regcache-rbtree.c 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345
  1. /*
  2. * Register cache access API - rbtree caching support
  3. *
  4. * Copyright 2011 Wolfson Microelectronics plc
  5. *
  6. * Author: Dimitris Papastamos <dp@opensource.wolfsonmicro.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/rbtree.h>
  14. #include "internal.h"
  15. static int regcache_rbtree_write(struct regmap *map, unsigned int reg,
  16. unsigned int value);
  17. struct regcache_rbtree_node {
  18. /* the actual rbtree node holding this block */
  19. struct rb_node node;
  20. /* base register handled by this block */
  21. unsigned int base_reg;
  22. /* block of adjacent registers */
  23. void *block;
  24. /* number of registers available in the block */
  25. unsigned int blklen;
  26. } __attribute__ ((packed));
  27. struct regcache_rbtree_ctx {
  28. struct rb_root root;
  29. struct regcache_rbtree_node *cached_rbnode;
  30. };
  31. static inline void regcache_rbtree_get_base_top_reg(
  32. struct regcache_rbtree_node *rbnode,
  33. unsigned int *base, unsigned int *top)
  34. {
  35. *base = rbnode->base_reg;
  36. *top = rbnode->base_reg + rbnode->blklen - 1;
  37. }
  38. static unsigned int regcache_rbtree_get_register(
  39. struct regcache_rbtree_node *rbnode, unsigned int idx,
  40. unsigned int word_size)
  41. {
  42. return regcache_get_val(rbnode->block, idx, word_size);
  43. }
  44. static void regcache_rbtree_set_register(struct regcache_rbtree_node *rbnode,
  45. unsigned int idx, unsigned int val,
  46. unsigned int word_size)
  47. {
  48. regcache_set_val(rbnode->block, idx, val, word_size);
  49. }
  50. static struct regcache_rbtree_node *regcache_rbtree_lookup(struct regmap *map,
  51. unsigned int reg)
  52. {
  53. struct regcache_rbtree_ctx *rbtree_ctx = map->cache;
  54. struct rb_node *node;
  55. struct regcache_rbtree_node *rbnode;
  56. unsigned int base_reg, top_reg;
  57. rbnode = rbtree_ctx->cached_rbnode;
  58. if (rbnode) {
  59. regcache_rbtree_get_base_top_reg(rbnode, &base_reg, &top_reg);
  60. if (reg >= base_reg && reg <= top_reg)
  61. return rbnode;
  62. }
  63. node = rbtree_ctx->root.rb_node;
  64. while (node) {
  65. rbnode = container_of(node, struct regcache_rbtree_node, node);
  66. regcache_rbtree_get_base_top_reg(rbnode, &base_reg, &top_reg);
  67. if (reg >= base_reg && reg <= top_reg) {
  68. rbtree_ctx->cached_rbnode = rbnode;
  69. return rbnode;
  70. } else if (reg > top_reg) {
  71. node = node->rb_right;
  72. } else if (reg < base_reg) {
  73. node = node->rb_left;
  74. }
  75. }
  76. return NULL;
  77. }
  78. static int regcache_rbtree_insert(struct rb_root *root,
  79. struct regcache_rbtree_node *rbnode)
  80. {
  81. struct rb_node **new, *parent;
  82. struct regcache_rbtree_node *rbnode_tmp;
  83. unsigned int base_reg_tmp, top_reg_tmp;
  84. unsigned int base_reg;
  85. parent = NULL;
  86. new = &root->rb_node;
  87. while (*new) {
  88. rbnode_tmp = container_of(*new, struct regcache_rbtree_node,
  89. node);
  90. /* base and top registers of the current rbnode */
  91. regcache_rbtree_get_base_top_reg(rbnode_tmp, &base_reg_tmp,
  92. &top_reg_tmp);
  93. /* base register of the rbnode to be added */
  94. base_reg = rbnode->base_reg;
  95. parent = *new;
  96. /* if this register has already been inserted, just return */
  97. if (base_reg >= base_reg_tmp &&
  98. base_reg <= top_reg_tmp)
  99. return 0;
  100. else if (base_reg > top_reg_tmp)
  101. new = &((*new)->rb_right);
  102. else if (base_reg < base_reg_tmp)
  103. new = &((*new)->rb_left);
  104. }
  105. /* insert the node into the rbtree */
  106. rb_link_node(&rbnode->node, parent, new);
  107. rb_insert_color(&rbnode->node, root);
  108. return 1;
  109. }
  110. static int regcache_rbtree_init(struct regmap *map)
  111. {
  112. struct regcache_rbtree_ctx *rbtree_ctx;
  113. int i;
  114. int ret;
  115. map->cache = kmalloc(sizeof *rbtree_ctx, GFP_KERNEL);
  116. if (!map->cache)
  117. return -ENOMEM;
  118. rbtree_ctx = map->cache;
  119. rbtree_ctx->root = RB_ROOT;
  120. rbtree_ctx->cached_rbnode = NULL;
  121. for (i = 0; i < map->num_reg_defaults; i++) {
  122. ret = regcache_rbtree_write(map,
  123. map->reg_defaults[i].reg,
  124. map->reg_defaults[i].def);
  125. if (ret)
  126. goto err;
  127. }
  128. return 0;
  129. err:
  130. regcache_exit(map);
  131. return ret;
  132. }
  133. static int regcache_rbtree_exit(struct regmap *map)
  134. {
  135. struct rb_node *next;
  136. struct regcache_rbtree_ctx *rbtree_ctx;
  137. struct regcache_rbtree_node *rbtree_node;
  138. /* if we've already been called then just return */
  139. rbtree_ctx = map->cache;
  140. if (!rbtree_ctx)
  141. return 0;
  142. /* free up the rbtree */
  143. next = rb_first(&rbtree_ctx->root);
  144. while (next) {
  145. rbtree_node = rb_entry(next, struct regcache_rbtree_node, node);
  146. next = rb_next(&rbtree_node->node);
  147. rb_erase(&rbtree_node->node, &rbtree_ctx->root);
  148. kfree(rbtree_node->block);
  149. kfree(rbtree_node);
  150. }
  151. /* release the resources */
  152. kfree(map->cache);
  153. map->cache = NULL;
  154. return 0;
  155. }
  156. static int regcache_rbtree_read(struct regmap *map,
  157. unsigned int reg, unsigned int *value)
  158. {
  159. struct regcache_rbtree_node *rbnode;
  160. unsigned int reg_tmp;
  161. rbnode = regcache_rbtree_lookup(map, reg);
  162. if (rbnode) {
  163. reg_tmp = reg - rbnode->base_reg;
  164. *value = regcache_rbtree_get_register(rbnode, reg_tmp,
  165. map->cache_word_size);
  166. } else {
  167. return -ENOENT;
  168. }
  169. return 0;
  170. }
  171. static int regcache_rbtree_insert_to_block(struct regcache_rbtree_node *rbnode,
  172. unsigned int pos, unsigned int reg,
  173. unsigned int value, unsigned int word_size)
  174. {
  175. u8 *blk;
  176. blk = krealloc(rbnode->block,
  177. (rbnode->blklen + 1) * word_size, GFP_KERNEL);
  178. if (!blk)
  179. return -ENOMEM;
  180. /* insert the register value in the correct place in the rbnode block */
  181. memmove(blk + (pos + 1) * word_size,
  182. blk + pos * word_size,
  183. (rbnode->blklen - pos) * word_size);
  184. /* update the rbnode block, its size and the base register */
  185. rbnode->block = blk;
  186. rbnode->blklen++;
  187. if (!pos)
  188. rbnode->base_reg = reg;
  189. regcache_rbtree_set_register(rbnode, pos, value, word_size);
  190. return 0;
  191. }
  192. static int regcache_rbtree_write(struct regmap *map, unsigned int reg,
  193. unsigned int value)
  194. {
  195. struct regcache_rbtree_ctx *rbtree_ctx;
  196. struct regcache_rbtree_node *rbnode, *rbnode_tmp;
  197. struct rb_node *node;
  198. unsigned int val;
  199. unsigned int reg_tmp;
  200. unsigned int pos;
  201. int i;
  202. int ret;
  203. rbtree_ctx = map->cache;
  204. /* if we can't locate it in the cached rbnode we'll have
  205. * to traverse the rbtree looking for it.
  206. */
  207. rbnode = regcache_rbtree_lookup(map, reg);
  208. if (rbnode) {
  209. reg_tmp = reg - rbnode->base_reg;
  210. val = regcache_rbtree_get_register(rbnode, reg_tmp,
  211. map->cache_word_size);
  212. if (val == value)
  213. return 0;
  214. regcache_rbtree_set_register(rbnode, reg_tmp, value,
  215. map->cache_word_size);
  216. } else {
  217. /* look for an adjacent register to the one we are about to add */
  218. for (node = rb_first(&rbtree_ctx->root); node;
  219. node = rb_next(node)) {
  220. rbnode_tmp = rb_entry(node, struct regcache_rbtree_node, node);
  221. for (i = 0; i < rbnode_tmp->blklen; i++) {
  222. reg_tmp = rbnode_tmp->base_reg + i;
  223. if (abs(reg_tmp - reg) != 1)
  224. continue;
  225. /* decide where in the block to place our register */
  226. if (reg_tmp + 1 == reg)
  227. pos = i + 1;
  228. else
  229. pos = i;
  230. ret = regcache_rbtree_insert_to_block(rbnode_tmp, pos,
  231. reg, value,
  232. map->cache_word_size);
  233. if (ret)
  234. return ret;
  235. rbtree_ctx->cached_rbnode = rbnode_tmp;
  236. return 0;
  237. }
  238. }
  239. /* we did not manage to find a place to insert it in an existing
  240. * block so create a new rbnode with a single register in its block.
  241. * This block will get populated further if any other adjacent
  242. * registers get modified in the future.
  243. */
  244. rbnode = kzalloc(sizeof *rbnode, GFP_KERNEL);
  245. if (!rbnode)
  246. return -ENOMEM;
  247. rbnode->blklen = 1;
  248. rbnode->base_reg = reg;
  249. rbnode->block = kmalloc(rbnode->blklen * map->cache_word_size,
  250. GFP_KERNEL);
  251. if (!rbnode->block) {
  252. kfree(rbnode);
  253. return -ENOMEM;
  254. }
  255. regcache_rbtree_set_register(rbnode, 0, value, map->cache_word_size);
  256. regcache_rbtree_insert(&rbtree_ctx->root, rbnode);
  257. rbtree_ctx->cached_rbnode = rbnode;
  258. }
  259. return 0;
  260. }
  261. static int regcache_rbtree_sync(struct regmap *map)
  262. {
  263. struct regcache_rbtree_ctx *rbtree_ctx;
  264. struct rb_node *node;
  265. struct regcache_rbtree_node *rbnode;
  266. unsigned int regtmp;
  267. unsigned int val;
  268. int ret;
  269. int i;
  270. rbtree_ctx = map->cache;
  271. for (node = rb_first(&rbtree_ctx->root); node; node = rb_next(node)) {
  272. rbnode = rb_entry(node, struct regcache_rbtree_node, node);
  273. for (i = 0; i < rbnode->blklen; i++) {
  274. regtmp = rbnode->base_reg + i;
  275. val = regcache_rbtree_get_register(rbnode, i,
  276. map->cache_word_size);
  277. /* Is this the hardware default? If so skip. */
  278. ret = regcache_lookup_reg(map, i);
  279. if (ret > 0 && val == map->reg_defaults[ret].def)
  280. continue;
  281. map->cache_bypass = 1;
  282. ret = _regmap_write(map, regtmp, val);
  283. map->cache_bypass = 0;
  284. if (ret)
  285. return ret;
  286. dev_dbg(map->dev, "Synced register %#x, value %#x\n",
  287. regtmp, val);
  288. }
  289. }
  290. return 0;
  291. }
  292. struct regcache_ops regcache_rbtree_ops = {
  293. .type = REGCACHE_RBTREE,
  294. .name = "rbtree",
  295. .init = regcache_rbtree_init,
  296. .exit = regcache_rbtree_exit,
  297. .read = regcache_rbtree_read,
  298. .write = regcache_rbtree_write,
  299. .sync = regcache_rbtree_sync
  300. };