cpufreq_ondemand.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761
  1. /*
  2. * drivers/cpufreq/cpufreq_ondemand.c
  3. *
  4. * Copyright (C) 2001 Russell King
  5. * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
  6. * Jun Nakajima <jun.nakajima@intel.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/init.h>
  15. #include <linux/cpufreq.h>
  16. #include <linux/cpu.h>
  17. #include <linux/jiffies.h>
  18. #include <linux/kernel_stat.h>
  19. #include <linux/mutex.h>
  20. #include <linux/hrtimer.h>
  21. #include <linux/tick.h>
  22. #include <linux/ktime.h>
  23. #include <linux/sched.h>
  24. /*
  25. * dbs is used in this file as a shortform for demandbased switching
  26. * It helps to keep variable names smaller, simpler
  27. */
  28. #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
  29. #define DEF_FREQUENCY_UP_THRESHOLD (80)
  30. #define DEF_SAMPLING_DOWN_FACTOR (1)
  31. #define MAX_SAMPLING_DOWN_FACTOR (100000)
  32. #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
  33. #define MICRO_FREQUENCY_UP_THRESHOLD (95)
  34. #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
  35. #define MIN_FREQUENCY_UP_THRESHOLD (11)
  36. #define MAX_FREQUENCY_UP_THRESHOLD (100)
  37. /*
  38. * The polling frequency of this governor depends on the capability of
  39. * the processor. Default polling frequency is 1000 times the transition
  40. * latency of the processor. The governor will work on any processor with
  41. * transition latency <= 10mS, using appropriate sampling
  42. * rate.
  43. * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
  44. * this governor will not work.
  45. * All times here are in uS.
  46. */
  47. #define MIN_SAMPLING_RATE_RATIO (2)
  48. static unsigned int min_sampling_rate;
  49. #define LATENCY_MULTIPLIER (1000)
  50. #define MIN_LATENCY_MULTIPLIER (100)
  51. #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
  52. static void do_dbs_timer(struct work_struct *work);
  53. static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
  54. unsigned int event);
  55. #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
  56. static
  57. #endif
  58. struct cpufreq_governor cpufreq_gov_ondemand = {
  59. .name = "ondemand",
  60. .governor = cpufreq_governor_dbs,
  61. .max_transition_latency = TRANSITION_LATENCY_LIMIT,
  62. .owner = THIS_MODULE,
  63. };
  64. /* Sampling types */
  65. enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
  66. struct cpu_dbs_info_s {
  67. cputime64_t prev_cpu_idle;
  68. cputime64_t prev_cpu_iowait;
  69. cputime64_t prev_cpu_wall;
  70. cputime64_t prev_cpu_nice;
  71. struct cpufreq_policy *cur_policy;
  72. struct delayed_work work;
  73. struct cpufreq_frequency_table *freq_table;
  74. unsigned int freq_lo;
  75. unsigned int freq_lo_jiffies;
  76. unsigned int freq_hi_jiffies;
  77. unsigned int rate_mult;
  78. int cpu;
  79. unsigned int sample_type:1;
  80. /*
  81. * percpu mutex that serializes governor limit change with
  82. * do_dbs_timer invocation. We do not want do_dbs_timer to run
  83. * when user is changing the governor or limits.
  84. */
  85. struct mutex timer_mutex;
  86. };
  87. static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
  88. static unsigned int dbs_enable; /* number of CPUs using this policy */
  89. /*
  90. * dbs_mutex protects dbs_enable in governor start/stop.
  91. */
  92. static DEFINE_MUTEX(dbs_mutex);
  93. static struct dbs_tuners {
  94. unsigned int sampling_rate;
  95. unsigned int up_threshold;
  96. unsigned int down_differential;
  97. unsigned int ignore_nice;
  98. unsigned int sampling_down_factor;
  99. unsigned int powersave_bias;
  100. unsigned int io_is_busy;
  101. } dbs_tuners_ins = {
  102. .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
  103. .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
  104. .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
  105. .ignore_nice = 0,
  106. .powersave_bias = 0,
  107. };
  108. static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
  109. cputime64_t *wall)
  110. {
  111. cputime64_t idle_time;
  112. cputime64_t cur_wall_time;
  113. cputime64_t busy_time;
  114. cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
  115. busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
  116. kstat_cpu(cpu).cpustat.system);
  117. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
  118. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
  119. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
  120. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
  121. idle_time = cputime64_sub(cur_wall_time, busy_time);
  122. if (wall)
  123. *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
  124. return (cputime64_t)jiffies_to_usecs(idle_time);
  125. }
  126. static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
  127. {
  128. u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
  129. if (idle_time == -1ULL)
  130. return get_cpu_idle_time_jiffy(cpu, wall);
  131. else
  132. idle_time += get_cpu_iowait_time_us(cpu, wall);
  133. return idle_time;
  134. }
  135. static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
  136. {
  137. u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
  138. if (iowait_time == -1ULL)
  139. return 0;
  140. return iowait_time;
  141. }
  142. /*
  143. * Find right freq to be set now with powersave_bias on.
  144. * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
  145. * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
  146. */
  147. static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
  148. unsigned int freq_next,
  149. unsigned int relation)
  150. {
  151. unsigned int freq_req, freq_reduc, freq_avg;
  152. unsigned int freq_hi, freq_lo;
  153. unsigned int index = 0;
  154. unsigned int jiffies_total, jiffies_hi, jiffies_lo;
  155. struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
  156. policy->cpu);
  157. if (!dbs_info->freq_table) {
  158. dbs_info->freq_lo = 0;
  159. dbs_info->freq_lo_jiffies = 0;
  160. return freq_next;
  161. }
  162. cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
  163. relation, &index);
  164. freq_req = dbs_info->freq_table[index].frequency;
  165. freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
  166. freq_avg = freq_req - freq_reduc;
  167. /* Find freq bounds for freq_avg in freq_table */
  168. index = 0;
  169. cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
  170. CPUFREQ_RELATION_H, &index);
  171. freq_lo = dbs_info->freq_table[index].frequency;
  172. index = 0;
  173. cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
  174. CPUFREQ_RELATION_L, &index);
  175. freq_hi = dbs_info->freq_table[index].frequency;
  176. /* Find out how long we have to be in hi and lo freqs */
  177. if (freq_hi == freq_lo) {
  178. dbs_info->freq_lo = 0;
  179. dbs_info->freq_lo_jiffies = 0;
  180. return freq_lo;
  181. }
  182. jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  183. jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
  184. jiffies_hi += ((freq_hi - freq_lo) / 2);
  185. jiffies_hi /= (freq_hi - freq_lo);
  186. jiffies_lo = jiffies_total - jiffies_hi;
  187. dbs_info->freq_lo = freq_lo;
  188. dbs_info->freq_lo_jiffies = jiffies_lo;
  189. dbs_info->freq_hi_jiffies = jiffies_hi;
  190. return freq_hi;
  191. }
  192. static void ondemand_powersave_bias_init_cpu(int cpu)
  193. {
  194. struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
  195. dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
  196. dbs_info->freq_lo = 0;
  197. }
  198. static void ondemand_powersave_bias_init(void)
  199. {
  200. int i;
  201. for_each_online_cpu(i) {
  202. ondemand_powersave_bias_init_cpu(i);
  203. }
  204. }
  205. /************************** sysfs interface ************************/
  206. static ssize_t show_sampling_rate_min(struct kobject *kobj,
  207. struct attribute *attr, char *buf)
  208. {
  209. return sprintf(buf, "%u\n", min_sampling_rate);
  210. }
  211. define_one_global_ro(sampling_rate_min);
  212. /* cpufreq_ondemand Governor Tunables */
  213. #define show_one(file_name, object) \
  214. static ssize_t show_##file_name \
  215. (struct kobject *kobj, struct attribute *attr, char *buf) \
  216. { \
  217. return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
  218. }
  219. show_one(sampling_rate, sampling_rate);
  220. show_one(io_is_busy, io_is_busy);
  221. show_one(up_threshold, up_threshold);
  222. show_one(sampling_down_factor, sampling_down_factor);
  223. show_one(ignore_nice_load, ignore_nice);
  224. show_one(powersave_bias, powersave_bias);
  225. static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
  226. const char *buf, size_t count)
  227. {
  228. unsigned int input;
  229. int ret;
  230. ret = sscanf(buf, "%u", &input);
  231. if (ret != 1)
  232. return -EINVAL;
  233. dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
  234. return count;
  235. }
  236. static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
  237. const char *buf, size_t count)
  238. {
  239. unsigned int input;
  240. int ret;
  241. ret = sscanf(buf, "%u", &input);
  242. if (ret != 1)
  243. return -EINVAL;
  244. dbs_tuners_ins.io_is_busy = !!input;
  245. return count;
  246. }
  247. static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
  248. const char *buf, size_t count)
  249. {
  250. unsigned int input;
  251. int ret;
  252. ret = sscanf(buf, "%u", &input);
  253. if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
  254. input < MIN_FREQUENCY_UP_THRESHOLD) {
  255. return -EINVAL;
  256. }
  257. dbs_tuners_ins.up_threshold = input;
  258. return count;
  259. }
  260. static ssize_t store_sampling_down_factor(struct kobject *a,
  261. struct attribute *b, const char *buf, size_t count)
  262. {
  263. unsigned int input, j;
  264. int ret;
  265. ret = sscanf(buf, "%u", &input);
  266. if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
  267. return -EINVAL;
  268. dbs_tuners_ins.sampling_down_factor = input;
  269. /* Reset down sampling multiplier in case it was active */
  270. for_each_online_cpu(j) {
  271. struct cpu_dbs_info_s *dbs_info;
  272. dbs_info = &per_cpu(od_cpu_dbs_info, j);
  273. dbs_info->rate_mult = 1;
  274. }
  275. return count;
  276. }
  277. static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
  278. const char *buf, size_t count)
  279. {
  280. unsigned int input;
  281. int ret;
  282. unsigned int j;
  283. ret = sscanf(buf, "%u", &input);
  284. if (ret != 1)
  285. return -EINVAL;
  286. if (input > 1)
  287. input = 1;
  288. if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
  289. return count;
  290. }
  291. dbs_tuners_ins.ignore_nice = input;
  292. /* we need to re-evaluate prev_cpu_idle */
  293. for_each_online_cpu(j) {
  294. struct cpu_dbs_info_s *dbs_info;
  295. dbs_info = &per_cpu(od_cpu_dbs_info, j);
  296. dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
  297. &dbs_info->prev_cpu_wall);
  298. if (dbs_tuners_ins.ignore_nice)
  299. dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
  300. }
  301. return count;
  302. }
  303. static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
  304. const char *buf, size_t count)
  305. {
  306. unsigned int input;
  307. int ret;
  308. ret = sscanf(buf, "%u", &input);
  309. if (ret != 1)
  310. return -EINVAL;
  311. if (input > 1000)
  312. input = 1000;
  313. dbs_tuners_ins.powersave_bias = input;
  314. ondemand_powersave_bias_init();
  315. return count;
  316. }
  317. define_one_global_rw(sampling_rate);
  318. define_one_global_rw(io_is_busy);
  319. define_one_global_rw(up_threshold);
  320. define_one_global_rw(sampling_down_factor);
  321. define_one_global_rw(ignore_nice_load);
  322. define_one_global_rw(powersave_bias);
  323. static struct attribute *dbs_attributes[] = {
  324. &sampling_rate_min.attr,
  325. &sampling_rate.attr,
  326. &up_threshold.attr,
  327. &sampling_down_factor.attr,
  328. &ignore_nice_load.attr,
  329. &powersave_bias.attr,
  330. &io_is_busy.attr,
  331. NULL
  332. };
  333. static struct attribute_group dbs_attr_group = {
  334. .attrs = dbs_attributes,
  335. .name = "ondemand",
  336. };
  337. /************************** sysfs end ************************/
  338. static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
  339. {
  340. if (dbs_tuners_ins.powersave_bias)
  341. freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
  342. else if (p->cur == p->max)
  343. return;
  344. __cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
  345. CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
  346. }
  347. static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
  348. {
  349. unsigned int max_load_freq;
  350. struct cpufreq_policy *policy;
  351. unsigned int j;
  352. this_dbs_info->freq_lo = 0;
  353. policy = this_dbs_info->cur_policy;
  354. /*
  355. * Every sampling_rate, we check, if current idle time is less
  356. * than 20% (default), then we try to increase frequency
  357. * Every sampling_rate, we look for a the lowest
  358. * frequency which can sustain the load while keeping idle time over
  359. * 30%. If such a frequency exist, we try to decrease to this frequency.
  360. *
  361. * Any frequency increase takes it to the maximum frequency.
  362. * Frequency reduction happens at minimum steps of
  363. * 5% (default) of current frequency
  364. */
  365. /* Get Absolute Load - in terms of freq */
  366. max_load_freq = 0;
  367. for_each_cpu(j, policy->cpus) {
  368. struct cpu_dbs_info_s *j_dbs_info;
  369. cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
  370. unsigned int idle_time, wall_time, iowait_time;
  371. unsigned int load, load_freq;
  372. int freq_avg;
  373. j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
  374. cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
  375. cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
  376. wall_time = (unsigned int) cputime64_sub(cur_wall_time,
  377. j_dbs_info->prev_cpu_wall);
  378. j_dbs_info->prev_cpu_wall = cur_wall_time;
  379. idle_time = (unsigned int) cputime64_sub(cur_idle_time,
  380. j_dbs_info->prev_cpu_idle);
  381. j_dbs_info->prev_cpu_idle = cur_idle_time;
  382. iowait_time = (unsigned int) cputime64_sub(cur_iowait_time,
  383. j_dbs_info->prev_cpu_iowait);
  384. j_dbs_info->prev_cpu_iowait = cur_iowait_time;
  385. if (dbs_tuners_ins.ignore_nice) {
  386. cputime64_t cur_nice;
  387. unsigned long cur_nice_jiffies;
  388. cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
  389. j_dbs_info->prev_cpu_nice);
  390. /*
  391. * Assumption: nice time between sampling periods will
  392. * be less than 2^32 jiffies for 32 bit sys
  393. */
  394. cur_nice_jiffies = (unsigned long)
  395. cputime64_to_jiffies64(cur_nice);
  396. j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
  397. idle_time += jiffies_to_usecs(cur_nice_jiffies);
  398. }
  399. /*
  400. * For the purpose of ondemand, waiting for disk IO is an
  401. * indication that you're performance critical, and not that
  402. * the system is actually idle. So subtract the iowait time
  403. * from the cpu idle time.
  404. */
  405. if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
  406. idle_time -= iowait_time;
  407. if (unlikely(!wall_time || wall_time < idle_time))
  408. continue;
  409. load = 100 * (wall_time - idle_time) / wall_time;
  410. freq_avg = __cpufreq_driver_getavg(policy, j);
  411. if (freq_avg <= 0)
  412. freq_avg = policy->cur;
  413. load_freq = load * freq_avg;
  414. if (load_freq > max_load_freq)
  415. max_load_freq = load_freq;
  416. }
  417. /* Check for frequency increase */
  418. if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
  419. /* If switching to max speed, apply sampling_down_factor */
  420. if (policy->cur < policy->max)
  421. this_dbs_info->rate_mult =
  422. dbs_tuners_ins.sampling_down_factor;
  423. dbs_freq_increase(policy, policy->max);
  424. return;
  425. }
  426. /* Check for frequency decrease */
  427. /* if we cannot reduce the frequency anymore, break out early */
  428. if (policy->cur == policy->min)
  429. return;
  430. /*
  431. * The optimal frequency is the frequency that is the lowest that
  432. * can support the current CPU usage without triggering the up
  433. * policy. To be safe, we focus 10 points under the threshold.
  434. */
  435. if (max_load_freq <
  436. (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
  437. policy->cur) {
  438. unsigned int freq_next;
  439. freq_next = max_load_freq /
  440. (dbs_tuners_ins.up_threshold -
  441. dbs_tuners_ins.down_differential);
  442. /* No longer fully busy, reset rate_mult */
  443. this_dbs_info->rate_mult = 1;
  444. if (freq_next < policy->min)
  445. freq_next = policy->min;
  446. if (!dbs_tuners_ins.powersave_bias) {
  447. __cpufreq_driver_target(policy, freq_next,
  448. CPUFREQ_RELATION_L);
  449. } else {
  450. int freq = powersave_bias_target(policy, freq_next,
  451. CPUFREQ_RELATION_L);
  452. __cpufreq_driver_target(policy, freq,
  453. CPUFREQ_RELATION_L);
  454. }
  455. }
  456. }
  457. static void do_dbs_timer(struct work_struct *work)
  458. {
  459. struct cpu_dbs_info_s *dbs_info =
  460. container_of(work, struct cpu_dbs_info_s, work.work);
  461. unsigned int cpu = dbs_info->cpu;
  462. int sample_type = dbs_info->sample_type;
  463. int delay;
  464. mutex_lock(&dbs_info->timer_mutex);
  465. /* Common NORMAL_SAMPLE setup */
  466. dbs_info->sample_type = DBS_NORMAL_SAMPLE;
  467. if (!dbs_tuners_ins.powersave_bias ||
  468. sample_type == DBS_NORMAL_SAMPLE) {
  469. dbs_check_cpu(dbs_info);
  470. if (dbs_info->freq_lo) {
  471. /* Setup timer for SUB_SAMPLE */
  472. dbs_info->sample_type = DBS_SUB_SAMPLE;
  473. delay = dbs_info->freq_hi_jiffies;
  474. } else {
  475. /* We want all CPUs to do sampling nearly on
  476. * same jiffy
  477. */
  478. delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
  479. * dbs_info->rate_mult);
  480. if (num_online_cpus() > 1)
  481. delay -= jiffies % delay;
  482. }
  483. } else {
  484. __cpufreq_driver_target(dbs_info->cur_policy,
  485. dbs_info->freq_lo, CPUFREQ_RELATION_H);
  486. delay = dbs_info->freq_lo_jiffies;
  487. }
  488. schedule_delayed_work_on(cpu, &dbs_info->work, delay);
  489. mutex_unlock(&dbs_info->timer_mutex);
  490. }
  491. static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
  492. {
  493. /* We want all CPUs to do sampling nearly on same jiffy */
  494. int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  495. if (num_online_cpus() > 1)
  496. delay -= jiffies % delay;
  497. dbs_info->sample_type = DBS_NORMAL_SAMPLE;
  498. INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
  499. schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
  500. }
  501. static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
  502. {
  503. cancel_delayed_work_sync(&dbs_info->work);
  504. }
  505. /*
  506. * Not all CPUs want IO time to be accounted as busy; this dependson how
  507. * efficient idling at a higher frequency/voltage is.
  508. * Pavel Machek says this is not so for various generations of AMD and old
  509. * Intel systems.
  510. * Mike Chan (androidlcom) calis this is also not true for ARM.
  511. * Because of this, whitelist specific known (series) of CPUs by default, and
  512. * leave all others up to the user.
  513. */
  514. static int should_io_be_busy(void)
  515. {
  516. #if defined(CONFIG_X86)
  517. /*
  518. * For Intel, Core 2 (model 15) andl later have an efficient idle.
  519. */
  520. if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
  521. boot_cpu_data.x86 == 6 &&
  522. boot_cpu_data.x86_model >= 15)
  523. return 1;
  524. #endif
  525. return 0;
  526. }
  527. static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
  528. unsigned int event)
  529. {
  530. unsigned int cpu = policy->cpu;
  531. struct cpu_dbs_info_s *this_dbs_info;
  532. unsigned int j;
  533. int rc;
  534. this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
  535. switch (event) {
  536. case CPUFREQ_GOV_START:
  537. if ((!cpu_online(cpu)) || (!policy->cur))
  538. return -EINVAL;
  539. mutex_lock(&dbs_mutex);
  540. dbs_enable++;
  541. for_each_cpu(j, policy->cpus) {
  542. struct cpu_dbs_info_s *j_dbs_info;
  543. j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
  544. j_dbs_info->cur_policy = policy;
  545. j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
  546. &j_dbs_info->prev_cpu_wall);
  547. if (dbs_tuners_ins.ignore_nice) {
  548. j_dbs_info->prev_cpu_nice =
  549. kstat_cpu(j).cpustat.nice;
  550. }
  551. }
  552. this_dbs_info->cpu = cpu;
  553. this_dbs_info->rate_mult = 1;
  554. ondemand_powersave_bias_init_cpu(cpu);
  555. /*
  556. * Start the timerschedule work, when this governor
  557. * is used for first time
  558. */
  559. if (dbs_enable == 1) {
  560. unsigned int latency;
  561. rc = sysfs_create_group(cpufreq_global_kobject,
  562. &dbs_attr_group);
  563. if (rc) {
  564. mutex_unlock(&dbs_mutex);
  565. return rc;
  566. }
  567. /* policy latency is in nS. Convert it to uS first */
  568. latency = policy->cpuinfo.transition_latency / 1000;
  569. if (latency == 0)
  570. latency = 1;
  571. /* Bring kernel and HW constraints together */
  572. min_sampling_rate = max(min_sampling_rate,
  573. MIN_LATENCY_MULTIPLIER * latency);
  574. dbs_tuners_ins.sampling_rate =
  575. max(min_sampling_rate,
  576. latency * LATENCY_MULTIPLIER);
  577. dbs_tuners_ins.io_is_busy = should_io_be_busy();
  578. }
  579. mutex_unlock(&dbs_mutex);
  580. mutex_init(&this_dbs_info->timer_mutex);
  581. dbs_timer_init(this_dbs_info);
  582. break;
  583. case CPUFREQ_GOV_STOP:
  584. dbs_timer_exit(this_dbs_info);
  585. mutex_lock(&dbs_mutex);
  586. mutex_destroy(&this_dbs_info->timer_mutex);
  587. dbs_enable--;
  588. mutex_unlock(&dbs_mutex);
  589. if (!dbs_enable)
  590. sysfs_remove_group(cpufreq_global_kobject,
  591. &dbs_attr_group);
  592. break;
  593. case CPUFREQ_GOV_LIMITS:
  594. mutex_lock(&this_dbs_info->timer_mutex);
  595. if (policy->max < this_dbs_info->cur_policy->cur)
  596. __cpufreq_driver_target(this_dbs_info->cur_policy,
  597. policy->max, CPUFREQ_RELATION_H);
  598. else if (policy->min > this_dbs_info->cur_policy->cur)
  599. __cpufreq_driver_target(this_dbs_info->cur_policy,
  600. policy->min, CPUFREQ_RELATION_L);
  601. mutex_unlock(&this_dbs_info->timer_mutex);
  602. break;
  603. }
  604. return 0;
  605. }
  606. static int __init cpufreq_gov_dbs_init(void)
  607. {
  608. cputime64_t wall;
  609. u64 idle_time;
  610. int cpu = get_cpu();
  611. idle_time = get_cpu_idle_time_us(cpu, &wall);
  612. put_cpu();
  613. if (idle_time != -1ULL) {
  614. /* Idle micro accounting is supported. Use finer thresholds */
  615. dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
  616. dbs_tuners_ins.down_differential =
  617. MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
  618. /*
  619. * In nohz/micro accounting case we set the minimum frequency
  620. * not depending on HZ, but fixed (very low). The deferred
  621. * timer might skip some samples if idle/sleeping as needed.
  622. */
  623. min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
  624. } else {
  625. /* For correct statistics, we need 10 ticks for each measure */
  626. min_sampling_rate =
  627. MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
  628. }
  629. return cpufreq_register_governor(&cpufreq_gov_ondemand);
  630. }
  631. static void __exit cpufreq_gov_dbs_exit(void)
  632. {
  633. cpufreq_unregister_governor(&cpufreq_gov_ondemand);
  634. }
  635. MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
  636. MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
  637. MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
  638. "Low Latency Frequency Transition capable processors");
  639. MODULE_LICENSE("GPL");
  640. #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
  641. fs_initcall(cpufreq_gov_dbs_init);
  642. #else
  643. module_init(cpufreq_gov_dbs_init);
  644. #endif
  645. module_exit(cpufreq_gov_dbs_exit);