process.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736
  1. /*
  2. * Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  3. * Licensed under the GPL
  4. */
  5. #include <stdlib.h>
  6. #include <unistd.h>
  7. #include <sched.h>
  8. #include <errno.h>
  9. #include <string.h>
  10. #include <sys/mman.h>
  11. #include <sys/wait.h>
  12. #include <asm/unistd.h>
  13. #include "as-layout.h"
  14. #include "init.h"
  15. #include "kern_util.h"
  16. #include "mem.h"
  17. #include "os.h"
  18. #include "proc_mm.h"
  19. #include "ptrace_user.h"
  20. #include "registers.h"
  21. #include "skas.h"
  22. #include "skas_ptrace.h"
  23. #include "sysdep/stub.h"
  24. int is_skas_winch(int pid, int fd, void *data)
  25. {
  26. return pid == getpgrp();
  27. }
  28. static int ptrace_dump_regs(int pid)
  29. {
  30. unsigned long regs[MAX_REG_NR];
  31. int i;
  32. if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0)
  33. return -errno;
  34. printk(UM_KERN_ERR "Stub registers -\n");
  35. for (i = 0; i < ARRAY_SIZE(regs); i++)
  36. printk(UM_KERN_ERR "\t%d - %lx\n", i, regs[i]);
  37. return 0;
  38. }
  39. /*
  40. * Signals that are OK to receive in the stub - we'll just continue it.
  41. * SIGWINCH will happen when UML is inside a detached screen.
  42. */
  43. #define STUB_SIG_MASK ((1 << SIGVTALRM) | (1 << SIGWINCH))
  44. /* Signals that the stub will finish with - anything else is an error */
  45. #define STUB_DONE_MASK (1 << SIGTRAP)
  46. void wait_stub_done(int pid)
  47. {
  48. int n, status, err;
  49. while (1) {
  50. CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
  51. if ((n < 0) || !WIFSTOPPED(status))
  52. goto bad_wait;
  53. if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0)
  54. break;
  55. err = ptrace(PTRACE_CONT, pid, 0, 0);
  56. if (err) {
  57. printk(UM_KERN_ERR "wait_stub_done : continue failed, "
  58. "errno = %d\n", errno);
  59. fatal_sigsegv();
  60. }
  61. }
  62. if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0)
  63. return;
  64. bad_wait:
  65. err = ptrace_dump_regs(pid);
  66. if (err)
  67. printk(UM_KERN_ERR "Failed to get registers from stub, "
  68. "errno = %d\n", -err);
  69. printk(UM_KERN_ERR "wait_stub_done : failed to wait for SIGTRAP, "
  70. "pid = %d, n = %d, errno = %d, status = 0x%x\n", pid, n, errno,
  71. status);
  72. fatal_sigsegv();
  73. }
  74. extern unsigned long current_stub_stack(void);
  75. static void get_skas_faultinfo(int pid, struct faultinfo *fi)
  76. {
  77. int err;
  78. if (ptrace_faultinfo) {
  79. err = ptrace(PTRACE_FAULTINFO, pid, 0, fi);
  80. if (err) {
  81. printk(UM_KERN_ERR "get_skas_faultinfo - "
  82. "PTRACE_FAULTINFO failed, errno = %d\n", errno);
  83. fatal_sigsegv();
  84. }
  85. /* Special handling for i386, which has different structs */
  86. if (sizeof(struct ptrace_faultinfo) < sizeof(struct faultinfo))
  87. memset((char *)fi + sizeof(struct ptrace_faultinfo), 0,
  88. sizeof(struct faultinfo) -
  89. sizeof(struct ptrace_faultinfo));
  90. }
  91. else {
  92. unsigned long fpregs[FP_SIZE];
  93. err = get_fp_registers(pid, fpregs);
  94. if (err < 0) {
  95. printk(UM_KERN_ERR "save_fp_registers returned %d\n",
  96. err);
  97. fatal_sigsegv();
  98. }
  99. err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV);
  100. if (err) {
  101. printk(UM_KERN_ERR "Failed to continue stub, pid = %d, "
  102. "errno = %d\n", pid, errno);
  103. fatal_sigsegv();
  104. }
  105. wait_stub_done(pid);
  106. /*
  107. * faultinfo is prepared by the stub-segv-handler at start of
  108. * the stub stack page. We just have to copy it.
  109. */
  110. memcpy(fi, (void *)current_stub_stack(), sizeof(*fi));
  111. err = put_fp_registers(pid, fpregs);
  112. if (err < 0) {
  113. printk(UM_KERN_ERR "put_fp_registers returned %d\n",
  114. err);
  115. fatal_sigsegv();
  116. }
  117. }
  118. }
  119. static void handle_segv(int pid, struct uml_pt_regs * regs)
  120. {
  121. get_skas_faultinfo(pid, &regs->faultinfo);
  122. segv(regs->faultinfo, 0, 1, NULL);
  123. }
  124. /*
  125. * To use the same value of using_sysemu as the caller, ask it that value
  126. * (in local_using_sysemu
  127. */
  128. static void handle_trap(int pid, struct uml_pt_regs *regs,
  129. int local_using_sysemu)
  130. {
  131. int err, status;
  132. if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END))
  133. fatal_sigsegv();
  134. /* Mark this as a syscall */
  135. UPT_SYSCALL_NR(regs) = PT_SYSCALL_NR(regs->gp);
  136. if (!local_using_sysemu)
  137. {
  138. err = ptrace(PTRACE_POKEUSER, pid, PT_SYSCALL_NR_OFFSET,
  139. __NR_getpid);
  140. if (err < 0) {
  141. printk(UM_KERN_ERR "handle_trap - nullifying syscall "
  142. "failed, errno = %d\n", errno);
  143. fatal_sigsegv();
  144. }
  145. err = ptrace(PTRACE_SYSCALL, pid, 0, 0);
  146. if (err < 0) {
  147. printk(UM_KERN_ERR "handle_trap - continuing to end of "
  148. "syscall failed, errno = %d\n", errno);
  149. fatal_sigsegv();
  150. }
  151. CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
  152. if ((err < 0) || !WIFSTOPPED(status) ||
  153. (WSTOPSIG(status) != SIGTRAP + 0x80)) {
  154. err = ptrace_dump_regs(pid);
  155. if (err)
  156. printk(UM_KERN_ERR "Failed to get registers "
  157. "from process, errno = %d\n", -err);
  158. printk(UM_KERN_ERR "handle_trap - failed to wait at "
  159. "end of syscall, errno = %d, status = %d\n",
  160. errno, status);
  161. fatal_sigsegv();
  162. }
  163. }
  164. handle_syscall(regs);
  165. }
  166. extern int __syscall_stub_start;
  167. static int userspace_tramp(void *stack)
  168. {
  169. void *addr;
  170. int err;
  171. ptrace(PTRACE_TRACEME, 0, 0, 0);
  172. signal(SIGTERM, SIG_DFL);
  173. signal(SIGWINCH, SIG_IGN);
  174. err = set_interval();
  175. if (err) {
  176. printk(UM_KERN_ERR "userspace_tramp - setting timer failed, "
  177. "errno = %d\n", err);
  178. exit(1);
  179. }
  180. if (!proc_mm) {
  181. /*
  182. * This has a pte, but it can't be mapped in with the usual
  183. * tlb_flush mechanism because this is part of that mechanism
  184. */
  185. int fd;
  186. unsigned long long offset;
  187. fd = phys_mapping(to_phys(&__syscall_stub_start), &offset);
  188. addr = mmap64((void *) STUB_CODE, UM_KERN_PAGE_SIZE,
  189. PROT_EXEC, MAP_FIXED | MAP_PRIVATE, fd, offset);
  190. if (addr == MAP_FAILED) {
  191. printk(UM_KERN_ERR "mapping mmap stub at 0x%lx failed, "
  192. "errno = %d\n", STUB_CODE, errno);
  193. exit(1);
  194. }
  195. if (stack != NULL) {
  196. fd = phys_mapping(to_phys(stack), &offset);
  197. addr = mmap((void *) STUB_DATA,
  198. UM_KERN_PAGE_SIZE, PROT_READ | PROT_WRITE,
  199. MAP_FIXED | MAP_SHARED, fd, offset);
  200. if (addr == MAP_FAILED) {
  201. printk(UM_KERN_ERR "mapping segfault stack "
  202. "at 0x%lx failed, errno = %d\n",
  203. STUB_DATA, errno);
  204. exit(1);
  205. }
  206. }
  207. }
  208. if (!ptrace_faultinfo && (stack != NULL)) {
  209. struct sigaction sa;
  210. unsigned long v = STUB_CODE +
  211. (unsigned long) stub_segv_handler -
  212. (unsigned long) &__syscall_stub_start;
  213. set_sigstack((void *) STUB_DATA, UM_KERN_PAGE_SIZE);
  214. sigemptyset(&sa.sa_mask);
  215. sa.sa_flags = SA_ONSTACK | SA_NODEFER | SA_SIGINFO;
  216. sa.sa_sigaction = (void *) v;
  217. sa.sa_restorer = NULL;
  218. if (sigaction(SIGSEGV, &sa, NULL) < 0) {
  219. printk(UM_KERN_ERR "userspace_tramp - setting SIGSEGV "
  220. "handler failed - errno = %d\n", errno);
  221. exit(1);
  222. }
  223. }
  224. kill(os_getpid(), SIGSTOP);
  225. return 0;
  226. }
  227. /* Each element set once, and only accessed by a single processor anyway */
  228. #undef NR_CPUS
  229. #define NR_CPUS 1
  230. int userspace_pid[NR_CPUS];
  231. int start_userspace(unsigned long stub_stack)
  232. {
  233. void *stack;
  234. unsigned long sp;
  235. int pid, status, n, flags, err;
  236. stack = mmap(NULL, UM_KERN_PAGE_SIZE,
  237. PROT_READ | PROT_WRITE | PROT_EXEC,
  238. MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  239. if (stack == MAP_FAILED) {
  240. err = -errno;
  241. printk(UM_KERN_ERR "start_userspace : mmap failed, "
  242. "errno = %d\n", errno);
  243. return err;
  244. }
  245. sp = (unsigned long) stack + UM_KERN_PAGE_SIZE - sizeof(void *);
  246. flags = CLONE_FILES;
  247. if (proc_mm)
  248. flags |= CLONE_VM;
  249. else
  250. flags |= SIGCHLD;
  251. pid = clone(userspace_tramp, (void *) sp, flags, (void *) stub_stack);
  252. if (pid < 0) {
  253. err = -errno;
  254. printk(UM_KERN_ERR "start_userspace : clone failed, "
  255. "errno = %d\n", errno);
  256. return err;
  257. }
  258. do {
  259. CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
  260. if (n < 0) {
  261. err = -errno;
  262. printk(UM_KERN_ERR "start_userspace : wait failed, "
  263. "errno = %d\n", errno);
  264. goto out_kill;
  265. }
  266. } while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGVTALRM));
  267. if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) {
  268. err = -EINVAL;
  269. printk(UM_KERN_ERR "start_userspace : expected SIGSTOP, got "
  270. "status = %d\n", status);
  271. goto out_kill;
  272. }
  273. if (ptrace(PTRACE_OLDSETOPTIONS, pid, NULL,
  274. (void *) PTRACE_O_TRACESYSGOOD) < 0) {
  275. err = -errno;
  276. printk(UM_KERN_ERR "start_userspace : PTRACE_OLDSETOPTIONS "
  277. "failed, errno = %d\n", errno);
  278. goto out_kill;
  279. }
  280. if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) {
  281. err = -errno;
  282. printk(UM_KERN_ERR "start_userspace : munmap failed, "
  283. "errno = %d\n", errno);
  284. goto out_kill;
  285. }
  286. return pid;
  287. out_kill:
  288. os_kill_ptraced_process(pid, 1);
  289. return err;
  290. }
  291. void userspace(struct uml_pt_regs *regs)
  292. {
  293. struct itimerval timer;
  294. unsigned long long nsecs, now;
  295. int err, status, op, pid = userspace_pid[0];
  296. /* To prevent races if using_sysemu changes under us.*/
  297. int local_using_sysemu;
  298. if (getitimer(ITIMER_VIRTUAL, &timer))
  299. printk(UM_KERN_ERR "Failed to get itimer, errno = %d\n", errno);
  300. nsecs = timer.it_value.tv_sec * UM_NSEC_PER_SEC +
  301. timer.it_value.tv_usec * UM_NSEC_PER_USEC;
  302. nsecs += os_nsecs();
  303. while (1) {
  304. /*
  305. * This can legitimately fail if the process loads a
  306. * bogus value into a segment register. It will
  307. * segfault and PTRACE_GETREGS will read that value
  308. * out of the process. However, PTRACE_SETREGS will
  309. * fail. In this case, there is nothing to do but
  310. * just kill the process.
  311. */
  312. if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp))
  313. fatal_sigsegv();
  314. if (put_fp_registers(pid, regs->fp))
  315. fatal_sigsegv();
  316. /* Now we set local_using_sysemu to be used for one loop */
  317. local_using_sysemu = get_using_sysemu();
  318. op = SELECT_PTRACE_OPERATION(local_using_sysemu,
  319. singlestepping(NULL));
  320. if (ptrace(op, pid, 0, 0)) {
  321. printk(UM_KERN_ERR "userspace - ptrace continue "
  322. "failed, op = %d, errno = %d\n", op, errno);
  323. fatal_sigsegv();
  324. }
  325. CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
  326. if (err < 0) {
  327. printk(UM_KERN_ERR "userspace - wait failed, "
  328. "errno = %d\n", errno);
  329. fatal_sigsegv();
  330. }
  331. regs->is_user = 1;
  332. if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) {
  333. printk(UM_KERN_ERR "userspace - PTRACE_GETREGS failed, "
  334. "errno = %d\n", errno);
  335. fatal_sigsegv();
  336. }
  337. if (get_fp_registers(pid, regs->fp)) {
  338. printk(UM_KERN_ERR "userspace - get_fp_registers failed, "
  339. "errno = %d\n", errno);
  340. fatal_sigsegv();
  341. }
  342. UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */
  343. if (WIFSTOPPED(status)) {
  344. int sig = WSTOPSIG(status);
  345. switch (sig) {
  346. case SIGSEGV:
  347. if (PTRACE_FULL_FAULTINFO ||
  348. !ptrace_faultinfo) {
  349. get_skas_faultinfo(pid,
  350. &regs->faultinfo);
  351. (*sig_info[SIGSEGV])(SIGSEGV, regs);
  352. }
  353. else handle_segv(pid, regs);
  354. break;
  355. case SIGTRAP + 0x80:
  356. handle_trap(pid, regs, local_using_sysemu);
  357. break;
  358. case SIGTRAP:
  359. relay_signal(SIGTRAP, regs);
  360. break;
  361. case SIGVTALRM:
  362. now = os_nsecs();
  363. if (now < nsecs)
  364. break;
  365. block_signals();
  366. (*sig_info[sig])(sig, regs);
  367. unblock_signals();
  368. nsecs = timer.it_value.tv_sec *
  369. UM_NSEC_PER_SEC +
  370. timer.it_value.tv_usec *
  371. UM_NSEC_PER_USEC;
  372. nsecs += os_nsecs();
  373. break;
  374. case SIGIO:
  375. case SIGILL:
  376. case SIGBUS:
  377. case SIGFPE:
  378. case SIGWINCH:
  379. block_signals();
  380. (*sig_info[sig])(sig, regs);
  381. unblock_signals();
  382. break;
  383. default:
  384. printk(UM_KERN_ERR "userspace - child stopped "
  385. "with signal %d\n", sig);
  386. fatal_sigsegv();
  387. }
  388. pid = userspace_pid[0];
  389. interrupt_end();
  390. /* Avoid -ERESTARTSYS handling in host */
  391. if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET)
  392. PT_SYSCALL_NR(regs->gp) = -1;
  393. }
  394. }
  395. }
  396. static unsigned long thread_regs[MAX_REG_NR];
  397. static unsigned long thread_fp_regs[FP_SIZE];
  398. static int __init init_thread_regs(void)
  399. {
  400. get_safe_registers(thread_regs, thread_fp_regs);
  401. /* Set parent's instruction pointer to start of clone-stub */
  402. thread_regs[REGS_IP_INDEX] = STUB_CODE +
  403. (unsigned long) stub_clone_handler -
  404. (unsigned long) &__syscall_stub_start;
  405. thread_regs[REGS_SP_INDEX] = STUB_DATA + UM_KERN_PAGE_SIZE -
  406. sizeof(void *);
  407. #ifdef __SIGNAL_FRAMESIZE
  408. thread_regs[REGS_SP_INDEX] -= __SIGNAL_FRAMESIZE;
  409. #endif
  410. return 0;
  411. }
  412. __initcall(init_thread_regs);
  413. int copy_context_skas0(unsigned long new_stack, int pid)
  414. {
  415. struct timeval tv = { .tv_sec = 0, .tv_usec = UM_USEC_PER_SEC / UM_HZ };
  416. int err;
  417. unsigned long current_stack = current_stub_stack();
  418. struct stub_data *data = (struct stub_data *) current_stack;
  419. struct stub_data *child_data = (struct stub_data *) new_stack;
  420. unsigned long long new_offset;
  421. int new_fd = phys_mapping(to_phys((void *)new_stack), &new_offset);
  422. /*
  423. * prepare offset and fd of child's stack as argument for parent's
  424. * and child's mmap2 calls
  425. */
  426. *data = ((struct stub_data) { .offset = MMAP_OFFSET(new_offset),
  427. .fd = new_fd,
  428. .timer = ((struct itimerval)
  429. { .it_value = tv,
  430. .it_interval = tv }) });
  431. err = ptrace_setregs(pid, thread_regs);
  432. if (err < 0) {
  433. err = -errno;
  434. printk(UM_KERN_ERR "copy_context_skas0 : PTRACE_SETREGS "
  435. "failed, pid = %d, errno = %d\n", pid, -err);
  436. return err;
  437. }
  438. err = put_fp_registers(pid, thread_fp_regs);
  439. if (err < 0) {
  440. printk(UM_KERN_ERR "copy_context_skas0 : put_fp_registers "
  441. "failed, pid = %d, err = %d\n", pid, err);
  442. return err;
  443. }
  444. /* set a well known return code for detection of child write failure */
  445. child_data->err = 12345678;
  446. /*
  447. * Wait, until parent has finished its work: read child's pid from
  448. * parent's stack, and check, if bad result.
  449. */
  450. err = ptrace(PTRACE_CONT, pid, 0, 0);
  451. if (err) {
  452. err = -errno;
  453. printk(UM_KERN_ERR "Failed to continue new process, pid = %d, "
  454. "errno = %d\n", pid, errno);
  455. return err;
  456. }
  457. wait_stub_done(pid);
  458. pid = data->err;
  459. if (pid < 0) {
  460. printk(UM_KERN_ERR "copy_context_skas0 - stub-parent reports "
  461. "error %d\n", -pid);
  462. return pid;
  463. }
  464. /*
  465. * Wait, until child has finished too: read child's result from
  466. * child's stack and check it.
  467. */
  468. wait_stub_done(pid);
  469. if (child_data->err != STUB_DATA) {
  470. printk(UM_KERN_ERR "copy_context_skas0 - stub-child reports "
  471. "error %ld\n", child_data->err);
  472. err = child_data->err;
  473. goto out_kill;
  474. }
  475. if (ptrace(PTRACE_OLDSETOPTIONS, pid, NULL,
  476. (void *)PTRACE_O_TRACESYSGOOD) < 0) {
  477. err = -errno;
  478. printk(UM_KERN_ERR "copy_context_skas0 : PTRACE_OLDSETOPTIONS "
  479. "failed, errno = %d\n", errno);
  480. goto out_kill;
  481. }
  482. return pid;
  483. out_kill:
  484. os_kill_ptraced_process(pid, 1);
  485. return err;
  486. }
  487. /*
  488. * This is used only, if stub pages are needed, while proc_mm is
  489. * available. Opening /proc/mm creates a new mm_context, which lacks
  490. * the stub-pages. Thus, we map them using /proc/mm-fd
  491. */
  492. int map_stub_pages(int fd, unsigned long code, unsigned long data,
  493. unsigned long stack)
  494. {
  495. struct proc_mm_op mmop;
  496. int n;
  497. unsigned long long code_offset;
  498. int code_fd = phys_mapping(to_phys((void *) &__syscall_stub_start),
  499. &code_offset);
  500. mmop = ((struct proc_mm_op) { .op = MM_MMAP,
  501. .u =
  502. { .mmap =
  503. { .addr = code,
  504. .len = UM_KERN_PAGE_SIZE,
  505. .prot = PROT_EXEC,
  506. .flags = MAP_FIXED | MAP_PRIVATE,
  507. .fd = code_fd,
  508. .offset = code_offset
  509. } } });
  510. CATCH_EINTR(n = write(fd, &mmop, sizeof(mmop)));
  511. if (n != sizeof(mmop)) {
  512. n = errno;
  513. printk(UM_KERN_ERR "mmap args - addr = 0x%lx, fd = %d, "
  514. "offset = %llx\n", code, code_fd,
  515. (unsigned long long) code_offset);
  516. printk(UM_KERN_ERR "map_stub_pages : /proc/mm map for code "
  517. "failed, err = %d\n", n);
  518. return -n;
  519. }
  520. if (stack) {
  521. unsigned long long map_offset;
  522. int map_fd = phys_mapping(to_phys((void *)stack), &map_offset);
  523. mmop = ((struct proc_mm_op)
  524. { .op = MM_MMAP,
  525. .u =
  526. { .mmap =
  527. { .addr = data,
  528. .len = UM_KERN_PAGE_SIZE,
  529. .prot = PROT_READ | PROT_WRITE,
  530. .flags = MAP_FIXED | MAP_SHARED,
  531. .fd = map_fd,
  532. .offset = map_offset
  533. } } });
  534. CATCH_EINTR(n = write(fd, &mmop, sizeof(mmop)));
  535. if (n != sizeof(mmop)) {
  536. n = errno;
  537. printk(UM_KERN_ERR "map_stub_pages : /proc/mm map for "
  538. "data failed, err = %d\n", n);
  539. return -n;
  540. }
  541. }
  542. return 0;
  543. }
  544. void new_thread(void *stack, jmp_buf *buf, void (*handler)(void))
  545. {
  546. (*buf)[0].JB_IP = (unsigned long) handler;
  547. (*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE -
  548. sizeof(void *);
  549. }
  550. #define INIT_JMP_NEW_THREAD 0
  551. #define INIT_JMP_CALLBACK 1
  552. #define INIT_JMP_HALT 2
  553. #define INIT_JMP_REBOOT 3
  554. void switch_threads(jmp_buf *me, jmp_buf *you)
  555. {
  556. if (UML_SETJMP(me) == 0)
  557. UML_LONGJMP(you, 1);
  558. }
  559. static jmp_buf initial_jmpbuf;
  560. /* XXX Make these percpu */
  561. static void (*cb_proc)(void *arg);
  562. static void *cb_arg;
  563. static jmp_buf *cb_back;
  564. int start_idle_thread(void *stack, jmp_buf *switch_buf)
  565. {
  566. int n;
  567. set_handler(SIGWINCH);
  568. /*
  569. * Can't use UML_SETJMP or UML_LONGJMP here because they save
  570. * and restore signals, with the possible side-effect of
  571. * trying to handle any signals which came when they were
  572. * blocked, which can't be done on this stack.
  573. * Signals must be blocked when jumping back here and restored
  574. * after returning to the jumper.
  575. */
  576. n = setjmp(initial_jmpbuf);
  577. switch (n) {
  578. case INIT_JMP_NEW_THREAD:
  579. (*switch_buf)[0].JB_IP = (unsigned long) new_thread_handler;
  580. (*switch_buf)[0].JB_SP = (unsigned long) stack +
  581. UM_THREAD_SIZE - sizeof(void *);
  582. break;
  583. case INIT_JMP_CALLBACK:
  584. (*cb_proc)(cb_arg);
  585. longjmp(*cb_back, 1);
  586. break;
  587. case INIT_JMP_HALT:
  588. kmalloc_ok = 0;
  589. return 0;
  590. case INIT_JMP_REBOOT:
  591. kmalloc_ok = 0;
  592. return 1;
  593. default:
  594. printk(UM_KERN_ERR "Bad sigsetjmp return in "
  595. "start_idle_thread - %d\n", n);
  596. fatal_sigsegv();
  597. }
  598. longjmp(*switch_buf, 1);
  599. }
  600. void initial_thread_cb_skas(void (*proc)(void *), void *arg)
  601. {
  602. jmp_buf here;
  603. cb_proc = proc;
  604. cb_arg = arg;
  605. cb_back = &here;
  606. block_signals();
  607. if (UML_SETJMP(&here) == 0)
  608. UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK);
  609. unblock_signals();
  610. cb_proc = NULL;
  611. cb_arg = NULL;
  612. cb_back = NULL;
  613. }
  614. void halt_skas(void)
  615. {
  616. block_signals();
  617. UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT);
  618. }
  619. void reboot_skas(void)
  620. {
  621. block_signals();
  622. UML_LONGJMP(&initial_jmpbuf, INIT_JMP_REBOOT);
  623. }
  624. void __switch_mm(struct mm_id *mm_idp)
  625. {
  626. int err;
  627. /* FIXME: need cpu pid in __switch_mm */
  628. if (proc_mm) {
  629. err = ptrace(PTRACE_SWITCH_MM, userspace_pid[0], 0,
  630. mm_idp->u.mm_fd);
  631. if (err) {
  632. printk(UM_KERN_ERR "__switch_mm - PTRACE_SWITCH_MM "
  633. "failed, errno = %d\n", errno);
  634. fatal_sigsegv();
  635. }
  636. }
  637. else userspace_pid[0] = mm_idp->u.pid;
  638. }