blk.h 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209
  1. #ifndef BLK_INTERNAL_H
  2. #define BLK_INTERNAL_H
  3. /* Amount of time in which a process may batch requests */
  4. #define BLK_BATCH_TIME (HZ/50UL)
  5. /* Number of requests a "batching" process may submit */
  6. #define BLK_BATCH_REQ 32
  7. extern struct kmem_cache *blk_requestq_cachep;
  8. extern struct kobj_type blk_queue_ktype;
  9. void init_request_from_bio(struct request *req, struct bio *bio);
  10. void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
  11. struct bio *bio);
  12. int blk_rq_append_bio(struct request_queue *q, struct request *rq,
  13. struct bio *bio);
  14. void blk_drain_queue(struct request_queue *q, bool drain_all);
  15. void blk_dequeue_request(struct request *rq);
  16. void __blk_queue_free_tags(struct request_queue *q);
  17. bool __blk_end_bidi_request(struct request *rq, int error,
  18. unsigned int nr_bytes, unsigned int bidi_bytes);
  19. void blk_rq_timed_out_timer(unsigned long data);
  20. void blk_delete_timer(struct request *);
  21. void blk_add_timer(struct request *);
  22. void __generic_unplug_device(struct request_queue *);
  23. /*
  24. * Internal atomic flags for request handling
  25. */
  26. enum rq_atomic_flags {
  27. REQ_ATOM_COMPLETE = 0,
  28. };
  29. /*
  30. * EH timer and IO completion will both attempt to 'grab' the request, make
  31. * sure that only one of them succeeds
  32. */
  33. static inline int blk_mark_rq_complete(struct request *rq)
  34. {
  35. return test_and_set_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
  36. }
  37. static inline void blk_clear_rq_complete(struct request *rq)
  38. {
  39. clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
  40. }
  41. /*
  42. * Internal elevator interface
  43. */
  44. #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash))
  45. void blk_insert_flush(struct request *rq);
  46. void blk_abort_flushes(struct request_queue *q);
  47. static inline struct request *__elv_next_request(struct request_queue *q)
  48. {
  49. struct request *rq;
  50. while (1) {
  51. if (!list_empty(&q->queue_head)) {
  52. rq = list_entry_rq(q->queue_head.next);
  53. return rq;
  54. }
  55. /*
  56. * Flush request is running and flush request isn't queueable
  57. * in the drive, we can hold the queue till flush request is
  58. * finished. Even we don't do this, driver can't dispatch next
  59. * requests and will requeue them. And this can improve
  60. * throughput too. For example, we have request flush1, write1,
  61. * flush 2. flush1 is dispatched, then queue is hold, write1
  62. * isn't inserted to queue. After flush1 is finished, flush2
  63. * will be dispatched. Since disk cache is already clean,
  64. * flush2 will be finished very soon, so looks like flush2 is
  65. * folded to flush1.
  66. * Since the queue is hold, a flag is set to indicate the queue
  67. * should be restarted later. Please see flush_end_io() for
  68. * details.
  69. */
  70. if (q->flush_pending_idx != q->flush_running_idx &&
  71. !queue_flush_queueable(q)) {
  72. q->flush_queue_delayed = 1;
  73. return NULL;
  74. }
  75. if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags) ||
  76. !q->elevator->ops->elevator_dispatch_fn(q, 0))
  77. return NULL;
  78. }
  79. }
  80. static inline void elv_activate_rq(struct request_queue *q, struct request *rq)
  81. {
  82. struct elevator_queue *e = q->elevator;
  83. if (e->ops->elevator_activate_req_fn)
  84. e->ops->elevator_activate_req_fn(q, rq);
  85. }
  86. static inline void elv_deactivate_rq(struct request_queue *q, struct request *rq)
  87. {
  88. struct elevator_queue *e = q->elevator;
  89. if (e->ops->elevator_deactivate_req_fn)
  90. e->ops->elevator_deactivate_req_fn(q, rq);
  91. }
  92. #ifdef CONFIG_FAIL_IO_TIMEOUT
  93. int blk_should_fake_timeout(struct request_queue *);
  94. ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
  95. ssize_t part_timeout_store(struct device *, struct device_attribute *,
  96. const char *, size_t);
  97. #else
  98. static inline int blk_should_fake_timeout(struct request_queue *q)
  99. {
  100. return 0;
  101. }
  102. #endif
  103. struct io_context *current_io_context(gfp_t gfp_flags, int node);
  104. int ll_back_merge_fn(struct request_queue *q, struct request *req,
  105. struct bio *bio);
  106. int ll_front_merge_fn(struct request_queue *q, struct request *req,
  107. struct bio *bio);
  108. int attempt_back_merge(struct request_queue *q, struct request *rq);
  109. int attempt_front_merge(struct request_queue *q, struct request *rq);
  110. int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
  111. struct request *next);
  112. void blk_recalc_rq_segments(struct request *rq);
  113. void blk_rq_set_mixed_merge(struct request *rq);
  114. void blk_queue_congestion_threshold(struct request_queue *q);
  115. int blk_dev_init(void);
  116. void elv_quiesce_start(struct request_queue *q);
  117. void elv_quiesce_end(struct request_queue *q);
  118. /*
  119. * Return the threshold (number of used requests) at which the queue is
  120. * considered to be congested. It include a little hysteresis to keep the
  121. * context switch rate down.
  122. */
  123. static inline int queue_congestion_on_threshold(struct request_queue *q)
  124. {
  125. return q->nr_congestion_on;
  126. }
  127. /*
  128. * The threshold at which a queue is considered to be uncongested
  129. */
  130. static inline int queue_congestion_off_threshold(struct request_queue *q)
  131. {
  132. return q->nr_congestion_off;
  133. }
  134. static inline int blk_cpu_to_group(int cpu)
  135. {
  136. int group = NR_CPUS;
  137. #ifdef CONFIG_SCHED_MC
  138. const struct cpumask *mask = cpu_coregroup_mask(cpu);
  139. group = cpumask_first(mask);
  140. #elif defined(CONFIG_SCHED_SMT)
  141. group = cpumask_first(topology_thread_cpumask(cpu));
  142. #else
  143. return cpu;
  144. #endif
  145. if (likely(group < NR_CPUS))
  146. return group;
  147. return cpu;
  148. }
  149. /*
  150. * Contribute to IO statistics IFF:
  151. *
  152. * a) it's attached to a gendisk, and
  153. * b) the queue had IO stats enabled when this request was started, and
  154. * c) it's a file system request or a discard request
  155. */
  156. static inline int blk_do_io_stat(struct request *rq)
  157. {
  158. return rq->rq_disk &&
  159. (rq->cmd_flags & REQ_IO_STAT) &&
  160. (rq->cmd_type == REQ_TYPE_FS ||
  161. (rq->cmd_flags & REQ_DISCARD));
  162. }
  163. #ifdef CONFIG_BLK_DEV_THROTTLING
  164. extern bool blk_throtl_bio(struct request_queue *q, struct bio *bio);
  165. extern void blk_throtl_drain(struct request_queue *q);
  166. extern int blk_throtl_init(struct request_queue *q);
  167. extern void blk_throtl_exit(struct request_queue *q);
  168. extern void blk_throtl_release(struct request_queue *q);
  169. #else /* CONFIG_BLK_DEV_THROTTLING */
  170. static inline bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
  171. {
  172. return false;
  173. }
  174. static inline void blk_throtl_drain(struct request_queue *q) { }
  175. static inline int blk_throtl_init(struct request_queue *q) { return 0; }
  176. static inline void blk_throtl_exit(struct request_queue *q) { }
  177. static inline void blk_throtl_release(struct request_queue *q) { }
  178. #endif /* CONFIG_BLK_DEV_THROTTLING */
  179. #endif /* BLK_INTERNAL_H */