aead.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554
  1. /*
  2. * AEAD: Authenticated Encryption with Associated Data
  3. *
  4. * This file provides API support for AEAD algorithms.
  5. *
  6. * Copyright (c) 2007 Herbert Xu <herbert@gondor.apana.org.au>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of the GNU General Public License as published by the Free
  10. * Software Foundation; either version 2 of the License, or (at your option)
  11. * any later version.
  12. *
  13. */
  14. #include <crypto/internal/aead.h>
  15. #include <linux/err.h>
  16. #include <linux/init.h>
  17. #include <linux/kernel.h>
  18. #include <linux/module.h>
  19. #include <linux/rtnetlink.h>
  20. #include <linux/sched.h>
  21. #include <linux/slab.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/cryptouser.h>
  24. #include <net/netlink.h>
  25. #include "internal.h"
  26. static int setkey_unaligned(struct crypto_aead *tfm, const u8 *key,
  27. unsigned int keylen)
  28. {
  29. struct aead_alg *aead = crypto_aead_alg(tfm);
  30. unsigned long alignmask = crypto_aead_alignmask(tfm);
  31. int ret;
  32. u8 *buffer, *alignbuffer;
  33. unsigned long absize;
  34. absize = keylen + alignmask;
  35. buffer = kmalloc(absize, GFP_ATOMIC);
  36. if (!buffer)
  37. return -ENOMEM;
  38. alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
  39. memcpy(alignbuffer, key, keylen);
  40. ret = aead->setkey(tfm, alignbuffer, keylen);
  41. memset(alignbuffer, 0, keylen);
  42. kfree(buffer);
  43. return ret;
  44. }
  45. static int setkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen)
  46. {
  47. struct aead_alg *aead = crypto_aead_alg(tfm);
  48. unsigned long alignmask = crypto_aead_alignmask(tfm);
  49. if ((unsigned long)key & alignmask)
  50. return setkey_unaligned(tfm, key, keylen);
  51. return aead->setkey(tfm, key, keylen);
  52. }
  53. int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
  54. {
  55. struct aead_tfm *crt = crypto_aead_crt(tfm);
  56. int err;
  57. if (authsize > crypto_aead_alg(tfm)->maxauthsize)
  58. return -EINVAL;
  59. if (crypto_aead_alg(tfm)->setauthsize) {
  60. err = crypto_aead_alg(tfm)->setauthsize(crt->base, authsize);
  61. if (err)
  62. return err;
  63. }
  64. crypto_aead_crt(crt->base)->authsize = authsize;
  65. crt->authsize = authsize;
  66. return 0;
  67. }
  68. EXPORT_SYMBOL_GPL(crypto_aead_setauthsize);
  69. static unsigned int crypto_aead_ctxsize(struct crypto_alg *alg, u32 type,
  70. u32 mask)
  71. {
  72. return alg->cra_ctxsize;
  73. }
  74. static int no_givcrypt(struct aead_givcrypt_request *req)
  75. {
  76. return -ENOSYS;
  77. }
  78. static int crypto_init_aead_ops(struct crypto_tfm *tfm, u32 type, u32 mask)
  79. {
  80. struct aead_alg *alg = &tfm->__crt_alg->cra_aead;
  81. struct aead_tfm *crt = &tfm->crt_aead;
  82. if (max(alg->maxauthsize, alg->ivsize) > PAGE_SIZE / 8)
  83. return -EINVAL;
  84. crt->setkey = tfm->__crt_alg->cra_flags & CRYPTO_ALG_GENIV ?
  85. alg->setkey : setkey;
  86. crt->encrypt = alg->encrypt;
  87. crt->decrypt = alg->decrypt;
  88. crt->givencrypt = alg->givencrypt ?: no_givcrypt;
  89. crt->givdecrypt = alg->givdecrypt ?: no_givcrypt;
  90. crt->base = __crypto_aead_cast(tfm);
  91. crt->ivsize = alg->ivsize;
  92. crt->authsize = alg->maxauthsize;
  93. return 0;
  94. }
  95. static int crypto_aead_report(struct sk_buff *skb, struct crypto_alg *alg)
  96. {
  97. struct crypto_report_aead raead;
  98. struct aead_alg *aead = &alg->cra_aead;
  99. snprintf(raead.type, CRYPTO_MAX_ALG_NAME, "%s", "aead");
  100. snprintf(raead.geniv, CRYPTO_MAX_ALG_NAME, "%s",
  101. aead->geniv ?: "<built-in>");
  102. raead.blocksize = alg->cra_blocksize;
  103. raead.maxauthsize = aead->maxauthsize;
  104. raead.ivsize = aead->ivsize;
  105. NLA_PUT(skb, CRYPTOCFGA_REPORT_AEAD,
  106. sizeof(struct crypto_report_aead), &raead);
  107. return 0;
  108. nla_put_failure:
  109. return -EMSGSIZE;
  110. }
  111. static void crypto_aead_show(struct seq_file *m, struct crypto_alg *alg)
  112. __attribute__ ((unused));
  113. static void crypto_aead_show(struct seq_file *m, struct crypto_alg *alg)
  114. {
  115. struct aead_alg *aead = &alg->cra_aead;
  116. seq_printf(m, "type : aead\n");
  117. seq_printf(m, "async : %s\n", alg->cra_flags & CRYPTO_ALG_ASYNC ?
  118. "yes" : "no");
  119. seq_printf(m, "blocksize : %u\n", alg->cra_blocksize);
  120. seq_printf(m, "ivsize : %u\n", aead->ivsize);
  121. seq_printf(m, "maxauthsize : %u\n", aead->maxauthsize);
  122. seq_printf(m, "geniv : %s\n", aead->geniv ?: "<built-in>");
  123. }
  124. const struct crypto_type crypto_aead_type = {
  125. .ctxsize = crypto_aead_ctxsize,
  126. .init = crypto_init_aead_ops,
  127. #ifdef CONFIG_PROC_FS
  128. .show = crypto_aead_show,
  129. #endif
  130. .report = crypto_aead_report,
  131. };
  132. EXPORT_SYMBOL_GPL(crypto_aead_type);
  133. static int aead_null_givencrypt(struct aead_givcrypt_request *req)
  134. {
  135. return crypto_aead_encrypt(&req->areq);
  136. }
  137. static int aead_null_givdecrypt(struct aead_givcrypt_request *req)
  138. {
  139. return crypto_aead_decrypt(&req->areq);
  140. }
  141. static int crypto_init_nivaead_ops(struct crypto_tfm *tfm, u32 type, u32 mask)
  142. {
  143. struct aead_alg *alg = &tfm->__crt_alg->cra_aead;
  144. struct aead_tfm *crt = &tfm->crt_aead;
  145. if (max(alg->maxauthsize, alg->ivsize) > PAGE_SIZE / 8)
  146. return -EINVAL;
  147. crt->setkey = setkey;
  148. crt->encrypt = alg->encrypt;
  149. crt->decrypt = alg->decrypt;
  150. if (!alg->ivsize) {
  151. crt->givencrypt = aead_null_givencrypt;
  152. crt->givdecrypt = aead_null_givdecrypt;
  153. }
  154. crt->base = __crypto_aead_cast(tfm);
  155. crt->ivsize = alg->ivsize;
  156. crt->authsize = alg->maxauthsize;
  157. return 0;
  158. }
  159. static int crypto_nivaead_report(struct sk_buff *skb, struct crypto_alg *alg)
  160. {
  161. struct crypto_report_aead raead;
  162. struct aead_alg *aead = &alg->cra_aead;
  163. snprintf(raead.type, CRYPTO_MAX_ALG_NAME, "%s", "nivaead");
  164. snprintf(raead.geniv, CRYPTO_MAX_ALG_NAME, "%s", aead->geniv);
  165. raead.blocksize = alg->cra_blocksize;
  166. raead.maxauthsize = aead->maxauthsize;
  167. raead.ivsize = aead->ivsize;
  168. NLA_PUT(skb, CRYPTOCFGA_REPORT_AEAD,
  169. sizeof(struct crypto_report_aead), &raead);
  170. return 0;
  171. nla_put_failure:
  172. return -EMSGSIZE;
  173. }
  174. static void crypto_nivaead_show(struct seq_file *m, struct crypto_alg *alg)
  175. __attribute__ ((unused));
  176. static void crypto_nivaead_show(struct seq_file *m, struct crypto_alg *alg)
  177. {
  178. struct aead_alg *aead = &alg->cra_aead;
  179. seq_printf(m, "type : nivaead\n");
  180. seq_printf(m, "async : %s\n", alg->cra_flags & CRYPTO_ALG_ASYNC ?
  181. "yes" : "no");
  182. seq_printf(m, "blocksize : %u\n", alg->cra_blocksize);
  183. seq_printf(m, "ivsize : %u\n", aead->ivsize);
  184. seq_printf(m, "maxauthsize : %u\n", aead->maxauthsize);
  185. seq_printf(m, "geniv : %s\n", aead->geniv);
  186. }
  187. const struct crypto_type crypto_nivaead_type = {
  188. .ctxsize = crypto_aead_ctxsize,
  189. .init = crypto_init_nivaead_ops,
  190. #ifdef CONFIG_PROC_FS
  191. .show = crypto_nivaead_show,
  192. #endif
  193. .report = crypto_nivaead_report,
  194. };
  195. EXPORT_SYMBOL_GPL(crypto_nivaead_type);
  196. static int crypto_grab_nivaead(struct crypto_aead_spawn *spawn,
  197. const char *name, u32 type, u32 mask)
  198. {
  199. struct crypto_alg *alg;
  200. int err;
  201. type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
  202. type |= CRYPTO_ALG_TYPE_AEAD;
  203. mask |= CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV;
  204. alg = crypto_alg_mod_lookup(name, type, mask);
  205. if (IS_ERR(alg))
  206. return PTR_ERR(alg);
  207. err = crypto_init_spawn(&spawn->base, alg, spawn->base.inst, mask);
  208. crypto_mod_put(alg);
  209. return err;
  210. }
  211. struct crypto_instance *aead_geniv_alloc(struct crypto_template *tmpl,
  212. struct rtattr **tb, u32 type,
  213. u32 mask)
  214. {
  215. const char *name;
  216. struct crypto_aead_spawn *spawn;
  217. struct crypto_attr_type *algt;
  218. struct crypto_instance *inst;
  219. struct crypto_alg *alg;
  220. int err;
  221. algt = crypto_get_attr_type(tb);
  222. err = PTR_ERR(algt);
  223. if (IS_ERR(algt))
  224. return ERR_PTR(err);
  225. if ((algt->type ^ (CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_GENIV)) &
  226. algt->mask)
  227. return ERR_PTR(-EINVAL);
  228. name = crypto_attr_alg_name(tb[1]);
  229. err = PTR_ERR(name);
  230. if (IS_ERR(name))
  231. return ERR_PTR(err);
  232. inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
  233. if (!inst)
  234. return ERR_PTR(-ENOMEM);
  235. spawn = crypto_instance_ctx(inst);
  236. /* Ignore async algorithms if necessary. */
  237. mask |= crypto_requires_sync(algt->type, algt->mask);
  238. crypto_set_aead_spawn(spawn, inst);
  239. err = crypto_grab_nivaead(spawn, name, type, mask);
  240. if (err)
  241. goto err_free_inst;
  242. alg = crypto_aead_spawn_alg(spawn);
  243. err = -EINVAL;
  244. if (!alg->cra_aead.ivsize)
  245. goto err_drop_alg;
  246. /*
  247. * This is only true if we're constructing an algorithm with its
  248. * default IV generator. For the default generator we elide the
  249. * template name and double-check the IV generator.
  250. */
  251. if (algt->mask & CRYPTO_ALG_GENIV) {
  252. if (strcmp(tmpl->name, alg->cra_aead.geniv))
  253. goto err_drop_alg;
  254. memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
  255. memcpy(inst->alg.cra_driver_name, alg->cra_driver_name,
  256. CRYPTO_MAX_ALG_NAME);
  257. } else {
  258. err = -ENAMETOOLONG;
  259. if (snprintf(inst->alg.cra_name, CRYPTO_MAX_ALG_NAME,
  260. "%s(%s)", tmpl->name, alg->cra_name) >=
  261. CRYPTO_MAX_ALG_NAME)
  262. goto err_drop_alg;
  263. if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
  264. "%s(%s)", tmpl->name, alg->cra_driver_name) >=
  265. CRYPTO_MAX_ALG_NAME)
  266. goto err_drop_alg;
  267. }
  268. inst->alg.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_GENIV;
  269. inst->alg.cra_flags |= alg->cra_flags & CRYPTO_ALG_ASYNC;
  270. inst->alg.cra_priority = alg->cra_priority;
  271. inst->alg.cra_blocksize = alg->cra_blocksize;
  272. inst->alg.cra_alignmask = alg->cra_alignmask;
  273. inst->alg.cra_type = &crypto_aead_type;
  274. inst->alg.cra_aead.ivsize = alg->cra_aead.ivsize;
  275. inst->alg.cra_aead.maxauthsize = alg->cra_aead.maxauthsize;
  276. inst->alg.cra_aead.geniv = alg->cra_aead.geniv;
  277. inst->alg.cra_aead.setkey = alg->cra_aead.setkey;
  278. inst->alg.cra_aead.setauthsize = alg->cra_aead.setauthsize;
  279. inst->alg.cra_aead.encrypt = alg->cra_aead.encrypt;
  280. inst->alg.cra_aead.decrypt = alg->cra_aead.decrypt;
  281. out:
  282. return inst;
  283. err_drop_alg:
  284. crypto_drop_aead(spawn);
  285. err_free_inst:
  286. kfree(inst);
  287. inst = ERR_PTR(err);
  288. goto out;
  289. }
  290. EXPORT_SYMBOL_GPL(aead_geniv_alloc);
  291. void aead_geniv_free(struct crypto_instance *inst)
  292. {
  293. crypto_drop_aead(crypto_instance_ctx(inst));
  294. kfree(inst);
  295. }
  296. EXPORT_SYMBOL_GPL(aead_geniv_free);
  297. int aead_geniv_init(struct crypto_tfm *tfm)
  298. {
  299. struct crypto_instance *inst = (void *)tfm->__crt_alg;
  300. struct crypto_aead *aead;
  301. aead = crypto_spawn_aead(crypto_instance_ctx(inst));
  302. if (IS_ERR(aead))
  303. return PTR_ERR(aead);
  304. tfm->crt_aead.base = aead;
  305. tfm->crt_aead.reqsize += crypto_aead_reqsize(aead);
  306. return 0;
  307. }
  308. EXPORT_SYMBOL_GPL(aead_geniv_init);
  309. void aead_geniv_exit(struct crypto_tfm *tfm)
  310. {
  311. crypto_free_aead(tfm->crt_aead.base);
  312. }
  313. EXPORT_SYMBOL_GPL(aead_geniv_exit);
  314. static int crypto_nivaead_default(struct crypto_alg *alg, u32 type, u32 mask)
  315. {
  316. struct rtattr *tb[3];
  317. struct {
  318. struct rtattr attr;
  319. struct crypto_attr_type data;
  320. } ptype;
  321. struct {
  322. struct rtattr attr;
  323. struct crypto_attr_alg data;
  324. } palg;
  325. struct crypto_template *tmpl;
  326. struct crypto_instance *inst;
  327. struct crypto_alg *larval;
  328. const char *geniv;
  329. int err;
  330. larval = crypto_larval_lookup(alg->cra_driver_name,
  331. CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_GENIV,
  332. CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
  333. err = PTR_ERR(larval);
  334. if (IS_ERR(larval))
  335. goto out;
  336. err = -EAGAIN;
  337. if (!crypto_is_larval(larval))
  338. goto drop_larval;
  339. ptype.attr.rta_len = sizeof(ptype);
  340. ptype.attr.rta_type = CRYPTOA_TYPE;
  341. ptype.data.type = type | CRYPTO_ALG_GENIV;
  342. /* GENIV tells the template that we're making a default geniv. */
  343. ptype.data.mask = mask | CRYPTO_ALG_GENIV;
  344. tb[0] = &ptype.attr;
  345. palg.attr.rta_len = sizeof(palg);
  346. palg.attr.rta_type = CRYPTOA_ALG;
  347. /* Must use the exact name to locate ourselves. */
  348. memcpy(palg.data.name, alg->cra_driver_name, CRYPTO_MAX_ALG_NAME);
  349. tb[1] = &palg.attr;
  350. tb[2] = NULL;
  351. geniv = alg->cra_aead.geniv;
  352. tmpl = crypto_lookup_template(geniv);
  353. err = -ENOENT;
  354. if (!tmpl)
  355. goto kill_larval;
  356. inst = tmpl->alloc(tb);
  357. err = PTR_ERR(inst);
  358. if (IS_ERR(inst))
  359. goto put_tmpl;
  360. if ((err = crypto_register_instance(tmpl, inst))) {
  361. tmpl->free(inst);
  362. goto put_tmpl;
  363. }
  364. /* Redo the lookup to use the instance we just registered. */
  365. err = -EAGAIN;
  366. put_tmpl:
  367. crypto_tmpl_put(tmpl);
  368. kill_larval:
  369. crypto_larval_kill(larval);
  370. drop_larval:
  371. crypto_mod_put(larval);
  372. out:
  373. crypto_mod_put(alg);
  374. return err;
  375. }
  376. static struct crypto_alg *crypto_lookup_aead(const char *name, u32 type,
  377. u32 mask)
  378. {
  379. struct crypto_alg *alg;
  380. alg = crypto_alg_mod_lookup(name, type, mask);
  381. if (IS_ERR(alg))
  382. return alg;
  383. if (alg->cra_type == &crypto_aead_type)
  384. return alg;
  385. if (!alg->cra_aead.ivsize)
  386. return alg;
  387. crypto_mod_put(alg);
  388. alg = crypto_alg_mod_lookup(name, type | CRYPTO_ALG_TESTED,
  389. mask & ~CRYPTO_ALG_TESTED);
  390. if (IS_ERR(alg))
  391. return alg;
  392. if (alg->cra_type == &crypto_aead_type) {
  393. if ((alg->cra_flags ^ type ^ ~mask) & CRYPTO_ALG_TESTED) {
  394. crypto_mod_put(alg);
  395. alg = ERR_PTR(-ENOENT);
  396. }
  397. return alg;
  398. }
  399. BUG_ON(!alg->cra_aead.ivsize);
  400. return ERR_PTR(crypto_nivaead_default(alg, type, mask));
  401. }
  402. int crypto_grab_aead(struct crypto_aead_spawn *spawn, const char *name,
  403. u32 type, u32 mask)
  404. {
  405. struct crypto_alg *alg;
  406. int err;
  407. type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
  408. type |= CRYPTO_ALG_TYPE_AEAD;
  409. mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
  410. mask |= CRYPTO_ALG_TYPE_MASK;
  411. alg = crypto_lookup_aead(name, type, mask);
  412. if (IS_ERR(alg))
  413. return PTR_ERR(alg);
  414. err = crypto_init_spawn(&spawn->base, alg, spawn->base.inst, mask);
  415. crypto_mod_put(alg);
  416. return err;
  417. }
  418. EXPORT_SYMBOL_GPL(crypto_grab_aead);
  419. struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask)
  420. {
  421. struct crypto_tfm *tfm;
  422. int err;
  423. type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
  424. type |= CRYPTO_ALG_TYPE_AEAD;
  425. mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
  426. mask |= CRYPTO_ALG_TYPE_MASK;
  427. for (;;) {
  428. struct crypto_alg *alg;
  429. alg = crypto_lookup_aead(alg_name, type, mask);
  430. if (IS_ERR(alg)) {
  431. err = PTR_ERR(alg);
  432. goto err;
  433. }
  434. tfm = __crypto_alloc_tfm(alg, type, mask);
  435. if (!IS_ERR(tfm))
  436. return __crypto_aead_cast(tfm);
  437. crypto_mod_put(alg);
  438. err = PTR_ERR(tfm);
  439. err:
  440. if (err != -EAGAIN)
  441. break;
  442. if (signal_pending(current)) {
  443. err = -EINTR;
  444. break;
  445. }
  446. }
  447. return ERR_PTR(err);
  448. }
  449. EXPORT_SYMBOL_GPL(crypto_alloc_aead);
  450. MODULE_LICENSE("GPL");
  451. MODULE_DESCRIPTION("Authenticated Encryption with Associated Data (AEAD)");