i8259.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655
  1. /*
  2. * 8259 interrupt controller emulation
  3. *
  4. * Copyright (c) 2003-2004 Fabrice Bellard
  5. * Copyright (c) 2007 Intel Corporation
  6. * Copyright 2009 Red Hat, Inc. and/or its affiliates.
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in
  16. * all copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  21. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24. * THE SOFTWARE.
  25. * Authors:
  26. * Yaozu (Eddie) Dong <Eddie.dong@intel.com>
  27. * Port from Qemu.
  28. */
  29. #include <linux/mm.h>
  30. #include <linux/slab.h>
  31. #include <linux/bitops.h>
  32. #include "irq.h"
  33. #include <linux/kvm_host.h>
  34. #include "trace.h"
  35. #define pr_pic_unimpl(fmt, ...) \
  36. pr_err_ratelimited("kvm: pic: " fmt, ## __VA_ARGS__)
  37. static void pic_irq_request(struct kvm *kvm, int level);
  38. static void pic_lock(struct kvm_pic *s)
  39. __acquires(&s->lock)
  40. {
  41. spin_lock(&s->lock);
  42. }
  43. static void pic_unlock(struct kvm_pic *s)
  44. __releases(&s->lock)
  45. {
  46. bool wakeup = s->wakeup_needed;
  47. struct kvm_vcpu *vcpu, *found = NULL;
  48. int i;
  49. s->wakeup_needed = false;
  50. spin_unlock(&s->lock);
  51. if (wakeup) {
  52. kvm_for_each_vcpu(i, vcpu, s->kvm) {
  53. if (kvm_apic_accept_pic_intr(vcpu)) {
  54. found = vcpu;
  55. break;
  56. }
  57. }
  58. if (!found)
  59. return;
  60. kvm_make_request(KVM_REQ_EVENT, found);
  61. kvm_vcpu_kick(found);
  62. }
  63. }
  64. static void pic_clear_isr(struct kvm_kpic_state *s, int irq)
  65. {
  66. s->isr &= ~(1 << irq);
  67. if (s != &s->pics_state->pics[0])
  68. irq += 8;
  69. /*
  70. * We are dropping lock while calling ack notifiers since ack
  71. * notifier callbacks for assigned devices call into PIC recursively.
  72. * Other interrupt may be delivered to PIC while lock is dropped but
  73. * it should be safe since PIC state is already updated at this stage.
  74. */
  75. pic_unlock(s->pics_state);
  76. kvm_notify_acked_irq(s->pics_state->kvm, SELECT_PIC(irq), irq);
  77. pic_lock(s->pics_state);
  78. }
  79. /*
  80. * set irq level. If an edge is detected, then the IRR is set to 1
  81. */
  82. static inline int pic_set_irq1(struct kvm_kpic_state *s, int irq, int level)
  83. {
  84. int mask, ret = 1;
  85. mask = 1 << irq;
  86. if (s->elcr & mask) /* level triggered */
  87. if (level) {
  88. ret = !(s->irr & mask);
  89. s->irr |= mask;
  90. s->last_irr |= mask;
  91. } else {
  92. s->irr &= ~mask;
  93. s->last_irr &= ~mask;
  94. }
  95. else /* edge triggered */
  96. if (level) {
  97. if ((s->last_irr & mask) == 0) {
  98. ret = !(s->irr & mask);
  99. s->irr |= mask;
  100. }
  101. s->last_irr |= mask;
  102. } else
  103. s->last_irr &= ~mask;
  104. return (s->imr & mask) ? -1 : ret;
  105. }
  106. /*
  107. * return the highest priority found in mask (highest = smallest
  108. * number). Return 8 if no irq
  109. */
  110. static inline int get_priority(struct kvm_kpic_state *s, int mask)
  111. {
  112. int priority;
  113. if (mask == 0)
  114. return 8;
  115. priority = 0;
  116. while ((mask & (1 << ((priority + s->priority_add) & 7))) == 0)
  117. priority++;
  118. return priority;
  119. }
  120. /*
  121. * return the pic wanted interrupt. return -1 if none
  122. */
  123. static int pic_get_irq(struct kvm_kpic_state *s)
  124. {
  125. int mask, cur_priority, priority;
  126. mask = s->irr & ~s->imr;
  127. priority = get_priority(s, mask);
  128. if (priority == 8)
  129. return -1;
  130. /*
  131. * compute current priority. If special fully nested mode on the
  132. * master, the IRQ coming from the slave is not taken into account
  133. * for the priority computation.
  134. */
  135. mask = s->isr;
  136. if (s->special_fully_nested_mode && s == &s->pics_state->pics[0])
  137. mask &= ~(1 << 2);
  138. cur_priority = get_priority(s, mask);
  139. if (priority < cur_priority)
  140. /*
  141. * higher priority found: an irq should be generated
  142. */
  143. return (priority + s->priority_add) & 7;
  144. else
  145. return -1;
  146. }
  147. /*
  148. * raise irq to CPU if necessary. must be called every time the active
  149. * irq may change
  150. */
  151. static void pic_update_irq(struct kvm_pic *s)
  152. {
  153. int irq2, irq;
  154. irq2 = pic_get_irq(&s->pics[1]);
  155. if (irq2 >= 0) {
  156. /*
  157. * if irq request by slave pic, signal master PIC
  158. */
  159. pic_set_irq1(&s->pics[0], 2, 1);
  160. pic_set_irq1(&s->pics[0], 2, 0);
  161. }
  162. irq = pic_get_irq(&s->pics[0]);
  163. pic_irq_request(s->kvm, irq >= 0);
  164. }
  165. void kvm_pic_update_irq(struct kvm_pic *s)
  166. {
  167. pic_lock(s);
  168. pic_update_irq(s);
  169. pic_unlock(s);
  170. }
  171. int kvm_pic_set_irq(void *opaque, int irq, int level)
  172. {
  173. struct kvm_pic *s = opaque;
  174. int ret = -1;
  175. pic_lock(s);
  176. if (irq >= 0 && irq < PIC_NUM_PINS) {
  177. ret = pic_set_irq1(&s->pics[irq >> 3], irq & 7, level);
  178. pic_update_irq(s);
  179. trace_kvm_pic_set_irq(irq >> 3, irq & 7, s->pics[irq >> 3].elcr,
  180. s->pics[irq >> 3].imr, ret == 0);
  181. }
  182. pic_unlock(s);
  183. return ret;
  184. }
  185. /*
  186. * acknowledge interrupt 'irq'
  187. */
  188. static inline void pic_intack(struct kvm_kpic_state *s, int irq)
  189. {
  190. s->isr |= 1 << irq;
  191. /*
  192. * We don't clear a level sensitive interrupt here
  193. */
  194. if (!(s->elcr & (1 << irq)))
  195. s->irr &= ~(1 << irq);
  196. if (s->auto_eoi) {
  197. if (s->rotate_on_auto_eoi)
  198. s->priority_add = (irq + 1) & 7;
  199. pic_clear_isr(s, irq);
  200. }
  201. }
  202. int kvm_pic_read_irq(struct kvm *kvm)
  203. {
  204. int irq, irq2, intno;
  205. struct kvm_pic *s = pic_irqchip(kvm);
  206. pic_lock(s);
  207. irq = pic_get_irq(&s->pics[0]);
  208. if (irq >= 0) {
  209. pic_intack(&s->pics[0], irq);
  210. if (irq == 2) {
  211. irq2 = pic_get_irq(&s->pics[1]);
  212. if (irq2 >= 0)
  213. pic_intack(&s->pics[1], irq2);
  214. else
  215. /*
  216. * spurious IRQ on slave controller
  217. */
  218. irq2 = 7;
  219. intno = s->pics[1].irq_base + irq2;
  220. irq = irq2 + 8;
  221. } else
  222. intno = s->pics[0].irq_base + irq;
  223. } else {
  224. /*
  225. * spurious IRQ on host controller
  226. */
  227. irq = 7;
  228. intno = s->pics[0].irq_base + irq;
  229. }
  230. pic_update_irq(s);
  231. pic_unlock(s);
  232. return intno;
  233. }
  234. void kvm_pic_reset(struct kvm_kpic_state *s)
  235. {
  236. int irq;
  237. struct kvm_vcpu *vcpu0 = s->pics_state->kvm->bsp_vcpu;
  238. u8 irr = s->irr, isr = s->imr;
  239. s->last_irr = 0;
  240. s->irr = 0;
  241. s->imr = 0;
  242. s->isr = 0;
  243. s->priority_add = 0;
  244. s->irq_base = 0;
  245. s->read_reg_select = 0;
  246. s->poll = 0;
  247. s->special_mask = 0;
  248. s->init_state = 0;
  249. s->auto_eoi = 0;
  250. s->rotate_on_auto_eoi = 0;
  251. s->special_fully_nested_mode = 0;
  252. s->init4 = 0;
  253. for (irq = 0; irq < PIC_NUM_PINS/2; irq++) {
  254. if (vcpu0 && kvm_apic_accept_pic_intr(vcpu0))
  255. if (irr & (1 << irq) || isr & (1 << irq)) {
  256. pic_clear_isr(s, irq);
  257. }
  258. }
  259. }
  260. static void pic_ioport_write(void *opaque, u32 addr, u32 val)
  261. {
  262. struct kvm_kpic_state *s = opaque;
  263. int priority, cmd, irq;
  264. addr &= 1;
  265. if (addr == 0) {
  266. if (val & 0x10) {
  267. s->init4 = val & 1;
  268. s->last_irr = 0;
  269. s->imr = 0;
  270. s->priority_add = 0;
  271. s->special_mask = 0;
  272. s->read_reg_select = 0;
  273. if (!s->init4) {
  274. s->special_fully_nested_mode = 0;
  275. s->auto_eoi = 0;
  276. }
  277. s->init_state = 1;
  278. if (val & 0x02)
  279. pr_pic_unimpl("single mode not supported");
  280. if (val & 0x08)
  281. pr_pic_unimpl(
  282. "level sensitive irq not supported");
  283. } else if (val & 0x08) {
  284. if (val & 0x04)
  285. s->poll = 1;
  286. if (val & 0x02)
  287. s->read_reg_select = val & 1;
  288. if (val & 0x40)
  289. s->special_mask = (val >> 5) & 1;
  290. } else {
  291. cmd = val >> 5;
  292. switch (cmd) {
  293. case 0:
  294. case 4:
  295. s->rotate_on_auto_eoi = cmd >> 2;
  296. break;
  297. case 1: /* end of interrupt */
  298. case 5:
  299. priority = get_priority(s, s->isr);
  300. if (priority != 8) {
  301. irq = (priority + s->priority_add) & 7;
  302. if (cmd == 5)
  303. s->priority_add = (irq + 1) & 7;
  304. pic_clear_isr(s, irq);
  305. pic_update_irq(s->pics_state);
  306. }
  307. break;
  308. case 3:
  309. irq = val & 7;
  310. pic_clear_isr(s, irq);
  311. pic_update_irq(s->pics_state);
  312. break;
  313. case 6:
  314. s->priority_add = (val + 1) & 7;
  315. pic_update_irq(s->pics_state);
  316. break;
  317. case 7:
  318. irq = val & 7;
  319. s->priority_add = (irq + 1) & 7;
  320. pic_clear_isr(s, irq);
  321. pic_update_irq(s->pics_state);
  322. break;
  323. default:
  324. break; /* no operation */
  325. }
  326. }
  327. } else
  328. switch (s->init_state) {
  329. case 0: { /* normal mode */
  330. u8 imr_diff = s->imr ^ val,
  331. off = (s == &s->pics_state->pics[0]) ? 0 : 8;
  332. s->imr = val;
  333. for (irq = 0; irq < PIC_NUM_PINS/2; irq++)
  334. if (imr_diff & (1 << irq))
  335. kvm_fire_mask_notifiers(
  336. s->pics_state->kvm,
  337. SELECT_PIC(irq + off),
  338. irq + off,
  339. !!(s->imr & (1 << irq)));
  340. pic_update_irq(s->pics_state);
  341. break;
  342. }
  343. case 1:
  344. s->irq_base = val & 0xf8;
  345. s->init_state = 2;
  346. break;
  347. case 2:
  348. if (s->init4)
  349. s->init_state = 3;
  350. else
  351. s->init_state = 0;
  352. break;
  353. case 3:
  354. s->special_fully_nested_mode = (val >> 4) & 1;
  355. s->auto_eoi = (val >> 1) & 1;
  356. s->init_state = 0;
  357. break;
  358. }
  359. }
  360. static u32 pic_poll_read(struct kvm_kpic_state *s, u32 addr1)
  361. {
  362. int ret;
  363. ret = pic_get_irq(s);
  364. if (ret >= 0) {
  365. if (addr1 >> 7) {
  366. s->pics_state->pics[0].isr &= ~(1 << 2);
  367. s->pics_state->pics[0].irr &= ~(1 << 2);
  368. }
  369. s->irr &= ~(1 << ret);
  370. pic_clear_isr(s, ret);
  371. if (addr1 >> 7 || ret != 2)
  372. pic_update_irq(s->pics_state);
  373. } else {
  374. ret = 0x07;
  375. pic_update_irq(s->pics_state);
  376. }
  377. return ret;
  378. }
  379. static u32 pic_ioport_read(void *opaque, u32 addr1)
  380. {
  381. struct kvm_kpic_state *s = opaque;
  382. unsigned int addr;
  383. int ret;
  384. addr = addr1;
  385. addr &= 1;
  386. if (s->poll) {
  387. ret = pic_poll_read(s, addr1);
  388. s->poll = 0;
  389. } else
  390. if (addr == 0)
  391. if (s->read_reg_select)
  392. ret = s->isr;
  393. else
  394. ret = s->irr;
  395. else
  396. ret = s->imr;
  397. return ret;
  398. }
  399. static void elcr_ioport_write(void *opaque, u32 addr, u32 val)
  400. {
  401. struct kvm_kpic_state *s = opaque;
  402. s->elcr = val & s->elcr_mask;
  403. }
  404. static u32 elcr_ioport_read(void *opaque, u32 addr1)
  405. {
  406. struct kvm_kpic_state *s = opaque;
  407. return s->elcr;
  408. }
  409. static int picdev_in_range(gpa_t addr)
  410. {
  411. switch (addr) {
  412. case 0x20:
  413. case 0x21:
  414. case 0xa0:
  415. case 0xa1:
  416. case 0x4d0:
  417. case 0x4d1:
  418. return 1;
  419. default:
  420. return 0;
  421. }
  422. }
  423. static int picdev_write(struct kvm_pic *s,
  424. gpa_t addr, int len, const void *val)
  425. {
  426. unsigned char data = *(unsigned char *)val;
  427. if (!picdev_in_range(addr))
  428. return -EOPNOTSUPP;
  429. if (len != 1) {
  430. pr_pic_unimpl("non byte write\n");
  431. return 0;
  432. }
  433. pic_lock(s);
  434. switch (addr) {
  435. case 0x20:
  436. case 0x21:
  437. case 0xa0:
  438. case 0xa1:
  439. pic_ioport_write(&s->pics[addr >> 7], addr, data);
  440. break;
  441. case 0x4d0:
  442. case 0x4d1:
  443. elcr_ioport_write(&s->pics[addr & 1], addr, data);
  444. break;
  445. }
  446. pic_unlock(s);
  447. return 0;
  448. }
  449. static int picdev_read(struct kvm_pic *s,
  450. gpa_t addr, int len, void *val)
  451. {
  452. unsigned char data = 0;
  453. if (!picdev_in_range(addr))
  454. return -EOPNOTSUPP;
  455. if (len != 1) {
  456. pr_pic_unimpl("non byte read\n");
  457. return 0;
  458. }
  459. pic_lock(s);
  460. switch (addr) {
  461. case 0x20:
  462. case 0x21:
  463. case 0xa0:
  464. case 0xa1:
  465. data = pic_ioport_read(&s->pics[addr >> 7], addr);
  466. break;
  467. case 0x4d0:
  468. case 0x4d1:
  469. data = elcr_ioport_read(&s->pics[addr & 1], addr);
  470. break;
  471. }
  472. *(unsigned char *)val = data;
  473. pic_unlock(s);
  474. return 0;
  475. }
  476. static int picdev_master_write(struct kvm_io_device *dev,
  477. gpa_t addr, int len, const void *val)
  478. {
  479. return picdev_write(container_of(dev, struct kvm_pic, dev_master),
  480. addr, len, val);
  481. }
  482. static int picdev_master_read(struct kvm_io_device *dev,
  483. gpa_t addr, int len, void *val)
  484. {
  485. return picdev_read(container_of(dev, struct kvm_pic, dev_master),
  486. addr, len, val);
  487. }
  488. static int picdev_slave_write(struct kvm_io_device *dev,
  489. gpa_t addr, int len, const void *val)
  490. {
  491. return picdev_write(container_of(dev, struct kvm_pic, dev_slave),
  492. addr, len, val);
  493. }
  494. static int picdev_slave_read(struct kvm_io_device *dev,
  495. gpa_t addr, int len, void *val)
  496. {
  497. return picdev_read(container_of(dev, struct kvm_pic, dev_slave),
  498. addr, len, val);
  499. }
  500. static int picdev_eclr_write(struct kvm_io_device *dev,
  501. gpa_t addr, int len, const void *val)
  502. {
  503. return picdev_write(container_of(dev, struct kvm_pic, dev_eclr),
  504. addr, len, val);
  505. }
  506. static int picdev_eclr_read(struct kvm_io_device *dev,
  507. gpa_t addr, int len, void *val)
  508. {
  509. return picdev_read(container_of(dev, struct kvm_pic, dev_eclr),
  510. addr, len, val);
  511. }
  512. /*
  513. * callback when PIC0 irq status changed
  514. */
  515. static void pic_irq_request(struct kvm *kvm, int level)
  516. {
  517. struct kvm_pic *s = pic_irqchip(kvm);
  518. if (!s->output)
  519. s->wakeup_needed = true;
  520. s->output = level;
  521. }
  522. static const struct kvm_io_device_ops picdev_master_ops = {
  523. .read = picdev_master_read,
  524. .write = picdev_master_write,
  525. };
  526. static const struct kvm_io_device_ops picdev_slave_ops = {
  527. .read = picdev_slave_read,
  528. .write = picdev_slave_write,
  529. };
  530. static const struct kvm_io_device_ops picdev_eclr_ops = {
  531. .read = picdev_eclr_read,
  532. .write = picdev_eclr_write,
  533. };
  534. struct kvm_pic *kvm_create_pic(struct kvm *kvm)
  535. {
  536. struct kvm_pic *s;
  537. int ret;
  538. s = kzalloc(sizeof(struct kvm_pic), GFP_KERNEL);
  539. if (!s)
  540. return NULL;
  541. spin_lock_init(&s->lock);
  542. s->kvm = kvm;
  543. s->pics[0].elcr_mask = 0xf8;
  544. s->pics[1].elcr_mask = 0xde;
  545. s->pics[0].pics_state = s;
  546. s->pics[1].pics_state = s;
  547. /*
  548. * Initialize PIO device
  549. */
  550. kvm_iodevice_init(&s->dev_master, &picdev_master_ops);
  551. kvm_iodevice_init(&s->dev_slave, &picdev_slave_ops);
  552. kvm_iodevice_init(&s->dev_eclr, &picdev_eclr_ops);
  553. mutex_lock(&kvm->slots_lock);
  554. ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, 0x20, 2,
  555. &s->dev_master);
  556. if (ret < 0)
  557. goto fail_unlock;
  558. ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, 0xa0, 2, &s->dev_slave);
  559. if (ret < 0)
  560. goto fail_unreg_2;
  561. ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, 0x4d0, 2, &s->dev_eclr);
  562. if (ret < 0)
  563. goto fail_unreg_1;
  564. mutex_unlock(&kvm->slots_lock);
  565. return s;
  566. fail_unreg_1:
  567. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &s->dev_slave);
  568. fail_unreg_2:
  569. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &s->dev_master);
  570. fail_unlock:
  571. mutex_unlock(&kvm->slots_lock);
  572. kfree(s);
  573. return NULL;
  574. }
  575. void kvm_destroy_pic(struct kvm *kvm)
  576. {
  577. struct kvm_pic *vpic = kvm->arch.vpic;
  578. if (vpic) {
  579. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &vpic->dev_master);
  580. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &vpic->dev_slave);
  581. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &vpic->dev_eclr);
  582. kvm->arch.vpic = NULL;
  583. kfree(vpic);
  584. }
  585. }