spu_base.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854
  1. /*
  2. * Low-level SPU handling
  3. *
  4. * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
  5. *
  6. * Author: Arnd Bergmann <arndb@de.ibm.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2, or (at your option)
  11. * any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #undef DEBUG
  23. #include <linux/interrupt.h>
  24. #include <linux/list.h>
  25. #include <linux/module.h>
  26. #include <linux/ptrace.h>
  27. #include <linux/slab.h>
  28. #include <linux/wait.h>
  29. #include <linux/mm.h>
  30. #include <linux/io.h>
  31. #include <linux/mutex.h>
  32. #include <linux/linux_logo.h>
  33. #include <linux/syscore_ops.h>
  34. #include <asm/spu.h>
  35. #include <asm/spu_priv1.h>
  36. #include <asm/spu_csa.h>
  37. #include <asm/xmon.h>
  38. #include <asm/prom.h>
  39. #include <asm/kexec.h>
  40. const struct spu_management_ops *spu_management_ops;
  41. EXPORT_SYMBOL_GPL(spu_management_ops);
  42. const struct spu_priv1_ops *spu_priv1_ops;
  43. EXPORT_SYMBOL_GPL(spu_priv1_ops);
  44. struct cbe_spu_info cbe_spu_info[MAX_NUMNODES];
  45. EXPORT_SYMBOL_GPL(cbe_spu_info);
  46. /*
  47. * The spufs fault-handling code needs to call force_sig_info to raise signals
  48. * on DMA errors. Export it here to avoid general kernel-wide access to this
  49. * function
  50. */
  51. EXPORT_SYMBOL_GPL(force_sig_info);
  52. /*
  53. * Protects cbe_spu_info and spu->number.
  54. */
  55. static DEFINE_SPINLOCK(spu_lock);
  56. /*
  57. * List of all spus in the system.
  58. *
  59. * This list is iterated by callers from irq context and callers that
  60. * want to sleep. Thus modifications need to be done with both
  61. * spu_full_list_lock and spu_full_list_mutex held, while iterating
  62. * through it requires either of these locks.
  63. *
  64. * In addition spu_full_list_lock protects all assignmens to
  65. * spu->mm.
  66. */
  67. static LIST_HEAD(spu_full_list);
  68. static DEFINE_SPINLOCK(spu_full_list_lock);
  69. static DEFINE_MUTEX(spu_full_list_mutex);
  70. struct spu_slb {
  71. u64 esid, vsid;
  72. };
  73. void spu_invalidate_slbs(struct spu *spu)
  74. {
  75. struct spu_priv2 __iomem *priv2 = spu->priv2;
  76. unsigned long flags;
  77. spin_lock_irqsave(&spu->register_lock, flags);
  78. if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK)
  79. out_be64(&priv2->slb_invalidate_all_W, 0UL);
  80. spin_unlock_irqrestore(&spu->register_lock, flags);
  81. }
  82. EXPORT_SYMBOL_GPL(spu_invalidate_slbs);
  83. /* This is called by the MM core when a segment size is changed, to
  84. * request a flush of all the SPEs using a given mm
  85. */
  86. void spu_flush_all_slbs(struct mm_struct *mm)
  87. {
  88. struct spu *spu;
  89. unsigned long flags;
  90. spin_lock_irqsave(&spu_full_list_lock, flags);
  91. list_for_each_entry(spu, &spu_full_list, full_list) {
  92. if (spu->mm == mm)
  93. spu_invalidate_slbs(spu);
  94. }
  95. spin_unlock_irqrestore(&spu_full_list_lock, flags);
  96. }
  97. /* The hack below stinks... try to do something better one of
  98. * these days... Does it even work properly with NR_CPUS == 1 ?
  99. */
  100. static inline void mm_needs_global_tlbie(struct mm_struct *mm)
  101. {
  102. int nr = (NR_CPUS > 1) ? NR_CPUS : NR_CPUS + 1;
  103. /* Global TLBIE broadcast required with SPEs. */
  104. bitmap_fill(cpumask_bits(mm_cpumask(mm)), nr);
  105. }
  106. void spu_associate_mm(struct spu *spu, struct mm_struct *mm)
  107. {
  108. unsigned long flags;
  109. spin_lock_irqsave(&spu_full_list_lock, flags);
  110. spu->mm = mm;
  111. spin_unlock_irqrestore(&spu_full_list_lock, flags);
  112. if (mm)
  113. mm_needs_global_tlbie(mm);
  114. }
  115. EXPORT_SYMBOL_GPL(spu_associate_mm);
  116. int spu_64k_pages_available(void)
  117. {
  118. return mmu_psize_defs[MMU_PAGE_64K].shift != 0;
  119. }
  120. EXPORT_SYMBOL_GPL(spu_64k_pages_available);
  121. static void spu_restart_dma(struct spu *spu)
  122. {
  123. struct spu_priv2 __iomem *priv2 = spu->priv2;
  124. if (!test_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags))
  125. out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
  126. else {
  127. set_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags);
  128. mb();
  129. }
  130. }
  131. static inline void spu_load_slb(struct spu *spu, int slbe, struct spu_slb *slb)
  132. {
  133. struct spu_priv2 __iomem *priv2 = spu->priv2;
  134. pr_debug("%s: adding SLB[%d] 0x%016llx 0x%016llx\n",
  135. __func__, slbe, slb->vsid, slb->esid);
  136. out_be64(&priv2->slb_index_W, slbe);
  137. /* set invalid before writing vsid */
  138. out_be64(&priv2->slb_esid_RW, 0);
  139. /* now it's safe to write the vsid */
  140. out_be64(&priv2->slb_vsid_RW, slb->vsid);
  141. /* setting the new esid makes the entry valid again */
  142. out_be64(&priv2->slb_esid_RW, slb->esid);
  143. }
  144. static int __spu_trap_data_seg(struct spu *spu, unsigned long ea)
  145. {
  146. struct mm_struct *mm = spu->mm;
  147. struct spu_slb slb;
  148. int psize;
  149. pr_debug("%s\n", __func__);
  150. slb.esid = (ea & ESID_MASK) | SLB_ESID_V;
  151. switch(REGION_ID(ea)) {
  152. case USER_REGION_ID:
  153. #ifdef CONFIG_PPC_MM_SLICES
  154. psize = get_slice_psize(mm, ea);
  155. #else
  156. psize = mm->context.user_psize;
  157. #endif
  158. slb.vsid = (get_vsid(mm->context.id, ea, MMU_SEGSIZE_256M)
  159. << SLB_VSID_SHIFT) | SLB_VSID_USER;
  160. break;
  161. case VMALLOC_REGION_ID:
  162. if (ea < VMALLOC_END)
  163. psize = mmu_vmalloc_psize;
  164. else
  165. psize = mmu_io_psize;
  166. slb.vsid = (get_kernel_vsid(ea, MMU_SEGSIZE_256M)
  167. << SLB_VSID_SHIFT) | SLB_VSID_KERNEL;
  168. break;
  169. case KERNEL_REGION_ID:
  170. psize = mmu_linear_psize;
  171. slb.vsid = (get_kernel_vsid(ea, MMU_SEGSIZE_256M)
  172. << SLB_VSID_SHIFT) | SLB_VSID_KERNEL;
  173. break;
  174. default:
  175. /* Future: support kernel segments so that drivers
  176. * can use SPUs.
  177. */
  178. pr_debug("invalid region access at %016lx\n", ea);
  179. return 1;
  180. }
  181. slb.vsid |= mmu_psize_defs[psize].sllp;
  182. spu_load_slb(spu, spu->slb_replace, &slb);
  183. spu->slb_replace++;
  184. if (spu->slb_replace >= 8)
  185. spu->slb_replace = 0;
  186. spu_restart_dma(spu);
  187. spu->stats.slb_flt++;
  188. return 0;
  189. }
  190. extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap); //XXX
  191. static int __spu_trap_data_map(struct spu *spu, unsigned long ea, u64 dsisr)
  192. {
  193. int ret;
  194. pr_debug("%s, %llx, %lx\n", __func__, dsisr, ea);
  195. /*
  196. * Handle kernel space hash faults immediately. User hash
  197. * faults need to be deferred to process context.
  198. */
  199. if ((dsisr & MFC_DSISR_PTE_NOT_FOUND) &&
  200. (REGION_ID(ea) != USER_REGION_ID)) {
  201. spin_unlock(&spu->register_lock);
  202. ret = hash_page(ea, _PAGE_PRESENT, 0x300);
  203. spin_lock(&spu->register_lock);
  204. if (!ret) {
  205. spu_restart_dma(spu);
  206. return 0;
  207. }
  208. }
  209. spu->class_1_dar = ea;
  210. spu->class_1_dsisr = dsisr;
  211. spu->stop_callback(spu, 1);
  212. spu->class_1_dar = 0;
  213. spu->class_1_dsisr = 0;
  214. return 0;
  215. }
  216. static void __spu_kernel_slb(void *addr, struct spu_slb *slb)
  217. {
  218. unsigned long ea = (unsigned long)addr;
  219. u64 llp;
  220. if (REGION_ID(ea) == KERNEL_REGION_ID)
  221. llp = mmu_psize_defs[mmu_linear_psize].sllp;
  222. else
  223. llp = mmu_psize_defs[mmu_virtual_psize].sllp;
  224. slb->vsid = (get_kernel_vsid(ea, MMU_SEGSIZE_256M) << SLB_VSID_SHIFT) |
  225. SLB_VSID_KERNEL | llp;
  226. slb->esid = (ea & ESID_MASK) | SLB_ESID_V;
  227. }
  228. /**
  229. * Given an array of @nr_slbs SLB entries, @slbs, return non-zero if the
  230. * address @new_addr is present.
  231. */
  232. static inline int __slb_present(struct spu_slb *slbs, int nr_slbs,
  233. void *new_addr)
  234. {
  235. unsigned long ea = (unsigned long)new_addr;
  236. int i;
  237. for (i = 0; i < nr_slbs; i++)
  238. if (!((slbs[i].esid ^ ea) & ESID_MASK))
  239. return 1;
  240. return 0;
  241. }
  242. /**
  243. * Setup the SPU kernel SLBs, in preparation for a context save/restore. We
  244. * need to map both the context save area, and the save/restore code.
  245. *
  246. * Because the lscsa and code may cross segment boundaires, we check to see
  247. * if mappings are required for the start and end of each range. We currently
  248. * assume that the mappings are smaller that one segment - if not, something
  249. * is seriously wrong.
  250. */
  251. void spu_setup_kernel_slbs(struct spu *spu, struct spu_lscsa *lscsa,
  252. void *code, int code_size)
  253. {
  254. struct spu_slb slbs[4];
  255. int i, nr_slbs = 0;
  256. /* start and end addresses of both mappings */
  257. void *addrs[] = {
  258. lscsa, (void *)lscsa + sizeof(*lscsa) - 1,
  259. code, code + code_size - 1
  260. };
  261. /* check the set of addresses, and create a new entry in the slbs array
  262. * if there isn't already a SLB for that address */
  263. for (i = 0; i < ARRAY_SIZE(addrs); i++) {
  264. if (__slb_present(slbs, nr_slbs, addrs[i]))
  265. continue;
  266. __spu_kernel_slb(addrs[i], &slbs[nr_slbs]);
  267. nr_slbs++;
  268. }
  269. spin_lock_irq(&spu->register_lock);
  270. /* Add the set of SLBs */
  271. for (i = 0; i < nr_slbs; i++)
  272. spu_load_slb(spu, i, &slbs[i]);
  273. spin_unlock_irq(&spu->register_lock);
  274. }
  275. EXPORT_SYMBOL_GPL(spu_setup_kernel_slbs);
  276. static irqreturn_t
  277. spu_irq_class_0(int irq, void *data)
  278. {
  279. struct spu *spu;
  280. unsigned long stat, mask;
  281. spu = data;
  282. spin_lock(&spu->register_lock);
  283. mask = spu_int_mask_get(spu, 0);
  284. stat = spu_int_stat_get(spu, 0) & mask;
  285. spu->class_0_pending |= stat;
  286. spu->class_0_dar = spu_mfc_dar_get(spu);
  287. spu->stop_callback(spu, 0);
  288. spu->class_0_pending = 0;
  289. spu->class_0_dar = 0;
  290. spu_int_stat_clear(spu, 0, stat);
  291. spin_unlock(&spu->register_lock);
  292. return IRQ_HANDLED;
  293. }
  294. static irqreturn_t
  295. spu_irq_class_1(int irq, void *data)
  296. {
  297. struct spu *spu;
  298. unsigned long stat, mask, dar, dsisr;
  299. spu = data;
  300. /* atomically read & clear class1 status. */
  301. spin_lock(&spu->register_lock);
  302. mask = spu_int_mask_get(spu, 1);
  303. stat = spu_int_stat_get(spu, 1) & mask;
  304. dar = spu_mfc_dar_get(spu);
  305. dsisr = spu_mfc_dsisr_get(spu);
  306. if (stat & CLASS1_STORAGE_FAULT_INTR)
  307. spu_mfc_dsisr_set(spu, 0ul);
  308. spu_int_stat_clear(spu, 1, stat);
  309. pr_debug("%s: %lx %lx %lx %lx\n", __func__, mask, stat,
  310. dar, dsisr);
  311. if (stat & CLASS1_SEGMENT_FAULT_INTR)
  312. __spu_trap_data_seg(spu, dar);
  313. if (stat & CLASS1_STORAGE_FAULT_INTR)
  314. __spu_trap_data_map(spu, dar, dsisr);
  315. if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_GET_INTR)
  316. ;
  317. if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_PUT_INTR)
  318. ;
  319. spu->class_1_dsisr = 0;
  320. spu->class_1_dar = 0;
  321. spin_unlock(&spu->register_lock);
  322. return stat ? IRQ_HANDLED : IRQ_NONE;
  323. }
  324. static irqreturn_t
  325. spu_irq_class_2(int irq, void *data)
  326. {
  327. struct spu *spu;
  328. unsigned long stat;
  329. unsigned long mask;
  330. const int mailbox_intrs =
  331. CLASS2_MAILBOX_THRESHOLD_INTR | CLASS2_MAILBOX_INTR;
  332. spu = data;
  333. spin_lock(&spu->register_lock);
  334. stat = spu_int_stat_get(spu, 2);
  335. mask = spu_int_mask_get(spu, 2);
  336. /* ignore interrupts we're not waiting for */
  337. stat &= mask;
  338. /* mailbox interrupts are level triggered. mask them now before
  339. * acknowledging */
  340. if (stat & mailbox_intrs)
  341. spu_int_mask_and(spu, 2, ~(stat & mailbox_intrs));
  342. /* acknowledge all interrupts before the callbacks */
  343. spu_int_stat_clear(spu, 2, stat);
  344. pr_debug("class 2 interrupt %d, %lx, %lx\n", irq, stat, mask);
  345. if (stat & CLASS2_MAILBOX_INTR)
  346. spu->ibox_callback(spu);
  347. if (stat & CLASS2_SPU_STOP_INTR)
  348. spu->stop_callback(spu, 2);
  349. if (stat & CLASS2_SPU_HALT_INTR)
  350. spu->stop_callback(spu, 2);
  351. if (stat & CLASS2_SPU_DMA_TAG_GROUP_COMPLETE_INTR)
  352. spu->mfc_callback(spu);
  353. if (stat & CLASS2_MAILBOX_THRESHOLD_INTR)
  354. spu->wbox_callback(spu);
  355. spu->stats.class2_intr++;
  356. spin_unlock(&spu->register_lock);
  357. return stat ? IRQ_HANDLED : IRQ_NONE;
  358. }
  359. static int spu_request_irqs(struct spu *spu)
  360. {
  361. int ret = 0;
  362. if (spu->irqs[0] != NO_IRQ) {
  363. snprintf(spu->irq_c0, sizeof (spu->irq_c0), "spe%02d.0",
  364. spu->number);
  365. ret = request_irq(spu->irqs[0], spu_irq_class_0,
  366. IRQF_DISABLED,
  367. spu->irq_c0, spu);
  368. if (ret)
  369. goto bail0;
  370. }
  371. if (spu->irqs[1] != NO_IRQ) {
  372. snprintf(spu->irq_c1, sizeof (spu->irq_c1), "spe%02d.1",
  373. spu->number);
  374. ret = request_irq(spu->irqs[1], spu_irq_class_1,
  375. IRQF_DISABLED,
  376. spu->irq_c1, spu);
  377. if (ret)
  378. goto bail1;
  379. }
  380. if (spu->irqs[2] != NO_IRQ) {
  381. snprintf(spu->irq_c2, sizeof (spu->irq_c2), "spe%02d.2",
  382. spu->number);
  383. ret = request_irq(spu->irqs[2], spu_irq_class_2,
  384. IRQF_DISABLED,
  385. spu->irq_c2, spu);
  386. if (ret)
  387. goto bail2;
  388. }
  389. return 0;
  390. bail2:
  391. if (spu->irqs[1] != NO_IRQ)
  392. free_irq(spu->irqs[1], spu);
  393. bail1:
  394. if (spu->irqs[0] != NO_IRQ)
  395. free_irq(spu->irqs[0], spu);
  396. bail0:
  397. return ret;
  398. }
  399. static void spu_free_irqs(struct spu *spu)
  400. {
  401. if (spu->irqs[0] != NO_IRQ)
  402. free_irq(spu->irqs[0], spu);
  403. if (spu->irqs[1] != NO_IRQ)
  404. free_irq(spu->irqs[1], spu);
  405. if (spu->irqs[2] != NO_IRQ)
  406. free_irq(spu->irqs[2], spu);
  407. }
  408. void spu_init_channels(struct spu *spu)
  409. {
  410. static const struct {
  411. unsigned channel;
  412. unsigned count;
  413. } zero_list[] = {
  414. { 0x00, 1, }, { 0x01, 1, }, { 0x03, 1, }, { 0x04, 1, },
  415. { 0x18, 1, }, { 0x19, 1, }, { 0x1b, 1, }, { 0x1d, 1, },
  416. }, count_list[] = {
  417. { 0x00, 0, }, { 0x03, 0, }, { 0x04, 0, }, { 0x15, 16, },
  418. { 0x17, 1, }, { 0x18, 0, }, { 0x19, 0, }, { 0x1b, 0, },
  419. { 0x1c, 1, }, { 0x1d, 0, }, { 0x1e, 1, },
  420. };
  421. struct spu_priv2 __iomem *priv2;
  422. int i;
  423. priv2 = spu->priv2;
  424. /* initialize all channel data to zero */
  425. for (i = 0; i < ARRAY_SIZE(zero_list); i++) {
  426. int count;
  427. out_be64(&priv2->spu_chnlcntptr_RW, zero_list[i].channel);
  428. for (count = 0; count < zero_list[i].count; count++)
  429. out_be64(&priv2->spu_chnldata_RW, 0);
  430. }
  431. /* initialize channel counts to meaningful values */
  432. for (i = 0; i < ARRAY_SIZE(count_list); i++) {
  433. out_be64(&priv2->spu_chnlcntptr_RW, count_list[i].channel);
  434. out_be64(&priv2->spu_chnlcnt_RW, count_list[i].count);
  435. }
  436. }
  437. EXPORT_SYMBOL_GPL(spu_init_channels);
  438. static struct sysdev_class spu_sysdev_class = {
  439. .name = "spu",
  440. };
  441. int spu_add_sysdev_attr(struct sysdev_attribute *attr)
  442. {
  443. struct spu *spu;
  444. mutex_lock(&spu_full_list_mutex);
  445. list_for_each_entry(spu, &spu_full_list, full_list)
  446. sysdev_create_file(&spu->sysdev, attr);
  447. mutex_unlock(&spu_full_list_mutex);
  448. return 0;
  449. }
  450. EXPORT_SYMBOL_GPL(spu_add_sysdev_attr);
  451. int spu_add_sysdev_attr_group(struct attribute_group *attrs)
  452. {
  453. struct spu *spu;
  454. int rc = 0;
  455. mutex_lock(&spu_full_list_mutex);
  456. list_for_each_entry(spu, &spu_full_list, full_list) {
  457. rc = sysfs_create_group(&spu->sysdev.kobj, attrs);
  458. /* we're in trouble here, but try unwinding anyway */
  459. if (rc) {
  460. printk(KERN_ERR "%s: can't create sysfs group '%s'\n",
  461. __func__, attrs->name);
  462. list_for_each_entry_continue_reverse(spu,
  463. &spu_full_list, full_list)
  464. sysfs_remove_group(&spu->sysdev.kobj, attrs);
  465. break;
  466. }
  467. }
  468. mutex_unlock(&spu_full_list_mutex);
  469. return rc;
  470. }
  471. EXPORT_SYMBOL_GPL(spu_add_sysdev_attr_group);
  472. void spu_remove_sysdev_attr(struct sysdev_attribute *attr)
  473. {
  474. struct spu *spu;
  475. mutex_lock(&spu_full_list_mutex);
  476. list_for_each_entry(spu, &spu_full_list, full_list)
  477. sysdev_remove_file(&spu->sysdev, attr);
  478. mutex_unlock(&spu_full_list_mutex);
  479. }
  480. EXPORT_SYMBOL_GPL(spu_remove_sysdev_attr);
  481. void spu_remove_sysdev_attr_group(struct attribute_group *attrs)
  482. {
  483. struct spu *spu;
  484. mutex_lock(&spu_full_list_mutex);
  485. list_for_each_entry(spu, &spu_full_list, full_list)
  486. sysfs_remove_group(&spu->sysdev.kobj, attrs);
  487. mutex_unlock(&spu_full_list_mutex);
  488. }
  489. EXPORT_SYMBOL_GPL(spu_remove_sysdev_attr_group);
  490. static int spu_create_sysdev(struct spu *spu)
  491. {
  492. int ret;
  493. spu->sysdev.id = spu->number;
  494. spu->sysdev.cls = &spu_sysdev_class;
  495. ret = sysdev_register(&spu->sysdev);
  496. if (ret) {
  497. printk(KERN_ERR "Can't register SPU %d with sysfs\n",
  498. spu->number);
  499. return ret;
  500. }
  501. sysfs_add_device_to_node(&spu->sysdev, spu->node);
  502. return 0;
  503. }
  504. static int __init create_spu(void *data)
  505. {
  506. struct spu *spu;
  507. int ret;
  508. static int number;
  509. unsigned long flags;
  510. struct timespec ts;
  511. ret = -ENOMEM;
  512. spu = kzalloc(sizeof (*spu), GFP_KERNEL);
  513. if (!spu)
  514. goto out;
  515. spu->alloc_state = SPU_FREE;
  516. spin_lock_init(&spu->register_lock);
  517. spin_lock(&spu_lock);
  518. spu->number = number++;
  519. spin_unlock(&spu_lock);
  520. ret = spu_create_spu(spu, data);
  521. if (ret)
  522. goto out_free;
  523. spu_mfc_sdr_setup(spu);
  524. spu_mfc_sr1_set(spu, 0x33);
  525. ret = spu_request_irqs(spu);
  526. if (ret)
  527. goto out_destroy;
  528. ret = spu_create_sysdev(spu);
  529. if (ret)
  530. goto out_free_irqs;
  531. mutex_lock(&cbe_spu_info[spu->node].list_mutex);
  532. list_add(&spu->cbe_list, &cbe_spu_info[spu->node].spus);
  533. cbe_spu_info[spu->node].n_spus++;
  534. mutex_unlock(&cbe_spu_info[spu->node].list_mutex);
  535. mutex_lock(&spu_full_list_mutex);
  536. spin_lock_irqsave(&spu_full_list_lock, flags);
  537. list_add(&spu->full_list, &spu_full_list);
  538. spin_unlock_irqrestore(&spu_full_list_lock, flags);
  539. mutex_unlock(&spu_full_list_mutex);
  540. spu->stats.util_state = SPU_UTIL_IDLE_LOADED;
  541. ktime_get_ts(&ts);
  542. spu->stats.tstamp = timespec_to_ns(&ts);
  543. INIT_LIST_HEAD(&spu->aff_list);
  544. goto out;
  545. out_free_irqs:
  546. spu_free_irqs(spu);
  547. out_destroy:
  548. spu_destroy_spu(spu);
  549. out_free:
  550. kfree(spu);
  551. out:
  552. return ret;
  553. }
  554. static const char *spu_state_names[] = {
  555. "user", "system", "iowait", "idle"
  556. };
  557. static unsigned long long spu_acct_time(struct spu *spu,
  558. enum spu_utilization_state state)
  559. {
  560. struct timespec ts;
  561. unsigned long long time = spu->stats.times[state];
  562. /*
  563. * If the spu is idle or the context is stopped, utilization
  564. * statistics are not updated. Apply the time delta from the
  565. * last recorded state of the spu.
  566. */
  567. if (spu->stats.util_state == state) {
  568. ktime_get_ts(&ts);
  569. time += timespec_to_ns(&ts) - spu->stats.tstamp;
  570. }
  571. return time / NSEC_PER_MSEC;
  572. }
  573. static ssize_t spu_stat_show(struct sys_device *sysdev,
  574. struct sysdev_attribute *attr, char *buf)
  575. {
  576. struct spu *spu = container_of(sysdev, struct spu, sysdev);
  577. return sprintf(buf, "%s %llu %llu %llu %llu "
  578. "%llu %llu %llu %llu %llu %llu %llu %llu\n",
  579. spu_state_names[spu->stats.util_state],
  580. spu_acct_time(spu, SPU_UTIL_USER),
  581. spu_acct_time(spu, SPU_UTIL_SYSTEM),
  582. spu_acct_time(spu, SPU_UTIL_IOWAIT),
  583. spu_acct_time(spu, SPU_UTIL_IDLE_LOADED),
  584. spu->stats.vol_ctx_switch,
  585. spu->stats.invol_ctx_switch,
  586. spu->stats.slb_flt,
  587. spu->stats.hash_flt,
  588. spu->stats.min_flt,
  589. spu->stats.maj_flt,
  590. spu->stats.class2_intr,
  591. spu->stats.libassist);
  592. }
  593. static SYSDEV_ATTR(stat, 0644, spu_stat_show, NULL);
  594. #ifdef CONFIG_KEXEC
  595. struct crash_spu_info {
  596. struct spu *spu;
  597. u32 saved_spu_runcntl_RW;
  598. u32 saved_spu_status_R;
  599. u32 saved_spu_npc_RW;
  600. u64 saved_mfc_sr1_RW;
  601. u64 saved_mfc_dar;
  602. u64 saved_mfc_dsisr;
  603. };
  604. #define CRASH_NUM_SPUS 16 /* Enough for current hardware */
  605. static struct crash_spu_info crash_spu_info[CRASH_NUM_SPUS];
  606. static void crash_kexec_stop_spus(void)
  607. {
  608. struct spu *spu;
  609. int i;
  610. u64 tmp;
  611. for (i = 0; i < CRASH_NUM_SPUS; i++) {
  612. if (!crash_spu_info[i].spu)
  613. continue;
  614. spu = crash_spu_info[i].spu;
  615. crash_spu_info[i].saved_spu_runcntl_RW =
  616. in_be32(&spu->problem->spu_runcntl_RW);
  617. crash_spu_info[i].saved_spu_status_R =
  618. in_be32(&spu->problem->spu_status_R);
  619. crash_spu_info[i].saved_spu_npc_RW =
  620. in_be32(&spu->problem->spu_npc_RW);
  621. crash_spu_info[i].saved_mfc_dar = spu_mfc_dar_get(spu);
  622. crash_spu_info[i].saved_mfc_dsisr = spu_mfc_dsisr_get(spu);
  623. tmp = spu_mfc_sr1_get(spu);
  624. crash_spu_info[i].saved_mfc_sr1_RW = tmp;
  625. tmp &= ~MFC_STATE1_MASTER_RUN_CONTROL_MASK;
  626. spu_mfc_sr1_set(spu, tmp);
  627. __delay(200);
  628. }
  629. }
  630. static void crash_register_spus(struct list_head *list)
  631. {
  632. struct spu *spu;
  633. int ret;
  634. list_for_each_entry(spu, list, full_list) {
  635. if (WARN_ON(spu->number >= CRASH_NUM_SPUS))
  636. continue;
  637. crash_spu_info[spu->number].spu = spu;
  638. }
  639. ret = crash_shutdown_register(&crash_kexec_stop_spus);
  640. if (ret)
  641. printk(KERN_ERR "Could not register SPU crash handler");
  642. }
  643. #else
  644. static inline void crash_register_spus(struct list_head *list)
  645. {
  646. }
  647. #endif
  648. static void spu_shutdown(void)
  649. {
  650. struct spu *spu;
  651. mutex_lock(&spu_full_list_mutex);
  652. list_for_each_entry(spu, &spu_full_list, full_list) {
  653. spu_free_irqs(spu);
  654. spu_destroy_spu(spu);
  655. }
  656. mutex_unlock(&spu_full_list_mutex);
  657. }
  658. static struct syscore_ops spu_syscore_ops = {
  659. .shutdown = spu_shutdown,
  660. };
  661. static int __init init_spu_base(void)
  662. {
  663. int i, ret = 0;
  664. for (i = 0; i < MAX_NUMNODES; i++) {
  665. mutex_init(&cbe_spu_info[i].list_mutex);
  666. INIT_LIST_HEAD(&cbe_spu_info[i].spus);
  667. }
  668. if (!spu_management_ops)
  669. goto out;
  670. /* create sysdev class for spus */
  671. ret = sysdev_class_register(&spu_sysdev_class);
  672. if (ret)
  673. goto out;
  674. ret = spu_enumerate_spus(create_spu);
  675. if (ret < 0) {
  676. printk(KERN_WARNING "%s: Error initializing spus\n",
  677. __func__);
  678. goto out_unregister_sysdev_class;
  679. }
  680. if (ret > 0)
  681. fb_append_extra_logo(&logo_spe_clut224, ret);
  682. mutex_lock(&spu_full_list_mutex);
  683. xmon_register_spus(&spu_full_list);
  684. crash_register_spus(&spu_full_list);
  685. mutex_unlock(&spu_full_list_mutex);
  686. spu_add_sysdev_attr(&attr_stat);
  687. register_syscore_ops(&spu_syscore_ops);
  688. spu_init_affinity();
  689. return 0;
  690. out_unregister_sysdev_class:
  691. sysdev_class_unregister(&spu_sysdev_class);
  692. out:
  693. return ret;
  694. }
  695. module_init(init_spu_base);
  696. MODULE_LICENSE("GPL");
  697. MODULE_AUTHOR("Arnd Bergmann <arndb@de.ibm.com>");