vmx.c 203 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/sched.h>
  26. #include <linux/moduleparam.h>
  27. #include <linux/ftrace_event.h>
  28. #include <linux/slab.h>
  29. #include <linux/tboot.h>
  30. #include "kvm_cache_regs.h"
  31. #include "x86.h"
  32. #include <asm/io.h>
  33. #include <asm/desc.h>
  34. #include <asm/vmx.h>
  35. #include <asm/virtext.h>
  36. #include <asm/mce.h>
  37. #include <asm/i387.h>
  38. #include <asm/xcr.h>
  39. #include "trace.h"
  40. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  41. #define __ex_clear(x, reg) \
  42. ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
  43. MODULE_AUTHOR("Qumranet");
  44. MODULE_LICENSE("GPL");
  45. static int __read_mostly enable_vpid = 1;
  46. module_param_named(vpid, enable_vpid, bool, 0444);
  47. static int __read_mostly flexpriority_enabled = 1;
  48. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  49. static int __read_mostly enable_ept = 1;
  50. module_param_named(ept, enable_ept, bool, S_IRUGO);
  51. static int __read_mostly enable_unrestricted_guest = 1;
  52. module_param_named(unrestricted_guest,
  53. enable_unrestricted_guest, bool, S_IRUGO);
  54. static int __read_mostly emulate_invalid_guest_state = 0;
  55. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  56. static int __read_mostly vmm_exclusive = 1;
  57. module_param(vmm_exclusive, bool, S_IRUGO);
  58. static int __read_mostly yield_on_hlt = 1;
  59. module_param(yield_on_hlt, bool, S_IRUGO);
  60. static int __read_mostly fasteoi = 1;
  61. module_param(fasteoi, bool, S_IRUGO);
  62. /*
  63. * If nested=1, nested virtualization is supported, i.e., guests may use
  64. * VMX and be a hypervisor for its own guests. If nested=0, guests may not
  65. * use VMX instructions.
  66. */
  67. static int __read_mostly nested = 0;
  68. module_param(nested, bool, S_IRUGO);
  69. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  70. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  71. #define KVM_GUEST_CR0_MASK \
  72. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  73. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  74. (X86_CR0_WP | X86_CR0_NE)
  75. #define KVM_VM_CR0_ALWAYS_ON \
  76. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  77. #define KVM_CR4_GUEST_OWNED_BITS \
  78. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  79. | X86_CR4_OSXMMEXCPT)
  80. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  81. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  82. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  83. /*
  84. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  85. * ple_gap: upper bound on the amount of time between two successive
  86. * executions of PAUSE in a loop. Also indicate if ple enabled.
  87. * According to test, this time is usually smaller than 128 cycles.
  88. * ple_window: upper bound on the amount of time a guest is allowed to execute
  89. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  90. * less than 2^12 cycles
  91. * Time is measured based on a counter that runs at the same rate as the TSC,
  92. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  93. */
  94. #define KVM_VMX_DEFAULT_PLE_GAP 128
  95. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  96. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  97. module_param(ple_gap, int, S_IRUGO);
  98. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  99. module_param(ple_window, int, S_IRUGO);
  100. #define NR_AUTOLOAD_MSRS 1
  101. #define VMCS02_POOL_SIZE 1
  102. struct vmcs {
  103. u32 revision_id;
  104. u32 abort;
  105. char data[0];
  106. };
  107. /*
  108. * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
  109. * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
  110. * loaded on this CPU (so we can clear them if the CPU goes down).
  111. */
  112. struct loaded_vmcs {
  113. struct vmcs *vmcs;
  114. int cpu;
  115. int launched;
  116. struct list_head loaded_vmcss_on_cpu_link;
  117. };
  118. struct shared_msr_entry {
  119. unsigned index;
  120. u64 data;
  121. u64 mask;
  122. };
  123. /*
  124. * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
  125. * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
  126. * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
  127. * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
  128. * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
  129. * More than one of these structures may exist, if L1 runs multiple L2 guests.
  130. * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
  131. * underlying hardware which will be used to run L2.
  132. * This structure is packed to ensure that its layout is identical across
  133. * machines (necessary for live migration).
  134. * If there are changes in this struct, VMCS12_REVISION must be changed.
  135. */
  136. typedef u64 natural_width;
  137. struct __packed vmcs12 {
  138. /* According to the Intel spec, a VMCS region must start with the
  139. * following two fields. Then follow implementation-specific data.
  140. */
  141. u32 revision_id;
  142. u32 abort;
  143. u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
  144. u32 padding[7]; /* room for future expansion */
  145. u64 io_bitmap_a;
  146. u64 io_bitmap_b;
  147. u64 msr_bitmap;
  148. u64 vm_exit_msr_store_addr;
  149. u64 vm_exit_msr_load_addr;
  150. u64 vm_entry_msr_load_addr;
  151. u64 tsc_offset;
  152. u64 virtual_apic_page_addr;
  153. u64 apic_access_addr;
  154. u64 ept_pointer;
  155. u64 guest_physical_address;
  156. u64 vmcs_link_pointer;
  157. u64 guest_ia32_debugctl;
  158. u64 guest_ia32_pat;
  159. u64 guest_ia32_efer;
  160. u64 guest_ia32_perf_global_ctrl;
  161. u64 guest_pdptr0;
  162. u64 guest_pdptr1;
  163. u64 guest_pdptr2;
  164. u64 guest_pdptr3;
  165. u64 host_ia32_pat;
  166. u64 host_ia32_efer;
  167. u64 host_ia32_perf_global_ctrl;
  168. u64 padding64[8]; /* room for future expansion */
  169. /*
  170. * To allow migration of L1 (complete with its L2 guests) between
  171. * machines of different natural widths (32 or 64 bit), we cannot have
  172. * unsigned long fields with no explict size. We use u64 (aliased
  173. * natural_width) instead. Luckily, x86 is little-endian.
  174. */
  175. natural_width cr0_guest_host_mask;
  176. natural_width cr4_guest_host_mask;
  177. natural_width cr0_read_shadow;
  178. natural_width cr4_read_shadow;
  179. natural_width cr3_target_value0;
  180. natural_width cr3_target_value1;
  181. natural_width cr3_target_value2;
  182. natural_width cr3_target_value3;
  183. natural_width exit_qualification;
  184. natural_width guest_linear_address;
  185. natural_width guest_cr0;
  186. natural_width guest_cr3;
  187. natural_width guest_cr4;
  188. natural_width guest_es_base;
  189. natural_width guest_cs_base;
  190. natural_width guest_ss_base;
  191. natural_width guest_ds_base;
  192. natural_width guest_fs_base;
  193. natural_width guest_gs_base;
  194. natural_width guest_ldtr_base;
  195. natural_width guest_tr_base;
  196. natural_width guest_gdtr_base;
  197. natural_width guest_idtr_base;
  198. natural_width guest_dr7;
  199. natural_width guest_rsp;
  200. natural_width guest_rip;
  201. natural_width guest_rflags;
  202. natural_width guest_pending_dbg_exceptions;
  203. natural_width guest_sysenter_esp;
  204. natural_width guest_sysenter_eip;
  205. natural_width host_cr0;
  206. natural_width host_cr3;
  207. natural_width host_cr4;
  208. natural_width host_fs_base;
  209. natural_width host_gs_base;
  210. natural_width host_tr_base;
  211. natural_width host_gdtr_base;
  212. natural_width host_idtr_base;
  213. natural_width host_ia32_sysenter_esp;
  214. natural_width host_ia32_sysenter_eip;
  215. natural_width host_rsp;
  216. natural_width host_rip;
  217. natural_width paddingl[8]; /* room for future expansion */
  218. u32 pin_based_vm_exec_control;
  219. u32 cpu_based_vm_exec_control;
  220. u32 exception_bitmap;
  221. u32 page_fault_error_code_mask;
  222. u32 page_fault_error_code_match;
  223. u32 cr3_target_count;
  224. u32 vm_exit_controls;
  225. u32 vm_exit_msr_store_count;
  226. u32 vm_exit_msr_load_count;
  227. u32 vm_entry_controls;
  228. u32 vm_entry_msr_load_count;
  229. u32 vm_entry_intr_info_field;
  230. u32 vm_entry_exception_error_code;
  231. u32 vm_entry_instruction_len;
  232. u32 tpr_threshold;
  233. u32 secondary_vm_exec_control;
  234. u32 vm_instruction_error;
  235. u32 vm_exit_reason;
  236. u32 vm_exit_intr_info;
  237. u32 vm_exit_intr_error_code;
  238. u32 idt_vectoring_info_field;
  239. u32 idt_vectoring_error_code;
  240. u32 vm_exit_instruction_len;
  241. u32 vmx_instruction_info;
  242. u32 guest_es_limit;
  243. u32 guest_cs_limit;
  244. u32 guest_ss_limit;
  245. u32 guest_ds_limit;
  246. u32 guest_fs_limit;
  247. u32 guest_gs_limit;
  248. u32 guest_ldtr_limit;
  249. u32 guest_tr_limit;
  250. u32 guest_gdtr_limit;
  251. u32 guest_idtr_limit;
  252. u32 guest_es_ar_bytes;
  253. u32 guest_cs_ar_bytes;
  254. u32 guest_ss_ar_bytes;
  255. u32 guest_ds_ar_bytes;
  256. u32 guest_fs_ar_bytes;
  257. u32 guest_gs_ar_bytes;
  258. u32 guest_ldtr_ar_bytes;
  259. u32 guest_tr_ar_bytes;
  260. u32 guest_interruptibility_info;
  261. u32 guest_activity_state;
  262. u32 guest_sysenter_cs;
  263. u32 host_ia32_sysenter_cs;
  264. u32 padding32[8]; /* room for future expansion */
  265. u16 virtual_processor_id;
  266. u16 guest_es_selector;
  267. u16 guest_cs_selector;
  268. u16 guest_ss_selector;
  269. u16 guest_ds_selector;
  270. u16 guest_fs_selector;
  271. u16 guest_gs_selector;
  272. u16 guest_ldtr_selector;
  273. u16 guest_tr_selector;
  274. u16 host_es_selector;
  275. u16 host_cs_selector;
  276. u16 host_ss_selector;
  277. u16 host_ds_selector;
  278. u16 host_fs_selector;
  279. u16 host_gs_selector;
  280. u16 host_tr_selector;
  281. };
  282. /*
  283. * VMCS12_REVISION is an arbitrary id that should be changed if the content or
  284. * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
  285. * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
  286. */
  287. #define VMCS12_REVISION 0x11e57ed0
  288. /*
  289. * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
  290. * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
  291. * current implementation, 4K are reserved to avoid future complications.
  292. */
  293. #define VMCS12_SIZE 0x1000
  294. /* Used to remember the last vmcs02 used for some recently used vmcs12s */
  295. struct vmcs02_list {
  296. struct list_head list;
  297. gpa_t vmptr;
  298. struct loaded_vmcs vmcs02;
  299. };
  300. /*
  301. * The nested_vmx structure is part of vcpu_vmx, and holds information we need
  302. * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
  303. */
  304. struct nested_vmx {
  305. /* Has the level1 guest done vmxon? */
  306. bool vmxon;
  307. /* The guest-physical address of the current VMCS L1 keeps for L2 */
  308. gpa_t current_vmptr;
  309. /* The host-usable pointer to the above */
  310. struct page *current_vmcs12_page;
  311. struct vmcs12 *current_vmcs12;
  312. /* vmcs02_list cache of VMCSs recently used to run L2 guests */
  313. struct list_head vmcs02_pool;
  314. int vmcs02_num;
  315. u64 vmcs01_tsc_offset;
  316. /* L2 must run next, and mustn't decide to exit to L1. */
  317. bool nested_run_pending;
  318. /*
  319. * Guest pages referred to in vmcs02 with host-physical pointers, so
  320. * we must keep them pinned while L2 runs.
  321. */
  322. struct page *apic_access_page;
  323. };
  324. struct vcpu_vmx {
  325. struct kvm_vcpu vcpu;
  326. unsigned long host_rsp;
  327. u8 fail;
  328. u8 cpl;
  329. bool nmi_known_unmasked;
  330. u32 exit_intr_info;
  331. u32 idt_vectoring_info;
  332. ulong rflags;
  333. struct shared_msr_entry *guest_msrs;
  334. int nmsrs;
  335. int save_nmsrs;
  336. #ifdef CONFIG_X86_64
  337. u64 msr_host_kernel_gs_base;
  338. u64 msr_guest_kernel_gs_base;
  339. #endif
  340. /*
  341. * loaded_vmcs points to the VMCS currently used in this vcpu. For a
  342. * non-nested (L1) guest, it always points to vmcs01. For a nested
  343. * guest (L2), it points to a different VMCS.
  344. */
  345. struct loaded_vmcs vmcs01;
  346. struct loaded_vmcs *loaded_vmcs;
  347. bool __launched; /* temporary, used in vmx_vcpu_run */
  348. struct msr_autoload {
  349. unsigned nr;
  350. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  351. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  352. } msr_autoload;
  353. struct {
  354. int loaded;
  355. u16 fs_sel, gs_sel, ldt_sel;
  356. int gs_ldt_reload_needed;
  357. int fs_reload_needed;
  358. } host_state;
  359. struct {
  360. int vm86_active;
  361. ulong save_rflags;
  362. struct kvm_save_segment {
  363. u16 selector;
  364. unsigned long base;
  365. u32 limit;
  366. u32 ar;
  367. } tr, es, ds, fs, gs;
  368. } rmode;
  369. struct {
  370. u32 bitmask; /* 4 bits per segment (1 bit per field) */
  371. struct kvm_save_segment seg[8];
  372. } segment_cache;
  373. int vpid;
  374. bool emulation_required;
  375. /* Support for vnmi-less CPUs */
  376. int soft_vnmi_blocked;
  377. ktime_t entry_time;
  378. s64 vnmi_blocked_time;
  379. u32 exit_reason;
  380. bool rdtscp_enabled;
  381. /* Support for a guest hypervisor (nested VMX) */
  382. struct nested_vmx nested;
  383. };
  384. enum segment_cache_field {
  385. SEG_FIELD_SEL = 0,
  386. SEG_FIELD_BASE = 1,
  387. SEG_FIELD_LIMIT = 2,
  388. SEG_FIELD_AR = 3,
  389. SEG_FIELD_NR = 4
  390. };
  391. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  392. {
  393. return container_of(vcpu, struct vcpu_vmx, vcpu);
  394. }
  395. #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
  396. #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
  397. #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
  398. [number##_HIGH] = VMCS12_OFFSET(name)+4
  399. static unsigned short vmcs_field_to_offset_table[] = {
  400. FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
  401. FIELD(GUEST_ES_SELECTOR, guest_es_selector),
  402. FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
  403. FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
  404. FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
  405. FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
  406. FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
  407. FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
  408. FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
  409. FIELD(HOST_ES_SELECTOR, host_es_selector),
  410. FIELD(HOST_CS_SELECTOR, host_cs_selector),
  411. FIELD(HOST_SS_SELECTOR, host_ss_selector),
  412. FIELD(HOST_DS_SELECTOR, host_ds_selector),
  413. FIELD(HOST_FS_SELECTOR, host_fs_selector),
  414. FIELD(HOST_GS_SELECTOR, host_gs_selector),
  415. FIELD(HOST_TR_SELECTOR, host_tr_selector),
  416. FIELD64(IO_BITMAP_A, io_bitmap_a),
  417. FIELD64(IO_BITMAP_B, io_bitmap_b),
  418. FIELD64(MSR_BITMAP, msr_bitmap),
  419. FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
  420. FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
  421. FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
  422. FIELD64(TSC_OFFSET, tsc_offset),
  423. FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
  424. FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
  425. FIELD64(EPT_POINTER, ept_pointer),
  426. FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
  427. FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
  428. FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
  429. FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
  430. FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
  431. FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
  432. FIELD64(GUEST_PDPTR0, guest_pdptr0),
  433. FIELD64(GUEST_PDPTR1, guest_pdptr1),
  434. FIELD64(GUEST_PDPTR2, guest_pdptr2),
  435. FIELD64(GUEST_PDPTR3, guest_pdptr3),
  436. FIELD64(HOST_IA32_PAT, host_ia32_pat),
  437. FIELD64(HOST_IA32_EFER, host_ia32_efer),
  438. FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
  439. FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
  440. FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
  441. FIELD(EXCEPTION_BITMAP, exception_bitmap),
  442. FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
  443. FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
  444. FIELD(CR3_TARGET_COUNT, cr3_target_count),
  445. FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
  446. FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
  447. FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
  448. FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
  449. FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
  450. FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
  451. FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
  452. FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
  453. FIELD(TPR_THRESHOLD, tpr_threshold),
  454. FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
  455. FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
  456. FIELD(VM_EXIT_REASON, vm_exit_reason),
  457. FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
  458. FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
  459. FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
  460. FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
  461. FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
  462. FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
  463. FIELD(GUEST_ES_LIMIT, guest_es_limit),
  464. FIELD(GUEST_CS_LIMIT, guest_cs_limit),
  465. FIELD(GUEST_SS_LIMIT, guest_ss_limit),
  466. FIELD(GUEST_DS_LIMIT, guest_ds_limit),
  467. FIELD(GUEST_FS_LIMIT, guest_fs_limit),
  468. FIELD(GUEST_GS_LIMIT, guest_gs_limit),
  469. FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
  470. FIELD(GUEST_TR_LIMIT, guest_tr_limit),
  471. FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
  472. FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
  473. FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
  474. FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
  475. FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
  476. FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
  477. FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
  478. FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
  479. FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
  480. FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
  481. FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
  482. FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
  483. FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
  484. FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
  485. FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
  486. FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
  487. FIELD(CR0_READ_SHADOW, cr0_read_shadow),
  488. FIELD(CR4_READ_SHADOW, cr4_read_shadow),
  489. FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
  490. FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
  491. FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
  492. FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
  493. FIELD(EXIT_QUALIFICATION, exit_qualification),
  494. FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
  495. FIELD(GUEST_CR0, guest_cr0),
  496. FIELD(GUEST_CR3, guest_cr3),
  497. FIELD(GUEST_CR4, guest_cr4),
  498. FIELD(GUEST_ES_BASE, guest_es_base),
  499. FIELD(GUEST_CS_BASE, guest_cs_base),
  500. FIELD(GUEST_SS_BASE, guest_ss_base),
  501. FIELD(GUEST_DS_BASE, guest_ds_base),
  502. FIELD(GUEST_FS_BASE, guest_fs_base),
  503. FIELD(GUEST_GS_BASE, guest_gs_base),
  504. FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
  505. FIELD(GUEST_TR_BASE, guest_tr_base),
  506. FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
  507. FIELD(GUEST_IDTR_BASE, guest_idtr_base),
  508. FIELD(GUEST_DR7, guest_dr7),
  509. FIELD(GUEST_RSP, guest_rsp),
  510. FIELD(GUEST_RIP, guest_rip),
  511. FIELD(GUEST_RFLAGS, guest_rflags),
  512. FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
  513. FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
  514. FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
  515. FIELD(HOST_CR0, host_cr0),
  516. FIELD(HOST_CR3, host_cr3),
  517. FIELD(HOST_CR4, host_cr4),
  518. FIELD(HOST_FS_BASE, host_fs_base),
  519. FIELD(HOST_GS_BASE, host_gs_base),
  520. FIELD(HOST_TR_BASE, host_tr_base),
  521. FIELD(HOST_GDTR_BASE, host_gdtr_base),
  522. FIELD(HOST_IDTR_BASE, host_idtr_base),
  523. FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
  524. FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
  525. FIELD(HOST_RSP, host_rsp),
  526. FIELD(HOST_RIP, host_rip),
  527. };
  528. static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
  529. static inline short vmcs_field_to_offset(unsigned long field)
  530. {
  531. if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
  532. return -1;
  533. return vmcs_field_to_offset_table[field];
  534. }
  535. static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
  536. {
  537. return to_vmx(vcpu)->nested.current_vmcs12;
  538. }
  539. static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
  540. {
  541. struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
  542. if (is_error_page(page)) {
  543. kvm_release_page_clean(page);
  544. return NULL;
  545. }
  546. return page;
  547. }
  548. static void nested_release_page(struct page *page)
  549. {
  550. kvm_release_page_dirty(page);
  551. }
  552. static void nested_release_page_clean(struct page *page)
  553. {
  554. kvm_release_page_clean(page);
  555. }
  556. static u64 construct_eptp(unsigned long root_hpa);
  557. static void kvm_cpu_vmxon(u64 addr);
  558. static void kvm_cpu_vmxoff(void);
  559. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
  560. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
  561. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  562. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  563. /*
  564. * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
  565. * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
  566. */
  567. static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
  568. static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
  569. static unsigned long *vmx_io_bitmap_a;
  570. static unsigned long *vmx_io_bitmap_b;
  571. static unsigned long *vmx_msr_bitmap_legacy;
  572. static unsigned long *vmx_msr_bitmap_longmode;
  573. static bool cpu_has_load_ia32_efer;
  574. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  575. static DEFINE_SPINLOCK(vmx_vpid_lock);
  576. static struct vmcs_config {
  577. int size;
  578. int order;
  579. u32 revision_id;
  580. u32 pin_based_exec_ctrl;
  581. u32 cpu_based_exec_ctrl;
  582. u32 cpu_based_2nd_exec_ctrl;
  583. u32 vmexit_ctrl;
  584. u32 vmentry_ctrl;
  585. } vmcs_config;
  586. static struct vmx_capability {
  587. u32 ept;
  588. u32 vpid;
  589. } vmx_capability;
  590. #define VMX_SEGMENT_FIELD(seg) \
  591. [VCPU_SREG_##seg] = { \
  592. .selector = GUEST_##seg##_SELECTOR, \
  593. .base = GUEST_##seg##_BASE, \
  594. .limit = GUEST_##seg##_LIMIT, \
  595. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  596. }
  597. static struct kvm_vmx_segment_field {
  598. unsigned selector;
  599. unsigned base;
  600. unsigned limit;
  601. unsigned ar_bytes;
  602. } kvm_vmx_segment_fields[] = {
  603. VMX_SEGMENT_FIELD(CS),
  604. VMX_SEGMENT_FIELD(DS),
  605. VMX_SEGMENT_FIELD(ES),
  606. VMX_SEGMENT_FIELD(FS),
  607. VMX_SEGMENT_FIELD(GS),
  608. VMX_SEGMENT_FIELD(SS),
  609. VMX_SEGMENT_FIELD(TR),
  610. VMX_SEGMENT_FIELD(LDTR),
  611. };
  612. static u64 host_efer;
  613. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  614. /*
  615. * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
  616. * away by decrementing the array size.
  617. */
  618. static const u32 vmx_msr_index[] = {
  619. #ifdef CONFIG_X86_64
  620. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  621. #endif
  622. MSR_EFER, MSR_TSC_AUX, MSR_STAR,
  623. };
  624. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  625. static inline bool is_page_fault(u32 intr_info)
  626. {
  627. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  628. INTR_INFO_VALID_MASK)) ==
  629. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  630. }
  631. static inline bool is_no_device(u32 intr_info)
  632. {
  633. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  634. INTR_INFO_VALID_MASK)) ==
  635. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  636. }
  637. static inline bool is_invalid_opcode(u32 intr_info)
  638. {
  639. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  640. INTR_INFO_VALID_MASK)) ==
  641. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  642. }
  643. static inline bool is_external_interrupt(u32 intr_info)
  644. {
  645. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  646. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  647. }
  648. static inline bool is_machine_check(u32 intr_info)
  649. {
  650. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  651. INTR_INFO_VALID_MASK)) ==
  652. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  653. }
  654. static inline bool cpu_has_vmx_msr_bitmap(void)
  655. {
  656. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  657. }
  658. static inline bool cpu_has_vmx_tpr_shadow(void)
  659. {
  660. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  661. }
  662. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  663. {
  664. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  665. }
  666. static inline bool cpu_has_secondary_exec_ctrls(void)
  667. {
  668. return vmcs_config.cpu_based_exec_ctrl &
  669. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  670. }
  671. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  672. {
  673. return vmcs_config.cpu_based_2nd_exec_ctrl &
  674. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  675. }
  676. static inline bool cpu_has_vmx_flexpriority(void)
  677. {
  678. return cpu_has_vmx_tpr_shadow() &&
  679. cpu_has_vmx_virtualize_apic_accesses();
  680. }
  681. static inline bool cpu_has_vmx_ept_execute_only(void)
  682. {
  683. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  684. }
  685. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  686. {
  687. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  688. }
  689. static inline bool cpu_has_vmx_eptp_writeback(void)
  690. {
  691. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  692. }
  693. static inline bool cpu_has_vmx_ept_2m_page(void)
  694. {
  695. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  696. }
  697. static inline bool cpu_has_vmx_ept_1g_page(void)
  698. {
  699. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  700. }
  701. static inline bool cpu_has_vmx_ept_4levels(void)
  702. {
  703. return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
  704. }
  705. static inline bool cpu_has_vmx_invept_individual_addr(void)
  706. {
  707. return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
  708. }
  709. static inline bool cpu_has_vmx_invept_context(void)
  710. {
  711. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  712. }
  713. static inline bool cpu_has_vmx_invept_global(void)
  714. {
  715. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  716. }
  717. static inline bool cpu_has_vmx_invvpid_single(void)
  718. {
  719. return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
  720. }
  721. static inline bool cpu_has_vmx_invvpid_global(void)
  722. {
  723. return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
  724. }
  725. static inline bool cpu_has_vmx_ept(void)
  726. {
  727. return vmcs_config.cpu_based_2nd_exec_ctrl &
  728. SECONDARY_EXEC_ENABLE_EPT;
  729. }
  730. static inline bool cpu_has_vmx_unrestricted_guest(void)
  731. {
  732. return vmcs_config.cpu_based_2nd_exec_ctrl &
  733. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  734. }
  735. static inline bool cpu_has_vmx_ple(void)
  736. {
  737. return vmcs_config.cpu_based_2nd_exec_ctrl &
  738. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  739. }
  740. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  741. {
  742. return flexpriority_enabled && irqchip_in_kernel(kvm);
  743. }
  744. static inline bool cpu_has_vmx_vpid(void)
  745. {
  746. return vmcs_config.cpu_based_2nd_exec_ctrl &
  747. SECONDARY_EXEC_ENABLE_VPID;
  748. }
  749. static inline bool cpu_has_vmx_rdtscp(void)
  750. {
  751. return vmcs_config.cpu_based_2nd_exec_ctrl &
  752. SECONDARY_EXEC_RDTSCP;
  753. }
  754. static inline bool cpu_has_virtual_nmis(void)
  755. {
  756. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  757. }
  758. static inline bool cpu_has_vmx_wbinvd_exit(void)
  759. {
  760. return vmcs_config.cpu_based_2nd_exec_ctrl &
  761. SECONDARY_EXEC_WBINVD_EXITING;
  762. }
  763. static inline bool report_flexpriority(void)
  764. {
  765. return flexpriority_enabled;
  766. }
  767. static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
  768. {
  769. return vmcs12->cpu_based_vm_exec_control & bit;
  770. }
  771. static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
  772. {
  773. return (vmcs12->cpu_based_vm_exec_control &
  774. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
  775. (vmcs12->secondary_vm_exec_control & bit);
  776. }
  777. static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
  778. struct kvm_vcpu *vcpu)
  779. {
  780. return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
  781. }
  782. static inline bool is_exception(u32 intr_info)
  783. {
  784. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  785. == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
  786. }
  787. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
  788. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  789. struct vmcs12 *vmcs12,
  790. u32 reason, unsigned long qualification);
  791. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  792. {
  793. int i;
  794. for (i = 0; i < vmx->nmsrs; ++i)
  795. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  796. return i;
  797. return -1;
  798. }
  799. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  800. {
  801. struct {
  802. u64 vpid : 16;
  803. u64 rsvd : 48;
  804. u64 gva;
  805. } operand = { vpid, 0, gva };
  806. asm volatile (__ex(ASM_VMX_INVVPID)
  807. /* CF==1 or ZF==1 --> rc = -1 */
  808. "; ja 1f ; ud2 ; 1:"
  809. : : "a"(&operand), "c"(ext) : "cc", "memory");
  810. }
  811. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  812. {
  813. struct {
  814. u64 eptp, gpa;
  815. } operand = {eptp, gpa};
  816. asm volatile (__ex(ASM_VMX_INVEPT)
  817. /* CF==1 or ZF==1 --> rc = -1 */
  818. "; ja 1f ; ud2 ; 1:\n"
  819. : : "a" (&operand), "c" (ext) : "cc", "memory");
  820. }
  821. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  822. {
  823. int i;
  824. i = __find_msr_index(vmx, msr);
  825. if (i >= 0)
  826. return &vmx->guest_msrs[i];
  827. return NULL;
  828. }
  829. static void vmcs_clear(struct vmcs *vmcs)
  830. {
  831. u64 phys_addr = __pa(vmcs);
  832. u8 error;
  833. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  834. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  835. : "cc", "memory");
  836. if (error)
  837. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  838. vmcs, phys_addr);
  839. }
  840. static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
  841. {
  842. vmcs_clear(loaded_vmcs->vmcs);
  843. loaded_vmcs->cpu = -1;
  844. loaded_vmcs->launched = 0;
  845. }
  846. static void vmcs_load(struct vmcs *vmcs)
  847. {
  848. u64 phys_addr = __pa(vmcs);
  849. u8 error;
  850. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  851. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  852. : "cc", "memory");
  853. if (error)
  854. printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
  855. vmcs, phys_addr);
  856. }
  857. static void __loaded_vmcs_clear(void *arg)
  858. {
  859. struct loaded_vmcs *loaded_vmcs = arg;
  860. int cpu = raw_smp_processor_id();
  861. if (loaded_vmcs->cpu != cpu)
  862. return; /* vcpu migration can race with cpu offline */
  863. if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
  864. per_cpu(current_vmcs, cpu) = NULL;
  865. list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
  866. loaded_vmcs_init(loaded_vmcs);
  867. }
  868. static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
  869. {
  870. if (loaded_vmcs->cpu != -1)
  871. smp_call_function_single(
  872. loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
  873. }
  874. static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
  875. {
  876. if (vmx->vpid == 0)
  877. return;
  878. if (cpu_has_vmx_invvpid_single())
  879. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  880. }
  881. static inline void vpid_sync_vcpu_global(void)
  882. {
  883. if (cpu_has_vmx_invvpid_global())
  884. __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
  885. }
  886. static inline void vpid_sync_context(struct vcpu_vmx *vmx)
  887. {
  888. if (cpu_has_vmx_invvpid_single())
  889. vpid_sync_vcpu_single(vmx);
  890. else
  891. vpid_sync_vcpu_global();
  892. }
  893. static inline void ept_sync_global(void)
  894. {
  895. if (cpu_has_vmx_invept_global())
  896. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  897. }
  898. static inline void ept_sync_context(u64 eptp)
  899. {
  900. if (enable_ept) {
  901. if (cpu_has_vmx_invept_context())
  902. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  903. else
  904. ept_sync_global();
  905. }
  906. }
  907. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  908. {
  909. if (enable_ept) {
  910. if (cpu_has_vmx_invept_individual_addr())
  911. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  912. eptp, gpa);
  913. else
  914. ept_sync_context(eptp);
  915. }
  916. }
  917. static __always_inline unsigned long vmcs_readl(unsigned long field)
  918. {
  919. unsigned long value;
  920. asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
  921. : "=a"(value) : "d"(field) : "cc");
  922. return value;
  923. }
  924. static __always_inline u16 vmcs_read16(unsigned long field)
  925. {
  926. return vmcs_readl(field);
  927. }
  928. static __always_inline u32 vmcs_read32(unsigned long field)
  929. {
  930. return vmcs_readl(field);
  931. }
  932. static __always_inline u64 vmcs_read64(unsigned long field)
  933. {
  934. #ifdef CONFIG_X86_64
  935. return vmcs_readl(field);
  936. #else
  937. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  938. #endif
  939. }
  940. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  941. {
  942. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  943. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  944. dump_stack();
  945. }
  946. static void vmcs_writel(unsigned long field, unsigned long value)
  947. {
  948. u8 error;
  949. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  950. : "=q"(error) : "a"(value), "d"(field) : "cc");
  951. if (unlikely(error))
  952. vmwrite_error(field, value);
  953. }
  954. static void vmcs_write16(unsigned long field, u16 value)
  955. {
  956. vmcs_writel(field, value);
  957. }
  958. static void vmcs_write32(unsigned long field, u32 value)
  959. {
  960. vmcs_writel(field, value);
  961. }
  962. static void vmcs_write64(unsigned long field, u64 value)
  963. {
  964. vmcs_writel(field, value);
  965. #ifndef CONFIG_X86_64
  966. asm volatile ("");
  967. vmcs_writel(field+1, value >> 32);
  968. #endif
  969. }
  970. static void vmcs_clear_bits(unsigned long field, u32 mask)
  971. {
  972. vmcs_writel(field, vmcs_readl(field) & ~mask);
  973. }
  974. static void vmcs_set_bits(unsigned long field, u32 mask)
  975. {
  976. vmcs_writel(field, vmcs_readl(field) | mask);
  977. }
  978. static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
  979. {
  980. vmx->segment_cache.bitmask = 0;
  981. }
  982. static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
  983. unsigned field)
  984. {
  985. bool ret;
  986. u32 mask = 1 << (seg * SEG_FIELD_NR + field);
  987. if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
  988. vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
  989. vmx->segment_cache.bitmask = 0;
  990. }
  991. ret = vmx->segment_cache.bitmask & mask;
  992. vmx->segment_cache.bitmask |= mask;
  993. return ret;
  994. }
  995. static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
  996. {
  997. u16 *p = &vmx->segment_cache.seg[seg].selector;
  998. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
  999. *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
  1000. return *p;
  1001. }
  1002. static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
  1003. {
  1004. ulong *p = &vmx->segment_cache.seg[seg].base;
  1005. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
  1006. *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
  1007. return *p;
  1008. }
  1009. static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
  1010. {
  1011. u32 *p = &vmx->segment_cache.seg[seg].limit;
  1012. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
  1013. *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
  1014. return *p;
  1015. }
  1016. static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
  1017. {
  1018. u32 *p = &vmx->segment_cache.seg[seg].ar;
  1019. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
  1020. *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
  1021. return *p;
  1022. }
  1023. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  1024. {
  1025. u32 eb;
  1026. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  1027. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  1028. if ((vcpu->guest_debug &
  1029. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  1030. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  1031. eb |= 1u << BP_VECTOR;
  1032. if (to_vmx(vcpu)->rmode.vm86_active)
  1033. eb = ~0;
  1034. if (enable_ept)
  1035. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  1036. if (vcpu->fpu_active)
  1037. eb &= ~(1u << NM_VECTOR);
  1038. /* When we are running a nested L2 guest and L1 specified for it a
  1039. * certain exception bitmap, we must trap the same exceptions and pass
  1040. * them to L1. When running L2, we will only handle the exceptions
  1041. * specified above if L1 did not want them.
  1042. */
  1043. if (is_guest_mode(vcpu))
  1044. eb |= get_vmcs12(vcpu)->exception_bitmap;
  1045. vmcs_write32(EXCEPTION_BITMAP, eb);
  1046. }
  1047. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  1048. {
  1049. unsigned i;
  1050. struct msr_autoload *m = &vmx->msr_autoload;
  1051. if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
  1052. vmcs_clear_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
  1053. vmcs_clear_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
  1054. return;
  1055. }
  1056. for (i = 0; i < m->nr; ++i)
  1057. if (m->guest[i].index == msr)
  1058. break;
  1059. if (i == m->nr)
  1060. return;
  1061. --m->nr;
  1062. m->guest[i] = m->guest[m->nr];
  1063. m->host[i] = m->host[m->nr];
  1064. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1065. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1066. }
  1067. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  1068. u64 guest_val, u64 host_val)
  1069. {
  1070. unsigned i;
  1071. struct msr_autoload *m = &vmx->msr_autoload;
  1072. if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
  1073. vmcs_write64(GUEST_IA32_EFER, guest_val);
  1074. vmcs_write64(HOST_IA32_EFER, host_val);
  1075. vmcs_set_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
  1076. vmcs_set_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
  1077. return;
  1078. }
  1079. for (i = 0; i < m->nr; ++i)
  1080. if (m->guest[i].index == msr)
  1081. break;
  1082. if (i == m->nr) {
  1083. ++m->nr;
  1084. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1085. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1086. }
  1087. m->guest[i].index = msr;
  1088. m->guest[i].value = guest_val;
  1089. m->host[i].index = msr;
  1090. m->host[i].value = host_val;
  1091. }
  1092. static void reload_tss(void)
  1093. {
  1094. /*
  1095. * VT restores TR but not its size. Useless.
  1096. */
  1097. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1098. struct desc_struct *descs;
  1099. descs = (void *)gdt->address;
  1100. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  1101. load_TR_desc();
  1102. }
  1103. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  1104. {
  1105. u64 guest_efer;
  1106. u64 ignore_bits;
  1107. guest_efer = vmx->vcpu.arch.efer;
  1108. /*
  1109. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  1110. * outside long mode
  1111. */
  1112. ignore_bits = EFER_NX | EFER_SCE;
  1113. #ifdef CONFIG_X86_64
  1114. ignore_bits |= EFER_LMA | EFER_LME;
  1115. /* SCE is meaningful only in long mode on Intel */
  1116. if (guest_efer & EFER_LMA)
  1117. ignore_bits &= ~(u64)EFER_SCE;
  1118. #endif
  1119. guest_efer &= ~ignore_bits;
  1120. guest_efer |= host_efer & ignore_bits;
  1121. vmx->guest_msrs[efer_offset].data = guest_efer;
  1122. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  1123. clear_atomic_switch_msr(vmx, MSR_EFER);
  1124. /* On ept, can't emulate nx, and must switch nx atomically */
  1125. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  1126. guest_efer = vmx->vcpu.arch.efer;
  1127. if (!(guest_efer & EFER_LMA))
  1128. guest_efer &= ~EFER_LME;
  1129. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  1130. return false;
  1131. }
  1132. return true;
  1133. }
  1134. static unsigned long segment_base(u16 selector)
  1135. {
  1136. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1137. struct desc_struct *d;
  1138. unsigned long table_base;
  1139. unsigned long v;
  1140. if (!(selector & ~3))
  1141. return 0;
  1142. table_base = gdt->address;
  1143. if (selector & 4) { /* from ldt */
  1144. u16 ldt_selector = kvm_read_ldt();
  1145. if (!(ldt_selector & ~3))
  1146. return 0;
  1147. table_base = segment_base(ldt_selector);
  1148. }
  1149. d = (struct desc_struct *)(table_base + (selector & ~7));
  1150. v = get_desc_base(d);
  1151. #ifdef CONFIG_X86_64
  1152. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  1153. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  1154. #endif
  1155. return v;
  1156. }
  1157. static inline unsigned long kvm_read_tr_base(void)
  1158. {
  1159. u16 tr;
  1160. asm("str %0" : "=g"(tr));
  1161. return segment_base(tr);
  1162. }
  1163. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  1164. {
  1165. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1166. int i;
  1167. if (vmx->host_state.loaded)
  1168. return;
  1169. vmx->host_state.loaded = 1;
  1170. /*
  1171. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1172. * allow segment selectors with cpl > 0 or ti == 1.
  1173. */
  1174. vmx->host_state.ldt_sel = kvm_read_ldt();
  1175. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  1176. savesegment(fs, vmx->host_state.fs_sel);
  1177. if (!(vmx->host_state.fs_sel & 7)) {
  1178. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  1179. vmx->host_state.fs_reload_needed = 0;
  1180. } else {
  1181. vmcs_write16(HOST_FS_SELECTOR, 0);
  1182. vmx->host_state.fs_reload_needed = 1;
  1183. }
  1184. savesegment(gs, vmx->host_state.gs_sel);
  1185. if (!(vmx->host_state.gs_sel & 7))
  1186. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  1187. else {
  1188. vmcs_write16(HOST_GS_SELECTOR, 0);
  1189. vmx->host_state.gs_ldt_reload_needed = 1;
  1190. }
  1191. #ifdef CONFIG_X86_64
  1192. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1193. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1194. #else
  1195. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  1196. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  1197. #endif
  1198. #ifdef CONFIG_X86_64
  1199. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1200. if (is_long_mode(&vmx->vcpu))
  1201. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1202. #endif
  1203. for (i = 0; i < vmx->save_nmsrs; ++i)
  1204. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  1205. vmx->guest_msrs[i].data,
  1206. vmx->guest_msrs[i].mask);
  1207. }
  1208. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  1209. {
  1210. if (!vmx->host_state.loaded)
  1211. return;
  1212. ++vmx->vcpu.stat.host_state_reload;
  1213. vmx->host_state.loaded = 0;
  1214. #ifdef CONFIG_X86_64
  1215. if (is_long_mode(&vmx->vcpu))
  1216. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1217. #endif
  1218. if (vmx->host_state.gs_ldt_reload_needed) {
  1219. kvm_load_ldt(vmx->host_state.ldt_sel);
  1220. #ifdef CONFIG_X86_64
  1221. load_gs_index(vmx->host_state.gs_sel);
  1222. #else
  1223. loadsegment(gs, vmx->host_state.gs_sel);
  1224. #endif
  1225. }
  1226. if (vmx->host_state.fs_reload_needed)
  1227. loadsegment(fs, vmx->host_state.fs_sel);
  1228. reload_tss();
  1229. #ifdef CONFIG_X86_64
  1230. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1231. #endif
  1232. if (current_thread_info()->status & TS_USEDFPU)
  1233. clts();
  1234. load_gdt(&__get_cpu_var(host_gdt));
  1235. }
  1236. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  1237. {
  1238. preempt_disable();
  1239. __vmx_load_host_state(vmx);
  1240. preempt_enable();
  1241. }
  1242. /*
  1243. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  1244. * vcpu mutex is already taken.
  1245. */
  1246. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1247. {
  1248. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1249. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1250. if (!vmm_exclusive)
  1251. kvm_cpu_vmxon(phys_addr);
  1252. else if (vmx->loaded_vmcs->cpu != cpu)
  1253. loaded_vmcs_clear(vmx->loaded_vmcs);
  1254. if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
  1255. per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
  1256. vmcs_load(vmx->loaded_vmcs->vmcs);
  1257. }
  1258. if (vmx->loaded_vmcs->cpu != cpu) {
  1259. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1260. unsigned long sysenter_esp;
  1261. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1262. local_irq_disable();
  1263. list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
  1264. &per_cpu(loaded_vmcss_on_cpu, cpu));
  1265. local_irq_enable();
  1266. /*
  1267. * Linux uses per-cpu TSS and GDT, so set these when switching
  1268. * processors.
  1269. */
  1270. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  1271. vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
  1272. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  1273. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  1274. vmx->loaded_vmcs->cpu = cpu;
  1275. }
  1276. }
  1277. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  1278. {
  1279. __vmx_load_host_state(to_vmx(vcpu));
  1280. if (!vmm_exclusive) {
  1281. __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
  1282. vcpu->cpu = -1;
  1283. kvm_cpu_vmxoff();
  1284. }
  1285. }
  1286. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  1287. {
  1288. ulong cr0;
  1289. if (vcpu->fpu_active)
  1290. return;
  1291. vcpu->fpu_active = 1;
  1292. cr0 = vmcs_readl(GUEST_CR0);
  1293. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  1294. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  1295. vmcs_writel(GUEST_CR0, cr0);
  1296. update_exception_bitmap(vcpu);
  1297. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  1298. if (is_guest_mode(vcpu))
  1299. vcpu->arch.cr0_guest_owned_bits &=
  1300. ~get_vmcs12(vcpu)->cr0_guest_host_mask;
  1301. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1302. }
  1303. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  1304. /*
  1305. * Return the cr0 value that a nested guest would read. This is a combination
  1306. * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
  1307. * its hypervisor (cr0_read_shadow).
  1308. */
  1309. static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
  1310. {
  1311. return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
  1312. (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
  1313. }
  1314. static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
  1315. {
  1316. return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
  1317. (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
  1318. }
  1319. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  1320. {
  1321. /* Note that there is no vcpu->fpu_active = 0 here. The caller must
  1322. * set this *before* calling this function.
  1323. */
  1324. vmx_decache_cr0_guest_bits(vcpu);
  1325. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  1326. update_exception_bitmap(vcpu);
  1327. vcpu->arch.cr0_guest_owned_bits = 0;
  1328. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1329. if (is_guest_mode(vcpu)) {
  1330. /*
  1331. * L1's specified read shadow might not contain the TS bit,
  1332. * so now that we turned on shadowing of this bit, we need to
  1333. * set this bit of the shadow. Like in nested_vmx_run we need
  1334. * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
  1335. * up-to-date here because we just decached cr0.TS (and we'll
  1336. * only update vmcs12->guest_cr0 on nested exit).
  1337. */
  1338. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1339. vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
  1340. (vcpu->arch.cr0 & X86_CR0_TS);
  1341. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  1342. } else
  1343. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  1344. }
  1345. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  1346. {
  1347. unsigned long rflags, save_rflags;
  1348. if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
  1349. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1350. rflags = vmcs_readl(GUEST_RFLAGS);
  1351. if (to_vmx(vcpu)->rmode.vm86_active) {
  1352. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1353. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  1354. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1355. }
  1356. to_vmx(vcpu)->rflags = rflags;
  1357. }
  1358. return to_vmx(vcpu)->rflags;
  1359. }
  1360. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  1361. {
  1362. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1363. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  1364. to_vmx(vcpu)->rflags = rflags;
  1365. if (to_vmx(vcpu)->rmode.vm86_active) {
  1366. to_vmx(vcpu)->rmode.save_rflags = rflags;
  1367. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1368. }
  1369. vmcs_writel(GUEST_RFLAGS, rflags);
  1370. }
  1371. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1372. {
  1373. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1374. int ret = 0;
  1375. if (interruptibility & GUEST_INTR_STATE_STI)
  1376. ret |= KVM_X86_SHADOW_INT_STI;
  1377. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  1378. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  1379. return ret & mask;
  1380. }
  1381. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1382. {
  1383. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1384. u32 interruptibility = interruptibility_old;
  1385. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  1386. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  1387. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  1388. else if (mask & KVM_X86_SHADOW_INT_STI)
  1389. interruptibility |= GUEST_INTR_STATE_STI;
  1390. if ((interruptibility != interruptibility_old))
  1391. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  1392. }
  1393. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  1394. {
  1395. unsigned long rip;
  1396. rip = kvm_rip_read(vcpu);
  1397. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1398. kvm_rip_write(vcpu, rip);
  1399. /* skipping an emulated instruction also counts */
  1400. vmx_set_interrupt_shadow(vcpu, 0);
  1401. }
  1402. static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
  1403. {
  1404. /* Ensure that we clear the HLT state in the VMCS. We don't need to
  1405. * explicitly skip the instruction because if the HLT state is set, then
  1406. * the instruction is already executing and RIP has already been
  1407. * advanced. */
  1408. if (!yield_on_hlt &&
  1409. vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
  1410. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  1411. }
  1412. /*
  1413. * KVM wants to inject page-faults which it got to the guest. This function
  1414. * checks whether in a nested guest, we need to inject them to L1 or L2.
  1415. * This function assumes it is called with the exit reason in vmcs02 being
  1416. * a #PF exception (this is the only case in which KVM injects a #PF when L2
  1417. * is running).
  1418. */
  1419. static int nested_pf_handled(struct kvm_vcpu *vcpu)
  1420. {
  1421. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1422. /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
  1423. if (!(vmcs12->exception_bitmap & PF_VECTOR))
  1424. return 0;
  1425. nested_vmx_vmexit(vcpu);
  1426. return 1;
  1427. }
  1428. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  1429. bool has_error_code, u32 error_code,
  1430. bool reinject)
  1431. {
  1432. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1433. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  1434. if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
  1435. nested_pf_handled(vcpu))
  1436. return;
  1437. if (has_error_code) {
  1438. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  1439. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  1440. }
  1441. if (vmx->rmode.vm86_active) {
  1442. int inc_eip = 0;
  1443. if (kvm_exception_is_soft(nr))
  1444. inc_eip = vcpu->arch.event_exit_inst_len;
  1445. if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
  1446. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1447. return;
  1448. }
  1449. if (kvm_exception_is_soft(nr)) {
  1450. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1451. vmx->vcpu.arch.event_exit_inst_len);
  1452. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  1453. } else
  1454. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  1455. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  1456. vmx_clear_hlt(vcpu);
  1457. }
  1458. static bool vmx_rdtscp_supported(void)
  1459. {
  1460. return cpu_has_vmx_rdtscp();
  1461. }
  1462. /*
  1463. * Swap MSR entry in host/guest MSR entry array.
  1464. */
  1465. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  1466. {
  1467. struct shared_msr_entry tmp;
  1468. tmp = vmx->guest_msrs[to];
  1469. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  1470. vmx->guest_msrs[from] = tmp;
  1471. }
  1472. /*
  1473. * Set up the vmcs to automatically save and restore system
  1474. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  1475. * mode, as fiddling with msrs is very expensive.
  1476. */
  1477. static void setup_msrs(struct vcpu_vmx *vmx)
  1478. {
  1479. int save_nmsrs, index;
  1480. unsigned long *msr_bitmap;
  1481. vmx_load_host_state(vmx);
  1482. save_nmsrs = 0;
  1483. #ifdef CONFIG_X86_64
  1484. if (is_long_mode(&vmx->vcpu)) {
  1485. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  1486. if (index >= 0)
  1487. move_msr_up(vmx, index, save_nmsrs++);
  1488. index = __find_msr_index(vmx, MSR_LSTAR);
  1489. if (index >= 0)
  1490. move_msr_up(vmx, index, save_nmsrs++);
  1491. index = __find_msr_index(vmx, MSR_CSTAR);
  1492. if (index >= 0)
  1493. move_msr_up(vmx, index, save_nmsrs++);
  1494. index = __find_msr_index(vmx, MSR_TSC_AUX);
  1495. if (index >= 0 && vmx->rdtscp_enabled)
  1496. move_msr_up(vmx, index, save_nmsrs++);
  1497. /*
  1498. * MSR_STAR is only needed on long mode guests, and only
  1499. * if efer.sce is enabled.
  1500. */
  1501. index = __find_msr_index(vmx, MSR_STAR);
  1502. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  1503. move_msr_up(vmx, index, save_nmsrs++);
  1504. }
  1505. #endif
  1506. index = __find_msr_index(vmx, MSR_EFER);
  1507. if (index >= 0 && update_transition_efer(vmx, index))
  1508. move_msr_up(vmx, index, save_nmsrs++);
  1509. vmx->save_nmsrs = save_nmsrs;
  1510. if (cpu_has_vmx_msr_bitmap()) {
  1511. if (is_long_mode(&vmx->vcpu))
  1512. msr_bitmap = vmx_msr_bitmap_longmode;
  1513. else
  1514. msr_bitmap = vmx_msr_bitmap_legacy;
  1515. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  1516. }
  1517. }
  1518. /*
  1519. * reads and returns guest's timestamp counter "register"
  1520. * guest_tsc = host_tsc + tsc_offset -- 21.3
  1521. */
  1522. static u64 guest_read_tsc(void)
  1523. {
  1524. u64 host_tsc, tsc_offset;
  1525. rdtscll(host_tsc);
  1526. tsc_offset = vmcs_read64(TSC_OFFSET);
  1527. return host_tsc + tsc_offset;
  1528. }
  1529. /*
  1530. * Like guest_read_tsc, but always returns L1's notion of the timestamp
  1531. * counter, even if a nested guest (L2) is currently running.
  1532. */
  1533. u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu)
  1534. {
  1535. u64 host_tsc, tsc_offset;
  1536. rdtscll(host_tsc);
  1537. tsc_offset = is_guest_mode(vcpu) ?
  1538. to_vmx(vcpu)->nested.vmcs01_tsc_offset :
  1539. vmcs_read64(TSC_OFFSET);
  1540. return host_tsc + tsc_offset;
  1541. }
  1542. /*
  1543. * Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ
  1544. * ioctl. In this case the call-back should update internal vmx state to make
  1545. * the changes effective.
  1546. */
  1547. static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
  1548. {
  1549. /* Nothing to do here */
  1550. }
  1551. /*
  1552. * writes 'offset' into guest's timestamp counter offset register
  1553. */
  1554. static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
  1555. {
  1556. if (is_guest_mode(vcpu)) {
  1557. /*
  1558. * We're here if L1 chose not to trap WRMSR to TSC. According
  1559. * to the spec, this should set L1's TSC; The offset that L1
  1560. * set for L2 remains unchanged, and still needs to be added
  1561. * to the newly set TSC to get L2's TSC.
  1562. */
  1563. struct vmcs12 *vmcs12;
  1564. to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
  1565. /* recalculate vmcs02.TSC_OFFSET: */
  1566. vmcs12 = get_vmcs12(vcpu);
  1567. vmcs_write64(TSC_OFFSET, offset +
  1568. (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
  1569. vmcs12->tsc_offset : 0));
  1570. } else {
  1571. vmcs_write64(TSC_OFFSET, offset);
  1572. }
  1573. }
  1574. static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
  1575. {
  1576. u64 offset = vmcs_read64(TSC_OFFSET);
  1577. vmcs_write64(TSC_OFFSET, offset + adjustment);
  1578. if (is_guest_mode(vcpu)) {
  1579. /* Even when running L2, the adjustment needs to apply to L1 */
  1580. to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
  1581. }
  1582. }
  1583. static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
  1584. {
  1585. return target_tsc - native_read_tsc();
  1586. }
  1587. static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
  1588. {
  1589. struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
  1590. return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
  1591. }
  1592. /*
  1593. * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
  1594. * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
  1595. * all guests if the "nested" module option is off, and can also be disabled
  1596. * for a single guest by disabling its VMX cpuid bit.
  1597. */
  1598. static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
  1599. {
  1600. return nested && guest_cpuid_has_vmx(vcpu);
  1601. }
  1602. /*
  1603. * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
  1604. * returned for the various VMX controls MSRs when nested VMX is enabled.
  1605. * The same values should also be used to verify that vmcs12 control fields are
  1606. * valid during nested entry from L1 to L2.
  1607. * Each of these control msrs has a low and high 32-bit half: A low bit is on
  1608. * if the corresponding bit in the (32-bit) control field *must* be on, and a
  1609. * bit in the high half is on if the corresponding bit in the control field
  1610. * may be on. See also vmx_control_verify().
  1611. * TODO: allow these variables to be modified (downgraded) by module options
  1612. * or other means.
  1613. */
  1614. static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
  1615. static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
  1616. static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
  1617. static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
  1618. static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
  1619. static __init void nested_vmx_setup_ctls_msrs(void)
  1620. {
  1621. /*
  1622. * Note that as a general rule, the high half of the MSRs (bits in
  1623. * the control fields which may be 1) should be initialized by the
  1624. * intersection of the underlying hardware's MSR (i.e., features which
  1625. * can be supported) and the list of features we want to expose -
  1626. * because they are known to be properly supported in our code.
  1627. * Also, usually, the low half of the MSRs (bits which must be 1) can
  1628. * be set to 0, meaning that L1 may turn off any of these bits. The
  1629. * reason is that if one of these bits is necessary, it will appear
  1630. * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
  1631. * fields of vmcs01 and vmcs02, will turn these bits off - and
  1632. * nested_vmx_exit_handled() will not pass related exits to L1.
  1633. * These rules have exceptions below.
  1634. */
  1635. /* pin-based controls */
  1636. /*
  1637. * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
  1638. * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
  1639. */
  1640. nested_vmx_pinbased_ctls_low = 0x16 ;
  1641. nested_vmx_pinbased_ctls_high = 0x16 |
  1642. PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
  1643. PIN_BASED_VIRTUAL_NMIS;
  1644. /* exit controls */
  1645. nested_vmx_exit_ctls_low = 0;
  1646. /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
  1647. #ifdef CONFIG_X86_64
  1648. nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1649. #else
  1650. nested_vmx_exit_ctls_high = 0;
  1651. #endif
  1652. /* entry controls */
  1653. rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
  1654. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
  1655. nested_vmx_entry_ctls_low = 0;
  1656. nested_vmx_entry_ctls_high &=
  1657. VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
  1658. /* cpu-based controls */
  1659. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
  1660. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
  1661. nested_vmx_procbased_ctls_low = 0;
  1662. nested_vmx_procbased_ctls_high &=
  1663. CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
  1664. CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
  1665. CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
  1666. CPU_BASED_CR3_STORE_EXITING |
  1667. #ifdef CONFIG_X86_64
  1668. CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
  1669. #endif
  1670. CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
  1671. CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
  1672. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1673. /*
  1674. * We can allow some features even when not supported by the
  1675. * hardware. For example, L1 can specify an MSR bitmap - and we
  1676. * can use it to avoid exits to L1 - even when L0 runs L2
  1677. * without MSR bitmaps.
  1678. */
  1679. nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
  1680. /* secondary cpu-based controls */
  1681. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  1682. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
  1683. nested_vmx_secondary_ctls_low = 0;
  1684. nested_vmx_secondary_ctls_high &=
  1685. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1686. }
  1687. static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
  1688. {
  1689. /*
  1690. * Bits 0 in high must be 0, and bits 1 in low must be 1.
  1691. */
  1692. return ((control & high) | low) == control;
  1693. }
  1694. static inline u64 vmx_control_msr(u32 low, u32 high)
  1695. {
  1696. return low | ((u64)high << 32);
  1697. }
  1698. /*
  1699. * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
  1700. * also let it use VMX-specific MSRs.
  1701. * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
  1702. * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
  1703. * like all other MSRs).
  1704. */
  1705. static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1706. {
  1707. if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
  1708. msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
  1709. /*
  1710. * According to the spec, processors which do not support VMX
  1711. * should throw a #GP(0) when VMX capability MSRs are read.
  1712. */
  1713. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  1714. return 1;
  1715. }
  1716. switch (msr_index) {
  1717. case MSR_IA32_FEATURE_CONTROL:
  1718. *pdata = 0;
  1719. break;
  1720. case MSR_IA32_VMX_BASIC:
  1721. /*
  1722. * This MSR reports some information about VMX support. We
  1723. * should return information about the VMX we emulate for the
  1724. * guest, and the VMCS structure we give it - not about the
  1725. * VMX support of the underlying hardware.
  1726. */
  1727. *pdata = VMCS12_REVISION |
  1728. ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
  1729. (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
  1730. break;
  1731. case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
  1732. case MSR_IA32_VMX_PINBASED_CTLS:
  1733. *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
  1734. nested_vmx_pinbased_ctls_high);
  1735. break;
  1736. case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
  1737. case MSR_IA32_VMX_PROCBASED_CTLS:
  1738. *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
  1739. nested_vmx_procbased_ctls_high);
  1740. break;
  1741. case MSR_IA32_VMX_TRUE_EXIT_CTLS:
  1742. case MSR_IA32_VMX_EXIT_CTLS:
  1743. *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
  1744. nested_vmx_exit_ctls_high);
  1745. break;
  1746. case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
  1747. case MSR_IA32_VMX_ENTRY_CTLS:
  1748. *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
  1749. nested_vmx_entry_ctls_high);
  1750. break;
  1751. case MSR_IA32_VMX_MISC:
  1752. *pdata = 0;
  1753. break;
  1754. /*
  1755. * These MSRs specify bits which the guest must keep fixed (on or off)
  1756. * while L1 is in VMXON mode (in L1's root mode, or running an L2).
  1757. * We picked the standard core2 setting.
  1758. */
  1759. #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
  1760. #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
  1761. case MSR_IA32_VMX_CR0_FIXED0:
  1762. *pdata = VMXON_CR0_ALWAYSON;
  1763. break;
  1764. case MSR_IA32_VMX_CR0_FIXED1:
  1765. *pdata = -1ULL;
  1766. break;
  1767. case MSR_IA32_VMX_CR4_FIXED0:
  1768. *pdata = VMXON_CR4_ALWAYSON;
  1769. break;
  1770. case MSR_IA32_VMX_CR4_FIXED1:
  1771. *pdata = -1ULL;
  1772. break;
  1773. case MSR_IA32_VMX_VMCS_ENUM:
  1774. *pdata = 0x1f;
  1775. break;
  1776. case MSR_IA32_VMX_PROCBASED_CTLS2:
  1777. *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
  1778. nested_vmx_secondary_ctls_high);
  1779. break;
  1780. case MSR_IA32_VMX_EPT_VPID_CAP:
  1781. /* Currently, no nested ept or nested vpid */
  1782. *pdata = 0;
  1783. break;
  1784. default:
  1785. return 0;
  1786. }
  1787. return 1;
  1788. }
  1789. static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1790. {
  1791. if (!nested_vmx_allowed(vcpu))
  1792. return 0;
  1793. if (msr_index == MSR_IA32_FEATURE_CONTROL)
  1794. /* TODO: the right thing. */
  1795. return 1;
  1796. /*
  1797. * No need to treat VMX capability MSRs specially: If we don't handle
  1798. * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
  1799. */
  1800. return 0;
  1801. }
  1802. /*
  1803. * Reads an msr value (of 'msr_index') into 'pdata'.
  1804. * Returns 0 on success, non-0 otherwise.
  1805. * Assumes vcpu_load() was already called.
  1806. */
  1807. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1808. {
  1809. u64 data;
  1810. struct shared_msr_entry *msr;
  1811. if (!pdata) {
  1812. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  1813. return -EINVAL;
  1814. }
  1815. switch (msr_index) {
  1816. #ifdef CONFIG_X86_64
  1817. case MSR_FS_BASE:
  1818. data = vmcs_readl(GUEST_FS_BASE);
  1819. break;
  1820. case MSR_GS_BASE:
  1821. data = vmcs_readl(GUEST_GS_BASE);
  1822. break;
  1823. case MSR_KERNEL_GS_BASE:
  1824. vmx_load_host_state(to_vmx(vcpu));
  1825. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  1826. break;
  1827. #endif
  1828. case MSR_EFER:
  1829. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1830. case MSR_IA32_TSC:
  1831. data = guest_read_tsc();
  1832. break;
  1833. case MSR_IA32_SYSENTER_CS:
  1834. data = vmcs_read32(GUEST_SYSENTER_CS);
  1835. break;
  1836. case MSR_IA32_SYSENTER_EIP:
  1837. data = vmcs_readl(GUEST_SYSENTER_EIP);
  1838. break;
  1839. case MSR_IA32_SYSENTER_ESP:
  1840. data = vmcs_readl(GUEST_SYSENTER_ESP);
  1841. break;
  1842. case MSR_TSC_AUX:
  1843. if (!to_vmx(vcpu)->rdtscp_enabled)
  1844. return 1;
  1845. /* Otherwise falls through */
  1846. default:
  1847. vmx_load_host_state(to_vmx(vcpu));
  1848. if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
  1849. return 0;
  1850. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  1851. if (msr) {
  1852. vmx_load_host_state(to_vmx(vcpu));
  1853. data = msr->data;
  1854. break;
  1855. }
  1856. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1857. }
  1858. *pdata = data;
  1859. return 0;
  1860. }
  1861. /*
  1862. * Writes msr value into into the appropriate "register".
  1863. * Returns 0 on success, non-0 otherwise.
  1864. * Assumes vcpu_load() was already called.
  1865. */
  1866. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1867. {
  1868. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1869. struct shared_msr_entry *msr;
  1870. int ret = 0;
  1871. switch (msr_index) {
  1872. case MSR_EFER:
  1873. vmx_load_host_state(vmx);
  1874. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1875. break;
  1876. #ifdef CONFIG_X86_64
  1877. case MSR_FS_BASE:
  1878. vmx_segment_cache_clear(vmx);
  1879. vmcs_writel(GUEST_FS_BASE, data);
  1880. break;
  1881. case MSR_GS_BASE:
  1882. vmx_segment_cache_clear(vmx);
  1883. vmcs_writel(GUEST_GS_BASE, data);
  1884. break;
  1885. case MSR_KERNEL_GS_BASE:
  1886. vmx_load_host_state(vmx);
  1887. vmx->msr_guest_kernel_gs_base = data;
  1888. break;
  1889. #endif
  1890. case MSR_IA32_SYSENTER_CS:
  1891. vmcs_write32(GUEST_SYSENTER_CS, data);
  1892. break;
  1893. case MSR_IA32_SYSENTER_EIP:
  1894. vmcs_writel(GUEST_SYSENTER_EIP, data);
  1895. break;
  1896. case MSR_IA32_SYSENTER_ESP:
  1897. vmcs_writel(GUEST_SYSENTER_ESP, data);
  1898. break;
  1899. case MSR_IA32_TSC:
  1900. kvm_write_tsc(vcpu, data);
  1901. break;
  1902. case MSR_IA32_CR_PAT:
  1903. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1904. vmcs_write64(GUEST_IA32_PAT, data);
  1905. vcpu->arch.pat = data;
  1906. break;
  1907. }
  1908. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1909. break;
  1910. case MSR_TSC_AUX:
  1911. if (!vmx->rdtscp_enabled)
  1912. return 1;
  1913. /* Check reserved bit, higher 32 bits should be zero */
  1914. if ((data >> 32) != 0)
  1915. return 1;
  1916. /* Otherwise falls through */
  1917. default:
  1918. if (vmx_set_vmx_msr(vcpu, msr_index, data))
  1919. break;
  1920. msr = find_msr_entry(vmx, msr_index);
  1921. if (msr) {
  1922. vmx_load_host_state(vmx);
  1923. msr->data = data;
  1924. break;
  1925. }
  1926. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1927. }
  1928. return ret;
  1929. }
  1930. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  1931. {
  1932. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  1933. switch (reg) {
  1934. case VCPU_REGS_RSP:
  1935. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  1936. break;
  1937. case VCPU_REGS_RIP:
  1938. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  1939. break;
  1940. case VCPU_EXREG_PDPTR:
  1941. if (enable_ept)
  1942. ept_save_pdptrs(vcpu);
  1943. break;
  1944. default:
  1945. break;
  1946. }
  1947. }
  1948. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  1949. {
  1950. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  1951. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  1952. else
  1953. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  1954. update_exception_bitmap(vcpu);
  1955. }
  1956. static __init int cpu_has_kvm_support(void)
  1957. {
  1958. return cpu_has_vmx();
  1959. }
  1960. static __init int vmx_disabled_by_bios(void)
  1961. {
  1962. u64 msr;
  1963. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  1964. if (msr & FEATURE_CONTROL_LOCKED) {
  1965. /* launched w/ TXT and VMX disabled */
  1966. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  1967. && tboot_enabled())
  1968. return 1;
  1969. /* launched w/o TXT and VMX only enabled w/ TXT */
  1970. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  1971. && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  1972. && !tboot_enabled()) {
  1973. printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
  1974. "activate TXT before enabling KVM\n");
  1975. return 1;
  1976. }
  1977. /* launched w/o TXT and VMX disabled */
  1978. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  1979. && !tboot_enabled())
  1980. return 1;
  1981. }
  1982. return 0;
  1983. }
  1984. static void kvm_cpu_vmxon(u64 addr)
  1985. {
  1986. asm volatile (ASM_VMX_VMXON_RAX
  1987. : : "a"(&addr), "m"(addr)
  1988. : "memory", "cc");
  1989. }
  1990. static int hardware_enable(void *garbage)
  1991. {
  1992. int cpu = raw_smp_processor_id();
  1993. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1994. u64 old, test_bits;
  1995. if (read_cr4() & X86_CR4_VMXE)
  1996. return -EBUSY;
  1997. INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
  1998. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  1999. test_bits = FEATURE_CONTROL_LOCKED;
  2000. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  2001. if (tboot_enabled())
  2002. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  2003. if ((old & test_bits) != test_bits) {
  2004. /* enable and lock */
  2005. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  2006. }
  2007. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  2008. if (vmm_exclusive) {
  2009. kvm_cpu_vmxon(phys_addr);
  2010. ept_sync_global();
  2011. }
  2012. store_gdt(&__get_cpu_var(host_gdt));
  2013. return 0;
  2014. }
  2015. static void vmclear_local_loaded_vmcss(void)
  2016. {
  2017. int cpu = raw_smp_processor_id();
  2018. struct loaded_vmcs *v, *n;
  2019. list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
  2020. loaded_vmcss_on_cpu_link)
  2021. __loaded_vmcs_clear(v);
  2022. }
  2023. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  2024. * tricks.
  2025. */
  2026. static void kvm_cpu_vmxoff(void)
  2027. {
  2028. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  2029. }
  2030. static void hardware_disable(void *garbage)
  2031. {
  2032. if (vmm_exclusive) {
  2033. vmclear_local_loaded_vmcss();
  2034. kvm_cpu_vmxoff();
  2035. }
  2036. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  2037. }
  2038. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  2039. u32 msr, u32 *result)
  2040. {
  2041. u32 vmx_msr_low, vmx_msr_high;
  2042. u32 ctl = ctl_min | ctl_opt;
  2043. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2044. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  2045. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  2046. /* Ensure minimum (required) set of control bits are supported. */
  2047. if (ctl_min & ~ctl)
  2048. return -EIO;
  2049. *result = ctl;
  2050. return 0;
  2051. }
  2052. static __init bool allow_1_setting(u32 msr, u32 ctl)
  2053. {
  2054. u32 vmx_msr_low, vmx_msr_high;
  2055. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2056. return vmx_msr_high & ctl;
  2057. }
  2058. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  2059. {
  2060. u32 vmx_msr_low, vmx_msr_high;
  2061. u32 min, opt, min2, opt2;
  2062. u32 _pin_based_exec_control = 0;
  2063. u32 _cpu_based_exec_control = 0;
  2064. u32 _cpu_based_2nd_exec_control = 0;
  2065. u32 _vmexit_control = 0;
  2066. u32 _vmentry_control = 0;
  2067. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  2068. opt = PIN_BASED_VIRTUAL_NMIS;
  2069. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  2070. &_pin_based_exec_control) < 0)
  2071. return -EIO;
  2072. min =
  2073. #ifdef CONFIG_X86_64
  2074. CPU_BASED_CR8_LOAD_EXITING |
  2075. CPU_BASED_CR8_STORE_EXITING |
  2076. #endif
  2077. CPU_BASED_CR3_LOAD_EXITING |
  2078. CPU_BASED_CR3_STORE_EXITING |
  2079. CPU_BASED_USE_IO_BITMAPS |
  2080. CPU_BASED_MOV_DR_EXITING |
  2081. CPU_BASED_USE_TSC_OFFSETING |
  2082. CPU_BASED_MWAIT_EXITING |
  2083. CPU_BASED_MONITOR_EXITING |
  2084. CPU_BASED_INVLPG_EXITING;
  2085. if (yield_on_hlt)
  2086. min |= CPU_BASED_HLT_EXITING;
  2087. opt = CPU_BASED_TPR_SHADOW |
  2088. CPU_BASED_USE_MSR_BITMAPS |
  2089. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  2090. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  2091. &_cpu_based_exec_control) < 0)
  2092. return -EIO;
  2093. #ifdef CONFIG_X86_64
  2094. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  2095. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  2096. ~CPU_BASED_CR8_STORE_EXITING;
  2097. #endif
  2098. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  2099. min2 = 0;
  2100. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  2101. SECONDARY_EXEC_WBINVD_EXITING |
  2102. SECONDARY_EXEC_ENABLE_VPID |
  2103. SECONDARY_EXEC_ENABLE_EPT |
  2104. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  2105. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  2106. SECONDARY_EXEC_RDTSCP;
  2107. if (adjust_vmx_controls(min2, opt2,
  2108. MSR_IA32_VMX_PROCBASED_CTLS2,
  2109. &_cpu_based_2nd_exec_control) < 0)
  2110. return -EIO;
  2111. }
  2112. #ifndef CONFIG_X86_64
  2113. if (!(_cpu_based_2nd_exec_control &
  2114. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  2115. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  2116. #endif
  2117. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  2118. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  2119. enabled */
  2120. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  2121. CPU_BASED_CR3_STORE_EXITING |
  2122. CPU_BASED_INVLPG_EXITING);
  2123. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  2124. vmx_capability.ept, vmx_capability.vpid);
  2125. }
  2126. min = 0;
  2127. #ifdef CONFIG_X86_64
  2128. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  2129. #endif
  2130. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  2131. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  2132. &_vmexit_control) < 0)
  2133. return -EIO;
  2134. min = 0;
  2135. opt = VM_ENTRY_LOAD_IA32_PAT;
  2136. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  2137. &_vmentry_control) < 0)
  2138. return -EIO;
  2139. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  2140. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  2141. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  2142. return -EIO;
  2143. #ifdef CONFIG_X86_64
  2144. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  2145. if (vmx_msr_high & (1u<<16))
  2146. return -EIO;
  2147. #endif
  2148. /* Require Write-Back (WB) memory type for VMCS accesses. */
  2149. if (((vmx_msr_high >> 18) & 15) != 6)
  2150. return -EIO;
  2151. vmcs_conf->size = vmx_msr_high & 0x1fff;
  2152. vmcs_conf->order = get_order(vmcs_config.size);
  2153. vmcs_conf->revision_id = vmx_msr_low;
  2154. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  2155. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  2156. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  2157. vmcs_conf->vmexit_ctrl = _vmexit_control;
  2158. vmcs_conf->vmentry_ctrl = _vmentry_control;
  2159. cpu_has_load_ia32_efer =
  2160. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2161. VM_ENTRY_LOAD_IA32_EFER)
  2162. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2163. VM_EXIT_LOAD_IA32_EFER);
  2164. return 0;
  2165. }
  2166. static struct vmcs *alloc_vmcs_cpu(int cpu)
  2167. {
  2168. int node = cpu_to_node(cpu);
  2169. struct page *pages;
  2170. struct vmcs *vmcs;
  2171. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  2172. if (!pages)
  2173. return NULL;
  2174. vmcs = page_address(pages);
  2175. memset(vmcs, 0, vmcs_config.size);
  2176. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  2177. return vmcs;
  2178. }
  2179. static struct vmcs *alloc_vmcs(void)
  2180. {
  2181. return alloc_vmcs_cpu(raw_smp_processor_id());
  2182. }
  2183. static void free_vmcs(struct vmcs *vmcs)
  2184. {
  2185. free_pages((unsigned long)vmcs, vmcs_config.order);
  2186. }
  2187. /*
  2188. * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
  2189. */
  2190. static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
  2191. {
  2192. if (!loaded_vmcs->vmcs)
  2193. return;
  2194. loaded_vmcs_clear(loaded_vmcs);
  2195. free_vmcs(loaded_vmcs->vmcs);
  2196. loaded_vmcs->vmcs = NULL;
  2197. }
  2198. static void free_kvm_area(void)
  2199. {
  2200. int cpu;
  2201. for_each_possible_cpu(cpu) {
  2202. free_vmcs(per_cpu(vmxarea, cpu));
  2203. per_cpu(vmxarea, cpu) = NULL;
  2204. }
  2205. }
  2206. static __init int alloc_kvm_area(void)
  2207. {
  2208. int cpu;
  2209. for_each_possible_cpu(cpu) {
  2210. struct vmcs *vmcs;
  2211. vmcs = alloc_vmcs_cpu(cpu);
  2212. if (!vmcs) {
  2213. free_kvm_area();
  2214. return -ENOMEM;
  2215. }
  2216. per_cpu(vmxarea, cpu) = vmcs;
  2217. }
  2218. return 0;
  2219. }
  2220. static __init int hardware_setup(void)
  2221. {
  2222. if (setup_vmcs_config(&vmcs_config) < 0)
  2223. return -EIO;
  2224. if (boot_cpu_has(X86_FEATURE_NX))
  2225. kvm_enable_efer_bits(EFER_NX);
  2226. if (!cpu_has_vmx_vpid())
  2227. enable_vpid = 0;
  2228. if (!cpu_has_vmx_ept() ||
  2229. !cpu_has_vmx_ept_4levels()) {
  2230. enable_ept = 0;
  2231. enable_unrestricted_guest = 0;
  2232. }
  2233. if (!cpu_has_vmx_unrestricted_guest())
  2234. enable_unrestricted_guest = 0;
  2235. if (!cpu_has_vmx_flexpriority())
  2236. flexpriority_enabled = 0;
  2237. if (!cpu_has_vmx_tpr_shadow())
  2238. kvm_x86_ops->update_cr8_intercept = NULL;
  2239. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  2240. kvm_disable_largepages();
  2241. if (!cpu_has_vmx_ple())
  2242. ple_gap = 0;
  2243. if (nested)
  2244. nested_vmx_setup_ctls_msrs();
  2245. return alloc_kvm_area();
  2246. }
  2247. static __exit void hardware_unsetup(void)
  2248. {
  2249. free_kvm_area();
  2250. }
  2251. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  2252. {
  2253. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2254. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  2255. vmcs_write16(sf->selector, save->selector);
  2256. vmcs_writel(sf->base, save->base);
  2257. vmcs_write32(sf->limit, save->limit);
  2258. vmcs_write32(sf->ar_bytes, save->ar);
  2259. } else {
  2260. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  2261. << AR_DPL_SHIFT;
  2262. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  2263. }
  2264. }
  2265. static void enter_pmode(struct kvm_vcpu *vcpu)
  2266. {
  2267. unsigned long flags;
  2268. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2269. vmx->emulation_required = 1;
  2270. vmx->rmode.vm86_active = 0;
  2271. vmx_segment_cache_clear(vmx);
  2272. vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
  2273. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  2274. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  2275. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  2276. flags = vmcs_readl(GUEST_RFLAGS);
  2277. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  2278. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  2279. vmcs_writel(GUEST_RFLAGS, flags);
  2280. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  2281. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  2282. update_exception_bitmap(vcpu);
  2283. if (emulate_invalid_guest_state)
  2284. return;
  2285. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  2286. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  2287. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  2288. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  2289. vmx_segment_cache_clear(vmx);
  2290. vmcs_write16(GUEST_SS_SELECTOR, 0);
  2291. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  2292. vmcs_write16(GUEST_CS_SELECTOR,
  2293. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  2294. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  2295. }
  2296. static gva_t rmode_tss_base(struct kvm *kvm)
  2297. {
  2298. if (!kvm->arch.tss_addr) {
  2299. struct kvm_memslots *slots;
  2300. gfn_t base_gfn;
  2301. slots = kvm_memslots(kvm);
  2302. base_gfn = slots->memslots[0].base_gfn +
  2303. kvm->memslots->memslots[0].npages - 3;
  2304. return base_gfn << PAGE_SHIFT;
  2305. }
  2306. return kvm->arch.tss_addr;
  2307. }
  2308. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  2309. {
  2310. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2311. save->selector = vmcs_read16(sf->selector);
  2312. save->base = vmcs_readl(sf->base);
  2313. save->limit = vmcs_read32(sf->limit);
  2314. save->ar = vmcs_read32(sf->ar_bytes);
  2315. vmcs_write16(sf->selector, save->base >> 4);
  2316. vmcs_write32(sf->base, save->base & 0xffff0);
  2317. vmcs_write32(sf->limit, 0xffff);
  2318. vmcs_write32(sf->ar_bytes, 0xf3);
  2319. if (save->base & 0xf)
  2320. printk_once(KERN_WARNING "kvm: segment base is not paragraph"
  2321. " aligned when entering protected mode (seg=%d)",
  2322. seg);
  2323. }
  2324. static void enter_rmode(struct kvm_vcpu *vcpu)
  2325. {
  2326. unsigned long flags;
  2327. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2328. if (enable_unrestricted_guest)
  2329. return;
  2330. vmx->emulation_required = 1;
  2331. vmx->rmode.vm86_active = 1;
  2332. /*
  2333. * Very old userspace does not call KVM_SET_TSS_ADDR before entering
  2334. * vcpu. Call it here with phys address pointing 16M below 4G.
  2335. */
  2336. if (!vcpu->kvm->arch.tss_addr) {
  2337. printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
  2338. "called before entering vcpu\n");
  2339. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  2340. vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
  2341. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  2342. }
  2343. vmx_segment_cache_clear(vmx);
  2344. vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
  2345. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  2346. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  2347. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  2348. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  2349. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2350. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2351. flags = vmcs_readl(GUEST_RFLAGS);
  2352. vmx->rmode.save_rflags = flags;
  2353. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  2354. vmcs_writel(GUEST_RFLAGS, flags);
  2355. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  2356. update_exception_bitmap(vcpu);
  2357. if (emulate_invalid_guest_state)
  2358. goto continue_rmode;
  2359. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  2360. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  2361. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  2362. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  2363. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  2364. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  2365. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  2366. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  2367. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  2368. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  2369. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  2370. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  2371. continue_rmode:
  2372. kvm_mmu_reset_context(vcpu);
  2373. }
  2374. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  2375. {
  2376. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2377. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  2378. if (!msr)
  2379. return;
  2380. /*
  2381. * Force kernel_gs_base reloading before EFER changes, as control
  2382. * of this msr depends on is_long_mode().
  2383. */
  2384. vmx_load_host_state(to_vmx(vcpu));
  2385. vcpu->arch.efer = efer;
  2386. if (efer & EFER_LMA) {
  2387. vmcs_write32(VM_ENTRY_CONTROLS,
  2388. vmcs_read32(VM_ENTRY_CONTROLS) |
  2389. VM_ENTRY_IA32E_MODE);
  2390. msr->data = efer;
  2391. } else {
  2392. vmcs_write32(VM_ENTRY_CONTROLS,
  2393. vmcs_read32(VM_ENTRY_CONTROLS) &
  2394. ~VM_ENTRY_IA32E_MODE);
  2395. msr->data = efer & ~EFER_LME;
  2396. }
  2397. setup_msrs(vmx);
  2398. }
  2399. #ifdef CONFIG_X86_64
  2400. static void enter_lmode(struct kvm_vcpu *vcpu)
  2401. {
  2402. u32 guest_tr_ar;
  2403. vmx_segment_cache_clear(to_vmx(vcpu));
  2404. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2405. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  2406. pr_debug_ratelimited("%s: tss fixup for long mode. \n",
  2407. __func__);
  2408. vmcs_write32(GUEST_TR_AR_BYTES,
  2409. (guest_tr_ar & ~AR_TYPE_MASK)
  2410. | AR_TYPE_BUSY_64_TSS);
  2411. }
  2412. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  2413. }
  2414. static void exit_lmode(struct kvm_vcpu *vcpu)
  2415. {
  2416. vmcs_write32(VM_ENTRY_CONTROLS,
  2417. vmcs_read32(VM_ENTRY_CONTROLS)
  2418. & ~VM_ENTRY_IA32E_MODE);
  2419. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  2420. }
  2421. #endif
  2422. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  2423. {
  2424. vpid_sync_context(to_vmx(vcpu));
  2425. if (enable_ept) {
  2426. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2427. return;
  2428. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  2429. }
  2430. }
  2431. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  2432. {
  2433. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  2434. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  2435. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  2436. }
  2437. static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
  2438. {
  2439. if (enable_ept && is_paging(vcpu))
  2440. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2441. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  2442. }
  2443. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  2444. {
  2445. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  2446. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  2447. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  2448. }
  2449. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  2450. {
  2451. if (!test_bit(VCPU_EXREG_PDPTR,
  2452. (unsigned long *)&vcpu->arch.regs_dirty))
  2453. return;
  2454. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2455. vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
  2456. vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
  2457. vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
  2458. vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
  2459. }
  2460. }
  2461. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  2462. {
  2463. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2464. vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  2465. vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  2466. vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  2467. vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  2468. }
  2469. __set_bit(VCPU_EXREG_PDPTR,
  2470. (unsigned long *)&vcpu->arch.regs_avail);
  2471. __set_bit(VCPU_EXREG_PDPTR,
  2472. (unsigned long *)&vcpu->arch.regs_dirty);
  2473. }
  2474. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  2475. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  2476. unsigned long cr0,
  2477. struct kvm_vcpu *vcpu)
  2478. {
  2479. if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
  2480. vmx_decache_cr3(vcpu);
  2481. if (!(cr0 & X86_CR0_PG)) {
  2482. /* From paging/starting to nonpaging */
  2483. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2484. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  2485. (CPU_BASED_CR3_LOAD_EXITING |
  2486. CPU_BASED_CR3_STORE_EXITING));
  2487. vcpu->arch.cr0 = cr0;
  2488. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2489. } else if (!is_paging(vcpu)) {
  2490. /* From nonpaging to paging */
  2491. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2492. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  2493. ~(CPU_BASED_CR3_LOAD_EXITING |
  2494. CPU_BASED_CR3_STORE_EXITING));
  2495. vcpu->arch.cr0 = cr0;
  2496. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2497. }
  2498. if (!(cr0 & X86_CR0_WP))
  2499. *hw_cr0 &= ~X86_CR0_WP;
  2500. }
  2501. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  2502. {
  2503. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2504. unsigned long hw_cr0;
  2505. if (enable_unrestricted_guest)
  2506. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  2507. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  2508. else
  2509. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  2510. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  2511. enter_pmode(vcpu);
  2512. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  2513. enter_rmode(vcpu);
  2514. #ifdef CONFIG_X86_64
  2515. if (vcpu->arch.efer & EFER_LME) {
  2516. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  2517. enter_lmode(vcpu);
  2518. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  2519. exit_lmode(vcpu);
  2520. }
  2521. #endif
  2522. if (enable_ept)
  2523. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  2524. if (!vcpu->fpu_active)
  2525. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  2526. vmcs_writel(CR0_READ_SHADOW, cr0);
  2527. vmcs_writel(GUEST_CR0, hw_cr0);
  2528. vcpu->arch.cr0 = cr0;
  2529. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2530. }
  2531. static u64 construct_eptp(unsigned long root_hpa)
  2532. {
  2533. u64 eptp;
  2534. /* TODO write the value reading from MSR */
  2535. eptp = VMX_EPT_DEFAULT_MT |
  2536. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  2537. eptp |= (root_hpa & PAGE_MASK);
  2538. return eptp;
  2539. }
  2540. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  2541. {
  2542. unsigned long guest_cr3;
  2543. u64 eptp;
  2544. guest_cr3 = cr3;
  2545. if (enable_ept) {
  2546. eptp = construct_eptp(cr3);
  2547. vmcs_write64(EPT_POINTER, eptp);
  2548. guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
  2549. vcpu->kvm->arch.ept_identity_map_addr;
  2550. ept_load_pdptrs(vcpu);
  2551. }
  2552. vmx_flush_tlb(vcpu);
  2553. vmcs_writel(GUEST_CR3, guest_cr3);
  2554. }
  2555. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  2556. {
  2557. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  2558. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  2559. if (cr4 & X86_CR4_VMXE) {
  2560. /*
  2561. * To use VMXON (and later other VMX instructions), a guest
  2562. * must first be able to turn on cr4.VMXE (see handle_vmon()).
  2563. * So basically the check on whether to allow nested VMX
  2564. * is here.
  2565. */
  2566. if (!nested_vmx_allowed(vcpu))
  2567. return 1;
  2568. } else if (to_vmx(vcpu)->nested.vmxon)
  2569. return 1;
  2570. vcpu->arch.cr4 = cr4;
  2571. if (enable_ept) {
  2572. if (!is_paging(vcpu)) {
  2573. hw_cr4 &= ~X86_CR4_PAE;
  2574. hw_cr4 |= X86_CR4_PSE;
  2575. } else if (!(cr4 & X86_CR4_PAE)) {
  2576. hw_cr4 &= ~X86_CR4_PAE;
  2577. }
  2578. }
  2579. vmcs_writel(CR4_READ_SHADOW, cr4);
  2580. vmcs_writel(GUEST_CR4, hw_cr4);
  2581. return 0;
  2582. }
  2583. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  2584. struct kvm_segment *var, int seg)
  2585. {
  2586. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2587. struct kvm_save_segment *save;
  2588. u32 ar;
  2589. if (vmx->rmode.vm86_active
  2590. && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
  2591. || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
  2592. || seg == VCPU_SREG_GS)
  2593. && !emulate_invalid_guest_state) {
  2594. switch (seg) {
  2595. case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
  2596. case VCPU_SREG_ES: save = &vmx->rmode.es; break;
  2597. case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
  2598. case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
  2599. case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
  2600. default: BUG();
  2601. }
  2602. var->selector = save->selector;
  2603. var->base = save->base;
  2604. var->limit = save->limit;
  2605. ar = save->ar;
  2606. if (seg == VCPU_SREG_TR
  2607. || var->selector == vmx_read_guest_seg_selector(vmx, seg))
  2608. goto use_saved_rmode_seg;
  2609. }
  2610. var->base = vmx_read_guest_seg_base(vmx, seg);
  2611. var->limit = vmx_read_guest_seg_limit(vmx, seg);
  2612. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  2613. ar = vmx_read_guest_seg_ar(vmx, seg);
  2614. use_saved_rmode_seg:
  2615. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  2616. ar = 0;
  2617. var->type = ar & 15;
  2618. var->s = (ar >> 4) & 1;
  2619. var->dpl = (ar >> 5) & 3;
  2620. var->present = (ar >> 7) & 1;
  2621. var->avl = (ar >> 12) & 1;
  2622. var->l = (ar >> 13) & 1;
  2623. var->db = (ar >> 14) & 1;
  2624. var->g = (ar >> 15) & 1;
  2625. var->unusable = (ar >> 16) & 1;
  2626. }
  2627. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2628. {
  2629. struct kvm_segment s;
  2630. if (to_vmx(vcpu)->rmode.vm86_active) {
  2631. vmx_get_segment(vcpu, &s, seg);
  2632. return s.base;
  2633. }
  2634. return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
  2635. }
  2636. static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
  2637. {
  2638. if (!is_protmode(vcpu))
  2639. return 0;
  2640. if (!is_long_mode(vcpu)
  2641. && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
  2642. return 3;
  2643. return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
  2644. }
  2645. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  2646. {
  2647. if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
  2648. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2649. to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
  2650. }
  2651. return to_vmx(vcpu)->cpl;
  2652. }
  2653. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  2654. {
  2655. u32 ar;
  2656. if (var->unusable)
  2657. ar = 1 << 16;
  2658. else {
  2659. ar = var->type & 15;
  2660. ar |= (var->s & 1) << 4;
  2661. ar |= (var->dpl & 3) << 5;
  2662. ar |= (var->present & 1) << 7;
  2663. ar |= (var->avl & 1) << 12;
  2664. ar |= (var->l & 1) << 13;
  2665. ar |= (var->db & 1) << 14;
  2666. ar |= (var->g & 1) << 15;
  2667. }
  2668. if (ar == 0) /* a 0 value means unusable */
  2669. ar = AR_UNUSABLE_MASK;
  2670. return ar;
  2671. }
  2672. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  2673. struct kvm_segment *var, int seg)
  2674. {
  2675. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2676. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2677. u32 ar;
  2678. vmx_segment_cache_clear(vmx);
  2679. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  2680. vmcs_write16(sf->selector, var->selector);
  2681. vmx->rmode.tr.selector = var->selector;
  2682. vmx->rmode.tr.base = var->base;
  2683. vmx->rmode.tr.limit = var->limit;
  2684. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  2685. return;
  2686. }
  2687. vmcs_writel(sf->base, var->base);
  2688. vmcs_write32(sf->limit, var->limit);
  2689. vmcs_write16(sf->selector, var->selector);
  2690. if (vmx->rmode.vm86_active && var->s) {
  2691. /*
  2692. * Hack real-mode segments into vm86 compatibility.
  2693. */
  2694. if (var->base == 0xffff0000 && var->selector == 0xf000)
  2695. vmcs_writel(sf->base, 0xf0000);
  2696. ar = 0xf3;
  2697. } else
  2698. ar = vmx_segment_access_rights(var);
  2699. /*
  2700. * Fix the "Accessed" bit in AR field of segment registers for older
  2701. * qemu binaries.
  2702. * IA32 arch specifies that at the time of processor reset the
  2703. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  2704. * is setting it to 0 in the usedland code. This causes invalid guest
  2705. * state vmexit when "unrestricted guest" mode is turned on.
  2706. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  2707. * tree. Newer qemu binaries with that qemu fix would not need this
  2708. * kvm hack.
  2709. */
  2710. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  2711. ar |= 0x1; /* Accessed */
  2712. vmcs_write32(sf->ar_bytes, ar);
  2713. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2714. }
  2715. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2716. {
  2717. u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
  2718. *db = (ar >> 14) & 1;
  2719. *l = (ar >> 13) & 1;
  2720. }
  2721. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2722. {
  2723. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  2724. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  2725. }
  2726. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2727. {
  2728. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  2729. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  2730. }
  2731. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2732. {
  2733. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  2734. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  2735. }
  2736. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2737. {
  2738. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  2739. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  2740. }
  2741. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2742. {
  2743. struct kvm_segment var;
  2744. u32 ar;
  2745. vmx_get_segment(vcpu, &var, seg);
  2746. ar = vmx_segment_access_rights(&var);
  2747. if (var.base != (var.selector << 4))
  2748. return false;
  2749. if (var.limit != 0xffff)
  2750. return false;
  2751. if (ar != 0xf3)
  2752. return false;
  2753. return true;
  2754. }
  2755. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  2756. {
  2757. struct kvm_segment cs;
  2758. unsigned int cs_rpl;
  2759. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2760. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  2761. if (cs.unusable)
  2762. return false;
  2763. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  2764. return false;
  2765. if (!cs.s)
  2766. return false;
  2767. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  2768. if (cs.dpl > cs_rpl)
  2769. return false;
  2770. } else {
  2771. if (cs.dpl != cs_rpl)
  2772. return false;
  2773. }
  2774. if (!cs.present)
  2775. return false;
  2776. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  2777. return true;
  2778. }
  2779. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  2780. {
  2781. struct kvm_segment ss;
  2782. unsigned int ss_rpl;
  2783. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2784. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  2785. if (ss.unusable)
  2786. return true;
  2787. if (ss.type != 3 && ss.type != 7)
  2788. return false;
  2789. if (!ss.s)
  2790. return false;
  2791. if (ss.dpl != ss_rpl) /* DPL != RPL */
  2792. return false;
  2793. if (!ss.present)
  2794. return false;
  2795. return true;
  2796. }
  2797. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2798. {
  2799. struct kvm_segment var;
  2800. unsigned int rpl;
  2801. vmx_get_segment(vcpu, &var, seg);
  2802. rpl = var.selector & SELECTOR_RPL_MASK;
  2803. if (var.unusable)
  2804. return true;
  2805. if (!var.s)
  2806. return false;
  2807. if (!var.present)
  2808. return false;
  2809. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  2810. if (var.dpl < rpl) /* DPL < RPL */
  2811. return false;
  2812. }
  2813. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  2814. * rights flags
  2815. */
  2816. return true;
  2817. }
  2818. static bool tr_valid(struct kvm_vcpu *vcpu)
  2819. {
  2820. struct kvm_segment tr;
  2821. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  2822. if (tr.unusable)
  2823. return false;
  2824. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  2825. return false;
  2826. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  2827. return false;
  2828. if (!tr.present)
  2829. return false;
  2830. return true;
  2831. }
  2832. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  2833. {
  2834. struct kvm_segment ldtr;
  2835. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  2836. if (ldtr.unusable)
  2837. return true;
  2838. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  2839. return false;
  2840. if (ldtr.type != 2)
  2841. return false;
  2842. if (!ldtr.present)
  2843. return false;
  2844. return true;
  2845. }
  2846. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  2847. {
  2848. struct kvm_segment cs, ss;
  2849. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2850. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2851. return ((cs.selector & SELECTOR_RPL_MASK) ==
  2852. (ss.selector & SELECTOR_RPL_MASK));
  2853. }
  2854. /*
  2855. * Check if guest state is valid. Returns true if valid, false if
  2856. * not.
  2857. * We assume that registers are always usable
  2858. */
  2859. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  2860. {
  2861. /* real mode guest state checks */
  2862. if (!is_protmode(vcpu)) {
  2863. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  2864. return false;
  2865. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  2866. return false;
  2867. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  2868. return false;
  2869. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  2870. return false;
  2871. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  2872. return false;
  2873. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  2874. return false;
  2875. } else {
  2876. /* protected mode guest state checks */
  2877. if (!cs_ss_rpl_check(vcpu))
  2878. return false;
  2879. if (!code_segment_valid(vcpu))
  2880. return false;
  2881. if (!stack_segment_valid(vcpu))
  2882. return false;
  2883. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  2884. return false;
  2885. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  2886. return false;
  2887. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  2888. return false;
  2889. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  2890. return false;
  2891. if (!tr_valid(vcpu))
  2892. return false;
  2893. if (!ldtr_valid(vcpu))
  2894. return false;
  2895. }
  2896. /* TODO:
  2897. * - Add checks on RIP
  2898. * - Add checks on RFLAGS
  2899. */
  2900. return true;
  2901. }
  2902. static int init_rmode_tss(struct kvm *kvm)
  2903. {
  2904. gfn_t fn;
  2905. u16 data = 0;
  2906. int r, idx, ret = 0;
  2907. idx = srcu_read_lock(&kvm->srcu);
  2908. fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  2909. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  2910. if (r < 0)
  2911. goto out;
  2912. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  2913. r = kvm_write_guest_page(kvm, fn++, &data,
  2914. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  2915. if (r < 0)
  2916. goto out;
  2917. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  2918. if (r < 0)
  2919. goto out;
  2920. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  2921. if (r < 0)
  2922. goto out;
  2923. data = ~0;
  2924. r = kvm_write_guest_page(kvm, fn, &data,
  2925. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  2926. sizeof(u8));
  2927. if (r < 0)
  2928. goto out;
  2929. ret = 1;
  2930. out:
  2931. srcu_read_unlock(&kvm->srcu, idx);
  2932. return ret;
  2933. }
  2934. static int init_rmode_identity_map(struct kvm *kvm)
  2935. {
  2936. int i, idx, r, ret;
  2937. pfn_t identity_map_pfn;
  2938. u32 tmp;
  2939. if (!enable_ept)
  2940. return 1;
  2941. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  2942. printk(KERN_ERR "EPT: identity-mapping pagetable "
  2943. "haven't been allocated!\n");
  2944. return 0;
  2945. }
  2946. if (likely(kvm->arch.ept_identity_pagetable_done))
  2947. return 1;
  2948. ret = 0;
  2949. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  2950. idx = srcu_read_lock(&kvm->srcu);
  2951. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  2952. if (r < 0)
  2953. goto out;
  2954. /* Set up identity-mapping pagetable for EPT in real mode */
  2955. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  2956. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  2957. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  2958. r = kvm_write_guest_page(kvm, identity_map_pfn,
  2959. &tmp, i * sizeof(tmp), sizeof(tmp));
  2960. if (r < 0)
  2961. goto out;
  2962. }
  2963. kvm->arch.ept_identity_pagetable_done = true;
  2964. ret = 1;
  2965. out:
  2966. srcu_read_unlock(&kvm->srcu, idx);
  2967. return ret;
  2968. }
  2969. static void seg_setup(int seg)
  2970. {
  2971. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2972. unsigned int ar;
  2973. vmcs_write16(sf->selector, 0);
  2974. vmcs_writel(sf->base, 0);
  2975. vmcs_write32(sf->limit, 0xffff);
  2976. if (enable_unrestricted_guest) {
  2977. ar = 0x93;
  2978. if (seg == VCPU_SREG_CS)
  2979. ar |= 0x08; /* code segment */
  2980. } else
  2981. ar = 0xf3;
  2982. vmcs_write32(sf->ar_bytes, ar);
  2983. }
  2984. static int alloc_apic_access_page(struct kvm *kvm)
  2985. {
  2986. struct kvm_userspace_memory_region kvm_userspace_mem;
  2987. int r = 0;
  2988. mutex_lock(&kvm->slots_lock);
  2989. if (kvm->arch.apic_access_page)
  2990. goto out;
  2991. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  2992. kvm_userspace_mem.flags = 0;
  2993. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  2994. kvm_userspace_mem.memory_size = PAGE_SIZE;
  2995. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2996. if (r)
  2997. goto out;
  2998. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  2999. out:
  3000. mutex_unlock(&kvm->slots_lock);
  3001. return r;
  3002. }
  3003. static int alloc_identity_pagetable(struct kvm *kvm)
  3004. {
  3005. struct kvm_userspace_memory_region kvm_userspace_mem;
  3006. int r = 0;
  3007. mutex_lock(&kvm->slots_lock);
  3008. if (kvm->arch.ept_identity_pagetable)
  3009. goto out;
  3010. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  3011. kvm_userspace_mem.flags = 0;
  3012. kvm_userspace_mem.guest_phys_addr =
  3013. kvm->arch.ept_identity_map_addr;
  3014. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3015. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  3016. if (r)
  3017. goto out;
  3018. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  3019. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  3020. out:
  3021. mutex_unlock(&kvm->slots_lock);
  3022. return r;
  3023. }
  3024. static void allocate_vpid(struct vcpu_vmx *vmx)
  3025. {
  3026. int vpid;
  3027. vmx->vpid = 0;
  3028. if (!enable_vpid)
  3029. return;
  3030. spin_lock(&vmx_vpid_lock);
  3031. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  3032. if (vpid < VMX_NR_VPIDS) {
  3033. vmx->vpid = vpid;
  3034. __set_bit(vpid, vmx_vpid_bitmap);
  3035. }
  3036. spin_unlock(&vmx_vpid_lock);
  3037. }
  3038. static void free_vpid(struct vcpu_vmx *vmx)
  3039. {
  3040. if (!enable_vpid)
  3041. return;
  3042. spin_lock(&vmx_vpid_lock);
  3043. if (vmx->vpid != 0)
  3044. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3045. spin_unlock(&vmx_vpid_lock);
  3046. }
  3047. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  3048. {
  3049. int f = sizeof(unsigned long);
  3050. if (!cpu_has_vmx_msr_bitmap())
  3051. return;
  3052. /*
  3053. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  3054. * have the write-low and read-high bitmap offsets the wrong way round.
  3055. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  3056. */
  3057. if (msr <= 0x1fff) {
  3058. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  3059. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  3060. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  3061. msr &= 0x1fff;
  3062. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  3063. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  3064. }
  3065. }
  3066. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  3067. {
  3068. if (!longmode_only)
  3069. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  3070. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  3071. }
  3072. /*
  3073. * Set up the vmcs's constant host-state fields, i.e., host-state fields that
  3074. * will not change in the lifetime of the guest.
  3075. * Note that host-state that does change is set elsewhere. E.g., host-state
  3076. * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
  3077. */
  3078. static void vmx_set_constant_host_state(void)
  3079. {
  3080. u32 low32, high32;
  3081. unsigned long tmpl;
  3082. struct desc_ptr dt;
  3083. vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
  3084. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  3085. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  3086. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  3087. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3088. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3089. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3090. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  3091. native_store_idt(&dt);
  3092. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  3093. asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
  3094. vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
  3095. rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
  3096. vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
  3097. rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
  3098. vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
  3099. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  3100. rdmsr(MSR_IA32_CR_PAT, low32, high32);
  3101. vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
  3102. }
  3103. }
  3104. static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
  3105. {
  3106. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  3107. if (enable_ept)
  3108. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  3109. if (is_guest_mode(&vmx->vcpu))
  3110. vmx->vcpu.arch.cr4_guest_owned_bits &=
  3111. ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
  3112. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  3113. }
  3114. static u32 vmx_exec_control(struct vcpu_vmx *vmx)
  3115. {
  3116. u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
  3117. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  3118. exec_control &= ~CPU_BASED_TPR_SHADOW;
  3119. #ifdef CONFIG_X86_64
  3120. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  3121. CPU_BASED_CR8_LOAD_EXITING;
  3122. #endif
  3123. }
  3124. if (!enable_ept)
  3125. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  3126. CPU_BASED_CR3_LOAD_EXITING |
  3127. CPU_BASED_INVLPG_EXITING;
  3128. return exec_control;
  3129. }
  3130. static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
  3131. {
  3132. u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  3133. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3134. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  3135. if (vmx->vpid == 0)
  3136. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  3137. if (!enable_ept) {
  3138. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  3139. enable_unrestricted_guest = 0;
  3140. }
  3141. if (!enable_unrestricted_guest)
  3142. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  3143. if (!ple_gap)
  3144. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  3145. return exec_control;
  3146. }
  3147. static void ept_set_mmio_spte_mask(void)
  3148. {
  3149. /*
  3150. * EPT Misconfigurations can be generated if the value of bits 2:0
  3151. * of an EPT paging-structure entry is 110b (write/execute).
  3152. * Also, magic bits (0xffull << 49) is set to quickly identify mmio
  3153. * spte.
  3154. */
  3155. kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
  3156. }
  3157. /*
  3158. * Sets up the vmcs for emulated real mode.
  3159. */
  3160. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  3161. {
  3162. #ifdef CONFIG_X86_64
  3163. unsigned long a;
  3164. #endif
  3165. int i;
  3166. /* I/O */
  3167. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  3168. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  3169. if (cpu_has_vmx_msr_bitmap())
  3170. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  3171. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  3172. /* Control */
  3173. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  3174. vmcs_config.pin_based_exec_ctrl);
  3175. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
  3176. if (cpu_has_secondary_exec_ctrls()) {
  3177. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3178. vmx_secondary_exec_control(vmx));
  3179. }
  3180. if (ple_gap) {
  3181. vmcs_write32(PLE_GAP, ple_gap);
  3182. vmcs_write32(PLE_WINDOW, ple_window);
  3183. }
  3184. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  3185. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  3186. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  3187. vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
  3188. vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
  3189. vmx_set_constant_host_state();
  3190. #ifdef CONFIG_X86_64
  3191. rdmsrl(MSR_FS_BASE, a);
  3192. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  3193. rdmsrl(MSR_GS_BASE, a);
  3194. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  3195. #else
  3196. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  3197. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  3198. #endif
  3199. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  3200. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  3201. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  3202. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  3203. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  3204. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  3205. u32 msr_low, msr_high;
  3206. u64 host_pat;
  3207. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  3208. host_pat = msr_low | ((u64) msr_high << 32);
  3209. /* Write the default value follow host pat */
  3210. vmcs_write64(GUEST_IA32_PAT, host_pat);
  3211. /* Keep arch.pat sync with GUEST_IA32_PAT */
  3212. vmx->vcpu.arch.pat = host_pat;
  3213. }
  3214. for (i = 0; i < NR_VMX_MSR; ++i) {
  3215. u32 index = vmx_msr_index[i];
  3216. u32 data_low, data_high;
  3217. int j = vmx->nmsrs;
  3218. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  3219. continue;
  3220. if (wrmsr_safe(index, data_low, data_high) < 0)
  3221. continue;
  3222. vmx->guest_msrs[j].index = i;
  3223. vmx->guest_msrs[j].data = 0;
  3224. vmx->guest_msrs[j].mask = -1ull;
  3225. ++vmx->nmsrs;
  3226. }
  3227. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  3228. /* 22.2.1, 20.8.1 */
  3229. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  3230. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  3231. set_cr4_guest_host_mask(vmx);
  3232. kvm_write_tsc(&vmx->vcpu, 0);
  3233. return 0;
  3234. }
  3235. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  3236. {
  3237. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3238. u64 msr;
  3239. int ret;
  3240. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  3241. vmx->rmode.vm86_active = 0;
  3242. vmx->soft_vnmi_blocked = 0;
  3243. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  3244. kvm_set_cr8(&vmx->vcpu, 0);
  3245. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  3246. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3247. msr |= MSR_IA32_APICBASE_BSP;
  3248. kvm_set_apic_base(&vmx->vcpu, msr);
  3249. ret = fx_init(&vmx->vcpu);
  3250. if (ret != 0)
  3251. goto out;
  3252. vmx_segment_cache_clear(vmx);
  3253. seg_setup(VCPU_SREG_CS);
  3254. /*
  3255. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  3256. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  3257. */
  3258. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  3259. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  3260. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  3261. } else {
  3262. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  3263. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  3264. }
  3265. seg_setup(VCPU_SREG_DS);
  3266. seg_setup(VCPU_SREG_ES);
  3267. seg_setup(VCPU_SREG_FS);
  3268. seg_setup(VCPU_SREG_GS);
  3269. seg_setup(VCPU_SREG_SS);
  3270. vmcs_write16(GUEST_TR_SELECTOR, 0);
  3271. vmcs_writel(GUEST_TR_BASE, 0);
  3272. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  3273. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  3274. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  3275. vmcs_writel(GUEST_LDTR_BASE, 0);
  3276. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  3277. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  3278. vmcs_write32(GUEST_SYSENTER_CS, 0);
  3279. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  3280. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  3281. vmcs_writel(GUEST_RFLAGS, 0x02);
  3282. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3283. kvm_rip_write(vcpu, 0xfff0);
  3284. else
  3285. kvm_rip_write(vcpu, 0);
  3286. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  3287. vmcs_writel(GUEST_DR7, 0x400);
  3288. vmcs_writel(GUEST_GDTR_BASE, 0);
  3289. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  3290. vmcs_writel(GUEST_IDTR_BASE, 0);
  3291. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  3292. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  3293. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  3294. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  3295. /* Special registers */
  3296. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  3297. setup_msrs(vmx);
  3298. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  3299. if (cpu_has_vmx_tpr_shadow()) {
  3300. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  3301. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  3302. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  3303. __pa(vmx->vcpu.arch.apic->regs));
  3304. vmcs_write32(TPR_THRESHOLD, 0);
  3305. }
  3306. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3307. vmcs_write64(APIC_ACCESS_ADDR,
  3308. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  3309. if (vmx->vpid != 0)
  3310. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  3311. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  3312. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  3313. vmx_set_cr4(&vmx->vcpu, 0);
  3314. vmx_set_efer(&vmx->vcpu, 0);
  3315. vmx_fpu_activate(&vmx->vcpu);
  3316. update_exception_bitmap(&vmx->vcpu);
  3317. vpid_sync_context(vmx);
  3318. ret = 0;
  3319. /* HACK: Don't enable emulation on guest boot/reset */
  3320. vmx->emulation_required = 0;
  3321. out:
  3322. return ret;
  3323. }
  3324. /*
  3325. * In nested virtualization, check if L1 asked to exit on external interrupts.
  3326. * For most existing hypervisors, this will always return true.
  3327. */
  3328. static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
  3329. {
  3330. return get_vmcs12(vcpu)->pin_based_vm_exec_control &
  3331. PIN_BASED_EXT_INTR_MASK;
  3332. }
  3333. static void enable_irq_window(struct kvm_vcpu *vcpu)
  3334. {
  3335. u32 cpu_based_vm_exec_control;
  3336. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
  3337. /* We can get here when nested_run_pending caused
  3338. * vmx_interrupt_allowed() to return false. In this case, do
  3339. * nothing - the interrupt will be injected later.
  3340. */
  3341. return;
  3342. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3343. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  3344. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3345. }
  3346. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  3347. {
  3348. u32 cpu_based_vm_exec_control;
  3349. if (!cpu_has_virtual_nmis()) {
  3350. enable_irq_window(vcpu);
  3351. return;
  3352. }
  3353. if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
  3354. enable_irq_window(vcpu);
  3355. return;
  3356. }
  3357. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3358. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  3359. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3360. }
  3361. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  3362. {
  3363. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3364. uint32_t intr;
  3365. int irq = vcpu->arch.interrupt.nr;
  3366. trace_kvm_inj_virq(irq);
  3367. ++vcpu->stat.irq_injections;
  3368. if (vmx->rmode.vm86_active) {
  3369. int inc_eip = 0;
  3370. if (vcpu->arch.interrupt.soft)
  3371. inc_eip = vcpu->arch.event_exit_inst_len;
  3372. if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
  3373. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3374. return;
  3375. }
  3376. intr = irq | INTR_INFO_VALID_MASK;
  3377. if (vcpu->arch.interrupt.soft) {
  3378. intr |= INTR_TYPE_SOFT_INTR;
  3379. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  3380. vmx->vcpu.arch.event_exit_inst_len);
  3381. } else
  3382. intr |= INTR_TYPE_EXT_INTR;
  3383. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  3384. vmx_clear_hlt(vcpu);
  3385. }
  3386. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  3387. {
  3388. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3389. if (is_guest_mode(vcpu))
  3390. return;
  3391. if (!cpu_has_virtual_nmis()) {
  3392. /*
  3393. * Tracking the NMI-blocked state in software is built upon
  3394. * finding the next open IRQ window. This, in turn, depends on
  3395. * well-behaving guests: They have to keep IRQs disabled at
  3396. * least as long as the NMI handler runs. Otherwise we may
  3397. * cause NMI nesting, maybe breaking the guest. But as this is
  3398. * highly unlikely, we can live with the residual risk.
  3399. */
  3400. vmx->soft_vnmi_blocked = 1;
  3401. vmx->vnmi_blocked_time = 0;
  3402. }
  3403. ++vcpu->stat.nmi_injections;
  3404. vmx->nmi_known_unmasked = false;
  3405. if (vmx->rmode.vm86_active) {
  3406. if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
  3407. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3408. return;
  3409. }
  3410. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  3411. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  3412. vmx_clear_hlt(vcpu);
  3413. }
  3414. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  3415. {
  3416. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  3417. return 0;
  3418. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3419. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
  3420. | GUEST_INTR_STATE_NMI));
  3421. }
  3422. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  3423. {
  3424. if (!cpu_has_virtual_nmis())
  3425. return to_vmx(vcpu)->soft_vnmi_blocked;
  3426. if (to_vmx(vcpu)->nmi_known_unmasked)
  3427. return false;
  3428. return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
  3429. }
  3430. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  3431. {
  3432. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3433. if (!cpu_has_virtual_nmis()) {
  3434. if (vmx->soft_vnmi_blocked != masked) {
  3435. vmx->soft_vnmi_blocked = masked;
  3436. vmx->vnmi_blocked_time = 0;
  3437. }
  3438. } else {
  3439. vmx->nmi_known_unmasked = !masked;
  3440. if (masked)
  3441. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3442. GUEST_INTR_STATE_NMI);
  3443. else
  3444. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3445. GUEST_INTR_STATE_NMI);
  3446. }
  3447. }
  3448. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  3449. {
  3450. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
  3451. struct vmcs12 *vmcs12;
  3452. if (to_vmx(vcpu)->nested.nested_run_pending)
  3453. return 0;
  3454. nested_vmx_vmexit(vcpu);
  3455. vmcs12 = get_vmcs12(vcpu);
  3456. vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
  3457. vmcs12->vm_exit_intr_info = 0;
  3458. /* fall through to normal code, but now in L1, not L2 */
  3459. }
  3460. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  3461. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3462. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  3463. }
  3464. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  3465. {
  3466. int ret;
  3467. struct kvm_userspace_memory_region tss_mem = {
  3468. .slot = TSS_PRIVATE_MEMSLOT,
  3469. .guest_phys_addr = addr,
  3470. .memory_size = PAGE_SIZE * 3,
  3471. .flags = 0,
  3472. };
  3473. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  3474. if (ret)
  3475. return ret;
  3476. kvm->arch.tss_addr = addr;
  3477. if (!init_rmode_tss(kvm))
  3478. return -ENOMEM;
  3479. return 0;
  3480. }
  3481. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  3482. int vec, u32 err_code)
  3483. {
  3484. /*
  3485. * Instruction with address size override prefix opcode 0x67
  3486. * Cause the #SS fault with 0 error code in VM86 mode.
  3487. */
  3488. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  3489. if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
  3490. return 1;
  3491. /*
  3492. * Forward all other exceptions that are valid in real mode.
  3493. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  3494. * the required debugging infrastructure rework.
  3495. */
  3496. switch (vec) {
  3497. case DB_VECTOR:
  3498. if (vcpu->guest_debug &
  3499. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  3500. return 0;
  3501. kvm_queue_exception(vcpu, vec);
  3502. return 1;
  3503. case BP_VECTOR:
  3504. /*
  3505. * Update instruction length as we may reinject the exception
  3506. * from user space while in guest debugging mode.
  3507. */
  3508. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  3509. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3510. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  3511. return 0;
  3512. /* fall through */
  3513. case DE_VECTOR:
  3514. case OF_VECTOR:
  3515. case BR_VECTOR:
  3516. case UD_VECTOR:
  3517. case DF_VECTOR:
  3518. case SS_VECTOR:
  3519. case GP_VECTOR:
  3520. case MF_VECTOR:
  3521. kvm_queue_exception(vcpu, vec);
  3522. return 1;
  3523. }
  3524. return 0;
  3525. }
  3526. /*
  3527. * Trigger machine check on the host. We assume all the MSRs are already set up
  3528. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  3529. * We pass a fake environment to the machine check handler because we want
  3530. * the guest to be always treated like user space, no matter what context
  3531. * it used internally.
  3532. */
  3533. static void kvm_machine_check(void)
  3534. {
  3535. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  3536. struct pt_regs regs = {
  3537. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  3538. .flags = X86_EFLAGS_IF,
  3539. };
  3540. do_machine_check(&regs, 0);
  3541. #endif
  3542. }
  3543. static int handle_machine_check(struct kvm_vcpu *vcpu)
  3544. {
  3545. /* already handled by vcpu_run */
  3546. return 1;
  3547. }
  3548. static int handle_exception(struct kvm_vcpu *vcpu)
  3549. {
  3550. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3551. struct kvm_run *kvm_run = vcpu->run;
  3552. u32 intr_info, ex_no, error_code;
  3553. unsigned long cr2, rip, dr6;
  3554. u32 vect_info;
  3555. enum emulation_result er;
  3556. vect_info = vmx->idt_vectoring_info;
  3557. intr_info = vmx->exit_intr_info;
  3558. if (is_machine_check(intr_info))
  3559. return handle_machine_check(vcpu);
  3560. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  3561. !is_page_fault(intr_info)) {
  3562. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3563. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  3564. vcpu->run->internal.ndata = 2;
  3565. vcpu->run->internal.data[0] = vect_info;
  3566. vcpu->run->internal.data[1] = intr_info;
  3567. return 0;
  3568. }
  3569. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  3570. return 1; /* already handled by vmx_vcpu_run() */
  3571. if (is_no_device(intr_info)) {
  3572. vmx_fpu_activate(vcpu);
  3573. return 1;
  3574. }
  3575. if (is_invalid_opcode(intr_info)) {
  3576. er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
  3577. if (er != EMULATE_DONE)
  3578. kvm_queue_exception(vcpu, UD_VECTOR);
  3579. return 1;
  3580. }
  3581. error_code = 0;
  3582. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  3583. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  3584. if (is_page_fault(intr_info)) {
  3585. /* EPT won't cause page fault directly */
  3586. BUG_ON(enable_ept);
  3587. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  3588. trace_kvm_page_fault(cr2, error_code);
  3589. if (kvm_event_needs_reinjection(vcpu))
  3590. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  3591. return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
  3592. }
  3593. if (vmx->rmode.vm86_active &&
  3594. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  3595. error_code)) {
  3596. if (vcpu->arch.halt_request) {
  3597. vcpu->arch.halt_request = 0;
  3598. return kvm_emulate_halt(vcpu);
  3599. }
  3600. return 1;
  3601. }
  3602. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  3603. switch (ex_no) {
  3604. case DB_VECTOR:
  3605. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  3606. if (!(vcpu->guest_debug &
  3607. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  3608. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  3609. kvm_queue_exception(vcpu, DB_VECTOR);
  3610. return 1;
  3611. }
  3612. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  3613. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  3614. /* fall through */
  3615. case BP_VECTOR:
  3616. /*
  3617. * Update instruction length as we may reinject #BP from
  3618. * user space while in guest debugging mode. Reading it for
  3619. * #DB as well causes no harm, it is not used in that case.
  3620. */
  3621. vmx->vcpu.arch.event_exit_inst_len =
  3622. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3623. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  3624. rip = kvm_rip_read(vcpu);
  3625. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  3626. kvm_run->debug.arch.exception = ex_no;
  3627. break;
  3628. default:
  3629. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  3630. kvm_run->ex.exception = ex_no;
  3631. kvm_run->ex.error_code = error_code;
  3632. break;
  3633. }
  3634. return 0;
  3635. }
  3636. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  3637. {
  3638. ++vcpu->stat.irq_exits;
  3639. return 1;
  3640. }
  3641. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  3642. {
  3643. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3644. return 0;
  3645. }
  3646. static int handle_io(struct kvm_vcpu *vcpu)
  3647. {
  3648. unsigned long exit_qualification;
  3649. int size, in, string;
  3650. unsigned port;
  3651. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3652. string = (exit_qualification & 16) != 0;
  3653. in = (exit_qualification & 8) != 0;
  3654. ++vcpu->stat.io_exits;
  3655. if (string || in)
  3656. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3657. port = exit_qualification >> 16;
  3658. size = (exit_qualification & 7) + 1;
  3659. skip_emulated_instruction(vcpu);
  3660. return kvm_fast_pio_out(vcpu, size, port);
  3661. }
  3662. static void
  3663. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  3664. {
  3665. /*
  3666. * Patch in the VMCALL instruction:
  3667. */
  3668. hypercall[0] = 0x0f;
  3669. hypercall[1] = 0x01;
  3670. hypercall[2] = 0xc1;
  3671. }
  3672. /* called to set cr0 as approriate for a mov-to-cr0 exit. */
  3673. static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
  3674. {
  3675. if (to_vmx(vcpu)->nested.vmxon &&
  3676. ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
  3677. return 1;
  3678. if (is_guest_mode(vcpu)) {
  3679. /*
  3680. * We get here when L2 changed cr0 in a way that did not change
  3681. * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
  3682. * but did change L0 shadowed bits. This can currently happen
  3683. * with the TS bit: L0 may want to leave TS on (for lazy fpu
  3684. * loading) while pretending to allow the guest to change it.
  3685. */
  3686. if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
  3687. (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
  3688. return 1;
  3689. vmcs_writel(CR0_READ_SHADOW, val);
  3690. return 0;
  3691. } else
  3692. return kvm_set_cr0(vcpu, val);
  3693. }
  3694. static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
  3695. {
  3696. if (is_guest_mode(vcpu)) {
  3697. if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
  3698. (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
  3699. return 1;
  3700. vmcs_writel(CR4_READ_SHADOW, val);
  3701. return 0;
  3702. } else
  3703. return kvm_set_cr4(vcpu, val);
  3704. }
  3705. /* called to set cr0 as approriate for clts instruction exit. */
  3706. static void handle_clts(struct kvm_vcpu *vcpu)
  3707. {
  3708. if (is_guest_mode(vcpu)) {
  3709. /*
  3710. * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
  3711. * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
  3712. * just pretend it's off (also in arch.cr0 for fpu_activate).
  3713. */
  3714. vmcs_writel(CR0_READ_SHADOW,
  3715. vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
  3716. vcpu->arch.cr0 &= ~X86_CR0_TS;
  3717. } else
  3718. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3719. }
  3720. static int handle_cr(struct kvm_vcpu *vcpu)
  3721. {
  3722. unsigned long exit_qualification, val;
  3723. int cr;
  3724. int reg;
  3725. int err;
  3726. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3727. cr = exit_qualification & 15;
  3728. reg = (exit_qualification >> 8) & 15;
  3729. switch ((exit_qualification >> 4) & 3) {
  3730. case 0: /* mov to cr */
  3731. val = kvm_register_read(vcpu, reg);
  3732. trace_kvm_cr_write(cr, val);
  3733. switch (cr) {
  3734. case 0:
  3735. err = handle_set_cr0(vcpu, val);
  3736. kvm_complete_insn_gp(vcpu, err);
  3737. return 1;
  3738. case 3:
  3739. err = kvm_set_cr3(vcpu, val);
  3740. kvm_complete_insn_gp(vcpu, err);
  3741. return 1;
  3742. case 4:
  3743. err = handle_set_cr4(vcpu, val);
  3744. kvm_complete_insn_gp(vcpu, err);
  3745. return 1;
  3746. case 8: {
  3747. u8 cr8_prev = kvm_get_cr8(vcpu);
  3748. u8 cr8 = kvm_register_read(vcpu, reg);
  3749. err = kvm_set_cr8(vcpu, cr8);
  3750. kvm_complete_insn_gp(vcpu, err);
  3751. if (irqchip_in_kernel(vcpu->kvm))
  3752. return 1;
  3753. if (cr8_prev <= cr8)
  3754. return 1;
  3755. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  3756. return 0;
  3757. }
  3758. };
  3759. break;
  3760. case 2: /* clts */
  3761. handle_clts(vcpu);
  3762. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  3763. skip_emulated_instruction(vcpu);
  3764. vmx_fpu_activate(vcpu);
  3765. return 1;
  3766. case 1: /*mov from cr*/
  3767. switch (cr) {
  3768. case 3:
  3769. val = kvm_read_cr3(vcpu);
  3770. kvm_register_write(vcpu, reg, val);
  3771. trace_kvm_cr_read(cr, val);
  3772. skip_emulated_instruction(vcpu);
  3773. return 1;
  3774. case 8:
  3775. val = kvm_get_cr8(vcpu);
  3776. kvm_register_write(vcpu, reg, val);
  3777. trace_kvm_cr_read(cr, val);
  3778. skip_emulated_instruction(vcpu);
  3779. return 1;
  3780. }
  3781. break;
  3782. case 3: /* lmsw */
  3783. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  3784. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  3785. kvm_lmsw(vcpu, val);
  3786. skip_emulated_instruction(vcpu);
  3787. return 1;
  3788. default:
  3789. break;
  3790. }
  3791. vcpu->run->exit_reason = 0;
  3792. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  3793. (int)(exit_qualification >> 4) & 3, cr);
  3794. return 0;
  3795. }
  3796. static int handle_dr(struct kvm_vcpu *vcpu)
  3797. {
  3798. unsigned long exit_qualification;
  3799. int dr, reg;
  3800. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  3801. if (!kvm_require_cpl(vcpu, 0))
  3802. return 1;
  3803. dr = vmcs_readl(GUEST_DR7);
  3804. if (dr & DR7_GD) {
  3805. /*
  3806. * As the vm-exit takes precedence over the debug trap, we
  3807. * need to emulate the latter, either for the host or the
  3808. * guest debugging itself.
  3809. */
  3810. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  3811. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  3812. vcpu->run->debug.arch.dr7 = dr;
  3813. vcpu->run->debug.arch.pc =
  3814. vmcs_readl(GUEST_CS_BASE) +
  3815. vmcs_readl(GUEST_RIP);
  3816. vcpu->run->debug.arch.exception = DB_VECTOR;
  3817. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  3818. return 0;
  3819. } else {
  3820. vcpu->arch.dr7 &= ~DR7_GD;
  3821. vcpu->arch.dr6 |= DR6_BD;
  3822. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  3823. kvm_queue_exception(vcpu, DB_VECTOR);
  3824. return 1;
  3825. }
  3826. }
  3827. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3828. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  3829. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  3830. if (exit_qualification & TYPE_MOV_FROM_DR) {
  3831. unsigned long val;
  3832. if (!kvm_get_dr(vcpu, dr, &val))
  3833. kvm_register_write(vcpu, reg, val);
  3834. } else
  3835. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  3836. skip_emulated_instruction(vcpu);
  3837. return 1;
  3838. }
  3839. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  3840. {
  3841. vmcs_writel(GUEST_DR7, val);
  3842. }
  3843. static int handle_cpuid(struct kvm_vcpu *vcpu)
  3844. {
  3845. kvm_emulate_cpuid(vcpu);
  3846. return 1;
  3847. }
  3848. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  3849. {
  3850. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  3851. u64 data;
  3852. if (vmx_get_msr(vcpu, ecx, &data)) {
  3853. trace_kvm_msr_read_ex(ecx);
  3854. kvm_inject_gp(vcpu, 0);
  3855. return 1;
  3856. }
  3857. trace_kvm_msr_read(ecx, data);
  3858. /* FIXME: handling of bits 32:63 of rax, rdx */
  3859. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  3860. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  3861. skip_emulated_instruction(vcpu);
  3862. return 1;
  3863. }
  3864. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  3865. {
  3866. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  3867. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  3868. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  3869. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  3870. trace_kvm_msr_write_ex(ecx, data);
  3871. kvm_inject_gp(vcpu, 0);
  3872. return 1;
  3873. }
  3874. trace_kvm_msr_write(ecx, data);
  3875. skip_emulated_instruction(vcpu);
  3876. return 1;
  3877. }
  3878. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  3879. {
  3880. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3881. return 1;
  3882. }
  3883. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  3884. {
  3885. u32 cpu_based_vm_exec_control;
  3886. /* clear pending irq */
  3887. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3888. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  3889. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3890. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3891. ++vcpu->stat.irq_window_exits;
  3892. /*
  3893. * If the user space waits to inject interrupts, exit as soon as
  3894. * possible
  3895. */
  3896. if (!irqchip_in_kernel(vcpu->kvm) &&
  3897. vcpu->run->request_interrupt_window &&
  3898. !kvm_cpu_has_interrupt(vcpu)) {
  3899. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  3900. return 0;
  3901. }
  3902. return 1;
  3903. }
  3904. static int handle_halt(struct kvm_vcpu *vcpu)
  3905. {
  3906. skip_emulated_instruction(vcpu);
  3907. return kvm_emulate_halt(vcpu);
  3908. }
  3909. static int handle_vmcall(struct kvm_vcpu *vcpu)
  3910. {
  3911. skip_emulated_instruction(vcpu);
  3912. kvm_emulate_hypercall(vcpu);
  3913. return 1;
  3914. }
  3915. static int handle_invd(struct kvm_vcpu *vcpu)
  3916. {
  3917. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3918. }
  3919. static int handle_invlpg(struct kvm_vcpu *vcpu)
  3920. {
  3921. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3922. kvm_mmu_invlpg(vcpu, exit_qualification);
  3923. skip_emulated_instruction(vcpu);
  3924. return 1;
  3925. }
  3926. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  3927. {
  3928. skip_emulated_instruction(vcpu);
  3929. kvm_emulate_wbinvd(vcpu);
  3930. return 1;
  3931. }
  3932. static int handle_xsetbv(struct kvm_vcpu *vcpu)
  3933. {
  3934. u64 new_bv = kvm_read_edx_eax(vcpu);
  3935. u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3936. if (kvm_set_xcr(vcpu, index, new_bv) == 0)
  3937. skip_emulated_instruction(vcpu);
  3938. return 1;
  3939. }
  3940. static int handle_apic_access(struct kvm_vcpu *vcpu)
  3941. {
  3942. if (likely(fasteoi)) {
  3943. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3944. int access_type, offset;
  3945. access_type = exit_qualification & APIC_ACCESS_TYPE;
  3946. offset = exit_qualification & APIC_ACCESS_OFFSET;
  3947. /*
  3948. * Sane guest uses MOV to write EOI, with written value
  3949. * not cared. So make a short-circuit here by avoiding
  3950. * heavy instruction emulation.
  3951. */
  3952. if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
  3953. (offset == APIC_EOI)) {
  3954. kvm_lapic_set_eoi(vcpu);
  3955. skip_emulated_instruction(vcpu);
  3956. return 1;
  3957. }
  3958. }
  3959. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3960. }
  3961. static int handle_task_switch(struct kvm_vcpu *vcpu)
  3962. {
  3963. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3964. unsigned long exit_qualification;
  3965. bool has_error_code = false;
  3966. u32 error_code = 0;
  3967. u16 tss_selector;
  3968. int reason, type, idt_v;
  3969. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  3970. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  3971. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3972. reason = (u32)exit_qualification >> 30;
  3973. if (reason == TASK_SWITCH_GATE && idt_v) {
  3974. switch (type) {
  3975. case INTR_TYPE_NMI_INTR:
  3976. vcpu->arch.nmi_injected = false;
  3977. vmx_set_nmi_mask(vcpu, true);
  3978. break;
  3979. case INTR_TYPE_EXT_INTR:
  3980. case INTR_TYPE_SOFT_INTR:
  3981. kvm_clear_interrupt_queue(vcpu);
  3982. break;
  3983. case INTR_TYPE_HARD_EXCEPTION:
  3984. if (vmx->idt_vectoring_info &
  3985. VECTORING_INFO_DELIVER_CODE_MASK) {
  3986. has_error_code = true;
  3987. error_code =
  3988. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  3989. }
  3990. /* fall through */
  3991. case INTR_TYPE_SOFT_EXCEPTION:
  3992. kvm_clear_exception_queue(vcpu);
  3993. break;
  3994. default:
  3995. break;
  3996. }
  3997. }
  3998. tss_selector = exit_qualification;
  3999. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  4000. type != INTR_TYPE_EXT_INTR &&
  4001. type != INTR_TYPE_NMI_INTR))
  4002. skip_emulated_instruction(vcpu);
  4003. if (kvm_task_switch(vcpu, tss_selector, reason,
  4004. has_error_code, error_code) == EMULATE_FAIL) {
  4005. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4006. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4007. vcpu->run->internal.ndata = 0;
  4008. return 0;
  4009. }
  4010. /* clear all local breakpoint enable flags */
  4011. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  4012. /*
  4013. * TODO: What about debug traps on tss switch?
  4014. * Are we supposed to inject them and update dr6?
  4015. */
  4016. return 1;
  4017. }
  4018. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  4019. {
  4020. unsigned long exit_qualification;
  4021. gpa_t gpa;
  4022. int gla_validity;
  4023. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4024. if (exit_qualification & (1 << 6)) {
  4025. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  4026. return -EINVAL;
  4027. }
  4028. gla_validity = (exit_qualification >> 7) & 0x3;
  4029. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  4030. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  4031. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  4032. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  4033. vmcs_readl(GUEST_LINEAR_ADDRESS));
  4034. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  4035. (long unsigned int)exit_qualification);
  4036. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4037. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  4038. return 0;
  4039. }
  4040. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4041. trace_kvm_page_fault(gpa, exit_qualification);
  4042. return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
  4043. }
  4044. static u64 ept_rsvd_mask(u64 spte, int level)
  4045. {
  4046. int i;
  4047. u64 mask = 0;
  4048. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  4049. mask |= (1ULL << i);
  4050. if (level > 2)
  4051. /* bits 7:3 reserved */
  4052. mask |= 0xf8;
  4053. else if (level == 2) {
  4054. if (spte & (1ULL << 7))
  4055. /* 2MB ref, bits 20:12 reserved */
  4056. mask |= 0x1ff000;
  4057. else
  4058. /* bits 6:3 reserved */
  4059. mask |= 0x78;
  4060. }
  4061. return mask;
  4062. }
  4063. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  4064. int level)
  4065. {
  4066. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  4067. /* 010b (write-only) */
  4068. WARN_ON((spte & 0x7) == 0x2);
  4069. /* 110b (write/execute) */
  4070. WARN_ON((spte & 0x7) == 0x6);
  4071. /* 100b (execute-only) and value not supported by logical processor */
  4072. if (!cpu_has_vmx_ept_execute_only())
  4073. WARN_ON((spte & 0x7) == 0x4);
  4074. /* not 000b */
  4075. if ((spte & 0x7)) {
  4076. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  4077. if (rsvd_bits != 0) {
  4078. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  4079. __func__, rsvd_bits);
  4080. WARN_ON(1);
  4081. }
  4082. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  4083. u64 ept_mem_type = (spte & 0x38) >> 3;
  4084. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  4085. ept_mem_type == 7) {
  4086. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  4087. __func__, ept_mem_type);
  4088. WARN_ON(1);
  4089. }
  4090. }
  4091. }
  4092. }
  4093. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  4094. {
  4095. u64 sptes[4];
  4096. int nr_sptes, i, ret;
  4097. gpa_t gpa;
  4098. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4099. ret = handle_mmio_page_fault_common(vcpu, gpa, true);
  4100. if (likely(ret == 1))
  4101. return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
  4102. EMULATE_DONE;
  4103. if (unlikely(!ret))
  4104. return 1;
  4105. /* It is the real ept misconfig */
  4106. printk(KERN_ERR "EPT: Misconfiguration.\n");
  4107. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  4108. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  4109. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  4110. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  4111. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4112. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  4113. return 0;
  4114. }
  4115. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  4116. {
  4117. u32 cpu_based_vm_exec_control;
  4118. /* clear pending NMI */
  4119. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4120. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  4121. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4122. ++vcpu->stat.nmi_window_exits;
  4123. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4124. return 1;
  4125. }
  4126. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  4127. {
  4128. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4129. enum emulation_result err = EMULATE_DONE;
  4130. int ret = 1;
  4131. u32 cpu_exec_ctrl;
  4132. bool intr_window_requested;
  4133. cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4134. intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
  4135. while (!guest_state_valid(vcpu)) {
  4136. if (intr_window_requested
  4137. && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
  4138. return handle_interrupt_window(&vmx->vcpu);
  4139. err = emulate_instruction(vcpu, 0);
  4140. if (err == EMULATE_DO_MMIO) {
  4141. ret = 0;
  4142. goto out;
  4143. }
  4144. if (err != EMULATE_DONE)
  4145. return 0;
  4146. if (signal_pending(current))
  4147. goto out;
  4148. if (need_resched())
  4149. schedule();
  4150. }
  4151. vmx->emulation_required = 0;
  4152. out:
  4153. return ret;
  4154. }
  4155. /*
  4156. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  4157. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  4158. */
  4159. static int handle_pause(struct kvm_vcpu *vcpu)
  4160. {
  4161. skip_emulated_instruction(vcpu);
  4162. kvm_vcpu_on_spin(vcpu);
  4163. return 1;
  4164. }
  4165. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  4166. {
  4167. kvm_queue_exception(vcpu, UD_VECTOR);
  4168. return 1;
  4169. }
  4170. /*
  4171. * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
  4172. * We could reuse a single VMCS for all the L2 guests, but we also want the
  4173. * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
  4174. * allows keeping them loaded on the processor, and in the future will allow
  4175. * optimizations where prepare_vmcs02 doesn't need to set all the fields on
  4176. * every entry if they never change.
  4177. * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
  4178. * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
  4179. *
  4180. * The following functions allocate and free a vmcs02 in this pool.
  4181. */
  4182. /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
  4183. static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
  4184. {
  4185. struct vmcs02_list *item;
  4186. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4187. if (item->vmptr == vmx->nested.current_vmptr) {
  4188. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4189. return &item->vmcs02;
  4190. }
  4191. if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
  4192. /* Recycle the least recently used VMCS. */
  4193. item = list_entry(vmx->nested.vmcs02_pool.prev,
  4194. struct vmcs02_list, list);
  4195. item->vmptr = vmx->nested.current_vmptr;
  4196. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4197. return &item->vmcs02;
  4198. }
  4199. /* Create a new VMCS */
  4200. item = (struct vmcs02_list *)
  4201. kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
  4202. if (!item)
  4203. return NULL;
  4204. item->vmcs02.vmcs = alloc_vmcs();
  4205. if (!item->vmcs02.vmcs) {
  4206. kfree(item);
  4207. return NULL;
  4208. }
  4209. loaded_vmcs_init(&item->vmcs02);
  4210. item->vmptr = vmx->nested.current_vmptr;
  4211. list_add(&(item->list), &(vmx->nested.vmcs02_pool));
  4212. vmx->nested.vmcs02_num++;
  4213. return &item->vmcs02;
  4214. }
  4215. /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
  4216. static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
  4217. {
  4218. struct vmcs02_list *item;
  4219. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4220. if (item->vmptr == vmptr) {
  4221. free_loaded_vmcs(&item->vmcs02);
  4222. list_del(&item->list);
  4223. kfree(item);
  4224. vmx->nested.vmcs02_num--;
  4225. return;
  4226. }
  4227. }
  4228. /*
  4229. * Free all VMCSs saved for this vcpu, except the one pointed by
  4230. * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
  4231. * currently used, if running L2), and vmcs01 when running L2.
  4232. */
  4233. static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
  4234. {
  4235. struct vmcs02_list *item, *n;
  4236. list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
  4237. if (vmx->loaded_vmcs != &item->vmcs02)
  4238. free_loaded_vmcs(&item->vmcs02);
  4239. list_del(&item->list);
  4240. kfree(item);
  4241. }
  4242. vmx->nested.vmcs02_num = 0;
  4243. if (vmx->loaded_vmcs != &vmx->vmcs01)
  4244. free_loaded_vmcs(&vmx->vmcs01);
  4245. }
  4246. /*
  4247. * Emulate the VMXON instruction.
  4248. * Currently, we just remember that VMX is active, and do not save or even
  4249. * inspect the argument to VMXON (the so-called "VMXON pointer") because we
  4250. * do not currently need to store anything in that guest-allocated memory
  4251. * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
  4252. * argument is different from the VMXON pointer (which the spec says they do).
  4253. */
  4254. static int handle_vmon(struct kvm_vcpu *vcpu)
  4255. {
  4256. struct kvm_segment cs;
  4257. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4258. /* The Intel VMX Instruction Reference lists a bunch of bits that
  4259. * are prerequisite to running VMXON, most notably cr4.VMXE must be
  4260. * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
  4261. * Otherwise, we should fail with #UD. We test these now:
  4262. */
  4263. if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
  4264. !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
  4265. (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
  4266. kvm_queue_exception(vcpu, UD_VECTOR);
  4267. return 1;
  4268. }
  4269. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4270. if (is_long_mode(vcpu) && !cs.l) {
  4271. kvm_queue_exception(vcpu, UD_VECTOR);
  4272. return 1;
  4273. }
  4274. if (vmx_get_cpl(vcpu)) {
  4275. kvm_inject_gp(vcpu, 0);
  4276. return 1;
  4277. }
  4278. INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
  4279. vmx->nested.vmcs02_num = 0;
  4280. vmx->nested.vmxon = true;
  4281. skip_emulated_instruction(vcpu);
  4282. return 1;
  4283. }
  4284. /*
  4285. * Intel's VMX Instruction Reference specifies a common set of prerequisites
  4286. * for running VMX instructions (except VMXON, whose prerequisites are
  4287. * slightly different). It also specifies what exception to inject otherwise.
  4288. */
  4289. static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
  4290. {
  4291. struct kvm_segment cs;
  4292. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4293. if (!vmx->nested.vmxon) {
  4294. kvm_queue_exception(vcpu, UD_VECTOR);
  4295. return 0;
  4296. }
  4297. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4298. if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
  4299. (is_long_mode(vcpu) && !cs.l)) {
  4300. kvm_queue_exception(vcpu, UD_VECTOR);
  4301. return 0;
  4302. }
  4303. if (vmx_get_cpl(vcpu)) {
  4304. kvm_inject_gp(vcpu, 0);
  4305. return 0;
  4306. }
  4307. return 1;
  4308. }
  4309. /*
  4310. * Free whatever needs to be freed from vmx->nested when L1 goes down, or
  4311. * just stops using VMX.
  4312. */
  4313. static void free_nested(struct vcpu_vmx *vmx)
  4314. {
  4315. if (!vmx->nested.vmxon)
  4316. return;
  4317. vmx->nested.vmxon = false;
  4318. if (vmx->nested.current_vmptr != -1ull) {
  4319. kunmap(vmx->nested.current_vmcs12_page);
  4320. nested_release_page(vmx->nested.current_vmcs12_page);
  4321. vmx->nested.current_vmptr = -1ull;
  4322. vmx->nested.current_vmcs12 = NULL;
  4323. }
  4324. /* Unpin physical memory we referred to in current vmcs02 */
  4325. if (vmx->nested.apic_access_page) {
  4326. nested_release_page(vmx->nested.apic_access_page);
  4327. vmx->nested.apic_access_page = 0;
  4328. }
  4329. nested_free_all_saved_vmcss(vmx);
  4330. }
  4331. /* Emulate the VMXOFF instruction */
  4332. static int handle_vmoff(struct kvm_vcpu *vcpu)
  4333. {
  4334. if (!nested_vmx_check_permission(vcpu))
  4335. return 1;
  4336. free_nested(to_vmx(vcpu));
  4337. skip_emulated_instruction(vcpu);
  4338. return 1;
  4339. }
  4340. /*
  4341. * Decode the memory-address operand of a vmx instruction, as recorded on an
  4342. * exit caused by such an instruction (run by a guest hypervisor).
  4343. * On success, returns 0. When the operand is invalid, returns 1 and throws
  4344. * #UD or #GP.
  4345. */
  4346. static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
  4347. unsigned long exit_qualification,
  4348. u32 vmx_instruction_info, gva_t *ret)
  4349. {
  4350. /*
  4351. * According to Vol. 3B, "Information for VM Exits Due to Instruction
  4352. * Execution", on an exit, vmx_instruction_info holds most of the
  4353. * addressing components of the operand. Only the displacement part
  4354. * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
  4355. * For how an actual address is calculated from all these components,
  4356. * refer to Vol. 1, "Operand Addressing".
  4357. */
  4358. int scaling = vmx_instruction_info & 3;
  4359. int addr_size = (vmx_instruction_info >> 7) & 7;
  4360. bool is_reg = vmx_instruction_info & (1u << 10);
  4361. int seg_reg = (vmx_instruction_info >> 15) & 7;
  4362. int index_reg = (vmx_instruction_info >> 18) & 0xf;
  4363. bool index_is_valid = !(vmx_instruction_info & (1u << 22));
  4364. int base_reg = (vmx_instruction_info >> 23) & 0xf;
  4365. bool base_is_valid = !(vmx_instruction_info & (1u << 27));
  4366. if (is_reg) {
  4367. kvm_queue_exception(vcpu, UD_VECTOR);
  4368. return 1;
  4369. }
  4370. /* Addr = segment_base + offset */
  4371. /* offset = base + [index * scale] + displacement */
  4372. *ret = vmx_get_segment_base(vcpu, seg_reg);
  4373. if (base_is_valid)
  4374. *ret += kvm_register_read(vcpu, base_reg);
  4375. if (index_is_valid)
  4376. *ret += kvm_register_read(vcpu, index_reg)<<scaling;
  4377. *ret += exit_qualification; /* holds the displacement */
  4378. if (addr_size == 1) /* 32 bit */
  4379. *ret &= 0xffffffff;
  4380. /*
  4381. * TODO: throw #GP (and return 1) in various cases that the VM*
  4382. * instructions require it - e.g., offset beyond segment limit,
  4383. * unusable or unreadable/unwritable segment, non-canonical 64-bit
  4384. * address, and so on. Currently these are not checked.
  4385. */
  4386. return 0;
  4387. }
  4388. /*
  4389. * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
  4390. * set the success or error code of an emulated VMX instruction, as specified
  4391. * by Vol 2B, VMX Instruction Reference, "Conventions".
  4392. */
  4393. static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
  4394. {
  4395. vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
  4396. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4397. X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
  4398. }
  4399. static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
  4400. {
  4401. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4402. & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
  4403. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4404. | X86_EFLAGS_CF);
  4405. }
  4406. static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
  4407. u32 vm_instruction_error)
  4408. {
  4409. if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
  4410. /*
  4411. * failValid writes the error number to the current VMCS, which
  4412. * can't be done there isn't a current VMCS.
  4413. */
  4414. nested_vmx_failInvalid(vcpu);
  4415. return;
  4416. }
  4417. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4418. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4419. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4420. | X86_EFLAGS_ZF);
  4421. get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
  4422. }
  4423. /* Emulate the VMCLEAR instruction */
  4424. static int handle_vmclear(struct kvm_vcpu *vcpu)
  4425. {
  4426. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4427. gva_t gva;
  4428. gpa_t vmptr;
  4429. struct vmcs12 *vmcs12;
  4430. struct page *page;
  4431. struct x86_exception e;
  4432. if (!nested_vmx_check_permission(vcpu))
  4433. return 1;
  4434. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4435. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4436. return 1;
  4437. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4438. sizeof(vmptr), &e)) {
  4439. kvm_inject_page_fault(vcpu, &e);
  4440. return 1;
  4441. }
  4442. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4443. nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
  4444. skip_emulated_instruction(vcpu);
  4445. return 1;
  4446. }
  4447. if (vmptr == vmx->nested.current_vmptr) {
  4448. kunmap(vmx->nested.current_vmcs12_page);
  4449. nested_release_page(vmx->nested.current_vmcs12_page);
  4450. vmx->nested.current_vmptr = -1ull;
  4451. vmx->nested.current_vmcs12 = NULL;
  4452. }
  4453. page = nested_get_page(vcpu, vmptr);
  4454. if (page == NULL) {
  4455. /*
  4456. * For accurate processor emulation, VMCLEAR beyond available
  4457. * physical memory should do nothing at all. However, it is
  4458. * possible that a nested vmx bug, not a guest hypervisor bug,
  4459. * resulted in this case, so let's shut down before doing any
  4460. * more damage:
  4461. */
  4462. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  4463. return 1;
  4464. }
  4465. vmcs12 = kmap(page);
  4466. vmcs12->launch_state = 0;
  4467. kunmap(page);
  4468. nested_release_page(page);
  4469. nested_free_vmcs02(vmx, vmptr);
  4470. skip_emulated_instruction(vcpu);
  4471. nested_vmx_succeed(vcpu);
  4472. return 1;
  4473. }
  4474. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
  4475. /* Emulate the VMLAUNCH instruction */
  4476. static int handle_vmlaunch(struct kvm_vcpu *vcpu)
  4477. {
  4478. return nested_vmx_run(vcpu, true);
  4479. }
  4480. /* Emulate the VMRESUME instruction */
  4481. static int handle_vmresume(struct kvm_vcpu *vcpu)
  4482. {
  4483. return nested_vmx_run(vcpu, false);
  4484. }
  4485. enum vmcs_field_type {
  4486. VMCS_FIELD_TYPE_U16 = 0,
  4487. VMCS_FIELD_TYPE_U64 = 1,
  4488. VMCS_FIELD_TYPE_U32 = 2,
  4489. VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
  4490. };
  4491. static inline int vmcs_field_type(unsigned long field)
  4492. {
  4493. if (0x1 & field) /* the *_HIGH fields are all 32 bit */
  4494. return VMCS_FIELD_TYPE_U32;
  4495. return (field >> 13) & 0x3 ;
  4496. }
  4497. static inline int vmcs_field_readonly(unsigned long field)
  4498. {
  4499. return (((field >> 10) & 0x3) == 1);
  4500. }
  4501. /*
  4502. * Read a vmcs12 field. Since these can have varying lengths and we return
  4503. * one type, we chose the biggest type (u64) and zero-extend the return value
  4504. * to that size. Note that the caller, handle_vmread, might need to use only
  4505. * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
  4506. * 64-bit fields are to be returned).
  4507. */
  4508. static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
  4509. unsigned long field, u64 *ret)
  4510. {
  4511. short offset = vmcs_field_to_offset(field);
  4512. char *p;
  4513. if (offset < 0)
  4514. return 0;
  4515. p = ((char *)(get_vmcs12(vcpu))) + offset;
  4516. switch (vmcs_field_type(field)) {
  4517. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4518. *ret = *((natural_width *)p);
  4519. return 1;
  4520. case VMCS_FIELD_TYPE_U16:
  4521. *ret = *((u16 *)p);
  4522. return 1;
  4523. case VMCS_FIELD_TYPE_U32:
  4524. *ret = *((u32 *)p);
  4525. return 1;
  4526. case VMCS_FIELD_TYPE_U64:
  4527. *ret = *((u64 *)p);
  4528. return 1;
  4529. default:
  4530. return 0; /* can never happen. */
  4531. }
  4532. }
  4533. /*
  4534. * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
  4535. * used before) all generate the same failure when it is missing.
  4536. */
  4537. static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
  4538. {
  4539. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4540. if (vmx->nested.current_vmptr == -1ull) {
  4541. nested_vmx_failInvalid(vcpu);
  4542. skip_emulated_instruction(vcpu);
  4543. return 0;
  4544. }
  4545. return 1;
  4546. }
  4547. static int handle_vmread(struct kvm_vcpu *vcpu)
  4548. {
  4549. unsigned long field;
  4550. u64 field_value;
  4551. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4552. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4553. gva_t gva = 0;
  4554. if (!nested_vmx_check_permission(vcpu) ||
  4555. !nested_vmx_check_vmcs12(vcpu))
  4556. return 1;
  4557. /* Decode instruction info and find the field to read */
  4558. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4559. /* Read the field, zero-extended to a u64 field_value */
  4560. if (!vmcs12_read_any(vcpu, field, &field_value)) {
  4561. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4562. skip_emulated_instruction(vcpu);
  4563. return 1;
  4564. }
  4565. /*
  4566. * Now copy part of this value to register or memory, as requested.
  4567. * Note that the number of bits actually copied is 32 or 64 depending
  4568. * on the guest's mode (32 or 64 bit), not on the given field's length.
  4569. */
  4570. if (vmx_instruction_info & (1u << 10)) {
  4571. kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
  4572. field_value);
  4573. } else {
  4574. if (get_vmx_mem_address(vcpu, exit_qualification,
  4575. vmx_instruction_info, &gva))
  4576. return 1;
  4577. /* _system ok, as nested_vmx_check_permission verified cpl=0 */
  4578. kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
  4579. &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
  4580. }
  4581. nested_vmx_succeed(vcpu);
  4582. skip_emulated_instruction(vcpu);
  4583. return 1;
  4584. }
  4585. static int handle_vmwrite(struct kvm_vcpu *vcpu)
  4586. {
  4587. unsigned long field;
  4588. gva_t gva;
  4589. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4590. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4591. char *p;
  4592. short offset;
  4593. /* The value to write might be 32 or 64 bits, depending on L1's long
  4594. * mode, and eventually we need to write that into a field of several
  4595. * possible lengths. The code below first zero-extends the value to 64
  4596. * bit (field_value), and then copies only the approriate number of
  4597. * bits into the vmcs12 field.
  4598. */
  4599. u64 field_value = 0;
  4600. struct x86_exception e;
  4601. if (!nested_vmx_check_permission(vcpu) ||
  4602. !nested_vmx_check_vmcs12(vcpu))
  4603. return 1;
  4604. if (vmx_instruction_info & (1u << 10))
  4605. field_value = kvm_register_read(vcpu,
  4606. (((vmx_instruction_info) >> 3) & 0xf));
  4607. else {
  4608. if (get_vmx_mem_address(vcpu, exit_qualification,
  4609. vmx_instruction_info, &gva))
  4610. return 1;
  4611. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
  4612. &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
  4613. kvm_inject_page_fault(vcpu, &e);
  4614. return 1;
  4615. }
  4616. }
  4617. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4618. if (vmcs_field_readonly(field)) {
  4619. nested_vmx_failValid(vcpu,
  4620. VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
  4621. skip_emulated_instruction(vcpu);
  4622. return 1;
  4623. }
  4624. offset = vmcs_field_to_offset(field);
  4625. if (offset < 0) {
  4626. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4627. skip_emulated_instruction(vcpu);
  4628. return 1;
  4629. }
  4630. p = ((char *) get_vmcs12(vcpu)) + offset;
  4631. switch (vmcs_field_type(field)) {
  4632. case VMCS_FIELD_TYPE_U16:
  4633. *(u16 *)p = field_value;
  4634. break;
  4635. case VMCS_FIELD_TYPE_U32:
  4636. *(u32 *)p = field_value;
  4637. break;
  4638. case VMCS_FIELD_TYPE_U64:
  4639. *(u64 *)p = field_value;
  4640. break;
  4641. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4642. *(natural_width *)p = field_value;
  4643. break;
  4644. default:
  4645. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4646. skip_emulated_instruction(vcpu);
  4647. return 1;
  4648. }
  4649. nested_vmx_succeed(vcpu);
  4650. skip_emulated_instruction(vcpu);
  4651. return 1;
  4652. }
  4653. /* Emulate the VMPTRLD instruction */
  4654. static int handle_vmptrld(struct kvm_vcpu *vcpu)
  4655. {
  4656. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4657. gva_t gva;
  4658. gpa_t vmptr;
  4659. struct x86_exception e;
  4660. if (!nested_vmx_check_permission(vcpu))
  4661. return 1;
  4662. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4663. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4664. return 1;
  4665. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4666. sizeof(vmptr), &e)) {
  4667. kvm_inject_page_fault(vcpu, &e);
  4668. return 1;
  4669. }
  4670. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4671. nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
  4672. skip_emulated_instruction(vcpu);
  4673. return 1;
  4674. }
  4675. if (vmx->nested.current_vmptr != vmptr) {
  4676. struct vmcs12 *new_vmcs12;
  4677. struct page *page;
  4678. page = nested_get_page(vcpu, vmptr);
  4679. if (page == NULL) {
  4680. nested_vmx_failInvalid(vcpu);
  4681. skip_emulated_instruction(vcpu);
  4682. return 1;
  4683. }
  4684. new_vmcs12 = kmap(page);
  4685. if (new_vmcs12->revision_id != VMCS12_REVISION) {
  4686. kunmap(page);
  4687. nested_release_page_clean(page);
  4688. nested_vmx_failValid(vcpu,
  4689. VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
  4690. skip_emulated_instruction(vcpu);
  4691. return 1;
  4692. }
  4693. if (vmx->nested.current_vmptr != -1ull) {
  4694. kunmap(vmx->nested.current_vmcs12_page);
  4695. nested_release_page(vmx->nested.current_vmcs12_page);
  4696. }
  4697. vmx->nested.current_vmptr = vmptr;
  4698. vmx->nested.current_vmcs12 = new_vmcs12;
  4699. vmx->nested.current_vmcs12_page = page;
  4700. }
  4701. nested_vmx_succeed(vcpu);
  4702. skip_emulated_instruction(vcpu);
  4703. return 1;
  4704. }
  4705. /* Emulate the VMPTRST instruction */
  4706. static int handle_vmptrst(struct kvm_vcpu *vcpu)
  4707. {
  4708. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4709. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4710. gva_t vmcs_gva;
  4711. struct x86_exception e;
  4712. if (!nested_vmx_check_permission(vcpu))
  4713. return 1;
  4714. if (get_vmx_mem_address(vcpu, exit_qualification,
  4715. vmx_instruction_info, &vmcs_gva))
  4716. return 1;
  4717. /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
  4718. if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
  4719. (void *)&to_vmx(vcpu)->nested.current_vmptr,
  4720. sizeof(u64), &e)) {
  4721. kvm_inject_page_fault(vcpu, &e);
  4722. return 1;
  4723. }
  4724. nested_vmx_succeed(vcpu);
  4725. skip_emulated_instruction(vcpu);
  4726. return 1;
  4727. }
  4728. /*
  4729. * The exit handlers return 1 if the exit was handled fully and guest execution
  4730. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  4731. * to be done to userspace and return 0.
  4732. */
  4733. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  4734. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  4735. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  4736. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  4737. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  4738. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  4739. [EXIT_REASON_CR_ACCESS] = handle_cr,
  4740. [EXIT_REASON_DR_ACCESS] = handle_dr,
  4741. [EXIT_REASON_CPUID] = handle_cpuid,
  4742. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  4743. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  4744. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  4745. [EXIT_REASON_HLT] = handle_halt,
  4746. [EXIT_REASON_INVD] = handle_invd,
  4747. [EXIT_REASON_INVLPG] = handle_invlpg,
  4748. [EXIT_REASON_VMCALL] = handle_vmcall,
  4749. [EXIT_REASON_VMCLEAR] = handle_vmclear,
  4750. [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
  4751. [EXIT_REASON_VMPTRLD] = handle_vmptrld,
  4752. [EXIT_REASON_VMPTRST] = handle_vmptrst,
  4753. [EXIT_REASON_VMREAD] = handle_vmread,
  4754. [EXIT_REASON_VMRESUME] = handle_vmresume,
  4755. [EXIT_REASON_VMWRITE] = handle_vmwrite,
  4756. [EXIT_REASON_VMOFF] = handle_vmoff,
  4757. [EXIT_REASON_VMON] = handle_vmon,
  4758. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  4759. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  4760. [EXIT_REASON_WBINVD] = handle_wbinvd,
  4761. [EXIT_REASON_XSETBV] = handle_xsetbv,
  4762. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  4763. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  4764. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  4765. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  4766. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  4767. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  4768. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  4769. };
  4770. static const int kvm_vmx_max_exit_handlers =
  4771. ARRAY_SIZE(kvm_vmx_exit_handlers);
  4772. /*
  4773. * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
  4774. * rather than handle it ourselves in L0. I.e., check whether L1 expressed
  4775. * disinterest in the current event (read or write a specific MSR) by using an
  4776. * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
  4777. */
  4778. static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
  4779. struct vmcs12 *vmcs12, u32 exit_reason)
  4780. {
  4781. u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
  4782. gpa_t bitmap;
  4783. if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
  4784. return 1;
  4785. /*
  4786. * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
  4787. * for the four combinations of read/write and low/high MSR numbers.
  4788. * First we need to figure out which of the four to use:
  4789. */
  4790. bitmap = vmcs12->msr_bitmap;
  4791. if (exit_reason == EXIT_REASON_MSR_WRITE)
  4792. bitmap += 2048;
  4793. if (msr_index >= 0xc0000000) {
  4794. msr_index -= 0xc0000000;
  4795. bitmap += 1024;
  4796. }
  4797. /* Then read the msr_index'th bit from this bitmap: */
  4798. if (msr_index < 1024*8) {
  4799. unsigned char b;
  4800. kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
  4801. return 1 & (b >> (msr_index & 7));
  4802. } else
  4803. return 1; /* let L1 handle the wrong parameter */
  4804. }
  4805. /*
  4806. * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
  4807. * rather than handle it ourselves in L0. I.e., check if L1 wanted to
  4808. * intercept (via guest_host_mask etc.) the current event.
  4809. */
  4810. static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
  4811. struct vmcs12 *vmcs12)
  4812. {
  4813. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4814. int cr = exit_qualification & 15;
  4815. int reg = (exit_qualification >> 8) & 15;
  4816. unsigned long val = kvm_register_read(vcpu, reg);
  4817. switch ((exit_qualification >> 4) & 3) {
  4818. case 0: /* mov to cr */
  4819. switch (cr) {
  4820. case 0:
  4821. if (vmcs12->cr0_guest_host_mask &
  4822. (val ^ vmcs12->cr0_read_shadow))
  4823. return 1;
  4824. break;
  4825. case 3:
  4826. if ((vmcs12->cr3_target_count >= 1 &&
  4827. vmcs12->cr3_target_value0 == val) ||
  4828. (vmcs12->cr3_target_count >= 2 &&
  4829. vmcs12->cr3_target_value1 == val) ||
  4830. (vmcs12->cr3_target_count >= 3 &&
  4831. vmcs12->cr3_target_value2 == val) ||
  4832. (vmcs12->cr3_target_count >= 4 &&
  4833. vmcs12->cr3_target_value3 == val))
  4834. return 0;
  4835. if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
  4836. return 1;
  4837. break;
  4838. case 4:
  4839. if (vmcs12->cr4_guest_host_mask &
  4840. (vmcs12->cr4_read_shadow ^ val))
  4841. return 1;
  4842. break;
  4843. case 8:
  4844. if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
  4845. return 1;
  4846. break;
  4847. }
  4848. break;
  4849. case 2: /* clts */
  4850. if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
  4851. (vmcs12->cr0_read_shadow & X86_CR0_TS))
  4852. return 1;
  4853. break;
  4854. case 1: /* mov from cr */
  4855. switch (cr) {
  4856. case 3:
  4857. if (vmcs12->cpu_based_vm_exec_control &
  4858. CPU_BASED_CR3_STORE_EXITING)
  4859. return 1;
  4860. break;
  4861. case 8:
  4862. if (vmcs12->cpu_based_vm_exec_control &
  4863. CPU_BASED_CR8_STORE_EXITING)
  4864. return 1;
  4865. break;
  4866. }
  4867. break;
  4868. case 3: /* lmsw */
  4869. /*
  4870. * lmsw can change bits 1..3 of cr0, and only set bit 0 of
  4871. * cr0. Other attempted changes are ignored, with no exit.
  4872. */
  4873. if (vmcs12->cr0_guest_host_mask & 0xe &
  4874. (val ^ vmcs12->cr0_read_shadow))
  4875. return 1;
  4876. if ((vmcs12->cr0_guest_host_mask & 0x1) &&
  4877. !(vmcs12->cr0_read_shadow & 0x1) &&
  4878. (val & 0x1))
  4879. return 1;
  4880. break;
  4881. }
  4882. return 0;
  4883. }
  4884. /*
  4885. * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
  4886. * should handle it ourselves in L0 (and then continue L2). Only call this
  4887. * when in is_guest_mode (L2).
  4888. */
  4889. static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
  4890. {
  4891. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  4892. u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  4893. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4894. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  4895. if (vmx->nested.nested_run_pending)
  4896. return 0;
  4897. if (unlikely(vmx->fail)) {
  4898. pr_info_ratelimited("%s failed vm entry %x\n", __func__,
  4899. vmcs_read32(VM_INSTRUCTION_ERROR));
  4900. return 1;
  4901. }
  4902. switch (exit_reason) {
  4903. case EXIT_REASON_EXCEPTION_NMI:
  4904. if (!is_exception(intr_info))
  4905. return 0;
  4906. else if (is_page_fault(intr_info))
  4907. return enable_ept;
  4908. return vmcs12->exception_bitmap &
  4909. (1u << (intr_info & INTR_INFO_VECTOR_MASK));
  4910. case EXIT_REASON_EXTERNAL_INTERRUPT:
  4911. return 0;
  4912. case EXIT_REASON_TRIPLE_FAULT:
  4913. return 1;
  4914. case EXIT_REASON_PENDING_INTERRUPT:
  4915. case EXIT_REASON_NMI_WINDOW:
  4916. /*
  4917. * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
  4918. * (aka Interrupt Window Exiting) only when L1 turned it on,
  4919. * so if we got a PENDING_INTERRUPT exit, this must be for L1.
  4920. * Same for NMI Window Exiting.
  4921. */
  4922. return 1;
  4923. case EXIT_REASON_TASK_SWITCH:
  4924. return 1;
  4925. case EXIT_REASON_CPUID:
  4926. return 1;
  4927. case EXIT_REASON_HLT:
  4928. return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
  4929. case EXIT_REASON_INVD:
  4930. return 1;
  4931. case EXIT_REASON_INVLPG:
  4932. return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
  4933. case EXIT_REASON_RDPMC:
  4934. return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
  4935. case EXIT_REASON_RDTSC:
  4936. return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
  4937. case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
  4938. case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
  4939. case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
  4940. case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
  4941. case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
  4942. /*
  4943. * VMX instructions trap unconditionally. This allows L1 to
  4944. * emulate them for its L2 guest, i.e., allows 3-level nesting!
  4945. */
  4946. return 1;
  4947. case EXIT_REASON_CR_ACCESS:
  4948. return nested_vmx_exit_handled_cr(vcpu, vmcs12);
  4949. case EXIT_REASON_DR_ACCESS:
  4950. return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
  4951. case EXIT_REASON_IO_INSTRUCTION:
  4952. /* TODO: support IO bitmaps */
  4953. return 1;
  4954. case EXIT_REASON_MSR_READ:
  4955. case EXIT_REASON_MSR_WRITE:
  4956. return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
  4957. case EXIT_REASON_INVALID_STATE:
  4958. return 1;
  4959. case EXIT_REASON_MWAIT_INSTRUCTION:
  4960. return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
  4961. case EXIT_REASON_MONITOR_INSTRUCTION:
  4962. return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
  4963. case EXIT_REASON_PAUSE_INSTRUCTION:
  4964. return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
  4965. nested_cpu_has2(vmcs12,
  4966. SECONDARY_EXEC_PAUSE_LOOP_EXITING);
  4967. case EXIT_REASON_MCE_DURING_VMENTRY:
  4968. return 0;
  4969. case EXIT_REASON_TPR_BELOW_THRESHOLD:
  4970. return 1;
  4971. case EXIT_REASON_APIC_ACCESS:
  4972. return nested_cpu_has2(vmcs12,
  4973. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  4974. case EXIT_REASON_EPT_VIOLATION:
  4975. case EXIT_REASON_EPT_MISCONFIG:
  4976. return 0;
  4977. case EXIT_REASON_WBINVD:
  4978. return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
  4979. case EXIT_REASON_XSETBV:
  4980. return 1;
  4981. default:
  4982. return 1;
  4983. }
  4984. }
  4985. static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
  4986. {
  4987. *info1 = vmcs_readl(EXIT_QUALIFICATION);
  4988. *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
  4989. }
  4990. /*
  4991. * The guest has exited. See if we can fix it or if we need userspace
  4992. * assistance.
  4993. */
  4994. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  4995. {
  4996. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4997. u32 exit_reason = vmx->exit_reason;
  4998. u32 vectoring_info = vmx->idt_vectoring_info;
  4999. /* If guest state is invalid, start emulating */
  5000. if (vmx->emulation_required && emulate_invalid_guest_state)
  5001. return handle_invalid_guest_state(vcpu);
  5002. /*
  5003. * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
  5004. * we did not inject a still-pending event to L1 now because of
  5005. * nested_run_pending, we need to re-enable this bit.
  5006. */
  5007. if (vmx->nested.nested_run_pending)
  5008. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5009. if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
  5010. exit_reason == EXIT_REASON_VMRESUME))
  5011. vmx->nested.nested_run_pending = 1;
  5012. else
  5013. vmx->nested.nested_run_pending = 0;
  5014. if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
  5015. nested_vmx_vmexit(vcpu);
  5016. return 1;
  5017. }
  5018. if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
  5019. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5020. vcpu->run->fail_entry.hardware_entry_failure_reason
  5021. = exit_reason;
  5022. return 0;
  5023. }
  5024. if (unlikely(vmx->fail)) {
  5025. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5026. vcpu->run->fail_entry.hardware_entry_failure_reason
  5027. = vmcs_read32(VM_INSTRUCTION_ERROR);
  5028. return 0;
  5029. }
  5030. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  5031. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  5032. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  5033. exit_reason != EXIT_REASON_TASK_SWITCH))
  5034. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  5035. "(0x%x) and exit reason is 0x%x\n",
  5036. __func__, vectoring_info, exit_reason);
  5037. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
  5038. !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
  5039. get_vmcs12(vcpu), vcpu)))) {
  5040. if (vmx_interrupt_allowed(vcpu)) {
  5041. vmx->soft_vnmi_blocked = 0;
  5042. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  5043. vcpu->arch.nmi_pending) {
  5044. /*
  5045. * This CPU don't support us in finding the end of an
  5046. * NMI-blocked window if the guest runs with IRQs
  5047. * disabled. So we pull the trigger after 1 s of
  5048. * futile waiting, but inform the user about this.
  5049. */
  5050. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  5051. "state on VCPU %d after 1 s timeout\n",
  5052. __func__, vcpu->vcpu_id);
  5053. vmx->soft_vnmi_blocked = 0;
  5054. }
  5055. }
  5056. if (exit_reason < kvm_vmx_max_exit_handlers
  5057. && kvm_vmx_exit_handlers[exit_reason])
  5058. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  5059. else {
  5060. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  5061. vcpu->run->hw.hardware_exit_reason = exit_reason;
  5062. }
  5063. return 0;
  5064. }
  5065. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  5066. {
  5067. if (irr == -1 || tpr < irr) {
  5068. vmcs_write32(TPR_THRESHOLD, 0);
  5069. return;
  5070. }
  5071. vmcs_write32(TPR_THRESHOLD, irr);
  5072. }
  5073. static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
  5074. {
  5075. u32 exit_intr_info;
  5076. if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
  5077. || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
  5078. return;
  5079. vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5080. exit_intr_info = vmx->exit_intr_info;
  5081. /* Handle machine checks before interrupts are enabled */
  5082. if (is_machine_check(exit_intr_info))
  5083. kvm_machine_check();
  5084. /* We need to handle NMIs before interrupts are enabled */
  5085. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  5086. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  5087. kvm_before_handle_nmi(&vmx->vcpu);
  5088. asm("int $2");
  5089. kvm_after_handle_nmi(&vmx->vcpu);
  5090. }
  5091. }
  5092. static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
  5093. {
  5094. u32 exit_intr_info;
  5095. bool unblock_nmi;
  5096. u8 vector;
  5097. bool idtv_info_valid;
  5098. idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5099. if (cpu_has_virtual_nmis()) {
  5100. if (vmx->nmi_known_unmasked)
  5101. return;
  5102. /*
  5103. * Can't use vmx->exit_intr_info since we're not sure what
  5104. * the exit reason is.
  5105. */
  5106. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5107. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  5108. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  5109. /*
  5110. * SDM 3: 27.7.1.2 (September 2008)
  5111. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  5112. * a guest IRET fault.
  5113. * SDM 3: 23.2.2 (September 2008)
  5114. * Bit 12 is undefined in any of the following cases:
  5115. * If the VM exit sets the valid bit in the IDT-vectoring
  5116. * information field.
  5117. * If the VM exit is due to a double fault.
  5118. */
  5119. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  5120. vector != DF_VECTOR && !idtv_info_valid)
  5121. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  5122. GUEST_INTR_STATE_NMI);
  5123. else
  5124. vmx->nmi_known_unmasked =
  5125. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
  5126. & GUEST_INTR_STATE_NMI);
  5127. } else if (unlikely(vmx->soft_vnmi_blocked))
  5128. vmx->vnmi_blocked_time +=
  5129. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  5130. }
  5131. static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
  5132. u32 idt_vectoring_info,
  5133. int instr_len_field,
  5134. int error_code_field)
  5135. {
  5136. u8 vector;
  5137. int type;
  5138. bool idtv_info_valid;
  5139. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5140. vmx->vcpu.arch.nmi_injected = false;
  5141. kvm_clear_exception_queue(&vmx->vcpu);
  5142. kvm_clear_interrupt_queue(&vmx->vcpu);
  5143. if (!idtv_info_valid)
  5144. return;
  5145. kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
  5146. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  5147. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  5148. switch (type) {
  5149. case INTR_TYPE_NMI_INTR:
  5150. vmx->vcpu.arch.nmi_injected = true;
  5151. /*
  5152. * SDM 3: 27.7.1.2 (September 2008)
  5153. * Clear bit "block by NMI" before VM entry if a NMI
  5154. * delivery faulted.
  5155. */
  5156. vmx_set_nmi_mask(&vmx->vcpu, false);
  5157. break;
  5158. case INTR_TYPE_SOFT_EXCEPTION:
  5159. vmx->vcpu.arch.event_exit_inst_len =
  5160. vmcs_read32(instr_len_field);
  5161. /* fall through */
  5162. case INTR_TYPE_HARD_EXCEPTION:
  5163. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  5164. u32 err = vmcs_read32(error_code_field);
  5165. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  5166. } else
  5167. kvm_queue_exception(&vmx->vcpu, vector);
  5168. break;
  5169. case INTR_TYPE_SOFT_INTR:
  5170. vmx->vcpu.arch.event_exit_inst_len =
  5171. vmcs_read32(instr_len_field);
  5172. /* fall through */
  5173. case INTR_TYPE_EXT_INTR:
  5174. kvm_queue_interrupt(&vmx->vcpu, vector,
  5175. type == INTR_TYPE_SOFT_INTR);
  5176. break;
  5177. default:
  5178. break;
  5179. }
  5180. }
  5181. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  5182. {
  5183. if (is_guest_mode(&vmx->vcpu))
  5184. return;
  5185. __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
  5186. VM_EXIT_INSTRUCTION_LEN,
  5187. IDT_VECTORING_ERROR_CODE);
  5188. }
  5189. static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
  5190. {
  5191. if (is_guest_mode(vcpu))
  5192. return;
  5193. __vmx_complete_interrupts(to_vmx(vcpu),
  5194. vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
  5195. VM_ENTRY_INSTRUCTION_LEN,
  5196. VM_ENTRY_EXCEPTION_ERROR_CODE);
  5197. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
  5198. }
  5199. #ifdef CONFIG_X86_64
  5200. #define R "r"
  5201. #define Q "q"
  5202. #else
  5203. #define R "e"
  5204. #define Q "l"
  5205. #endif
  5206. static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
  5207. {
  5208. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5209. if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
  5210. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5211. if (vmcs12->idt_vectoring_info_field &
  5212. VECTORING_INFO_VALID_MASK) {
  5213. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  5214. vmcs12->idt_vectoring_info_field);
  5215. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  5216. vmcs12->vm_exit_instruction_len);
  5217. if (vmcs12->idt_vectoring_info_field &
  5218. VECTORING_INFO_DELIVER_CODE_MASK)
  5219. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  5220. vmcs12->idt_vectoring_error_code);
  5221. }
  5222. }
  5223. /* Record the guest's net vcpu time for enforced NMI injections. */
  5224. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  5225. vmx->entry_time = ktime_get();
  5226. /* Don't enter VMX if guest state is invalid, let the exit handler
  5227. start emulation until we arrive back to a valid state */
  5228. if (vmx->emulation_required && emulate_invalid_guest_state)
  5229. return;
  5230. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  5231. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  5232. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  5233. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  5234. /* When single-stepping over STI and MOV SS, we must clear the
  5235. * corresponding interruptibility bits in the guest state. Otherwise
  5236. * vmentry fails as it then expects bit 14 (BS) in pending debug
  5237. * exceptions being set, but that's not correct for the guest debugging
  5238. * case. */
  5239. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5240. vmx_set_interrupt_shadow(vcpu, 0);
  5241. vmx->__launched = vmx->loaded_vmcs->launched;
  5242. asm(
  5243. /* Store host registers */
  5244. "push %%"R"dx; push %%"R"bp;"
  5245. "push %%"R"cx \n\t" /* placeholder for guest rcx */
  5246. "push %%"R"cx \n\t"
  5247. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  5248. "je 1f \n\t"
  5249. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  5250. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  5251. "1: \n\t"
  5252. /* Reload cr2 if changed */
  5253. "mov %c[cr2](%0), %%"R"ax \n\t"
  5254. "mov %%cr2, %%"R"dx \n\t"
  5255. "cmp %%"R"ax, %%"R"dx \n\t"
  5256. "je 2f \n\t"
  5257. "mov %%"R"ax, %%cr2 \n\t"
  5258. "2: \n\t"
  5259. /* Check if vmlaunch of vmresume is needed */
  5260. "cmpl $0, %c[launched](%0) \n\t"
  5261. /* Load guest registers. Don't clobber flags. */
  5262. "mov %c[rax](%0), %%"R"ax \n\t"
  5263. "mov %c[rbx](%0), %%"R"bx \n\t"
  5264. "mov %c[rdx](%0), %%"R"dx \n\t"
  5265. "mov %c[rsi](%0), %%"R"si \n\t"
  5266. "mov %c[rdi](%0), %%"R"di \n\t"
  5267. "mov %c[rbp](%0), %%"R"bp \n\t"
  5268. #ifdef CONFIG_X86_64
  5269. "mov %c[r8](%0), %%r8 \n\t"
  5270. "mov %c[r9](%0), %%r9 \n\t"
  5271. "mov %c[r10](%0), %%r10 \n\t"
  5272. "mov %c[r11](%0), %%r11 \n\t"
  5273. "mov %c[r12](%0), %%r12 \n\t"
  5274. "mov %c[r13](%0), %%r13 \n\t"
  5275. "mov %c[r14](%0), %%r14 \n\t"
  5276. "mov %c[r15](%0), %%r15 \n\t"
  5277. #endif
  5278. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  5279. /* Enter guest mode */
  5280. "jne .Llaunched \n\t"
  5281. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  5282. "jmp .Lkvm_vmx_return \n\t"
  5283. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  5284. ".Lkvm_vmx_return: "
  5285. /* Save guest registers, load host registers, keep flags */
  5286. "mov %0, %c[wordsize](%%"R"sp) \n\t"
  5287. "pop %0 \n\t"
  5288. "mov %%"R"ax, %c[rax](%0) \n\t"
  5289. "mov %%"R"bx, %c[rbx](%0) \n\t"
  5290. "pop"Q" %c[rcx](%0) \n\t"
  5291. "mov %%"R"dx, %c[rdx](%0) \n\t"
  5292. "mov %%"R"si, %c[rsi](%0) \n\t"
  5293. "mov %%"R"di, %c[rdi](%0) \n\t"
  5294. "mov %%"R"bp, %c[rbp](%0) \n\t"
  5295. #ifdef CONFIG_X86_64
  5296. "mov %%r8, %c[r8](%0) \n\t"
  5297. "mov %%r9, %c[r9](%0) \n\t"
  5298. "mov %%r10, %c[r10](%0) \n\t"
  5299. "mov %%r11, %c[r11](%0) \n\t"
  5300. "mov %%r12, %c[r12](%0) \n\t"
  5301. "mov %%r13, %c[r13](%0) \n\t"
  5302. "mov %%r14, %c[r14](%0) \n\t"
  5303. "mov %%r15, %c[r15](%0) \n\t"
  5304. #endif
  5305. "mov %%cr2, %%"R"ax \n\t"
  5306. "mov %%"R"ax, %c[cr2](%0) \n\t"
  5307. "pop %%"R"bp; pop %%"R"dx \n\t"
  5308. "setbe %c[fail](%0) \n\t"
  5309. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  5310. [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
  5311. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  5312. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  5313. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  5314. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  5315. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  5316. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  5317. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  5318. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  5319. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  5320. #ifdef CONFIG_X86_64
  5321. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  5322. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  5323. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  5324. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  5325. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  5326. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  5327. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  5328. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  5329. #endif
  5330. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
  5331. [wordsize]"i"(sizeof(ulong))
  5332. : "cc", "memory"
  5333. , R"ax", R"bx", R"di", R"si"
  5334. #ifdef CONFIG_X86_64
  5335. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  5336. #endif
  5337. );
  5338. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  5339. | (1 << VCPU_EXREG_RFLAGS)
  5340. | (1 << VCPU_EXREG_CPL)
  5341. | (1 << VCPU_EXREG_PDPTR)
  5342. | (1 << VCPU_EXREG_SEGMENTS)
  5343. | (1 << VCPU_EXREG_CR3));
  5344. vcpu->arch.regs_dirty = 0;
  5345. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  5346. if (is_guest_mode(vcpu)) {
  5347. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5348. vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
  5349. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  5350. vmcs12->idt_vectoring_error_code =
  5351. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  5352. vmcs12->vm_exit_instruction_len =
  5353. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  5354. }
  5355. }
  5356. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  5357. vmx->loaded_vmcs->launched = 1;
  5358. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  5359. trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
  5360. vmx_complete_atomic_exit(vmx);
  5361. vmx_recover_nmi_blocking(vmx);
  5362. vmx_complete_interrupts(vmx);
  5363. }
  5364. #undef R
  5365. #undef Q
  5366. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  5367. {
  5368. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5369. free_vpid(vmx);
  5370. free_nested(vmx);
  5371. free_loaded_vmcs(vmx->loaded_vmcs);
  5372. kfree(vmx->guest_msrs);
  5373. kvm_vcpu_uninit(vcpu);
  5374. kmem_cache_free(kvm_vcpu_cache, vmx);
  5375. }
  5376. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  5377. {
  5378. int err;
  5379. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  5380. int cpu;
  5381. if (!vmx)
  5382. return ERR_PTR(-ENOMEM);
  5383. allocate_vpid(vmx);
  5384. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  5385. if (err)
  5386. goto free_vcpu;
  5387. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  5388. err = -ENOMEM;
  5389. if (!vmx->guest_msrs) {
  5390. goto uninit_vcpu;
  5391. }
  5392. vmx->loaded_vmcs = &vmx->vmcs01;
  5393. vmx->loaded_vmcs->vmcs = alloc_vmcs();
  5394. if (!vmx->loaded_vmcs->vmcs)
  5395. goto free_msrs;
  5396. if (!vmm_exclusive)
  5397. kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
  5398. loaded_vmcs_init(vmx->loaded_vmcs);
  5399. if (!vmm_exclusive)
  5400. kvm_cpu_vmxoff();
  5401. cpu = get_cpu();
  5402. vmx_vcpu_load(&vmx->vcpu, cpu);
  5403. vmx->vcpu.cpu = cpu;
  5404. err = vmx_vcpu_setup(vmx);
  5405. vmx_vcpu_put(&vmx->vcpu);
  5406. put_cpu();
  5407. if (err)
  5408. goto free_vmcs;
  5409. if (vm_need_virtualize_apic_accesses(kvm))
  5410. err = alloc_apic_access_page(kvm);
  5411. if (err)
  5412. goto free_vmcs;
  5413. if (enable_ept) {
  5414. if (!kvm->arch.ept_identity_map_addr)
  5415. kvm->arch.ept_identity_map_addr =
  5416. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  5417. err = -ENOMEM;
  5418. if (alloc_identity_pagetable(kvm) != 0)
  5419. goto free_vmcs;
  5420. if (!init_rmode_identity_map(kvm))
  5421. goto free_vmcs;
  5422. }
  5423. vmx->nested.current_vmptr = -1ull;
  5424. vmx->nested.current_vmcs12 = NULL;
  5425. return &vmx->vcpu;
  5426. free_vmcs:
  5427. free_vmcs(vmx->loaded_vmcs->vmcs);
  5428. free_msrs:
  5429. kfree(vmx->guest_msrs);
  5430. uninit_vcpu:
  5431. kvm_vcpu_uninit(&vmx->vcpu);
  5432. free_vcpu:
  5433. free_vpid(vmx);
  5434. kmem_cache_free(kvm_vcpu_cache, vmx);
  5435. return ERR_PTR(err);
  5436. }
  5437. static void __init vmx_check_processor_compat(void *rtn)
  5438. {
  5439. struct vmcs_config vmcs_conf;
  5440. *(int *)rtn = 0;
  5441. if (setup_vmcs_config(&vmcs_conf) < 0)
  5442. *(int *)rtn = -EIO;
  5443. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  5444. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  5445. smp_processor_id());
  5446. *(int *)rtn = -EIO;
  5447. }
  5448. }
  5449. static int get_ept_level(void)
  5450. {
  5451. return VMX_EPT_DEFAULT_GAW + 1;
  5452. }
  5453. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  5454. {
  5455. u64 ret;
  5456. /* For VT-d and EPT combination
  5457. * 1. MMIO: always map as UC
  5458. * 2. EPT with VT-d:
  5459. * a. VT-d without snooping control feature: can't guarantee the
  5460. * result, try to trust guest.
  5461. * b. VT-d with snooping control feature: snooping control feature of
  5462. * VT-d engine can guarantee the cache correctness. Just set it
  5463. * to WB to keep consistent with host. So the same as item 3.
  5464. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  5465. * consistent with host MTRR
  5466. */
  5467. if (is_mmio)
  5468. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  5469. else if (vcpu->kvm->arch.iommu_domain &&
  5470. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  5471. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  5472. VMX_EPT_MT_EPTE_SHIFT;
  5473. else
  5474. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  5475. | VMX_EPT_IPAT_BIT;
  5476. return ret;
  5477. }
  5478. static int vmx_get_lpage_level(void)
  5479. {
  5480. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  5481. return PT_DIRECTORY_LEVEL;
  5482. else
  5483. /* For shadow and EPT supported 1GB page */
  5484. return PT_PDPE_LEVEL;
  5485. }
  5486. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  5487. {
  5488. struct kvm_cpuid_entry2 *best;
  5489. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5490. u32 exec_control;
  5491. vmx->rdtscp_enabled = false;
  5492. if (vmx_rdtscp_supported()) {
  5493. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5494. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  5495. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  5496. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  5497. vmx->rdtscp_enabled = true;
  5498. else {
  5499. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  5500. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  5501. exec_control);
  5502. }
  5503. }
  5504. }
  5505. }
  5506. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  5507. {
  5508. if (func == 1 && nested)
  5509. entry->ecx |= bit(X86_FEATURE_VMX);
  5510. }
  5511. /*
  5512. * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
  5513. * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
  5514. * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
  5515. * guest in a way that will both be appropriate to L1's requests, and our
  5516. * needs. In addition to modifying the active vmcs (which is vmcs02), this
  5517. * function also has additional necessary side-effects, like setting various
  5518. * vcpu->arch fields.
  5519. */
  5520. static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5521. {
  5522. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5523. u32 exec_control;
  5524. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
  5525. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
  5526. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
  5527. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
  5528. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
  5529. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
  5530. vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
  5531. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
  5532. vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
  5533. vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
  5534. vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
  5535. vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
  5536. vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
  5537. vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
  5538. vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
  5539. vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
  5540. vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
  5541. vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
  5542. vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
  5543. vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
  5544. vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
  5545. vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
  5546. vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
  5547. vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
  5548. vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
  5549. vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
  5550. vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
  5551. vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
  5552. vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
  5553. vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
  5554. vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
  5555. vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
  5556. vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
  5557. vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
  5558. vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
  5559. vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
  5560. vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
  5561. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  5562. vmcs12->vm_entry_intr_info_field);
  5563. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  5564. vmcs12->vm_entry_exception_error_code);
  5565. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  5566. vmcs12->vm_entry_instruction_len);
  5567. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  5568. vmcs12->guest_interruptibility_info);
  5569. vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
  5570. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
  5571. vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
  5572. vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
  5573. vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
  5574. vmcs12->guest_pending_dbg_exceptions);
  5575. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
  5576. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
  5577. vmcs_write64(VMCS_LINK_POINTER, -1ull);
  5578. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  5579. (vmcs_config.pin_based_exec_ctrl |
  5580. vmcs12->pin_based_vm_exec_control));
  5581. /*
  5582. * Whether page-faults are trapped is determined by a combination of
  5583. * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
  5584. * If enable_ept, L0 doesn't care about page faults and we should
  5585. * set all of these to L1's desires. However, if !enable_ept, L0 does
  5586. * care about (at least some) page faults, and because it is not easy
  5587. * (if at all possible?) to merge L0 and L1's desires, we simply ask
  5588. * to exit on each and every L2 page fault. This is done by setting
  5589. * MASK=MATCH=0 and (see below) EB.PF=1.
  5590. * Note that below we don't need special code to set EB.PF beyond the
  5591. * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
  5592. * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
  5593. * !enable_ept, EB.PF is 1, so the "or" will always be 1.
  5594. *
  5595. * A problem with this approach (when !enable_ept) is that L1 may be
  5596. * injected with more page faults than it asked for. This could have
  5597. * caused problems, but in practice existing hypervisors don't care.
  5598. * To fix this, we will need to emulate the PFEC checking (on the L1
  5599. * page tables), using walk_addr(), when injecting PFs to L1.
  5600. */
  5601. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
  5602. enable_ept ? vmcs12->page_fault_error_code_mask : 0);
  5603. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
  5604. enable_ept ? vmcs12->page_fault_error_code_match : 0);
  5605. if (cpu_has_secondary_exec_ctrls()) {
  5606. u32 exec_control = vmx_secondary_exec_control(vmx);
  5607. if (!vmx->rdtscp_enabled)
  5608. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  5609. /* Take the following fields only from vmcs12 */
  5610. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5611. if (nested_cpu_has(vmcs12,
  5612. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
  5613. exec_control |= vmcs12->secondary_vm_exec_control;
  5614. if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
  5615. /*
  5616. * Translate L1 physical address to host physical
  5617. * address for vmcs02. Keep the page pinned, so this
  5618. * physical address remains valid. We keep a reference
  5619. * to it so we can release it later.
  5620. */
  5621. if (vmx->nested.apic_access_page) /* shouldn't happen */
  5622. nested_release_page(vmx->nested.apic_access_page);
  5623. vmx->nested.apic_access_page =
  5624. nested_get_page(vcpu, vmcs12->apic_access_addr);
  5625. /*
  5626. * If translation failed, no matter: This feature asks
  5627. * to exit when accessing the given address, and if it
  5628. * can never be accessed, this feature won't do
  5629. * anything anyway.
  5630. */
  5631. if (!vmx->nested.apic_access_page)
  5632. exec_control &=
  5633. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5634. else
  5635. vmcs_write64(APIC_ACCESS_ADDR,
  5636. page_to_phys(vmx->nested.apic_access_page));
  5637. }
  5638. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  5639. }
  5640. /*
  5641. * Set host-state according to L0's settings (vmcs12 is irrelevant here)
  5642. * Some constant fields are set here by vmx_set_constant_host_state().
  5643. * Other fields are different per CPU, and will be set later when
  5644. * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
  5645. */
  5646. vmx_set_constant_host_state();
  5647. /*
  5648. * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
  5649. * entry, but only if the current (host) sp changed from the value
  5650. * we wrote last (vmx->host_rsp). This cache is no longer relevant
  5651. * if we switch vmcs, and rather than hold a separate cache per vmcs,
  5652. * here we just force the write to happen on entry.
  5653. */
  5654. vmx->host_rsp = 0;
  5655. exec_control = vmx_exec_control(vmx); /* L0's desires */
  5656. exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  5657. exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  5658. exec_control &= ~CPU_BASED_TPR_SHADOW;
  5659. exec_control |= vmcs12->cpu_based_vm_exec_control;
  5660. /*
  5661. * Merging of IO and MSR bitmaps not currently supported.
  5662. * Rather, exit every time.
  5663. */
  5664. exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
  5665. exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
  5666. exec_control |= CPU_BASED_UNCOND_IO_EXITING;
  5667. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  5668. /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
  5669. * bitwise-or of what L1 wants to trap for L2, and what we want to
  5670. * trap. Note that CR0.TS also needs updating - we do this later.
  5671. */
  5672. update_exception_bitmap(vcpu);
  5673. vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
  5674. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  5675. /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
  5676. vmcs_write32(VM_EXIT_CONTROLS,
  5677. vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
  5678. vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
  5679. (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
  5680. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
  5681. vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
  5682. else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
  5683. vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
  5684. set_cr4_guest_host_mask(vmx);
  5685. if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
  5686. vmcs_write64(TSC_OFFSET,
  5687. vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
  5688. else
  5689. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  5690. if (enable_vpid) {
  5691. /*
  5692. * Trivially support vpid by letting L2s share their parent
  5693. * L1's vpid. TODO: move to a more elaborate solution, giving
  5694. * each L2 its own vpid and exposing the vpid feature to L1.
  5695. */
  5696. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  5697. vmx_flush_tlb(vcpu);
  5698. }
  5699. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
  5700. vcpu->arch.efer = vmcs12->guest_ia32_efer;
  5701. if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
  5702. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  5703. else
  5704. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  5705. /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
  5706. vmx_set_efer(vcpu, vcpu->arch.efer);
  5707. /*
  5708. * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
  5709. * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
  5710. * The CR0_READ_SHADOW is what L2 should have expected to read given
  5711. * the specifications by L1; It's not enough to take
  5712. * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
  5713. * have more bits than L1 expected.
  5714. */
  5715. vmx_set_cr0(vcpu, vmcs12->guest_cr0);
  5716. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  5717. vmx_set_cr4(vcpu, vmcs12->guest_cr4);
  5718. vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
  5719. /* shadow page tables on either EPT or shadow page tables */
  5720. kvm_set_cr3(vcpu, vmcs12->guest_cr3);
  5721. kvm_mmu_reset_context(vcpu);
  5722. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
  5723. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
  5724. }
  5725. /*
  5726. * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
  5727. * for running an L2 nested guest.
  5728. */
  5729. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
  5730. {
  5731. struct vmcs12 *vmcs12;
  5732. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5733. int cpu;
  5734. struct loaded_vmcs *vmcs02;
  5735. if (!nested_vmx_check_permission(vcpu) ||
  5736. !nested_vmx_check_vmcs12(vcpu))
  5737. return 1;
  5738. skip_emulated_instruction(vcpu);
  5739. vmcs12 = get_vmcs12(vcpu);
  5740. /*
  5741. * The nested entry process starts with enforcing various prerequisites
  5742. * on vmcs12 as required by the Intel SDM, and act appropriately when
  5743. * they fail: As the SDM explains, some conditions should cause the
  5744. * instruction to fail, while others will cause the instruction to seem
  5745. * to succeed, but return an EXIT_REASON_INVALID_STATE.
  5746. * To speed up the normal (success) code path, we should avoid checking
  5747. * for misconfigurations which will anyway be caught by the processor
  5748. * when using the merged vmcs02.
  5749. */
  5750. if (vmcs12->launch_state == launch) {
  5751. nested_vmx_failValid(vcpu,
  5752. launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
  5753. : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
  5754. return 1;
  5755. }
  5756. if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
  5757. !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
  5758. /*TODO: Also verify bits beyond physical address width are 0*/
  5759. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5760. return 1;
  5761. }
  5762. if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
  5763. !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
  5764. /*TODO: Also verify bits beyond physical address width are 0*/
  5765. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5766. return 1;
  5767. }
  5768. if (vmcs12->vm_entry_msr_load_count > 0 ||
  5769. vmcs12->vm_exit_msr_load_count > 0 ||
  5770. vmcs12->vm_exit_msr_store_count > 0) {
  5771. pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
  5772. __func__);
  5773. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5774. return 1;
  5775. }
  5776. if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
  5777. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
  5778. !vmx_control_verify(vmcs12->secondary_vm_exec_control,
  5779. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
  5780. !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
  5781. nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
  5782. !vmx_control_verify(vmcs12->vm_exit_controls,
  5783. nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
  5784. !vmx_control_verify(vmcs12->vm_entry_controls,
  5785. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
  5786. {
  5787. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5788. return 1;
  5789. }
  5790. if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  5791. ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  5792. nested_vmx_failValid(vcpu,
  5793. VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
  5794. return 1;
  5795. }
  5796. if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  5797. ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  5798. nested_vmx_entry_failure(vcpu, vmcs12,
  5799. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
  5800. return 1;
  5801. }
  5802. if (vmcs12->vmcs_link_pointer != -1ull) {
  5803. nested_vmx_entry_failure(vcpu, vmcs12,
  5804. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
  5805. return 1;
  5806. }
  5807. /*
  5808. * We're finally done with prerequisite checking, and can start with
  5809. * the nested entry.
  5810. */
  5811. vmcs02 = nested_get_current_vmcs02(vmx);
  5812. if (!vmcs02)
  5813. return -ENOMEM;
  5814. enter_guest_mode(vcpu);
  5815. vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
  5816. cpu = get_cpu();
  5817. vmx->loaded_vmcs = vmcs02;
  5818. vmx_vcpu_put(vcpu);
  5819. vmx_vcpu_load(vcpu, cpu);
  5820. vcpu->cpu = cpu;
  5821. put_cpu();
  5822. vmcs12->launch_state = 1;
  5823. prepare_vmcs02(vcpu, vmcs12);
  5824. /*
  5825. * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
  5826. * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
  5827. * returned as far as L1 is concerned. It will only return (and set
  5828. * the success flag) when L2 exits (see nested_vmx_vmexit()).
  5829. */
  5830. return 1;
  5831. }
  5832. /*
  5833. * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
  5834. * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
  5835. * This function returns the new value we should put in vmcs12.guest_cr0.
  5836. * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
  5837. * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
  5838. * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
  5839. * didn't trap the bit, because if L1 did, so would L0).
  5840. * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
  5841. * been modified by L2, and L1 knows it. So just leave the old value of
  5842. * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
  5843. * isn't relevant, because if L0 traps this bit it can set it to anything.
  5844. * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
  5845. * changed these bits, and therefore they need to be updated, but L0
  5846. * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
  5847. * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
  5848. */
  5849. static inline unsigned long
  5850. vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5851. {
  5852. return
  5853. /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
  5854. /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
  5855. /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
  5856. vcpu->arch.cr0_guest_owned_bits));
  5857. }
  5858. static inline unsigned long
  5859. vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5860. {
  5861. return
  5862. /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
  5863. /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
  5864. /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
  5865. vcpu->arch.cr4_guest_owned_bits));
  5866. }
  5867. /*
  5868. * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
  5869. * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
  5870. * and this function updates it to reflect the changes to the guest state while
  5871. * L2 was running (and perhaps made some exits which were handled directly by L0
  5872. * without going back to L1), and to reflect the exit reason.
  5873. * Note that we do not have to copy here all VMCS fields, just those that
  5874. * could have changed by the L2 guest or the exit - i.e., the guest-state and
  5875. * exit-information fields only. Other fields are modified by L1 with VMWRITE,
  5876. * which already writes to vmcs12 directly.
  5877. */
  5878. void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5879. {
  5880. /* update guest state fields: */
  5881. vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
  5882. vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
  5883. kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
  5884. vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  5885. vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
  5886. vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
  5887. vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
  5888. vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
  5889. vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
  5890. vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
  5891. vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
  5892. vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
  5893. vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
  5894. vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
  5895. vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
  5896. vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
  5897. vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  5898. vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
  5899. vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
  5900. vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
  5901. vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
  5902. vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
  5903. vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
  5904. vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
  5905. vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
  5906. vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
  5907. vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
  5908. vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
  5909. vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
  5910. vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
  5911. vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
  5912. vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
  5913. vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
  5914. vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
  5915. vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
  5916. vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
  5917. vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
  5918. vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
  5919. vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
  5920. vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
  5921. vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
  5922. vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
  5923. vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
  5924. vmcs12->guest_interruptibility_info =
  5925. vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  5926. vmcs12->guest_pending_dbg_exceptions =
  5927. vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
  5928. /* TODO: These cannot have changed unless we have MSR bitmaps and
  5929. * the relevant bit asks not to trap the change */
  5930. vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
  5931. if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
  5932. vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
  5933. vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
  5934. vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
  5935. vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
  5936. /* update exit information fields: */
  5937. vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
  5938. vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5939. vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5940. vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  5941. vmcs12->idt_vectoring_info_field =
  5942. vmcs_read32(IDT_VECTORING_INFO_FIELD);
  5943. vmcs12->idt_vectoring_error_code =
  5944. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  5945. vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  5946. vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  5947. /* clear vm-entry fields which are to be cleared on exit */
  5948. if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
  5949. vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
  5950. }
  5951. /*
  5952. * A part of what we need to when the nested L2 guest exits and we want to
  5953. * run its L1 parent, is to reset L1's guest state to the host state specified
  5954. * in vmcs12.
  5955. * This function is to be called not only on normal nested exit, but also on
  5956. * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
  5957. * Failures During or After Loading Guest State").
  5958. * This function should be called when the active VMCS is L1's (vmcs01).
  5959. */
  5960. void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5961. {
  5962. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
  5963. vcpu->arch.efer = vmcs12->host_ia32_efer;
  5964. if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
  5965. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  5966. else
  5967. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  5968. vmx_set_efer(vcpu, vcpu->arch.efer);
  5969. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
  5970. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
  5971. /*
  5972. * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
  5973. * actually changed, because it depends on the current state of
  5974. * fpu_active (which may have changed).
  5975. * Note that vmx_set_cr0 refers to efer set above.
  5976. */
  5977. kvm_set_cr0(vcpu, vmcs12->host_cr0);
  5978. /*
  5979. * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
  5980. * to apply the same changes to L1's vmcs. We just set cr0 correctly,
  5981. * but we also need to update cr0_guest_host_mask and exception_bitmap.
  5982. */
  5983. update_exception_bitmap(vcpu);
  5984. vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
  5985. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  5986. /*
  5987. * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
  5988. * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
  5989. */
  5990. vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
  5991. kvm_set_cr4(vcpu, vmcs12->host_cr4);
  5992. /* shadow page tables on either EPT or shadow page tables */
  5993. kvm_set_cr3(vcpu, vmcs12->host_cr3);
  5994. kvm_mmu_reset_context(vcpu);
  5995. if (enable_vpid) {
  5996. /*
  5997. * Trivially support vpid by letting L2s share their parent
  5998. * L1's vpid. TODO: move to a more elaborate solution, giving
  5999. * each L2 its own vpid and exposing the vpid feature to L1.
  6000. */
  6001. vmx_flush_tlb(vcpu);
  6002. }
  6003. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
  6004. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
  6005. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
  6006. vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
  6007. vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
  6008. vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
  6009. vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
  6010. vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
  6011. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
  6012. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
  6013. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
  6014. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
  6015. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
  6016. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
  6017. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
  6018. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
  6019. vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
  6020. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
  6021. vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
  6022. vmcs12->host_ia32_perf_global_ctrl);
  6023. }
  6024. /*
  6025. * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
  6026. * and modify vmcs12 to make it see what it would expect to see there if
  6027. * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
  6028. */
  6029. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
  6030. {
  6031. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6032. int cpu;
  6033. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  6034. leave_guest_mode(vcpu);
  6035. prepare_vmcs12(vcpu, vmcs12);
  6036. cpu = get_cpu();
  6037. vmx->loaded_vmcs = &vmx->vmcs01;
  6038. vmx_vcpu_put(vcpu);
  6039. vmx_vcpu_load(vcpu, cpu);
  6040. vcpu->cpu = cpu;
  6041. put_cpu();
  6042. /* if no vmcs02 cache requested, remove the one we used */
  6043. if (VMCS02_POOL_SIZE == 0)
  6044. nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
  6045. load_vmcs12_host_state(vcpu, vmcs12);
  6046. /* Update TSC_OFFSET if TSC was changed while L2 ran */
  6047. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  6048. /* This is needed for same reason as it was needed in prepare_vmcs02 */
  6049. vmx->host_rsp = 0;
  6050. /* Unpin physical memory we referred to in vmcs02 */
  6051. if (vmx->nested.apic_access_page) {
  6052. nested_release_page(vmx->nested.apic_access_page);
  6053. vmx->nested.apic_access_page = 0;
  6054. }
  6055. /*
  6056. * Exiting from L2 to L1, we're now back to L1 which thinks it just
  6057. * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
  6058. * success or failure flag accordingly.
  6059. */
  6060. if (unlikely(vmx->fail)) {
  6061. vmx->fail = 0;
  6062. nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
  6063. } else
  6064. nested_vmx_succeed(vcpu);
  6065. }
  6066. /*
  6067. * L1's failure to enter L2 is a subset of a normal exit, as explained in
  6068. * 23.7 "VM-entry failures during or after loading guest state" (this also
  6069. * lists the acceptable exit-reason and exit-qualification parameters).
  6070. * It should only be called before L2 actually succeeded to run, and when
  6071. * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
  6072. */
  6073. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  6074. struct vmcs12 *vmcs12,
  6075. u32 reason, unsigned long qualification)
  6076. {
  6077. load_vmcs12_host_state(vcpu, vmcs12);
  6078. vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
  6079. vmcs12->exit_qualification = qualification;
  6080. nested_vmx_succeed(vcpu);
  6081. }
  6082. static int vmx_check_intercept(struct kvm_vcpu *vcpu,
  6083. struct x86_instruction_info *info,
  6084. enum x86_intercept_stage stage)
  6085. {
  6086. return X86EMUL_CONTINUE;
  6087. }
  6088. static struct kvm_x86_ops vmx_x86_ops = {
  6089. .cpu_has_kvm_support = cpu_has_kvm_support,
  6090. .disabled_by_bios = vmx_disabled_by_bios,
  6091. .hardware_setup = hardware_setup,
  6092. .hardware_unsetup = hardware_unsetup,
  6093. .check_processor_compatibility = vmx_check_processor_compat,
  6094. .hardware_enable = hardware_enable,
  6095. .hardware_disable = hardware_disable,
  6096. .cpu_has_accelerated_tpr = report_flexpriority,
  6097. .vcpu_create = vmx_create_vcpu,
  6098. .vcpu_free = vmx_free_vcpu,
  6099. .vcpu_reset = vmx_vcpu_reset,
  6100. .prepare_guest_switch = vmx_save_host_state,
  6101. .vcpu_load = vmx_vcpu_load,
  6102. .vcpu_put = vmx_vcpu_put,
  6103. .set_guest_debug = set_guest_debug,
  6104. .get_msr = vmx_get_msr,
  6105. .set_msr = vmx_set_msr,
  6106. .get_segment_base = vmx_get_segment_base,
  6107. .get_segment = vmx_get_segment,
  6108. .set_segment = vmx_set_segment,
  6109. .get_cpl = vmx_get_cpl,
  6110. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  6111. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  6112. .decache_cr3 = vmx_decache_cr3,
  6113. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  6114. .set_cr0 = vmx_set_cr0,
  6115. .set_cr3 = vmx_set_cr3,
  6116. .set_cr4 = vmx_set_cr4,
  6117. .set_efer = vmx_set_efer,
  6118. .get_idt = vmx_get_idt,
  6119. .set_idt = vmx_set_idt,
  6120. .get_gdt = vmx_get_gdt,
  6121. .set_gdt = vmx_set_gdt,
  6122. .set_dr7 = vmx_set_dr7,
  6123. .cache_reg = vmx_cache_reg,
  6124. .get_rflags = vmx_get_rflags,
  6125. .set_rflags = vmx_set_rflags,
  6126. .fpu_activate = vmx_fpu_activate,
  6127. .fpu_deactivate = vmx_fpu_deactivate,
  6128. .tlb_flush = vmx_flush_tlb,
  6129. .run = vmx_vcpu_run,
  6130. .handle_exit = vmx_handle_exit,
  6131. .skip_emulated_instruction = skip_emulated_instruction,
  6132. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  6133. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  6134. .patch_hypercall = vmx_patch_hypercall,
  6135. .set_irq = vmx_inject_irq,
  6136. .set_nmi = vmx_inject_nmi,
  6137. .queue_exception = vmx_queue_exception,
  6138. .cancel_injection = vmx_cancel_injection,
  6139. .interrupt_allowed = vmx_interrupt_allowed,
  6140. .nmi_allowed = vmx_nmi_allowed,
  6141. .get_nmi_mask = vmx_get_nmi_mask,
  6142. .set_nmi_mask = vmx_set_nmi_mask,
  6143. .enable_nmi_window = enable_nmi_window,
  6144. .enable_irq_window = enable_irq_window,
  6145. .update_cr8_intercept = update_cr8_intercept,
  6146. .set_tss_addr = vmx_set_tss_addr,
  6147. .get_tdp_level = get_ept_level,
  6148. .get_mt_mask = vmx_get_mt_mask,
  6149. .get_exit_info = vmx_get_exit_info,
  6150. .get_lpage_level = vmx_get_lpage_level,
  6151. .cpuid_update = vmx_cpuid_update,
  6152. .rdtscp_supported = vmx_rdtscp_supported,
  6153. .set_supported_cpuid = vmx_set_supported_cpuid,
  6154. .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
  6155. .set_tsc_khz = vmx_set_tsc_khz,
  6156. .write_tsc_offset = vmx_write_tsc_offset,
  6157. .adjust_tsc_offset = vmx_adjust_tsc_offset,
  6158. .compute_tsc_offset = vmx_compute_tsc_offset,
  6159. .read_l1_tsc = vmx_read_l1_tsc,
  6160. .set_tdp_cr3 = vmx_set_cr3,
  6161. .check_intercept = vmx_check_intercept,
  6162. };
  6163. static int __init vmx_init(void)
  6164. {
  6165. int r, i;
  6166. rdmsrl_safe(MSR_EFER, &host_efer);
  6167. for (i = 0; i < NR_VMX_MSR; ++i)
  6168. kvm_define_shared_msr(i, vmx_msr_index[i]);
  6169. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  6170. if (!vmx_io_bitmap_a)
  6171. return -ENOMEM;
  6172. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  6173. if (!vmx_io_bitmap_b) {
  6174. r = -ENOMEM;
  6175. goto out;
  6176. }
  6177. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  6178. if (!vmx_msr_bitmap_legacy) {
  6179. r = -ENOMEM;
  6180. goto out1;
  6181. }
  6182. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  6183. if (!vmx_msr_bitmap_longmode) {
  6184. r = -ENOMEM;
  6185. goto out2;
  6186. }
  6187. /*
  6188. * Allow direct access to the PC debug port (it is often used for I/O
  6189. * delays, but the vmexits simply slow things down).
  6190. */
  6191. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  6192. clear_bit(0x80, vmx_io_bitmap_a);
  6193. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  6194. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  6195. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  6196. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  6197. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  6198. __alignof__(struct vcpu_vmx), THIS_MODULE);
  6199. if (r)
  6200. goto out3;
  6201. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  6202. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  6203. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  6204. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  6205. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  6206. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  6207. if (enable_ept) {
  6208. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  6209. VMX_EPT_EXECUTABLE_MASK);
  6210. ept_set_mmio_spte_mask();
  6211. kvm_enable_tdp();
  6212. } else
  6213. kvm_disable_tdp();
  6214. return 0;
  6215. out3:
  6216. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6217. out2:
  6218. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6219. out1:
  6220. free_page((unsigned long)vmx_io_bitmap_b);
  6221. out:
  6222. free_page((unsigned long)vmx_io_bitmap_a);
  6223. return r;
  6224. }
  6225. static void __exit vmx_exit(void)
  6226. {
  6227. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6228. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6229. free_page((unsigned long)vmx_io_bitmap_b);
  6230. free_page((unsigned long)vmx_io_bitmap_a);
  6231. kvm_exit();
  6232. }
  6233. module_init(vmx_init)
  6234. module_exit(vmx_exit)