smp.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182
  1. /* SMP support routines.
  2. *
  3. * Copyright (C) 2006-2008 Panasonic Corporation
  4. * All Rights Reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * version 2 as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. */
  15. #include <linux/interrupt.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/init.h>
  18. #include <linux/jiffies.h>
  19. #include <linux/cpumask.h>
  20. #include <linux/err.h>
  21. #include <linux/kernel.h>
  22. #include <linux/delay.h>
  23. #include <linux/sched.h>
  24. #include <linux/profile.h>
  25. #include <linux/smp.h>
  26. #include <asm/tlbflush.h>
  27. #include <asm/system.h>
  28. #include <asm/bitops.h>
  29. #include <asm/processor.h>
  30. #include <asm/bug.h>
  31. #include <asm/exceptions.h>
  32. #include <asm/hardirq.h>
  33. #include <asm/fpu.h>
  34. #include <asm/mmu_context.h>
  35. #include <asm/thread_info.h>
  36. #include <asm/cpu-regs.h>
  37. #include <asm/intctl-regs.h>
  38. #include "internal.h"
  39. #ifdef CONFIG_HOTPLUG_CPU
  40. #include <linux/cpu.h>
  41. #include <asm/cacheflush.h>
  42. static unsigned long sleep_mode[NR_CPUS];
  43. static void run_sleep_cpu(unsigned int cpu);
  44. static void run_wakeup_cpu(unsigned int cpu);
  45. #endif /* CONFIG_HOTPLUG_CPU */
  46. /*
  47. * Debug Message function
  48. */
  49. #undef DEBUG_SMP
  50. #ifdef DEBUG_SMP
  51. #define Dprintk(fmt, ...) printk(KERN_DEBUG fmt, ##__VA_ARGS__)
  52. #else
  53. #define Dprintk(fmt, ...) no_printk(KERN_DEBUG fmt, ##__VA_ARGS__)
  54. #endif
  55. /* timeout value in msec for smp_nmi_call_function. zero is no timeout. */
  56. #define CALL_FUNCTION_NMI_IPI_TIMEOUT 0
  57. /*
  58. * Structure and data for smp_nmi_call_function().
  59. */
  60. struct nmi_call_data_struct {
  61. smp_call_func_t func;
  62. void *info;
  63. cpumask_t started;
  64. cpumask_t finished;
  65. int wait;
  66. char size_alignment[0]
  67. __attribute__ ((__aligned__(SMP_CACHE_BYTES)));
  68. } __attribute__ ((__aligned__(SMP_CACHE_BYTES)));
  69. static DEFINE_SPINLOCK(smp_nmi_call_lock);
  70. static struct nmi_call_data_struct *nmi_call_data;
  71. /*
  72. * Data structures and variables
  73. */
  74. static cpumask_t cpu_callin_map; /* Bitmask of callin CPUs */
  75. static cpumask_t cpu_callout_map; /* Bitmask of callout CPUs */
  76. cpumask_t cpu_boot_map; /* Bitmask of boot APs */
  77. unsigned long start_stack[NR_CPUS - 1];
  78. /*
  79. * Per CPU parameters
  80. */
  81. struct mn10300_cpuinfo cpu_data[NR_CPUS] __cacheline_aligned;
  82. static int cpucount; /* The count of boot CPUs */
  83. static cpumask_t smp_commenced_mask;
  84. cpumask_t cpu_initialized __initdata = CPU_MASK_NONE;
  85. /*
  86. * Function Prototypes
  87. */
  88. static int do_boot_cpu(int);
  89. static void smp_show_cpu_info(int cpu_id);
  90. static void smp_callin(void);
  91. static void smp_online(void);
  92. static void smp_store_cpu_info(int);
  93. static void smp_cpu_init(void);
  94. static void smp_tune_scheduling(void);
  95. static void send_IPI_mask(const cpumask_t *cpumask, int irq);
  96. static void init_ipi(void);
  97. /*
  98. * IPI Initialization interrupt definitions
  99. */
  100. static void mn10300_ipi_disable(unsigned int irq);
  101. static void mn10300_ipi_enable(unsigned int irq);
  102. static void mn10300_ipi_chip_disable(struct irq_data *d);
  103. static void mn10300_ipi_chip_enable(struct irq_data *d);
  104. static void mn10300_ipi_ack(struct irq_data *d);
  105. static void mn10300_ipi_nop(struct irq_data *d);
  106. static struct irq_chip mn10300_ipi_type = {
  107. .name = "cpu_ipi",
  108. .irq_disable = mn10300_ipi_chip_disable,
  109. .irq_enable = mn10300_ipi_chip_enable,
  110. .irq_ack = mn10300_ipi_ack,
  111. .irq_eoi = mn10300_ipi_nop
  112. };
  113. static irqreturn_t smp_reschedule_interrupt(int irq, void *dev_id);
  114. static irqreturn_t smp_call_function_interrupt(int irq, void *dev_id);
  115. static struct irqaction reschedule_ipi = {
  116. .handler = smp_reschedule_interrupt,
  117. .name = "smp reschedule IPI"
  118. };
  119. static struct irqaction call_function_ipi = {
  120. .handler = smp_call_function_interrupt,
  121. .name = "smp call function IPI"
  122. };
  123. #if !defined(CONFIG_GENERIC_CLOCKEVENTS) || defined(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST)
  124. static irqreturn_t smp_ipi_timer_interrupt(int irq, void *dev_id);
  125. static struct irqaction local_timer_ipi = {
  126. .handler = smp_ipi_timer_interrupt,
  127. .flags = IRQF_DISABLED,
  128. .name = "smp local timer IPI"
  129. };
  130. #endif
  131. /**
  132. * init_ipi - Initialise the IPI mechanism
  133. */
  134. static void init_ipi(void)
  135. {
  136. unsigned long flags;
  137. u16 tmp16;
  138. /* set up the reschedule IPI */
  139. irq_set_chip_and_handler(RESCHEDULE_IPI, &mn10300_ipi_type,
  140. handle_percpu_irq);
  141. setup_irq(RESCHEDULE_IPI, &reschedule_ipi);
  142. set_intr_level(RESCHEDULE_IPI, RESCHEDULE_GxICR_LV);
  143. mn10300_ipi_enable(RESCHEDULE_IPI);
  144. /* set up the call function IPI */
  145. irq_set_chip_and_handler(CALL_FUNC_SINGLE_IPI, &mn10300_ipi_type,
  146. handle_percpu_irq);
  147. setup_irq(CALL_FUNC_SINGLE_IPI, &call_function_ipi);
  148. set_intr_level(CALL_FUNC_SINGLE_IPI, CALL_FUNCTION_GxICR_LV);
  149. mn10300_ipi_enable(CALL_FUNC_SINGLE_IPI);
  150. /* set up the local timer IPI */
  151. #if !defined(CONFIG_GENERIC_CLOCKEVENTS) || \
  152. defined(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST)
  153. irq_set_chip_and_handler(LOCAL_TIMER_IPI, &mn10300_ipi_type,
  154. handle_percpu_irq);
  155. setup_irq(LOCAL_TIMER_IPI, &local_timer_ipi);
  156. set_intr_level(LOCAL_TIMER_IPI, LOCAL_TIMER_GxICR_LV);
  157. mn10300_ipi_enable(LOCAL_TIMER_IPI);
  158. #endif
  159. #ifdef CONFIG_MN10300_CACHE_ENABLED
  160. /* set up the cache flush IPI */
  161. flags = arch_local_cli_save();
  162. __set_intr_stub(NUM2EXCEP_IRQ_LEVEL(FLUSH_CACHE_GxICR_LV),
  163. mn10300_low_ipi_handler);
  164. GxICR(FLUSH_CACHE_IPI) = FLUSH_CACHE_GxICR_LV | GxICR_DETECT;
  165. mn10300_ipi_enable(FLUSH_CACHE_IPI);
  166. arch_local_irq_restore(flags);
  167. #endif
  168. /* set up the NMI call function IPI */
  169. flags = arch_local_cli_save();
  170. GxICR(CALL_FUNCTION_NMI_IPI) = GxICR_NMI | GxICR_ENABLE | GxICR_DETECT;
  171. tmp16 = GxICR(CALL_FUNCTION_NMI_IPI);
  172. arch_local_irq_restore(flags);
  173. /* set up the SMP boot IPI */
  174. flags = arch_local_cli_save();
  175. __set_intr_stub(NUM2EXCEP_IRQ_LEVEL(SMP_BOOT_GxICR_LV),
  176. mn10300_low_ipi_handler);
  177. arch_local_irq_restore(flags);
  178. }
  179. /**
  180. * mn10300_ipi_shutdown - Shut down handling of an IPI
  181. * @irq: The IPI to be shut down.
  182. */
  183. static void mn10300_ipi_shutdown(unsigned int irq)
  184. {
  185. unsigned long flags;
  186. u16 tmp;
  187. flags = arch_local_cli_save();
  188. tmp = GxICR(irq);
  189. GxICR(irq) = (tmp & GxICR_LEVEL) | GxICR_DETECT;
  190. tmp = GxICR(irq);
  191. arch_local_irq_restore(flags);
  192. }
  193. /**
  194. * mn10300_ipi_enable - Enable an IPI
  195. * @irq: The IPI to be enabled.
  196. */
  197. static void mn10300_ipi_enable(unsigned int irq)
  198. {
  199. unsigned long flags;
  200. u16 tmp;
  201. flags = arch_local_cli_save();
  202. tmp = GxICR(irq);
  203. GxICR(irq) = (tmp & GxICR_LEVEL) | GxICR_ENABLE;
  204. tmp = GxICR(irq);
  205. arch_local_irq_restore(flags);
  206. }
  207. static void mn10300_ipi_chip_enable(struct irq_data *d)
  208. {
  209. mn10300_ipi_enable(d->irq);
  210. }
  211. /**
  212. * mn10300_ipi_disable - Disable an IPI
  213. * @irq: The IPI to be disabled.
  214. */
  215. static void mn10300_ipi_disable(unsigned int irq)
  216. {
  217. unsigned long flags;
  218. u16 tmp;
  219. flags = arch_local_cli_save();
  220. tmp = GxICR(irq);
  221. GxICR(irq) = tmp & GxICR_LEVEL;
  222. tmp = GxICR(irq);
  223. arch_local_irq_restore(flags);
  224. }
  225. static void mn10300_ipi_chip_disable(struct irq_data *d)
  226. {
  227. mn10300_ipi_disable(d->irq);
  228. }
  229. /**
  230. * mn10300_ipi_ack - Acknowledge an IPI interrupt in the PIC
  231. * @irq: The IPI to be acknowledged.
  232. *
  233. * Clear the interrupt detection flag for the IPI on the appropriate interrupt
  234. * channel in the PIC.
  235. */
  236. static void mn10300_ipi_ack(struct irq_data *d)
  237. {
  238. unsigned int irq = d->irq;
  239. unsigned long flags;
  240. u16 tmp;
  241. flags = arch_local_cli_save();
  242. GxICR_u8(irq) = GxICR_DETECT;
  243. tmp = GxICR(irq);
  244. arch_local_irq_restore(flags);
  245. }
  246. /**
  247. * mn10300_ipi_nop - Dummy IPI action
  248. * @irq: The IPI to be acted upon.
  249. */
  250. static void mn10300_ipi_nop(struct irq_data *d)
  251. {
  252. }
  253. /**
  254. * send_IPI_mask - Send IPIs to all CPUs in list
  255. * @cpumask: The list of CPUs to target.
  256. * @irq: The IPI request to be sent.
  257. *
  258. * Send the specified IPI to all the CPUs in the list, not waiting for them to
  259. * finish before returning. The caller is responsible for synchronisation if
  260. * that is needed.
  261. */
  262. static void send_IPI_mask(const cpumask_t *cpumask, int irq)
  263. {
  264. int i;
  265. u16 tmp;
  266. for (i = 0; i < NR_CPUS; i++) {
  267. if (cpumask_test_cpu(i, cpumask)) {
  268. /* send IPI */
  269. tmp = CROSS_GxICR(irq, i);
  270. CROSS_GxICR(irq, i) =
  271. tmp | GxICR_REQUEST | GxICR_DETECT;
  272. tmp = CROSS_GxICR(irq, i); /* flush write buffer */
  273. }
  274. }
  275. }
  276. /**
  277. * send_IPI_self - Send an IPI to this CPU.
  278. * @irq: The IPI request to be sent.
  279. *
  280. * Send the specified IPI to the current CPU.
  281. */
  282. void send_IPI_self(int irq)
  283. {
  284. send_IPI_mask(cpumask_of(smp_processor_id()), irq);
  285. }
  286. /**
  287. * send_IPI_allbutself - Send IPIs to all the other CPUs.
  288. * @irq: The IPI request to be sent.
  289. *
  290. * Send the specified IPI to all CPUs in the system barring the current one,
  291. * not waiting for them to finish before returning. The caller is responsible
  292. * for synchronisation if that is needed.
  293. */
  294. void send_IPI_allbutself(int irq)
  295. {
  296. cpumask_t cpumask;
  297. cpumask_copy(&cpumask, cpu_online_mask);
  298. cpumask_clear_cpu(smp_processor_id(), &cpumask);
  299. send_IPI_mask(&cpumask, irq);
  300. }
  301. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  302. {
  303. BUG();
  304. /*send_IPI_mask(mask, CALL_FUNCTION_IPI);*/
  305. }
  306. void arch_send_call_function_single_ipi(int cpu)
  307. {
  308. send_IPI_mask(cpumask_of(cpu), CALL_FUNC_SINGLE_IPI);
  309. }
  310. /**
  311. * smp_send_reschedule - Send reschedule IPI to a CPU
  312. * @cpu: The CPU to target.
  313. */
  314. void smp_send_reschedule(int cpu)
  315. {
  316. send_IPI_mask(cpumask_of(cpu), RESCHEDULE_IPI);
  317. }
  318. /**
  319. * smp_nmi_call_function - Send a call function NMI IPI to all CPUs
  320. * @func: The function to ask to be run.
  321. * @info: The context data to pass to that function.
  322. * @wait: If true, wait (atomically) until function is run on all CPUs.
  323. *
  324. * Send a non-maskable request to all CPUs in the system, requesting them to
  325. * run the specified function with the given context data, and, potentially, to
  326. * wait for completion of that function on all CPUs.
  327. *
  328. * Returns 0 if successful, -ETIMEDOUT if we were asked to wait, but hit the
  329. * timeout.
  330. */
  331. int smp_nmi_call_function(smp_call_func_t func, void *info, int wait)
  332. {
  333. struct nmi_call_data_struct data;
  334. unsigned long flags;
  335. unsigned int cnt;
  336. int cpus, ret = 0;
  337. cpus = num_online_cpus() - 1;
  338. if (cpus < 1)
  339. return 0;
  340. data.func = func;
  341. data.info = info;
  342. cpumask_copy(&data.started, cpu_online_mask);
  343. cpumask_clear_cpu(smp_processor_id(), &data.started);
  344. data.wait = wait;
  345. if (wait)
  346. data.finished = data.started;
  347. spin_lock_irqsave(&smp_nmi_call_lock, flags);
  348. nmi_call_data = &data;
  349. smp_mb();
  350. /* Send a message to all other CPUs and wait for them to respond */
  351. send_IPI_allbutself(CALL_FUNCTION_NMI_IPI);
  352. /* Wait for response */
  353. if (CALL_FUNCTION_NMI_IPI_TIMEOUT > 0) {
  354. for (cnt = 0;
  355. cnt < CALL_FUNCTION_NMI_IPI_TIMEOUT &&
  356. !cpumask_empty(&data.started);
  357. cnt++)
  358. mdelay(1);
  359. if (wait && cnt < CALL_FUNCTION_NMI_IPI_TIMEOUT) {
  360. for (cnt = 0;
  361. cnt < CALL_FUNCTION_NMI_IPI_TIMEOUT &&
  362. !cpumask_empty(&data.finished);
  363. cnt++)
  364. mdelay(1);
  365. }
  366. if (cnt >= CALL_FUNCTION_NMI_IPI_TIMEOUT)
  367. ret = -ETIMEDOUT;
  368. } else {
  369. /* If timeout value is zero, wait until cpumask has been
  370. * cleared */
  371. while (!cpumask_empty(&data.started))
  372. barrier();
  373. if (wait)
  374. while (!cpumask_empty(&data.finished))
  375. barrier();
  376. }
  377. spin_unlock_irqrestore(&smp_nmi_call_lock, flags);
  378. return ret;
  379. }
  380. /**
  381. * smp_jump_to_debugger - Make other CPUs enter the debugger by sending an IPI
  382. *
  383. * Send a non-maskable request to all other CPUs in the system, instructing
  384. * them to jump into the debugger. The caller is responsible for checking that
  385. * the other CPUs responded to the instruction.
  386. *
  387. * The caller should make sure that this CPU's debugger IPI is disabled.
  388. */
  389. void smp_jump_to_debugger(void)
  390. {
  391. if (num_online_cpus() > 1)
  392. /* Send a message to all other CPUs */
  393. send_IPI_allbutself(DEBUGGER_NMI_IPI);
  394. }
  395. /**
  396. * stop_this_cpu - Callback to stop a CPU.
  397. * @unused: Callback context (ignored).
  398. */
  399. void stop_this_cpu(void *unused)
  400. {
  401. static volatile int stopflag;
  402. unsigned long flags;
  403. #ifdef CONFIG_GDBSTUB
  404. /* In case of single stepping smp_send_stop by other CPU,
  405. * clear procindebug to avoid deadlock.
  406. */
  407. atomic_set(&procindebug[smp_processor_id()], 0);
  408. #endif /* CONFIG_GDBSTUB */
  409. flags = arch_local_cli_save();
  410. set_cpu_online(smp_processor_id(), false);
  411. while (!stopflag)
  412. cpu_relax();
  413. set_cpu_online(smp_processor_id(), true);
  414. arch_local_irq_restore(flags);
  415. }
  416. /**
  417. * smp_send_stop - Send a stop request to all CPUs.
  418. */
  419. void smp_send_stop(void)
  420. {
  421. smp_nmi_call_function(stop_this_cpu, NULL, 0);
  422. }
  423. /**
  424. * smp_reschedule_interrupt - Reschedule IPI handler
  425. * @irq: The interrupt number.
  426. * @dev_id: The device ID.
  427. *
  428. * Returns IRQ_HANDLED to indicate we handled the interrupt successfully.
  429. */
  430. static irqreturn_t smp_reschedule_interrupt(int irq, void *dev_id)
  431. {
  432. scheduler_ipi();
  433. return IRQ_HANDLED;
  434. }
  435. /**
  436. * smp_call_function_interrupt - Call function IPI handler
  437. * @irq: The interrupt number.
  438. * @dev_id: The device ID.
  439. *
  440. * Returns IRQ_HANDLED to indicate we handled the interrupt successfully.
  441. */
  442. static irqreturn_t smp_call_function_interrupt(int irq, void *dev_id)
  443. {
  444. /* generic_smp_call_function_interrupt(); */
  445. generic_smp_call_function_single_interrupt();
  446. return IRQ_HANDLED;
  447. }
  448. /**
  449. * smp_nmi_call_function_interrupt - Non-maskable call function IPI handler
  450. */
  451. void smp_nmi_call_function_interrupt(void)
  452. {
  453. smp_call_func_t func = nmi_call_data->func;
  454. void *info = nmi_call_data->info;
  455. int wait = nmi_call_data->wait;
  456. /* Notify the initiating CPU that I've grabbed the data and am about to
  457. * execute the function
  458. */
  459. smp_mb();
  460. cpumask_clear_cpu(smp_processor_id(), &nmi_call_data->started);
  461. (*func)(info);
  462. if (wait) {
  463. smp_mb();
  464. cpumask_clear_cpu(smp_processor_id(),
  465. &nmi_call_data->finished);
  466. }
  467. }
  468. #if !defined(CONFIG_GENERIC_CLOCKEVENTS) || \
  469. defined(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST)
  470. /**
  471. * smp_ipi_timer_interrupt - Local timer IPI handler
  472. * @irq: The interrupt number.
  473. * @dev_id: The device ID.
  474. *
  475. * Returns IRQ_HANDLED to indicate we handled the interrupt successfully.
  476. */
  477. static irqreturn_t smp_ipi_timer_interrupt(int irq, void *dev_id)
  478. {
  479. return local_timer_interrupt();
  480. }
  481. #endif
  482. void __init smp_init_cpus(void)
  483. {
  484. int i;
  485. for (i = 0; i < NR_CPUS; i++) {
  486. set_cpu_possible(i, true);
  487. set_cpu_present(i, true);
  488. }
  489. }
  490. /**
  491. * smp_cpu_init - Initialise AP in start_secondary.
  492. *
  493. * For this Application Processor, set up init_mm, initialise FPU and set
  494. * interrupt level 0-6 setting.
  495. */
  496. static void __init smp_cpu_init(void)
  497. {
  498. unsigned long flags;
  499. int cpu_id = smp_processor_id();
  500. u16 tmp16;
  501. if (test_and_set_bit(cpu_id, &cpu_initialized)) {
  502. printk(KERN_WARNING "CPU#%d already initialized!\n", cpu_id);
  503. for (;;)
  504. local_irq_enable();
  505. }
  506. printk(KERN_INFO "Initializing CPU#%d\n", cpu_id);
  507. atomic_inc(&init_mm.mm_count);
  508. current->active_mm = &init_mm;
  509. BUG_ON(current->mm);
  510. enter_lazy_tlb(&init_mm, current);
  511. /* Force FPU initialization */
  512. clear_using_fpu(current);
  513. GxICR(CALL_FUNC_SINGLE_IPI) = CALL_FUNCTION_GxICR_LV | GxICR_DETECT;
  514. mn10300_ipi_enable(CALL_FUNC_SINGLE_IPI);
  515. GxICR(LOCAL_TIMER_IPI) = LOCAL_TIMER_GxICR_LV | GxICR_DETECT;
  516. mn10300_ipi_enable(LOCAL_TIMER_IPI);
  517. GxICR(RESCHEDULE_IPI) = RESCHEDULE_GxICR_LV | GxICR_DETECT;
  518. mn10300_ipi_enable(RESCHEDULE_IPI);
  519. #ifdef CONFIG_MN10300_CACHE_ENABLED
  520. GxICR(FLUSH_CACHE_IPI) = FLUSH_CACHE_GxICR_LV | GxICR_DETECT;
  521. mn10300_ipi_enable(FLUSH_CACHE_IPI);
  522. #endif
  523. mn10300_ipi_shutdown(SMP_BOOT_IRQ);
  524. /* Set up the non-maskable call function IPI */
  525. flags = arch_local_cli_save();
  526. GxICR(CALL_FUNCTION_NMI_IPI) = GxICR_NMI | GxICR_ENABLE | GxICR_DETECT;
  527. tmp16 = GxICR(CALL_FUNCTION_NMI_IPI);
  528. arch_local_irq_restore(flags);
  529. }
  530. /**
  531. * smp_prepare_cpu_init - Initialise CPU in startup_secondary
  532. *
  533. * Set interrupt level 0-6 setting and init ICR of the kernel debugger.
  534. */
  535. void smp_prepare_cpu_init(void)
  536. {
  537. int loop;
  538. /* Set the interrupt vector registers */
  539. IVAR0 = EXCEP_IRQ_LEVEL0;
  540. IVAR1 = EXCEP_IRQ_LEVEL1;
  541. IVAR2 = EXCEP_IRQ_LEVEL2;
  542. IVAR3 = EXCEP_IRQ_LEVEL3;
  543. IVAR4 = EXCEP_IRQ_LEVEL4;
  544. IVAR5 = EXCEP_IRQ_LEVEL5;
  545. IVAR6 = EXCEP_IRQ_LEVEL6;
  546. /* Disable all interrupts and set to priority 6 (lowest) */
  547. for (loop = 0; loop < GxICR_NUM_IRQS; loop++)
  548. GxICR(loop) = GxICR_LEVEL_6 | GxICR_DETECT;
  549. #ifdef CONFIG_KERNEL_DEBUGGER
  550. /* initialise the kernel debugger interrupt */
  551. do {
  552. unsigned long flags;
  553. u16 tmp16;
  554. flags = arch_local_cli_save();
  555. GxICR(DEBUGGER_NMI_IPI) = GxICR_NMI | GxICR_ENABLE | GxICR_DETECT;
  556. tmp16 = GxICR(DEBUGGER_NMI_IPI);
  557. arch_local_irq_restore(flags);
  558. } while (0);
  559. #endif
  560. }
  561. /**
  562. * start_secondary - Activate a secondary CPU (AP)
  563. * @unused: Thread parameter (ignored).
  564. */
  565. int __init start_secondary(void *unused)
  566. {
  567. smp_cpu_init();
  568. smp_callin();
  569. while (!cpumask_test_cpu(smp_processor_id(), &smp_commenced_mask))
  570. cpu_relax();
  571. local_flush_tlb();
  572. preempt_disable();
  573. smp_online();
  574. #ifdef CONFIG_GENERIC_CLOCKEVENTS
  575. init_clockevents();
  576. #endif
  577. cpu_idle();
  578. return 0;
  579. }
  580. /**
  581. * smp_prepare_cpus - Boot up secondary CPUs (APs)
  582. * @max_cpus: Maximum number of CPUs to boot.
  583. *
  584. * Call do_boot_cpu, and boot up APs.
  585. */
  586. void __init smp_prepare_cpus(unsigned int max_cpus)
  587. {
  588. int phy_id;
  589. /* Setup boot CPU information */
  590. smp_store_cpu_info(0);
  591. smp_tune_scheduling();
  592. init_ipi();
  593. /* If SMP should be disabled, then finish */
  594. if (max_cpus == 0) {
  595. printk(KERN_INFO "SMP mode deactivated.\n");
  596. goto smp_done;
  597. }
  598. /* Boot secondary CPUs (for which phy_id > 0) */
  599. for (phy_id = 0; phy_id < NR_CPUS; phy_id++) {
  600. /* Don't boot primary CPU */
  601. if (max_cpus <= cpucount + 1)
  602. continue;
  603. if (phy_id != 0)
  604. do_boot_cpu(phy_id);
  605. set_cpu_possible(phy_id, true);
  606. smp_show_cpu_info(phy_id);
  607. }
  608. smp_done:
  609. Dprintk("Boot done.\n");
  610. }
  611. /**
  612. * smp_store_cpu_info - Save a CPU's information
  613. * @cpu: The CPU to save for.
  614. *
  615. * Save boot_cpu_data and jiffy for the specified CPU.
  616. */
  617. static void __init smp_store_cpu_info(int cpu)
  618. {
  619. struct mn10300_cpuinfo *ci = &cpu_data[cpu];
  620. *ci = boot_cpu_data;
  621. ci->loops_per_jiffy = loops_per_jiffy;
  622. ci->type = CPUREV;
  623. }
  624. /**
  625. * smp_tune_scheduling - Set time slice value
  626. *
  627. * Nothing to do here.
  628. */
  629. static void __init smp_tune_scheduling(void)
  630. {
  631. }
  632. /**
  633. * do_boot_cpu: Boot up one CPU
  634. * @phy_id: Physical ID of CPU to boot.
  635. *
  636. * Send an IPI to a secondary CPU to boot it. Returns 0 on success, 1
  637. * otherwise.
  638. */
  639. static int __init do_boot_cpu(int phy_id)
  640. {
  641. struct task_struct *idle;
  642. unsigned long send_status, callin_status;
  643. int timeout, cpu_id;
  644. send_status = GxICR_REQUEST;
  645. callin_status = 0;
  646. timeout = 0;
  647. cpu_id = phy_id;
  648. cpucount++;
  649. /* Create idle thread for this CPU */
  650. idle = fork_idle(cpu_id);
  651. if (IS_ERR(idle))
  652. panic("Failed fork for CPU#%d.", cpu_id);
  653. idle->thread.pc = (unsigned long)start_secondary;
  654. printk(KERN_NOTICE "Booting CPU#%d\n", cpu_id);
  655. start_stack[cpu_id - 1] = idle->thread.sp;
  656. task_thread_info(idle)->cpu = cpu_id;
  657. /* Send boot IPI to AP */
  658. send_IPI_mask(cpumask_of(phy_id), SMP_BOOT_IRQ);
  659. Dprintk("Waiting for send to finish...\n");
  660. /* Wait for AP's IPI receive in 100[ms] */
  661. do {
  662. udelay(1000);
  663. send_status =
  664. CROSS_GxICR(SMP_BOOT_IRQ, phy_id) & GxICR_REQUEST;
  665. } while (send_status == GxICR_REQUEST && timeout++ < 100);
  666. Dprintk("Waiting for cpu_callin_map.\n");
  667. if (send_status == 0) {
  668. /* Allow AP to start initializing */
  669. cpumask_set_cpu(cpu_id, &cpu_callout_map);
  670. /* Wait for setting cpu_callin_map */
  671. timeout = 0;
  672. do {
  673. udelay(1000);
  674. callin_status = cpumask_test_cpu(cpu_id,
  675. &cpu_callin_map);
  676. } while (callin_status == 0 && timeout++ < 5000);
  677. if (callin_status == 0)
  678. Dprintk("Not responding.\n");
  679. } else {
  680. printk(KERN_WARNING "IPI not delivered.\n");
  681. }
  682. if (send_status == GxICR_REQUEST || callin_status == 0) {
  683. cpumask_clear_cpu(cpu_id, &cpu_callout_map);
  684. cpumask_clear_cpu(cpu_id, &cpu_callin_map);
  685. cpumask_clear_cpu(cpu_id, &cpu_initialized);
  686. cpucount--;
  687. return 1;
  688. }
  689. return 0;
  690. }
  691. /**
  692. * smp_show_cpu_info - Show SMP CPU information
  693. * @cpu: The CPU of interest.
  694. */
  695. static void __init smp_show_cpu_info(int cpu)
  696. {
  697. struct mn10300_cpuinfo *ci = &cpu_data[cpu];
  698. printk(KERN_INFO
  699. "CPU#%d : ioclk speed: %lu.%02luMHz : bogomips : %lu.%02lu\n",
  700. cpu,
  701. MN10300_IOCLK / 1000000,
  702. (MN10300_IOCLK / 10000) % 100,
  703. ci->loops_per_jiffy / (500000 / HZ),
  704. (ci->loops_per_jiffy / (5000 / HZ)) % 100);
  705. }
  706. /**
  707. * smp_callin - Set cpu_callin_map of the current CPU ID
  708. */
  709. static void __init smp_callin(void)
  710. {
  711. unsigned long timeout;
  712. int cpu;
  713. cpu = smp_processor_id();
  714. timeout = jiffies + (2 * HZ);
  715. if (cpumask_test_cpu(cpu, &cpu_callin_map)) {
  716. printk(KERN_ERR "CPU#%d already present.\n", cpu);
  717. BUG();
  718. }
  719. Dprintk("CPU#%d waiting for CALLOUT\n", cpu);
  720. /* Wait for AP startup 2s total */
  721. while (time_before(jiffies, timeout)) {
  722. if (cpumask_test_cpu(cpu, &cpu_callout_map))
  723. break;
  724. cpu_relax();
  725. }
  726. if (!time_before(jiffies, timeout)) {
  727. printk(KERN_ERR
  728. "BUG: CPU#%d started up but did not get a callout!\n",
  729. cpu);
  730. BUG();
  731. }
  732. #ifdef CONFIG_CALIBRATE_DELAY
  733. calibrate_delay(); /* Get our bogomips */
  734. #endif
  735. /* Save our processor parameters */
  736. smp_store_cpu_info(cpu);
  737. /* Allow the boot processor to continue */
  738. cpumask_set_cpu(cpu, &cpu_callin_map);
  739. }
  740. /**
  741. * smp_online - Set cpu_online_mask
  742. */
  743. static void __init smp_online(void)
  744. {
  745. int cpu;
  746. cpu = smp_processor_id();
  747. local_irq_enable();
  748. set_cpu_online(cpu, true);
  749. smp_wmb();
  750. }
  751. /**
  752. * smp_cpus_done -
  753. * @max_cpus: Maximum CPU count.
  754. *
  755. * Do nothing.
  756. */
  757. void __init smp_cpus_done(unsigned int max_cpus)
  758. {
  759. }
  760. /*
  761. * smp_prepare_boot_cpu - Set up stuff for the boot processor.
  762. *
  763. * Set up the cpu_online_mask, cpu_callout_map and cpu_callin_map of the boot
  764. * processor (CPU 0).
  765. */
  766. void __devinit smp_prepare_boot_cpu(void)
  767. {
  768. cpumask_set_cpu(0, &cpu_callout_map);
  769. cpumask_set_cpu(0, &cpu_callin_map);
  770. current_thread_info()->cpu = 0;
  771. }
  772. /*
  773. * initialize_secondary - Initialise a secondary CPU (Application Processor).
  774. *
  775. * Set SP register and jump to thread's PC address.
  776. */
  777. void initialize_secondary(void)
  778. {
  779. asm volatile (
  780. "mov %0,sp \n"
  781. "jmp (%1) \n"
  782. :
  783. : "a"(current->thread.sp), "a"(current->thread.pc));
  784. }
  785. /**
  786. * __cpu_up - Set smp_commenced_mask for the nominated CPU
  787. * @cpu: The target CPU.
  788. */
  789. int __devinit __cpu_up(unsigned int cpu)
  790. {
  791. int timeout;
  792. #ifdef CONFIG_HOTPLUG_CPU
  793. if (num_online_cpus() == 1)
  794. disable_hlt();
  795. if (sleep_mode[cpu])
  796. run_wakeup_cpu(cpu);
  797. #endif /* CONFIG_HOTPLUG_CPU */
  798. cpumask_set_cpu(cpu, &smp_commenced_mask);
  799. /* Wait 5s total for a response */
  800. for (timeout = 0 ; timeout < 5000 ; timeout++) {
  801. if (cpu_online(cpu))
  802. break;
  803. udelay(1000);
  804. }
  805. BUG_ON(!cpu_online(cpu));
  806. return 0;
  807. }
  808. /**
  809. * setup_profiling_timer - Set up the profiling timer
  810. * @multiplier - The frequency multiplier to use
  811. *
  812. * The frequency of the profiling timer can be changed by writing a multiplier
  813. * value into /proc/profile.
  814. */
  815. int setup_profiling_timer(unsigned int multiplier)
  816. {
  817. return -EINVAL;
  818. }
  819. /*
  820. * CPU hotplug routines
  821. */
  822. #ifdef CONFIG_HOTPLUG_CPU
  823. static DEFINE_PER_CPU(struct cpu, cpu_devices);
  824. static int __init topology_init(void)
  825. {
  826. int cpu, ret;
  827. for_each_cpu(cpu) {
  828. ret = register_cpu(&per_cpu(cpu_devices, cpu), cpu, NULL);
  829. if (ret)
  830. printk(KERN_WARNING
  831. "topology_init: register_cpu %d failed (%d)\n",
  832. cpu, ret);
  833. }
  834. return 0;
  835. }
  836. subsys_initcall(topology_init);
  837. int __cpu_disable(void)
  838. {
  839. int cpu = smp_processor_id();
  840. if (cpu == 0)
  841. return -EBUSY;
  842. migrate_irqs();
  843. cpumask_clear_cpu(cpu, &mm_cpumask(current->active_mm));
  844. return 0;
  845. }
  846. void __cpu_die(unsigned int cpu)
  847. {
  848. run_sleep_cpu(cpu);
  849. if (num_online_cpus() == 1)
  850. enable_hlt();
  851. }
  852. #ifdef CONFIG_MN10300_CACHE_ENABLED
  853. static inline void hotplug_cpu_disable_cache(void)
  854. {
  855. int tmp;
  856. asm volatile(
  857. " movhu (%1),%0 \n"
  858. " and %2,%0 \n"
  859. " movhu %0,(%1) \n"
  860. "1: movhu (%1),%0 \n"
  861. " btst %3,%0 \n"
  862. " bne 1b \n"
  863. : "=&r"(tmp)
  864. : "a"(&CHCTR),
  865. "i"(~(CHCTR_ICEN | CHCTR_DCEN)),
  866. "i"(CHCTR_ICBUSY | CHCTR_DCBUSY)
  867. : "memory", "cc");
  868. }
  869. static inline void hotplug_cpu_enable_cache(void)
  870. {
  871. int tmp;
  872. asm volatile(
  873. "movhu (%1),%0 \n"
  874. "or %2,%0 \n"
  875. "movhu %0,(%1) \n"
  876. : "=&r"(tmp)
  877. : "a"(&CHCTR),
  878. "i"(CHCTR_ICEN | CHCTR_DCEN)
  879. : "memory", "cc");
  880. }
  881. static inline void hotplug_cpu_invalidate_cache(void)
  882. {
  883. int tmp;
  884. asm volatile (
  885. "movhu (%1),%0 \n"
  886. "or %2,%0 \n"
  887. "movhu %0,(%1) \n"
  888. : "=&r"(tmp)
  889. : "a"(&CHCTR),
  890. "i"(CHCTR_ICINV | CHCTR_DCINV)
  891. : "cc");
  892. }
  893. #else /* CONFIG_MN10300_CACHE_ENABLED */
  894. #define hotplug_cpu_disable_cache() do {} while (0)
  895. #define hotplug_cpu_enable_cache() do {} while (0)
  896. #define hotplug_cpu_invalidate_cache() do {} while (0)
  897. #endif /* CONFIG_MN10300_CACHE_ENABLED */
  898. /**
  899. * hotplug_cpu_nmi_call_function - Call a function on other CPUs for hotplug
  900. * @cpumask: List of target CPUs.
  901. * @func: The function to call on those CPUs.
  902. * @info: The context data for the function to be called.
  903. * @wait: Whether to wait for the calls to complete.
  904. *
  905. * Non-maskably call a function on another CPU for hotplug purposes.
  906. *
  907. * This function must be called with maskable interrupts disabled.
  908. */
  909. static int hotplug_cpu_nmi_call_function(cpumask_t cpumask,
  910. smp_call_func_t func, void *info,
  911. int wait)
  912. {
  913. /*
  914. * The address and the size of nmi_call_func_mask_data
  915. * need to be aligned on L1_CACHE_BYTES.
  916. */
  917. static struct nmi_call_data_struct nmi_call_func_mask_data
  918. __cacheline_aligned;
  919. unsigned long start, end;
  920. start = (unsigned long)&nmi_call_func_mask_data;
  921. end = start + sizeof(struct nmi_call_data_struct);
  922. nmi_call_func_mask_data.func = func;
  923. nmi_call_func_mask_data.info = info;
  924. nmi_call_func_mask_data.started = cpumask;
  925. nmi_call_func_mask_data.wait = wait;
  926. if (wait)
  927. nmi_call_func_mask_data.finished = cpumask;
  928. spin_lock(&smp_nmi_call_lock);
  929. nmi_call_data = &nmi_call_func_mask_data;
  930. mn10300_local_dcache_flush_range(start, end);
  931. smp_wmb();
  932. send_IPI_mask(cpumask, CALL_FUNCTION_NMI_IPI);
  933. do {
  934. mn10300_local_dcache_inv_range(start, end);
  935. barrier();
  936. } while (!cpumask_empty(&nmi_call_func_mask_data.started));
  937. if (wait) {
  938. do {
  939. mn10300_local_dcache_inv_range(start, end);
  940. barrier();
  941. } while (!cpumask_empty(&nmi_call_func_mask_data.finished));
  942. }
  943. spin_unlock(&smp_nmi_call_lock);
  944. return 0;
  945. }
  946. static void restart_wakeup_cpu(void)
  947. {
  948. unsigned int cpu = smp_processor_id();
  949. cpumask_set_cpu(cpu, &cpu_callin_map);
  950. local_flush_tlb();
  951. set_cpu_online(cpu, true);
  952. smp_wmb();
  953. }
  954. static void prepare_sleep_cpu(void *unused)
  955. {
  956. sleep_mode[smp_processor_id()] = 1;
  957. smp_mb();
  958. mn10300_local_dcache_flush_inv();
  959. hotplug_cpu_disable_cache();
  960. hotplug_cpu_invalidate_cache();
  961. }
  962. /* when this function called, IE=0, NMID=0. */
  963. static void sleep_cpu(void *unused)
  964. {
  965. unsigned int cpu_id = smp_processor_id();
  966. /*
  967. * CALL_FUNCTION_NMI_IPI for wakeup_cpu() shall not be requested,
  968. * before this cpu goes in SLEEP mode.
  969. */
  970. do {
  971. smp_mb();
  972. __sleep_cpu();
  973. } while (sleep_mode[cpu_id]);
  974. restart_wakeup_cpu();
  975. }
  976. static void run_sleep_cpu(unsigned int cpu)
  977. {
  978. unsigned long flags;
  979. cpumask_t cpumask;
  980. cpumask_copy(&cpumask, &cpumask_of(cpu));
  981. flags = arch_local_cli_save();
  982. hotplug_cpu_nmi_call_function(cpumask, prepare_sleep_cpu, NULL, 1);
  983. hotplug_cpu_nmi_call_function(cpumask, sleep_cpu, NULL, 0);
  984. udelay(1); /* delay for the cpu to sleep. */
  985. arch_local_irq_restore(flags);
  986. }
  987. static void wakeup_cpu(void)
  988. {
  989. hotplug_cpu_invalidate_cache();
  990. hotplug_cpu_enable_cache();
  991. smp_mb();
  992. sleep_mode[smp_processor_id()] = 0;
  993. }
  994. static void run_wakeup_cpu(unsigned int cpu)
  995. {
  996. unsigned long flags;
  997. flags = arch_local_cli_save();
  998. #if NR_CPUS == 2
  999. mn10300_local_dcache_flush_inv();
  1000. #else
  1001. /*
  1002. * Before waking up the cpu,
  1003. * all online cpus should stop and flush D-Cache for global data.
  1004. */
  1005. #error not support NR_CPUS > 2, when CONFIG_HOTPLUG_CPU=y.
  1006. #endif
  1007. hotplug_cpu_nmi_call_function(cpumask_of(cpu), wakeup_cpu, NULL, 1);
  1008. arch_local_irq_restore(flags);
  1009. }
  1010. #endif /* CONFIG_HOTPLUG_CPU */