_tx_status;
  1611. pl08x->slave.device_issue_pending = pl08x_issue_pending;
  1612. pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
  1613. pl08x->slave.device_control = pl08x_control;
  1614. /* Get the platform data */
  1615. pl08x->pd = dev_get_platdata(&adev->dev);
  1616. if (!pl08x->pd) {
  1617. dev_err(&adev->dev, "no platform data supplied\n");
  1618. goto out_no_platdata;
  1619. }
  1620. /* Assign useful pointers to the driver state */
  1621. pl08x->adev = adev;
  1622. pl08x->vd = vd;
  1623. /* By default, AHB1 only. If dualmaster, from platform */
  1624. pl08x->lli_buses = PL08X_AHB1;
  1625. pl08x->mem_buses = PL08X_AHB1;
  1626. if (pl08x->vd->dualmaster) {
  1627. pl08x->lli_buses = pl08x->pd->lli_buses;
  1628. pl08x->mem_buses = pl08x->pd->mem_buses;
  1629. }
  1630. /* A DMA memory pool for LLIs, align on 1-byte boundary */
  1631. pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
  1632. PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
  1633. if (!pl08x->pool) {
  1634. ret = -ENOMEM;
  1635. goto out_no_lli_pool;
  1636. }
  1637. spin_lock_init(&pl08x->lock);
  1638. pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
  1639. if (!pl08x->base) {
  1640. ret = -ENOMEM;
  1641. goto out_no_ioremap;
  1642. }
  1643. /* Turn on the PL08x */
  1644. pl08x_ensure_on(pl08x);
  1645. /* Attach the interrupt handler */
  1646. writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
  1647. writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
  1648. ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
  1649. DRIVER_NAME, pl08x);
  1650. if (ret) {
  1651. dev_err(&adev->dev, "%s failed to request interrupt %d\n",
  1652. __func__, adev->irq[0]);
  1653. goto out_no_irq;
  1654. }
  1655. /* Initialize physical channels */
  1656. pl08x->phy_chans = kmalloc((vd->channels * sizeof(*pl08x->phy_chans)),
  1657. GFP_KERNEL);
  1658. if (!pl08x->phy_chans) {
  1659. dev_err(&adev->dev, "%s failed to allocate "
  1660. "physical channel holders\n",
  1661. __func__);
  1662. goto out_no_phychans;
  1663. }
  1664. for (i = 0; i < vd->channels; i++) {
  1665. struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
  1666. ch->id = i;
  1667. ch->base = pl08x->base + PL080_Cx_BASE(i);
  1668. spin_lock_init(&ch->lock);
  1669. ch->serving = NULL;
  1670. ch->signal = -1;
  1671. dev_dbg(&adev->dev, "physical channel %d is %s\n",
  1672. i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
  1673. }
  1674. /* Register as many memcpy channels as there are physical channels */
  1675. ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
  1676. pl08x->vd->channels, false);
  1677. if (ret <= 0) {
  1678. dev_warn(&pl08x->adev->dev,
  1679. "%s failed to enumerate memcpy channels - %d\n",
  1680. __func__, ret);
  1681. goto out_no_memcpy;
  1682. }
  1683. pl08x->memcpy.chancnt = ret;
  1684. /* Register slave channels */
  1685. ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
  1686. pl08x->pd->num_slave_channels, true);
  1687. if (ret <= 0) {
  1688. dev_warn(&pl08x->adev->dev,
  1689. "%s failed to enumerate slave channels - %d\n",
  1690. __func__, ret);
  1691. goto out_no_slave;
  1692. }
  1693. pl08x->slave.chancnt = ret;
  1694. ret = dma_async_device_register(&pl08x->memcpy);
  1695. if (ret) {
  1696. dev_warn(&pl08x->adev->dev,
  1697. "%s failed to register memcpy as an async device - %d\n",
  1698. __func__, ret);
  1699. goto out_no_memcpy_reg;
  1700. }
  1701. ret = dma_async_device_register(&pl08x->slave);
  1702. if (ret) {
  1703. dev_warn(&pl08x->adev->dev,
  1704. "%s failed to register slave as an async device - %d\n",
  1705. __func__, ret);
  1706. goto out_no_slave_reg;
  1707. }
  1708. amba_set_drvdata(adev, pl08x);
  1709. init_pl08x_debugfs(pl08x);
  1710. dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
  1711. amba_part(adev), amba_rev(adev),
  1712. (unsigned long long)adev->res.start, adev->irq[0]);
  1713. pm_runtime_put(&adev->dev);
  1714. return 0;
  1715. out_no_slave_reg:
  1716. dma_async_device_unregister(&pl08x->memcpy);
  1717. out_no_memcpy_reg:
  1718. pl08x_free_virtual_channels(&pl08x->slave);
  1719. out_no_slave:
  1720. pl08x_free_virtual_channels(&pl08x->memcpy);
  1721. out_no_memcpy:
  1722. kfree(pl08x->phy_chans);
  1723. out_no_phychans:
  1724. free_irq(adev->irq[0], pl08x);
  1725. out_no_irq:
  1726. iounmap(pl08x->base);
  1727. out_no_ioremap:
  1728. dma_pool_destroy(pl08x->pool);
  1729. out_no_lli_pool:
  1730. out_no_platdata:
  1731. pm_runtime_put(&adev->dev);
  1732. pm_runtime_disable(&adev->dev);
  1733. kfree(pl08x);
  1734. out_no_pl08x:
  1735. amba_release_regions(adev);
  1736. return ret;
  1737. }
  1738. /* PL080 has 8 channels and the PL080 have just 2 */
  1739. static struct vendor_data vendor_pl080 = {
  1740. .channels = 8,
  1741. .dualmaster = true,
  1742. };
  1743. static struct vendor_data vendor_pl081 = {
  1744. .channels = 2,
  1745. .dualmaster = false,
  1746. };
  1747. static struct amba_id pl08x_ids[] = {
  1748. /* PL080 */
  1749. {
  1750. .id = 0x00041080,
  1751. .mask = 0x000fffff,
  1752. .data = &vendor_pl080,
  1753. },
  1754. /* PL081 */
  1755. {
  1756. .id = 0x00041081,
  1757. .mask = 0x000fffff,
  1758. .data = &vendor_pl081,
  1759. },
  1760. /* Nomadik 8815 PL080 variant */
  1761. {
  1762. .id = 0x00280880,
  1763. .mask = 0x00ffffff,
  1764. .data = &vendor_pl080,
  1765. },
  1766. { 0, 0 },
  1767. };
  1768. static struct amba_driver pl08x_amba_driver = {
  1769. .drv.name = DRIVER_NAME,
  1770. .id_table = pl08x_ids,
  1771. .probe = pl08x_probe,
  1772. };
  1773. static int __init pl08x_init(void)
  1774. {
  1775. int retval;
  1776. retval = amba_driver_register(&pl08x_amba_driver);
  1777. if (retval)
  1778. printk(KERN_WARNING DRIVER_NAME
  1779. "failed to register as an AMBA device (%d)\n",
  1780. retval);
  1781. return retval;
  1782. }
  1783. subsys_initcall(pl08x_init);