gup.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391
  1. /*
  2. * Lockless get_user_pages_fast for x86
  3. *
  4. * Copyright (C) 2008 Nick Piggin
  5. * Copyright (C) 2008 Novell Inc.
  6. */
  7. #include <linux/sched.h>
  8. #include <linux/mm.h>
  9. #include <linux/vmstat.h>
  10. #include <linux/highmem.h>
  11. #include <linux/swap.h>
  12. #include <asm/pgtable.h>
  13. static inline pte_t gup_get_pte(pte_t *ptep)
  14. {
  15. #ifndef CONFIG_X86_PAE
  16. return ACCESS_ONCE(*ptep);
  17. #else
  18. /*
  19. * With get_user_pages_fast, we walk down the pagetables without taking
  20. * any locks. For this we would like to load the pointers atomically,
  21. * but that is not possible (without expensive cmpxchg8b) on PAE. What
  22. * we do have is the guarantee that a pte will only either go from not
  23. * present to present, or present to not present or both -- it will not
  24. * switch to a completely different present page without a TLB flush in
  25. * between; something that we are blocking by holding interrupts off.
  26. *
  27. * Setting ptes from not present to present goes:
  28. * ptep->pte_high = h;
  29. * smp_wmb();
  30. * ptep->pte_low = l;
  31. *
  32. * And present to not present goes:
  33. * ptep->pte_low = 0;
  34. * smp_wmb();
  35. * ptep->pte_high = 0;
  36. *
  37. * We must ensure here that the load of pte_low sees l iff pte_high
  38. * sees h. We load pte_high *after* loading pte_low, which ensures we
  39. * don't see an older value of pte_high. *Then* we recheck pte_low,
  40. * which ensures that we haven't picked up a changed pte high. We might
  41. * have got rubbish values from pte_low and pte_high, but we are
  42. * guaranteed that pte_low will not have the present bit set *unless*
  43. * it is 'l'. And get_user_pages_fast only operates on present ptes, so
  44. * we're safe.
  45. *
  46. * gup_get_pte should not be used or copied outside gup.c without being
  47. * very careful -- it does not atomically load the pte or anything that
  48. * is likely to be useful for you.
  49. */
  50. pte_t pte;
  51. retry:
  52. pte.pte_low = ptep->pte_low;
  53. smp_rmb();
  54. pte.pte_high = ptep->pte_high;
  55. smp_rmb();
  56. if (unlikely(pte.pte_low != ptep->pte_low))
  57. goto retry;
  58. return pte;
  59. #endif
  60. }
  61. /*
  62. * The performance critical leaf functions are made noinline otherwise gcc
  63. * inlines everything into a single function which results in too much
  64. * register pressure.
  65. */
  66. static noinline int gup_pte_range(pmd_t pmd, unsigned long addr,
  67. unsigned long end, int write, struct page **pages, int *nr)
  68. {
  69. unsigned long mask;
  70. pte_t *ptep;
  71. mask = _PAGE_PRESENT|_PAGE_USER;
  72. if (write)
  73. mask |= _PAGE_RW;
  74. ptep = pte_offset_map(&pmd, addr);
  75. do {
  76. pte_t pte = gup_get_pte(ptep);
  77. struct page *page;
  78. if ((pte_flags(pte) & (mask | _PAGE_SPECIAL)) != mask) {
  79. pte_unmap(ptep);
  80. return 0;
  81. }
  82. VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
  83. page = pte_page(pte);
  84. get_page(page);
  85. SetPageReferenced(page);
  86. pages[*nr] = page;
  87. (*nr)++;
  88. } while (ptep++, addr += PAGE_SIZE, addr != end);
  89. pte_unmap(ptep - 1);
  90. return 1;
  91. }
  92. static inline void get_head_page_multiple(struct page *page, int nr)
  93. {
  94. VM_BUG_ON(page != compound_head(page));
  95. VM_BUG_ON(page_count(page) == 0);
  96. atomic_add(nr, &page->_count);
  97. SetPageReferenced(page);
  98. }
  99. static noinline int gup_huge_pmd(pmd_t pmd, unsigned long addr,
  100. unsigned long end, int write, struct page **pages, int *nr)
  101. {
  102. unsigned long mask;
  103. pte_t pte = *(pte_t *)&pmd;
  104. struct page *head, *page;
  105. int refs;
  106. mask = _PAGE_PRESENT|_PAGE_USER;
  107. if (write)
  108. mask |= _PAGE_RW;
  109. if ((pte_flags(pte) & mask) != mask)
  110. return 0;
  111. /* hugepages are never "special" */
  112. VM_BUG_ON(pte_flags(pte) & _PAGE_SPECIAL);
  113. VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
  114. refs = 0;
  115. head = pte_page(pte);
  116. page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
  117. do {
  118. VM_BUG_ON(compound_head(page) != head);
  119. pages[*nr] = page;
  120. if (PageTail(page))
  121. get_huge_page_tail(page);
  122. (*nr)++;
  123. page++;
  124. refs++;
  125. } while (addr += PAGE_SIZE, addr != end);
  126. get_head_page_multiple(head, refs);
  127. return 1;
  128. }
  129. static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
  130. int write, struct page **pages, int *nr)
  131. {
  132. unsigned long next;
  133. pmd_t *pmdp;
  134. pmdp = pmd_offset(&pud, addr);
  135. do {
  136. pmd_t pmd = *pmdp;
  137. next = pmd_addr_end(addr, end);
  138. /*
  139. * The pmd_trans_splitting() check below explains why
  140. * pmdp_splitting_flush has to flush the tlb, to stop
  141. * this gup-fast code from running while we set the
  142. * splitting bit in the pmd. Returning zero will take
  143. * the slow path that will call wait_split_huge_page()
  144. * if the pmd is still in splitting state. gup-fast
  145. * can't because it has irq disabled and
  146. * wait_split_huge_page() would never return as the
  147. * tlb flush IPI wouldn't run.
  148. */
  149. if (pmd_none(pmd) || pmd_trans_splitting(pmd))
  150. return 0;
  151. if (unlikely(pmd_large(pmd))) {
  152. if (!gup_huge_pmd(pmd, addr, next, write, pages, nr))
  153. return 0;
  154. } else {
  155. if (!gup_pte_range(pmd, addr, next, write, pages, nr))
  156. return 0;
  157. }
  158. } while (pmdp++, addr = next, addr != end);
  159. return 1;
  160. }
  161. static noinline int gup_huge_pud(pud_t pud, unsigned long addr,
  162. unsigned long end, int write, struct page **pages, int *nr)
  163. {
  164. unsigned long mask;
  165. pte_t pte = *(pte_t *)&pud;
  166. struct page *head, *page;
  167. int refs;
  168. mask = _PAGE_PRESENT|_PAGE_USER;
  169. if (write)
  170. mask |= _PAGE_RW;
  171. if ((pte_flags(pte) & mask) != mask)
  172. return 0;
  173. /* hugepages are never "special" */
  174. VM_BUG_ON(pte_flags(pte) & _PAGE_SPECIAL);
  175. VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
  176. refs = 0;
  177. head = pte_page(pte);
  178. page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
  179. do {
  180. VM_BUG_ON(compound_head(page) != head);
  181. pages[*nr] = page;
  182. (*nr)++;
  183. page++;
  184. refs++;
  185. } while (addr += PAGE_SIZE, addr != end);
  186. get_head_page_multiple(head, refs);
  187. return 1;
  188. }
  189. static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
  190. int write, struct page **pages, int *nr)
  191. {
  192. unsigned long next;
  193. pud_t *pudp;
  194. pudp = pud_offset(&pgd, addr);
  195. do {
  196. pud_t pud = *pudp;
  197. next = pud_addr_end(addr, end);
  198. if (pud_none(pud))
  199. return 0;
  200. if (unlikely(pud_large(pud))) {
  201. if (!gup_huge_pud(pud, addr, next, write, pages, nr))
  202. return 0;
  203. } else {
  204. if (!gup_pmd_range(pud, addr, next, write, pages, nr))
  205. return 0;
  206. }
  207. } while (pudp++, addr = next, addr != end);
  208. return 1;
  209. }
  210. /*
  211. * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
  212. * back to the regular GUP.
  213. */
  214. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  215. struct page **pages)
  216. {
  217. struct mm_struct *mm = current->mm;
  218. unsigned long addr, len, end;
  219. unsigned long next;
  220. unsigned long flags;
  221. pgd_t *pgdp;
  222. int nr = 0;
  223. start &= PAGE_MASK;
  224. addr = start;
  225. len = (unsigned long) nr_pages << PAGE_SHIFT;
  226. end = start + len;
  227. if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
  228. (void __user *)start, len)))
  229. return 0;
  230. /*
  231. * XXX: batch / limit 'nr', to avoid large irq off latency
  232. * needs some instrumenting to determine the common sizes used by
  233. * important workloads (eg. DB2), and whether limiting the batch size
  234. * will decrease performance.
  235. *
  236. * It seems like we're in the clear for the moment. Direct-IO is
  237. * the main guy that batches up lots of get_user_pages, and even
  238. * they are limited to 64-at-a-time which is not so many.
  239. */
  240. /*
  241. * This doesn't prevent pagetable teardown, but does prevent
  242. * the pagetables and pages from being freed on x86.
  243. *
  244. * So long as we atomically load page table pointers versus teardown
  245. * (which we do on x86, with the above PAE exception), we can follow the
  246. * address down to the the page and take a ref on it.
  247. */
  248. local_irq_save(flags);
  249. pgdp = pgd_offset(mm, addr);
  250. do {
  251. pgd_t pgd = *pgdp;
  252. next = pgd_addr_end(addr, end);
  253. if (pgd_none(pgd))
  254. break;
  255. if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
  256. break;
  257. } while (pgdp++, addr = next, addr != end);
  258. local_irq_restore(flags);
  259. return nr;
  260. }
  261. /**
  262. * get_user_pages_fast() - pin user pages in memory
  263. * @start: starting user address
  264. * @nr_pages: number of pages from start to pin
  265. * @write: whether pages will be written to
  266. * @pages: array that receives pointers to the pages pinned.
  267. * Should be at least nr_pages long.
  268. *
  269. * Attempt to pin user pages in memory without taking mm->mmap_sem.
  270. * If not successful, it will fall back to taking the lock and
  271. * calling get_user_pages().
  272. *
  273. * Returns number of pages pinned. This may be fewer than the number
  274. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  275. * were pinned, returns -errno.
  276. */
  277. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  278. struct page **pages)
  279. {
  280. struct mm_struct *mm = current->mm;
  281. unsigned long addr, len, end;
  282. unsigned long next;
  283. pgd_t *pgdp;
  284. int nr = 0;
  285. start &= PAGE_MASK;
  286. addr = start;
  287. len = (unsigned long) nr_pages << PAGE_SHIFT;
  288. end = start + len;
  289. if (end < start)
  290. goto slow_irqon;
  291. #ifdef CONFIG_X86_64
  292. if (end >> __VIRTUAL_MASK_SHIFT)
  293. goto slow_irqon;
  294. #endif
  295. /*
  296. * XXX: batch / limit 'nr', to avoid large irq off latency
  297. * needs some instrumenting to determine the common sizes used by
  298. * important workloads (eg. DB2), and whether limiting the batch size
  299. * will decrease performance.
  300. *
  301. * It seems like we're in the clear for the moment. Direct-IO is
  302. * the main guy that batches up lots of get_user_pages, and even
  303. * they are limited to 64-at-a-time which is not so many.
  304. */
  305. /*
  306. * This doesn't prevent pagetable teardown, but does prevent
  307. * the pagetables and pages from being freed on x86.
  308. *
  309. * So long as we atomically load page table pointers versus teardown
  310. * (which we do on x86, with the above PAE exception), we can follow the
  311. * address down to the the page and take a ref on it.
  312. */
  313. local_irq_disable();
  314. pgdp = pgd_offset(mm, addr);
  315. do {
  316. pgd_t pgd = *pgdp;
  317. next = pgd_addr_end(addr, end);
  318. if (pgd_none(pgd))
  319. goto slow;
  320. if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
  321. goto slow;
  322. } while (pgdp++, addr = next, addr != end);
  323. local_irq_enable();
  324. VM_BUG_ON(nr != (end - start) >> PAGE_SHIFT);
  325. return nr;
  326. {
  327. int ret;
  328. slow:
  329. local_irq_enable();
  330. slow_irqon:
  331. /* Try to get the remaining pages with get_user_pages */
  332. start += nr << PAGE_SHIFT;
  333. pages += nr;
  334. down_read(&mm->mmap_sem);
  335. ret = get_user_pages(current, mm, start,
  336. (end - start) >> PAGE_SHIFT, write, 0, pages, NULL);
  337. up_read(&mm->mmap_sem);
  338. /* Have to be a bit careful with return values */
  339. if (nr > 0) {
  340. if (ret < 0)
  341. ret = nr;
  342. else
  343. ret += nr;
  344. }
  345. return ret;
  346. }
  347. }