mmu.c 51 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "vmx.h"
  20. #include "mmu.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/types.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/module.h>
  27. #include <linux/swap.h>
  28. #include <linux/hugetlb.h>
  29. #include <asm/page.h>
  30. #include <asm/cmpxchg.h>
  31. #include <asm/io.h>
  32. /*
  33. * When setting this variable to true it enables Two-Dimensional-Paging
  34. * where the hardware walks 2 page tables:
  35. * 1. the guest-virtual to guest-physical
  36. * 2. while doing 1. it walks guest-physical to host-physical
  37. * If the hardware supports that we don't need to do shadow paging.
  38. */
  39. static bool tdp_enabled = false;
  40. #undef MMU_DEBUG
  41. #undef AUDIT
  42. #ifdef AUDIT
  43. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  44. #else
  45. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  46. #endif
  47. #ifdef MMU_DEBUG
  48. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  49. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  50. #else
  51. #define pgprintk(x...) do { } while (0)
  52. #define rmap_printk(x...) do { } while (0)
  53. #endif
  54. #if defined(MMU_DEBUG) || defined(AUDIT)
  55. static int dbg = 1;
  56. #endif
  57. #ifndef MMU_DEBUG
  58. #define ASSERT(x) do { } while (0)
  59. #else
  60. #define ASSERT(x) \
  61. if (!(x)) { \
  62. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  63. __FILE__, __LINE__, #x); \
  64. }
  65. #endif
  66. #define PT64_PT_BITS 9
  67. #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  68. #define PT32_PT_BITS 10
  69. #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  70. #define PT_WRITABLE_SHIFT 1
  71. #define PT_PRESENT_MASK (1ULL << 0)
  72. #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  73. #define PT_USER_MASK (1ULL << 2)
  74. #define PT_PWT_MASK (1ULL << 3)
  75. #define PT_PCD_MASK (1ULL << 4)
  76. #define PT_ACCESSED_MASK (1ULL << 5)
  77. #define PT_DIRTY_MASK (1ULL << 6)
  78. #define PT_PAGE_SIZE_MASK (1ULL << 7)
  79. #define PT_PAT_MASK (1ULL << 7)
  80. #define PT_GLOBAL_MASK (1ULL << 8)
  81. #define PT64_NX_SHIFT 63
  82. #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
  83. #define PT_PAT_SHIFT 7
  84. #define PT_DIR_PAT_SHIFT 12
  85. #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  86. #define PT32_DIR_PSE36_SIZE 4
  87. #define PT32_DIR_PSE36_SHIFT 13
  88. #define PT32_DIR_PSE36_MASK \
  89. (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  90. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  91. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  92. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  93. #define PT64_LEVEL_BITS 9
  94. #define PT64_LEVEL_SHIFT(level) \
  95. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  96. #define PT64_LEVEL_MASK(level) \
  97. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  98. #define PT64_INDEX(address, level)\
  99. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  100. #define PT32_LEVEL_BITS 10
  101. #define PT32_LEVEL_SHIFT(level) \
  102. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  103. #define PT32_LEVEL_MASK(level) \
  104. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  105. #define PT32_INDEX(address, level)\
  106. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  107. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  108. #define PT64_DIR_BASE_ADDR_MASK \
  109. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  110. #define PT32_BASE_ADDR_MASK PAGE_MASK
  111. #define PT32_DIR_BASE_ADDR_MASK \
  112. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  113. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  114. | PT64_NX_MASK)
  115. #define PFERR_PRESENT_MASK (1U << 0)
  116. #define PFERR_WRITE_MASK (1U << 1)
  117. #define PFERR_USER_MASK (1U << 2)
  118. #define PFERR_FETCH_MASK (1U << 4)
  119. #define PT64_ROOT_LEVEL 4
  120. #define PT32_ROOT_LEVEL 2
  121. #define PT32E_ROOT_LEVEL 3
  122. #define PT_DIRECTORY_LEVEL 2
  123. #define PT_PAGE_TABLE_LEVEL 1
  124. #define RMAP_EXT 4
  125. #define ACC_EXEC_MASK 1
  126. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  127. #define ACC_USER_MASK PT_USER_MASK
  128. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  129. struct kvm_rmap_desc {
  130. u64 *shadow_ptes[RMAP_EXT];
  131. struct kvm_rmap_desc *more;
  132. };
  133. static struct kmem_cache *pte_chain_cache;
  134. static struct kmem_cache *rmap_desc_cache;
  135. static struct kmem_cache *mmu_page_header_cache;
  136. static u64 __read_mostly shadow_trap_nonpresent_pte;
  137. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  138. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  139. {
  140. shadow_trap_nonpresent_pte = trap_pte;
  141. shadow_notrap_nonpresent_pte = notrap_pte;
  142. }
  143. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  144. static int is_write_protection(struct kvm_vcpu *vcpu)
  145. {
  146. return vcpu->arch.cr0 & X86_CR0_WP;
  147. }
  148. static int is_cpuid_PSE36(void)
  149. {
  150. return 1;
  151. }
  152. static int is_nx(struct kvm_vcpu *vcpu)
  153. {
  154. return vcpu->arch.shadow_efer & EFER_NX;
  155. }
  156. static int is_present_pte(unsigned long pte)
  157. {
  158. return pte & PT_PRESENT_MASK;
  159. }
  160. static int is_shadow_present_pte(u64 pte)
  161. {
  162. return pte != shadow_trap_nonpresent_pte
  163. && pte != shadow_notrap_nonpresent_pte;
  164. }
  165. static int is_large_pte(u64 pte)
  166. {
  167. return pte & PT_PAGE_SIZE_MASK;
  168. }
  169. static int is_writeble_pte(unsigned long pte)
  170. {
  171. return pte & PT_WRITABLE_MASK;
  172. }
  173. static int is_dirty_pte(unsigned long pte)
  174. {
  175. return pte & PT_DIRTY_MASK;
  176. }
  177. static int is_rmap_pte(u64 pte)
  178. {
  179. return is_shadow_present_pte(pte);
  180. }
  181. static gfn_t pse36_gfn_delta(u32 gpte)
  182. {
  183. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  184. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  185. }
  186. static void set_shadow_pte(u64 *sptep, u64 spte)
  187. {
  188. #ifdef CONFIG_X86_64
  189. set_64bit((unsigned long *)sptep, spte);
  190. #else
  191. set_64bit((unsigned long long *)sptep, spte);
  192. #endif
  193. }
  194. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  195. struct kmem_cache *base_cache, int min)
  196. {
  197. void *obj;
  198. if (cache->nobjs >= min)
  199. return 0;
  200. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  201. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  202. if (!obj)
  203. return -ENOMEM;
  204. cache->objects[cache->nobjs++] = obj;
  205. }
  206. return 0;
  207. }
  208. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  209. {
  210. while (mc->nobjs)
  211. kfree(mc->objects[--mc->nobjs]);
  212. }
  213. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  214. int min)
  215. {
  216. struct page *page;
  217. if (cache->nobjs >= min)
  218. return 0;
  219. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  220. page = alloc_page(GFP_KERNEL);
  221. if (!page)
  222. return -ENOMEM;
  223. set_page_private(page, 0);
  224. cache->objects[cache->nobjs++] = page_address(page);
  225. }
  226. return 0;
  227. }
  228. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  229. {
  230. while (mc->nobjs)
  231. free_page((unsigned long)mc->objects[--mc->nobjs]);
  232. }
  233. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  234. {
  235. int r;
  236. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  237. pte_chain_cache, 4);
  238. if (r)
  239. goto out;
  240. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  241. rmap_desc_cache, 1);
  242. if (r)
  243. goto out;
  244. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  245. if (r)
  246. goto out;
  247. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  248. mmu_page_header_cache, 4);
  249. out:
  250. return r;
  251. }
  252. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  253. {
  254. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  255. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  256. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  257. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  258. }
  259. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  260. size_t size)
  261. {
  262. void *p;
  263. BUG_ON(!mc->nobjs);
  264. p = mc->objects[--mc->nobjs];
  265. memset(p, 0, size);
  266. return p;
  267. }
  268. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  269. {
  270. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  271. sizeof(struct kvm_pte_chain));
  272. }
  273. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  274. {
  275. kfree(pc);
  276. }
  277. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  278. {
  279. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  280. sizeof(struct kvm_rmap_desc));
  281. }
  282. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  283. {
  284. kfree(rd);
  285. }
  286. /*
  287. * Return the pointer to the largepage write count for a given
  288. * gfn, handling slots that are not large page aligned.
  289. */
  290. static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
  291. {
  292. unsigned long idx;
  293. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  294. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  295. return &slot->lpage_info[idx].write_count;
  296. }
  297. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  298. {
  299. int *write_count;
  300. write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
  301. *write_count += 1;
  302. WARN_ON(*write_count > KVM_PAGES_PER_HPAGE);
  303. }
  304. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  305. {
  306. int *write_count;
  307. write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
  308. *write_count -= 1;
  309. WARN_ON(*write_count < 0);
  310. }
  311. static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
  312. {
  313. struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
  314. int *largepage_idx;
  315. if (slot) {
  316. largepage_idx = slot_largepage_idx(gfn, slot);
  317. return *largepage_idx;
  318. }
  319. return 1;
  320. }
  321. static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
  322. {
  323. struct vm_area_struct *vma;
  324. unsigned long addr;
  325. addr = gfn_to_hva(kvm, gfn);
  326. if (kvm_is_error_hva(addr))
  327. return 0;
  328. vma = find_vma(current->mm, addr);
  329. if (vma && is_vm_hugetlb_page(vma))
  330. return 1;
  331. return 0;
  332. }
  333. static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  334. {
  335. struct kvm_memory_slot *slot;
  336. if (has_wrprotected_page(vcpu->kvm, large_gfn))
  337. return 0;
  338. if (!host_largepage_backed(vcpu->kvm, large_gfn))
  339. return 0;
  340. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  341. if (slot && slot->dirty_bitmap)
  342. return 0;
  343. return 1;
  344. }
  345. /*
  346. * Take gfn and return the reverse mapping to it.
  347. * Note: gfn must be unaliased before this function get called
  348. */
  349. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
  350. {
  351. struct kvm_memory_slot *slot;
  352. unsigned long idx;
  353. slot = gfn_to_memslot(kvm, gfn);
  354. if (!lpage)
  355. return &slot->rmap[gfn - slot->base_gfn];
  356. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  357. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  358. return &slot->lpage_info[idx].rmap_pde;
  359. }
  360. /*
  361. * Reverse mapping data structures:
  362. *
  363. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  364. * that points to page_address(page).
  365. *
  366. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  367. * containing more mappings.
  368. */
  369. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
  370. {
  371. struct kvm_mmu_page *sp;
  372. struct kvm_rmap_desc *desc;
  373. unsigned long *rmapp;
  374. int i;
  375. if (!is_rmap_pte(*spte))
  376. return;
  377. gfn = unalias_gfn(vcpu->kvm, gfn);
  378. sp = page_header(__pa(spte));
  379. sp->gfns[spte - sp->spt] = gfn;
  380. rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
  381. if (!*rmapp) {
  382. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  383. *rmapp = (unsigned long)spte;
  384. } else if (!(*rmapp & 1)) {
  385. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  386. desc = mmu_alloc_rmap_desc(vcpu);
  387. desc->shadow_ptes[0] = (u64 *)*rmapp;
  388. desc->shadow_ptes[1] = spte;
  389. *rmapp = (unsigned long)desc | 1;
  390. } else {
  391. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  392. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  393. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  394. desc = desc->more;
  395. if (desc->shadow_ptes[RMAP_EXT-1]) {
  396. desc->more = mmu_alloc_rmap_desc(vcpu);
  397. desc = desc->more;
  398. }
  399. for (i = 0; desc->shadow_ptes[i]; ++i)
  400. ;
  401. desc->shadow_ptes[i] = spte;
  402. }
  403. }
  404. static void rmap_desc_remove_entry(unsigned long *rmapp,
  405. struct kvm_rmap_desc *desc,
  406. int i,
  407. struct kvm_rmap_desc *prev_desc)
  408. {
  409. int j;
  410. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  411. ;
  412. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  413. desc->shadow_ptes[j] = NULL;
  414. if (j != 0)
  415. return;
  416. if (!prev_desc && !desc->more)
  417. *rmapp = (unsigned long)desc->shadow_ptes[0];
  418. else
  419. if (prev_desc)
  420. prev_desc->more = desc->more;
  421. else
  422. *rmapp = (unsigned long)desc->more | 1;
  423. mmu_free_rmap_desc(desc);
  424. }
  425. static void rmap_remove(struct kvm *kvm, u64 *spte)
  426. {
  427. struct kvm_rmap_desc *desc;
  428. struct kvm_rmap_desc *prev_desc;
  429. struct kvm_mmu_page *sp;
  430. struct page *page;
  431. unsigned long *rmapp;
  432. int i;
  433. if (!is_rmap_pte(*spte))
  434. return;
  435. sp = page_header(__pa(spte));
  436. page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
  437. mark_page_accessed(page);
  438. if (is_writeble_pte(*spte))
  439. kvm_release_page_dirty(page);
  440. else
  441. kvm_release_page_clean(page);
  442. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
  443. if (!*rmapp) {
  444. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  445. BUG();
  446. } else if (!(*rmapp & 1)) {
  447. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  448. if ((u64 *)*rmapp != spte) {
  449. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  450. spte, *spte);
  451. BUG();
  452. }
  453. *rmapp = 0;
  454. } else {
  455. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  456. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  457. prev_desc = NULL;
  458. while (desc) {
  459. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  460. if (desc->shadow_ptes[i] == spte) {
  461. rmap_desc_remove_entry(rmapp,
  462. desc, i,
  463. prev_desc);
  464. return;
  465. }
  466. prev_desc = desc;
  467. desc = desc->more;
  468. }
  469. BUG();
  470. }
  471. }
  472. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  473. {
  474. struct kvm_rmap_desc *desc;
  475. struct kvm_rmap_desc *prev_desc;
  476. u64 *prev_spte;
  477. int i;
  478. if (!*rmapp)
  479. return NULL;
  480. else if (!(*rmapp & 1)) {
  481. if (!spte)
  482. return (u64 *)*rmapp;
  483. return NULL;
  484. }
  485. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  486. prev_desc = NULL;
  487. prev_spte = NULL;
  488. while (desc) {
  489. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
  490. if (prev_spte == spte)
  491. return desc->shadow_ptes[i];
  492. prev_spte = desc->shadow_ptes[i];
  493. }
  494. desc = desc->more;
  495. }
  496. return NULL;
  497. }
  498. static void rmap_write_protect(struct kvm *kvm, u64 gfn)
  499. {
  500. unsigned long *rmapp;
  501. u64 *spte;
  502. int write_protected = 0;
  503. gfn = unalias_gfn(kvm, gfn);
  504. rmapp = gfn_to_rmap(kvm, gfn, 0);
  505. spte = rmap_next(kvm, rmapp, NULL);
  506. while (spte) {
  507. BUG_ON(!spte);
  508. BUG_ON(!(*spte & PT_PRESENT_MASK));
  509. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  510. if (is_writeble_pte(*spte)) {
  511. set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
  512. write_protected = 1;
  513. }
  514. spte = rmap_next(kvm, rmapp, spte);
  515. }
  516. /* check for huge page mappings */
  517. rmapp = gfn_to_rmap(kvm, gfn, 1);
  518. spte = rmap_next(kvm, rmapp, NULL);
  519. while (spte) {
  520. BUG_ON(!spte);
  521. BUG_ON(!(*spte & PT_PRESENT_MASK));
  522. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  523. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  524. if (is_writeble_pte(*spte)) {
  525. rmap_remove(kvm, spte);
  526. --kvm->stat.lpages;
  527. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  528. write_protected = 1;
  529. }
  530. spte = rmap_next(kvm, rmapp, spte);
  531. }
  532. if (write_protected)
  533. kvm_flush_remote_tlbs(kvm);
  534. account_shadowed(kvm, gfn);
  535. }
  536. #ifdef MMU_DEBUG
  537. static int is_empty_shadow_page(u64 *spt)
  538. {
  539. u64 *pos;
  540. u64 *end;
  541. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  542. if (*pos != shadow_trap_nonpresent_pte) {
  543. printk(KERN_ERR "%s: %p %llx\n", __func__,
  544. pos, *pos);
  545. return 0;
  546. }
  547. return 1;
  548. }
  549. #endif
  550. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  551. {
  552. ASSERT(is_empty_shadow_page(sp->spt));
  553. list_del(&sp->link);
  554. __free_page(virt_to_page(sp->spt));
  555. __free_page(virt_to_page(sp->gfns));
  556. kfree(sp);
  557. ++kvm->arch.n_free_mmu_pages;
  558. }
  559. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  560. {
  561. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  562. }
  563. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  564. u64 *parent_pte)
  565. {
  566. struct kvm_mmu_page *sp;
  567. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  568. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  569. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  570. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  571. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  572. ASSERT(is_empty_shadow_page(sp->spt));
  573. sp->slot_bitmap = 0;
  574. sp->multimapped = 0;
  575. sp->parent_pte = parent_pte;
  576. --vcpu->kvm->arch.n_free_mmu_pages;
  577. return sp;
  578. }
  579. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  580. struct kvm_mmu_page *sp, u64 *parent_pte)
  581. {
  582. struct kvm_pte_chain *pte_chain;
  583. struct hlist_node *node;
  584. int i;
  585. if (!parent_pte)
  586. return;
  587. if (!sp->multimapped) {
  588. u64 *old = sp->parent_pte;
  589. if (!old) {
  590. sp->parent_pte = parent_pte;
  591. return;
  592. }
  593. sp->multimapped = 1;
  594. pte_chain = mmu_alloc_pte_chain(vcpu);
  595. INIT_HLIST_HEAD(&sp->parent_ptes);
  596. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  597. pte_chain->parent_ptes[0] = old;
  598. }
  599. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  600. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  601. continue;
  602. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  603. if (!pte_chain->parent_ptes[i]) {
  604. pte_chain->parent_ptes[i] = parent_pte;
  605. return;
  606. }
  607. }
  608. pte_chain = mmu_alloc_pte_chain(vcpu);
  609. BUG_ON(!pte_chain);
  610. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  611. pte_chain->parent_ptes[0] = parent_pte;
  612. }
  613. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  614. u64 *parent_pte)
  615. {
  616. struct kvm_pte_chain *pte_chain;
  617. struct hlist_node *node;
  618. int i;
  619. if (!sp->multimapped) {
  620. BUG_ON(sp->parent_pte != parent_pte);
  621. sp->parent_pte = NULL;
  622. return;
  623. }
  624. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  625. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  626. if (!pte_chain->parent_ptes[i])
  627. break;
  628. if (pte_chain->parent_ptes[i] != parent_pte)
  629. continue;
  630. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  631. && pte_chain->parent_ptes[i + 1]) {
  632. pte_chain->parent_ptes[i]
  633. = pte_chain->parent_ptes[i + 1];
  634. ++i;
  635. }
  636. pte_chain->parent_ptes[i] = NULL;
  637. if (i == 0) {
  638. hlist_del(&pte_chain->link);
  639. mmu_free_pte_chain(pte_chain);
  640. if (hlist_empty(&sp->parent_ptes)) {
  641. sp->multimapped = 0;
  642. sp->parent_pte = NULL;
  643. }
  644. }
  645. return;
  646. }
  647. BUG();
  648. }
  649. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  650. {
  651. unsigned index;
  652. struct hlist_head *bucket;
  653. struct kvm_mmu_page *sp;
  654. struct hlist_node *node;
  655. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  656. index = kvm_page_table_hashfn(gfn);
  657. bucket = &kvm->arch.mmu_page_hash[index];
  658. hlist_for_each_entry(sp, node, bucket, hash_link)
  659. if (sp->gfn == gfn && !sp->role.metaphysical
  660. && !sp->role.invalid) {
  661. pgprintk("%s: found role %x\n",
  662. __func__, sp->role.word);
  663. return sp;
  664. }
  665. return NULL;
  666. }
  667. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  668. gfn_t gfn,
  669. gva_t gaddr,
  670. unsigned level,
  671. int metaphysical,
  672. unsigned access,
  673. u64 *parent_pte)
  674. {
  675. union kvm_mmu_page_role role;
  676. unsigned index;
  677. unsigned quadrant;
  678. struct hlist_head *bucket;
  679. struct kvm_mmu_page *sp;
  680. struct hlist_node *node;
  681. role.word = 0;
  682. role.glevels = vcpu->arch.mmu.root_level;
  683. role.level = level;
  684. role.metaphysical = metaphysical;
  685. role.access = access;
  686. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  687. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  688. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  689. role.quadrant = quadrant;
  690. }
  691. pgprintk("%s: looking gfn %lx role %x\n", __func__,
  692. gfn, role.word);
  693. index = kvm_page_table_hashfn(gfn);
  694. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  695. hlist_for_each_entry(sp, node, bucket, hash_link)
  696. if (sp->gfn == gfn && sp->role.word == role.word) {
  697. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  698. pgprintk("%s: found\n", __func__);
  699. return sp;
  700. }
  701. ++vcpu->kvm->stat.mmu_cache_miss;
  702. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  703. if (!sp)
  704. return sp;
  705. pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
  706. sp->gfn = gfn;
  707. sp->role = role;
  708. hlist_add_head(&sp->hash_link, bucket);
  709. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  710. if (!metaphysical)
  711. rmap_write_protect(vcpu->kvm, gfn);
  712. return sp;
  713. }
  714. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  715. struct kvm_mmu_page *sp)
  716. {
  717. unsigned i;
  718. u64 *pt;
  719. u64 ent;
  720. pt = sp->spt;
  721. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  722. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  723. if (is_shadow_present_pte(pt[i]))
  724. rmap_remove(kvm, &pt[i]);
  725. pt[i] = shadow_trap_nonpresent_pte;
  726. }
  727. kvm_flush_remote_tlbs(kvm);
  728. return;
  729. }
  730. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  731. ent = pt[i];
  732. if (is_shadow_present_pte(ent)) {
  733. if (!is_large_pte(ent)) {
  734. ent &= PT64_BASE_ADDR_MASK;
  735. mmu_page_remove_parent_pte(page_header(ent),
  736. &pt[i]);
  737. } else {
  738. --kvm->stat.lpages;
  739. rmap_remove(kvm, &pt[i]);
  740. }
  741. }
  742. pt[i] = shadow_trap_nonpresent_pte;
  743. }
  744. kvm_flush_remote_tlbs(kvm);
  745. }
  746. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  747. {
  748. mmu_page_remove_parent_pte(sp, parent_pte);
  749. }
  750. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  751. {
  752. int i;
  753. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  754. if (kvm->vcpus[i])
  755. kvm->vcpus[i]->arch.last_pte_updated = NULL;
  756. }
  757. static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  758. {
  759. u64 *parent_pte;
  760. ++kvm->stat.mmu_shadow_zapped;
  761. while (sp->multimapped || sp->parent_pte) {
  762. if (!sp->multimapped)
  763. parent_pte = sp->parent_pte;
  764. else {
  765. struct kvm_pte_chain *chain;
  766. chain = container_of(sp->parent_ptes.first,
  767. struct kvm_pte_chain, link);
  768. parent_pte = chain->parent_ptes[0];
  769. }
  770. BUG_ON(!parent_pte);
  771. kvm_mmu_put_page(sp, parent_pte);
  772. set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
  773. }
  774. kvm_mmu_page_unlink_children(kvm, sp);
  775. if (!sp->root_count) {
  776. if (!sp->role.metaphysical)
  777. unaccount_shadowed(kvm, sp->gfn);
  778. hlist_del(&sp->hash_link);
  779. kvm_mmu_free_page(kvm, sp);
  780. } else {
  781. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  782. sp->role.invalid = 1;
  783. kvm_reload_remote_mmus(kvm);
  784. }
  785. kvm_mmu_reset_last_pte_updated(kvm);
  786. }
  787. /*
  788. * Changing the number of mmu pages allocated to the vm
  789. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  790. */
  791. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  792. {
  793. /*
  794. * If we set the number of mmu pages to be smaller be than the
  795. * number of actived pages , we must to free some mmu pages before we
  796. * change the value
  797. */
  798. if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
  799. kvm_nr_mmu_pages) {
  800. int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
  801. - kvm->arch.n_free_mmu_pages;
  802. while (n_used_mmu_pages > kvm_nr_mmu_pages) {
  803. struct kvm_mmu_page *page;
  804. page = container_of(kvm->arch.active_mmu_pages.prev,
  805. struct kvm_mmu_page, link);
  806. kvm_mmu_zap_page(kvm, page);
  807. n_used_mmu_pages--;
  808. }
  809. kvm->arch.n_free_mmu_pages = 0;
  810. }
  811. else
  812. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  813. - kvm->arch.n_alloc_mmu_pages;
  814. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  815. }
  816. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  817. {
  818. unsigned index;
  819. struct hlist_head *bucket;
  820. struct kvm_mmu_page *sp;
  821. struct hlist_node *node, *n;
  822. int r;
  823. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  824. r = 0;
  825. index = kvm_page_table_hashfn(gfn);
  826. bucket = &kvm->arch.mmu_page_hash[index];
  827. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  828. if (sp->gfn == gfn && !sp->role.metaphysical) {
  829. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  830. sp->role.word);
  831. kvm_mmu_zap_page(kvm, sp);
  832. r = 1;
  833. }
  834. return r;
  835. }
  836. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  837. {
  838. struct kvm_mmu_page *sp;
  839. while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
  840. pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
  841. kvm_mmu_zap_page(kvm, sp);
  842. }
  843. }
  844. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  845. {
  846. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
  847. struct kvm_mmu_page *sp = page_header(__pa(pte));
  848. __set_bit(slot, &sp->slot_bitmap);
  849. }
  850. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  851. {
  852. struct page *page;
  853. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  854. if (gpa == UNMAPPED_GVA)
  855. return NULL;
  856. down_read(&current->mm->mmap_sem);
  857. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  858. up_read(&current->mm->mmap_sem);
  859. return page;
  860. }
  861. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  862. unsigned pt_access, unsigned pte_access,
  863. int user_fault, int write_fault, int dirty,
  864. int *ptwrite, int largepage, gfn_t gfn,
  865. struct page *page)
  866. {
  867. u64 spte;
  868. int was_rmapped = 0;
  869. int was_writeble = is_writeble_pte(*shadow_pte);
  870. hfn_t host_pfn = (*shadow_pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  871. pgprintk("%s: spte %llx access %x write_fault %d"
  872. " user_fault %d gfn %lx\n",
  873. __func__, *shadow_pte, pt_access,
  874. write_fault, user_fault, gfn);
  875. if (is_rmap_pte(*shadow_pte)) {
  876. /*
  877. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  878. * the parent of the now unreachable PTE.
  879. */
  880. if (largepage && !is_large_pte(*shadow_pte)) {
  881. struct kvm_mmu_page *child;
  882. u64 pte = *shadow_pte;
  883. child = page_header(pte & PT64_BASE_ADDR_MASK);
  884. mmu_page_remove_parent_pte(child, shadow_pte);
  885. } else if (host_pfn != page_to_pfn(page)) {
  886. pgprintk("hfn old %lx new %lx\n",
  887. host_pfn, page_to_pfn(page));
  888. rmap_remove(vcpu->kvm, shadow_pte);
  889. } else {
  890. if (largepage)
  891. was_rmapped = is_large_pte(*shadow_pte);
  892. else
  893. was_rmapped = 1;
  894. }
  895. }
  896. /*
  897. * We don't set the accessed bit, since we sometimes want to see
  898. * whether the guest actually used the pte (in order to detect
  899. * demand paging).
  900. */
  901. spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
  902. if (!dirty)
  903. pte_access &= ~ACC_WRITE_MASK;
  904. if (!(pte_access & ACC_EXEC_MASK))
  905. spte |= PT64_NX_MASK;
  906. spte |= PT_PRESENT_MASK;
  907. if (pte_access & ACC_USER_MASK)
  908. spte |= PT_USER_MASK;
  909. if (largepage)
  910. spte |= PT_PAGE_SIZE_MASK;
  911. spte |= page_to_phys(page);
  912. if ((pte_access & ACC_WRITE_MASK)
  913. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  914. struct kvm_mmu_page *shadow;
  915. spte |= PT_WRITABLE_MASK;
  916. if (user_fault) {
  917. mmu_unshadow(vcpu->kvm, gfn);
  918. goto unshadowed;
  919. }
  920. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  921. if (shadow ||
  922. (largepage && has_wrprotected_page(vcpu->kvm, gfn))) {
  923. pgprintk("%s: found shadow page for %lx, marking ro\n",
  924. __func__, gfn);
  925. pte_access &= ~ACC_WRITE_MASK;
  926. if (is_writeble_pte(spte)) {
  927. spte &= ~PT_WRITABLE_MASK;
  928. kvm_x86_ops->tlb_flush(vcpu);
  929. }
  930. if (write_fault)
  931. *ptwrite = 1;
  932. }
  933. }
  934. unshadowed:
  935. if (pte_access & ACC_WRITE_MASK)
  936. mark_page_dirty(vcpu->kvm, gfn);
  937. pgprintk("%s: setting spte %llx\n", __func__, spte);
  938. pgprintk("instantiating %s PTE (%s) at %d (%llx) addr %llx\n",
  939. (spte&PT_PAGE_SIZE_MASK)? "2MB" : "4kB",
  940. (spte&PT_WRITABLE_MASK)?"RW":"R", gfn, spte, shadow_pte);
  941. set_shadow_pte(shadow_pte, spte);
  942. if (!was_rmapped && (spte & PT_PAGE_SIZE_MASK)
  943. && (spte & PT_PRESENT_MASK))
  944. ++vcpu->kvm->stat.lpages;
  945. page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
  946. if (!was_rmapped) {
  947. rmap_add(vcpu, shadow_pte, gfn, largepage);
  948. if (!is_rmap_pte(*shadow_pte))
  949. kvm_release_page_clean(page);
  950. } else {
  951. if (was_writeble)
  952. kvm_release_page_dirty(page);
  953. else
  954. kvm_release_page_clean(page);
  955. }
  956. if (!ptwrite || !*ptwrite)
  957. vcpu->arch.last_pte_updated = shadow_pte;
  958. }
  959. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  960. {
  961. }
  962. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  963. int largepage, gfn_t gfn, struct page *page,
  964. int level)
  965. {
  966. hpa_t table_addr = vcpu->arch.mmu.root_hpa;
  967. int pt_write = 0;
  968. for (; ; level--) {
  969. u32 index = PT64_INDEX(v, level);
  970. u64 *table;
  971. ASSERT(VALID_PAGE(table_addr));
  972. table = __va(table_addr);
  973. if (level == 1) {
  974. mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
  975. 0, write, 1, &pt_write, 0, gfn, page);
  976. return pt_write;
  977. }
  978. if (largepage && level == 2) {
  979. mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
  980. 0, write, 1, &pt_write, 1, gfn, page);
  981. return pt_write;
  982. }
  983. if (table[index] == shadow_trap_nonpresent_pte) {
  984. struct kvm_mmu_page *new_table;
  985. gfn_t pseudo_gfn;
  986. pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
  987. >> PAGE_SHIFT;
  988. new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
  989. v, level - 1,
  990. 1, ACC_ALL, &table[index]);
  991. if (!new_table) {
  992. pgprintk("nonpaging_map: ENOMEM\n");
  993. kvm_release_page_clean(page);
  994. return -ENOMEM;
  995. }
  996. table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
  997. | PT_WRITABLE_MASK | PT_USER_MASK;
  998. }
  999. table_addr = table[index] & PT64_BASE_ADDR_MASK;
  1000. }
  1001. }
  1002. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1003. {
  1004. int r;
  1005. int largepage = 0;
  1006. struct page *page;
  1007. down_read(&vcpu->kvm->slots_lock);
  1008. down_read(&current->mm->mmap_sem);
  1009. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1010. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1011. largepage = 1;
  1012. }
  1013. page = gfn_to_page(vcpu->kvm, gfn);
  1014. up_read(&current->mm->mmap_sem);
  1015. /* mmio */
  1016. if (is_error_page(page)) {
  1017. kvm_release_page_clean(page);
  1018. up_read(&vcpu->kvm->slots_lock);
  1019. return 1;
  1020. }
  1021. spin_lock(&vcpu->kvm->mmu_lock);
  1022. kvm_mmu_free_some_pages(vcpu);
  1023. r = __direct_map(vcpu, v, write, largepage, gfn, page,
  1024. PT32E_ROOT_LEVEL);
  1025. spin_unlock(&vcpu->kvm->mmu_lock);
  1026. up_read(&vcpu->kvm->slots_lock);
  1027. return r;
  1028. }
  1029. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  1030. struct kvm_mmu_page *sp)
  1031. {
  1032. int i;
  1033. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1034. sp->spt[i] = shadow_trap_nonpresent_pte;
  1035. }
  1036. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1037. {
  1038. int i;
  1039. struct kvm_mmu_page *sp;
  1040. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1041. return;
  1042. spin_lock(&vcpu->kvm->mmu_lock);
  1043. #ifdef CONFIG_X86_64
  1044. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1045. hpa_t root = vcpu->arch.mmu.root_hpa;
  1046. sp = page_header(root);
  1047. --sp->root_count;
  1048. if (!sp->root_count && sp->role.invalid)
  1049. kvm_mmu_zap_page(vcpu->kvm, sp);
  1050. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1051. spin_unlock(&vcpu->kvm->mmu_lock);
  1052. return;
  1053. }
  1054. #endif
  1055. for (i = 0; i < 4; ++i) {
  1056. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1057. if (root) {
  1058. root &= PT64_BASE_ADDR_MASK;
  1059. sp = page_header(root);
  1060. --sp->root_count;
  1061. if (!sp->root_count && sp->role.invalid)
  1062. kvm_mmu_zap_page(vcpu->kvm, sp);
  1063. }
  1064. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1065. }
  1066. spin_unlock(&vcpu->kvm->mmu_lock);
  1067. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1068. }
  1069. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1070. {
  1071. int i;
  1072. gfn_t root_gfn;
  1073. struct kvm_mmu_page *sp;
  1074. int metaphysical = 0;
  1075. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1076. #ifdef CONFIG_X86_64
  1077. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1078. hpa_t root = vcpu->arch.mmu.root_hpa;
  1079. ASSERT(!VALID_PAGE(root));
  1080. if (tdp_enabled)
  1081. metaphysical = 1;
  1082. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1083. PT64_ROOT_LEVEL, metaphysical,
  1084. ACC_ALL, NULL);
  1085. root = __pa(sp->spt);
  1086. ++sp->root_count;
  1087. vcpu->arch.mmu.root_hpa = root;
  1088. return;
  1089. }
  1090. #endif
  1091. metaphysical = !is_paging(vcpu);
  1092. if (tdp_enabled)
  1093. metaphysical = 1;
  1094. for (i = 0; i < 4; ++i) {
  1095. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1096. ASSERT(!VALID_PAGE(root));
  1097. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1098. if (!is_present_pte(vcpu->arch.pdptrs[i])) {
  1099. vcpu->arch.mmu.pae_root[i] = 0;
  1100. continue;
  1101. }
  1102. root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
  1103. } else if (vcpu->arch.mmu.root_level == 0)
  1104. root_gfn = 0;
  1105. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1106. PT32_ROOT_LEVEL, metaphysical,
  1107. ACC_ALL, NULL);
  1108. root = __pa(sp->spt);
  1109. ++sp->root_count;
  1110. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1111. }
  1112. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1113. }
  1114. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  1115. {
  1116. return vaddr;
  1117. }
  1118. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1119. u32 error_code)
  1120. {
  1121. gfn_t gfn;
  1122. int r;
  1123. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1124. r = mmu_topup_memory_caches(vcpu);
  1125. if (r)
  1126. return r;
  1127. ASSERT(vcpu);
  1128. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1129. gfn = gva >> PAGE_SHIFT;
  1130. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1131. error_code & PFERR_WRITE_MASK, gfn);
  1132. }
  1133. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1134. u32 error_code)
  1135. {
  1136. struct page *page;
  1137. int r;
  1138. int largepage = 0;
  1139. gfn_t gfn = gpa >> PAGE_SHIFT;
  1140. ASSERT(vcpu);
  1141. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1142. r = mmu_topup_memory_caches(vcpu);
  1143. if (r)
  1144. return r;
  1145. down_read(&current->mm->mmap_sem);
  1146. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1147. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1148. largepage = 1;
  1149. }
  1150. page = gfn_to_page(vcpu->kvm, gfn);
  1151. if (is_error_page(page)) {
  1152. kvm_release_page_clean(page);
  1153. up_read(&current->mm->mmap_sem);
  1154. return 1;
  1155. }
  1156. spin_lock(&vcpu->kvm->mmu_lock);
  1157. kvm_mmu_free_some_pages(vcpu);
  1158. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1159. largepage, gfn, page, TDP_ROOT_LEVEL);
  1160. spin_unlock(&vcpu->kvm->mmu_lock);
  1161. up_read(&current->mm->mmap_sem);
  1162. return r;
  1163. }
  1164. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1165. {
  1166. mmu_free_roots(vcpu);
  1167. }
  1168. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1169. {
  1170. struct kvm_mmu *context = &vcpu->arch.mmu;
  1171. context->new_cr3 = nonpaging_new_cr3;
  1172. context->page_fault = nonpaging_page_fault;
  1173. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1174. context->free = nonpaging_free;
  1175. context->prefetch_page = nonpaging_prefetch_page;
  1176. context->root_level = 0;
  1177. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1178. context->root_hpa = INVALID_PAGE;
  1179. return 0;
  1180. }
  1181. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1182. {
  1183. ++vcpu->stat.tlb_flush;
  1184. kvm_x86_ops->tlb_flush(vcpu);
  1185. }
  1186. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1187. {
  1188. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1189. mmu_free_roots(vcpu);
  1190. }
  1191. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1192. u64 addr,
  1193. u32 err_code)
  1194. {
  1195. kvm_inject_page_fault(vcpu, addr, err_code);
  1196. }
  1197. static void paging_free(struct kvm_vcpu *vcpu)
  1198. {
  1199. nonpaging_free(vcpu);
  1200. }
  1201. #define PTTYPE 64
  1202. #include "paging_tmpl.h"
  1203. #undef PTTYPE
  1204. #define PTTYPE 32
  1205. #include "paging_tmpl.h"
  1206. #undef PTTYPE
  1207. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1208. {
  1209. struct kvm_mmu *context = &vcpu->arch.mmu;
  1210. ASSERT(is_pae(vcpu));
  1211. context->new_cr3 = paging_new_cr3;
  1212. context->page_fault = paging64_page_fault;
  1213. context->gva_to_gpa = paging64_gva_to_gpa;
  1214. context->prefetch_page = paging64_prefetch_page;
  1215. context->free = paging_free;
  1216. context->root_level = level;
  1217. context->shadow_root_level = level;
  1218. context->root_hpa = INVALID_PAGE;
  1219. return 0;
  1220. }
  1221. static int paging64_init_context(struct kvm_vcpu *vcpu)
  1222. {
  1223. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  1224. }
  1225. static int paging32_init_context(struct kvm_vcpu *vcpu)
  1226. {
  1227. struct kvm_mmu *context = &vcpu->arch.mmu;
  1228. context->new_cr3 = paging_new_cr3;
  1229. context->page_fault = paging32_page_fault;
  1230. context->gva_to_gpa = paging32_gva_to_gpa;
  1231. context->free = paging_free;
  1232. context->prefetch_page = paging32_prefetch_page;
  1233. context->root_level = PT32_ROOT_LEVEL;
  1234. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1235. context->root_hpa = INVALID_PAGE;
  1236. return 0;
  1237. }
  1238. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  1239. {
  1240. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  1241. }
  1242. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  1243. {
  1244. struct kvm_mmu *context = &vcpu->arch.mmu;
  1245. context->new_cr3 = nonpaging_new_cr3;
  1246. context->page_fault = tdp_page_fault;
  1247. context->free = nonpaging_free;
  1248. context->prefetch_page = nonpaging_prefetch_page;
  1249. context->shadow_root_level = TDP_ROOT_LEVEL;
  1250. context->root_hpa = INVALID_PAGE;
  1251. if (!is_paging(vcpu)) {
  1252. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1253. context->root_level = 0;
  1254. } else if (is_long_mode(vcpu)) {
  1255. context->gva_to_gpa = paging64_gva_to_gpa;
  1256. context->root_level = PT64_ROOT_LEVEL;
  1257. } else if (is_pae(vcpu)) {
  1258. context->gva_to_gpa = paging64_gva_to_gpa;
  1259. context->root_level = PT32E_ROOT_LEVEL;
  1260. } else {
  1261. context->gva_to_gpa = paging32_gva_to_gpa;
  1262. context->root_level = PT32_ROOT_LEVEL;
  1263. }
  1264. return 0;
  1265. }
  1266. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  1267. {
  1268. ASSERT(vcpu);
  1269. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1270. if (!is_paging(vcpu))
  1271. return nonpaging_init_context(vcpu);
  1272. else if (is_long_mode(vcpu))
  1273. return paging64_init_context(vcpu);
  1274. else if (is_pae(vcpu))
  1275. return paging32E_init_context(vcpu);
  1276. else
  1277. return paging32_init_context(vcpu);
  1278. }
  1279. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  1280. {
  1281. if (tdp_enabled)
  1282. return init_kvm_tdp_mmu(vcpu);
  1283. else
  1284. return init_kvm_softmmu(vcpu);
  1285. }
  1286. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  1287. {
  1288. ASSERT(vcpu);
  1289. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  1290. vcpu->arch.mmu.free(vcpu);
  1291. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1292. }
  1293. }
  1294. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  1295. {
  1296. destroy_kvm_mmu(vcpu);
  1297. return init_kvm_mmu(vcpu);
  1298. }
  1299. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  1300. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  1301. {
  1302. int r;
  1303. r = mmu_topup_memory_caches(vcpu);
  1304. if (r)
  1305. goto out;
  1306. spin_lock(&vcpu->kvm->mmu_lock);
  1307. kvm_mmu_free_some_pages(vcpu);
  1308. mmu_alloc_roots(vcpu);
  1309. spin_unlock(&vcpu->kvm->mmu_lock);
  1310. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  1311. kvm_mmu_flush_tlb(vcpu);
  1312. out:
  1313. return r;
  1314. }
  1315. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  1316. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  1317. {
  1318. mmu_free_roots(vcpu);
  1319. }
  1320. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  1321. struct kvm_mmu_page *sp,
  1322. u64 *spte)
  1323. {
  1324. u64 pte;
  1325. struct kvm_mmu_page *child;
  1326. pte = *spte;
  1327. if (is_shadow_present_pte(pte)) {
  1328. if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
  1329. is_large_pte(pte))
  1330. rmap_remove(vcpu->kvm, spte);
  1331. else {
  1332. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1333. mmu_page_remove_parent_pte(child, spte);
  1334. }
  1335. }
  1336. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  1337. if (is_large_pte(pte))
  1338. --vcpu->kvm->stat.lpages;
  1339. }
  1340. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  1341. struct kvm_mmu_page *sp,
  1342. u64 *spte,
  1343. const void *new)
  1344. {
  1345. if ((sp->role.level != PT_PAGE_TABLE_LEVEL)
  1346. && !vcpu->arch.update_pte.largepage) {
  1347. ++vcpu->kvm->stat.mmu_pde_zapped;
  1348. return;
  1349. }
  1350. ++vcpu->kvm->stat.mmu_pte_updated;
  1351. if (sp->role.glevels == PT32_ROOT_LEVEL)
  1352. paging32_update_pte(vcpu, sp, spte, new);
  1353. else
  1354. paging64_update_pte(vcpu, sp, spte, new);
  1355. }
  1356. static bool need_remote_flush(u64 old, u64 new)
  1357. {
  1358. if (!is_shadow_present_pte(old))
  1359. return false;
  1360. if (!is_shadow_present_pte(new))
  1361. return true;
  1362. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  1363. return true;
  1364. old ^= PT64_NX_MASK;
  1365. new ^= PT64_NX_MASK;
  1366. return (old & ~new & PT64_PERM_MASK) != 0;
  1367. }
  1368. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  1369. {
  1370. if (need_remote_flush(old, new))
  1371. kvm_flush_remote_tlbs(vcpu->kvm);
  1372. else
  1373. kvm_mmu_flush_tlb(vcpu);
  1374. }
  1375. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  1376. {
  1377. u64 *spte = vcpu->arch.last_pte_updated;
  1378. return !!(spte && (*spte & PT_ACCESSED_MASK));
  1379. }
  1380. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1381. const u8 *new, int bytes)
  1382. {
  1383. gfn_t gfn;
  1384. int r;
  1385. u64 gpte = 0;
  1386. struct page *page;
  1387. vcpu->arch.update_pte.largepage = 0;
  1388. if (bytes != 4 && bytes != 8)
  1389. return;
  1390. /*
  1391. * Assume that the pte write on a page table of the same type
  1392. * as the current vcpu paging mode. This is nearly always true
  1393. * (might be false while changing modes). Note it is verified later
  1394. * by update_pte().
  1395. */
  1396. if (is_pae(vcpu)) {
  1397. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  1398. if ((bytes == 4) && (gpa % 4 == 0)) {
  1399. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  1400. if (r)
  1401. return;
  1402. memcpy((void *)&gpte + (gpa % 8), new, 4);
  1403. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  1404. memcpy((void *)&gpte, new, 8);
  1405. }
  1406. } else {
  1407. if ((bytes == 4) && (gpa % 4 == 0))
  1408. memcpy((void *)&gpte, new, 4);
  1409. }
  1410. if (!is_present_pte(gpte))
  1411. return;
  1412. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1413. down_read(&current->mm->mmap_sem);
  1414. if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
  1415. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1416. vcpu->arch.update_pte.largepage = 1;
  1417. }
  1418. page = gfn_to_page(vcpu->kvm, gfn);
  1419. up_read(&current->mm->mmap_sem);
  1420. if (is_error_page(page)) {
  1421. kvm_release_page_clean(page);
  1422. return;
  1423. }
  1424. vcpu->arch.update_pte.gfn = gfn;
  1425. vcpu->arch.update_pte.page = page;
  1426. }
  1427. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1428. const u8 *new, int bytes)
  1429. {
  1430. gfn_t gfn = gpa >> PAGE_SHIFT;
  1431. struct kvm_mmu_page *sp;
  1432. struct hlist_node *node, *n;
  1433. struct hlist_head *bucket;
  1434. unsigned index;
  1435. u64 entry, gentry;
  1436. u64 *spte;
  1437. unsigned offset = offset_in_page(gpa);
  1438. unsigned pte_size;
  1439. unsigned page_offset;
  1440. unsigned misaligned;
  1441. unsigned quadrant;
  1442. int level;
  1443. int flooded = 0;
  1444. int npte;
  1445. int r;
  1446. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  1447. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  1448. spin_lock(&vcpu->kvm->mmu_lock);
  1449. kvm_mmu_free_some_pages(vcpu);
  1450. ++vcpu->kvm->stat.mmu_pte_write;
  1451. kvm_mmu_audit(vcpu, "pre pte write");
  1452. if (gfn == vcpu->arch.last_pt_write_gfn
  1453. && !last_updated_pte_accessed(vcpu)) {
  1454. ++vcpu->arch.last_pt_write_count;
  1455. if (vcpu->arch.last_pt_write_count >= 3)
  1456. flooded = 1;
  1457. } else {
  1458. vcpu->arch.last_pt_write_gfn = gfn;
  1459. vcpu->arch.last_pt_write_count = 1;
  1460. vcpu->arch.last_pte_updated = NULL;
  1461. }
  1462. index = kvm_page_table_hashfn(gfn);
  1463. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1464. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  1465. if (sp->gfn != gfn || sp->role.metaphysical)
  1466. continue;
  1467. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  1468. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  1469. misaligned |= bytes < 4;
  1470. if (misaligned || flooded) {
  1471. /*
  1472. * Misaligned accesses are too much trouble to fix
  1473. * up; also, they usually indicate a page is not used
  1474. * as a page table.
  1475. *
  1476. * If we're seeing too many writes to a page,
  1477. * it may no longer be a page table, or we may be
  1478. * forking, in which case it is better to unmap the
  1479. * page.
  1480. */
  1481. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  1482. gpa, bytes, sp->role.word);
  1483. kvm_mmu_zap_page(vcpu->kvm, sp);
  1484. ++vcpu->kvm->stat.mmu_flooded;
  1485. continue;
  1486. }
  1487. page_offset = offset;
  1488. level = sp->role.level;
  1489. npte = 1;
  1490. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  1491. page_offset <<= 1; /* 32->64 */
  1492. /*
  1493. * A 32-bit pde maps 4MB while the shadow pdes map
  1494. * only 2MB. So we need to double the offset again
  1495. * and zap two pdes instead of one.
  1496. */
  1497. if (level == PT32_ROOT_LEVEL) {
  1498. page_offset &= ~7; /* kill rounding error */
  1499. page_offset <<= 1;
  1500. npte = 2;
  1501. }
  1502. quadrant = page_offset >> PAGE_SHIFT;
  1503. page_offset &= ~PAGE_MASK;
  1504. if (quadrant != sp->role.quadrant)
  1505. continue;
  1506. }
  1507. spte = &sp->spt[page_offset / sizeof(*spte)];
  1508. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  1509. gentry = 0;
  1510. r = kvm_read_guest_atomic(vcpu->kvm,
  1511. gpa & ~(u64)(pte_size - 1),
  1512. &gentry, pte_size);
  1513. new = (const void *)&gentry;
  1514. if (r < 0)
  1515. new = NULL;
  1516. }
  1517. while (npte--) {
  1518. entry = *spte;
  1519. mmu_pte_write_zap_pte(vcpu, sp, spte);
  1520. if (new)
  1521. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  1522. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  1523. ++spte;
  1524. }
  1525. }
  1526. kvm_mmu_audit(vcpu, "post pte write");
  1527. spin_unlock(&vcpu->kvm->mmu_lock);
  1528. if (vcpu->arch.update_pte.page) {
  1529. kvm_release_page_clean(vcpu->arch.update_pte.page);
  1530. vcpu->arch.update_pte.page = NULL;
  1531. }
  1532. }
  1533. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  1534. {
  1535. gpa_t gpa;
  1536. int r;
  1537. down_read(&vcpu->kvm->slots_lock);
  1538. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1539. up_read(&vcpu->kvm->slots_lock);
  1540. spin_lock(&vcpu->kvm->mmu_lock);
  1541. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1542. spin_unlock(&vcpu->kvm->mmu_lock);
  1543. return r;
  1544. }
  1545. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  1546. {
  1547. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
  1548. struct kvm_mmu_page *sp;
  1549. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  1550. struct kvm_mmu_page, link);
  1551. kvm_mmu_zap_page(vcpu->kvm, sp);
  1552. ++vcpu->kvm->stat.mmu_recycled;
  1553. }
  1554. }
  1555. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  1556. {
  1557. int r;
  1558. enum emulation_result er;
  1559. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  1560. if (r < 0)
  1561. goto out;
  1562. if (!r) {
  1563. r = 1;
  1564. goto out;
  1565. }
  1566. r = mmu_topup_memory_caches(vcpu);
  1567. if (r)
  1568. goto out;
  1569. er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
  1570. switch (er) {
  1571. case EMULATE_DONE:
  1572. return 1;
  1573. case EMULATE_DO_MMIO:
  1574. ++vcpu->stat.mmio_exits;
  1575. return 0;
  1576. case EMULATE_FAIL:
  1577. kvm_report_emulation_failure(vcpu, "pagetable");
  1578. return 1;
  1579. default:
  1580. BUG();
  1581. }
  1582. out:
  1583. return r;
  1584. }
  1585. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  1586. void kvm_enable_tdp(void)
  1587. {
  1588. tdp_enabled = true;
  1589. }
  1590. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  1591. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  1592. {
  1593. struct kvm_mmu_page *sp;
  1594. while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  1595. sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
  1596. struct kvm_mmu_page, link);
  1597. kvm_mmu_zap_page(vcpu->kvm, sp);
  1598. }
  1599. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  1600. }
  1601. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  1602. {
  1603. struct page *page;
  1604. int i;
  1605. ASSERT(vcpu);
  1606. if (vcpu->kvm->arch.n_requested_mmu_pages)
  1607. vcpu->kvm->arch.n_free_mmu_pages =
  1608. vcpu->kvm->arch.n_requested_mmu_pages;
  1609. else
  1610. vcpu->kvm->arch.n_free_mmu_pages =
  1611. vcpu->kvm->arch.n_alloc_mmu_pages;
  1612. /*
  1613. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  1614. * Therefore we need to allocate shadow page tables in the first
  1615. * 4GB of memory, which happens to fit the DMA32 zone.
  1616. */
  1617. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  1618. if (!page)
  1619. goto error_1;
  1620. vcpu->arch.mmu.pae_root = page_address(page);
  1621. for (i = 0; i < 4; ++i)
  1622. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1623. return 0;
  1624. error_1:
  1625. free_mmu_pages(vcpu);
  1626. return -ENOMEM;
  1627. }
  1628. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  1629. {
  1630. ASSERT(vcpu);
  1631. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1632. return alloc_mmu_pages(vcpu);
  1633. }
  1634. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  1635. {
  1636. ASSERT(vcpu);
  1637. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1638. return init_kvm_mmu(vcpu);
  1639. }
  1640. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  1641. {
  1642. ASSERT(vcpu);
  1643. destroy_kvm_mmu(vcpu);
  1644. free_mmu_pages(vcpu);
  1645. mmu_free_memory_caches(vcpu);
  1646. }
  1647. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  1648. {
  1649. struct kvm_mmu_page *sp;
  1650. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  1651. int i;
  1652. u64 *pt;
  1653. if (!test_bit(slot, &sp->slot_bitmap))
  1654. continue;
  1655. pt = sp->spt;
  1656. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1657. /* avoid RMW */
  1658. if (pt[i] & PT_WRITABLE_MASK)
  1659. pt[i] &= ~PT_WRITABLE_MASK;
  1660. }
  1661. }
  1662. void kvm_mmu_zap_all(struct kvm *kvm)
  1663. {
  1664. struct kvm_mmu_page *sp, *node;
  1665. spin_lock(&kvm->mmu_lock);
  1666. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  1667. kvm_mmu_zap_page(kvm, sp);
  1668. spin_unlock(&kvm->mmu_lock);
  1669. kvm_flush_remote_tlbs(kvm);
  1670. }
  1671. void kvm_mmu_module_exit(void)
  1672. {
  1673. if (pte_chain_cache)
  1674. kmem_cache_destroy(pte_chain_cache);
  1675. if (rmap_desc_cache)
  1676. kmem_cache_destroy(rmap_desc_cache);
  1677. if (mmu_page_header_cache)
  1678. kmem_cache_destroy(mmu_page_header_cache);
  1679. }
  1680. int kvm_mmu_module_init(void)
  1681. {
  1682. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  1683. sizeof(struct kvm_pte_chain),
  1684. 0, 0, NULL);
  1685. if (!pte_chain_cache)
  1686. goto nomem;
  1687. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  1688. sizeof(struct kvm_rmap_desc),
  1689. 0, 0, NULL);
  1690. if (!rmap_desc_cache)
  1691. goto nomem;
  1692. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  1693. sizeof(struct kvm_mmu_page),
  1694. 0, 0, NULL);
  1695. if (!mmu_page_header_cache)
  1696. goto nomem;
  1697. return 0;
  1698. nomem:
  1699. kvm_mmu_module_exit();
  1700. return -ENOMEM;
  1701. }
  1702. /*
  1703. * Caculate mmu pages needed for kvm.
  1704. */
  1705. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  1706. {
  1707. int i;
  1708. unsigned int nr_mmu_pages;
  1709. unsigned int nr_pages = 0;
  1710. for (i = 0; i < kvm->nmemslots; i++)
  1711. nr_pages += kvm->memslots[i].npages;
  1712. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  1713. nr_mmu_pages = max(nr_mmu_pages,
  1714. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  1715. return nr_mmu_pages;
  1716. }
  1717. #ifdef AUDIT
  1718. static const char *audit_msg;
  1719. static gva_t canonicalize(gva_t gva)
  1720. {
  1721. #ifdef CONFIG_X86_64
  1722. gva = (long long)(gva << 16) >> 16;
  1723. #endif
  1724. return gva;
  1725. }
  1726. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  1727. gva_t va, int level)
  1728. {
  1729. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  1730. int i;
  1731. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  1732. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  1733. u64 ent = pt[i];
  1734. if (ent == shadow_trap_nonpresent_pte)
  1735. continue;
  1736. va = canonicalize(va);
  1737. if (level > 1) {
  1738. if (ent == shadow_notrap_nonpresent_pte)
  1739. printk(KERN_ERR "audit: (%s) nontrapping pte"
  1740. " in nonleaf level: levels %d gva %lx"
  1741. " level %d pte %llx\n", audit_msg,
  1742. vcpu->arch.mmu.root_level, va, level, ent);
  1743. audit_mappings_page(vcpu, ent, va, level - 1);
  1744. } else {
  1745. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
  1746. struct page *page = gpa_to_page(vcpu, gpa);
  1747. hpa_t hpa = page_to_phys(page);
  1748. if (is_shadow_present_pte(ent)
  1749. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  1750. printk(KERN_ERR "xx audit error: (%s) levels %d"
  1751. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  1752. audit_msg, vcpu->arch.mmu.root_level,
  1753. va, gpa, hpa, ent,
  1754. is_shadow_present_pte(ent));
  1755. else if (ent == shadow_notrap_nonpresent_pte
  1756. && !is_error_hpa(hpa))
  1757. printk(KERN_ERR "audit: (%s) notrap shadow,"
  1758. " valid guest gva %lx\n", audit_msg, va);
  1759. kvm_release_page_clean(page);
  1760. }
  1761. }
  1762. }
  1763. static void audit_mappings(struct kvm_vcpu *vcpu)
  1764. {
  1765. unsigned i;
  1766. if (vcpu->arch.mmu.root_level == 4)
  1767. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  1768. else
  1769. for (i = 0; i < 4; ++i)
  1770. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  1771. audit_mappings_page(vcpu,
  1772. vcpu->arch.mmu.pae_root[i],
  1773. i << 30,
  1774. 2);
  1775. }
  1776. static int count_rmaps(struct kvm_vcpu *vcpu)
  1777. {
  1778. int nmaps = 0;
  1779. int i, j, k;
  1780. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1781. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  1782. struct kvm_rmap_desc *d;
  1783. for (j = 0; j < m->npages; ++j) {
  1784. unsigned long *rmapp = &m->rmap[j];
  1785. if (!*rmapp)
  1786. continue;
  1787. if (!(*rmapp & 1)) {
  1788. ++nmaps;
  1789. continue;
  1790. }
  1791. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  1792. while (d) {
  1793. for (k = 0; k < RMAP_EXT; ++k)
  1794. if (d->shadow_ptes[k])
  1795. ++nmaps;
  1796. else
  1797. break;
  1798. d = d->more;
  1799. }
  1800. }
  1801. }
  1802. return nmaps;
  1803. }
  1804. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  1805. {
  1806. int nmaps = 0;
  1807. struct kvm_mmu_page *sp;
  1808. int i;
  1809. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  1810. u64 *pt = sp->spt;
  1811. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  1812. continue;
  1813. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1814. u64 ent = pt[i];
  1815. if (!(ent & PT_PRESENT_MASK))
  1816. continue;
  1817. if (!(ent & PT_WRITABLE_MASK))
  1818. continue;
  1819. ++nmaps;
  1820. }
  1821. }
  1822. return nmaps;
  1823. }
  1824. static void audit_rmap(struct kvm_vcpu *vcpu)
  1825. {
  1826. int n_rmap = count_rmaps(vcpu);
  1827. int n_actual = count_writable_mappings(vcpu);
  1828. if (n_rmap != n_actual)
  1829. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  1830. __func__, audit_msg, n_rmap, n_actual);
  1831. }
  1832. static void audit_write_protection(struct kvm_vcpu *vcpu)
  1833. {
  1834. struct kvm_mmu_page *sp;
  1835. struct kvm_memory_slot *slot;
  1836. unsigned long *rmapp;
  1837. gfn_t gfn;
  1838. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  1839. if (sp->role.metaphysical)
  1840. continue;
  1841. slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
  1842. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  1843. rmapp = &slot->rmap[gfn - slot->base_gfn];
  1844. if (*rmapp)
  1845. printk(KERN_ERR "%s: (%s) shadow page has writable"
  1846. " mappings: gfn %lx role %x\n",
  1847. __func__, audit_msg, sp->gfn,
  1848. sp->role.word);
  1849. }
  1850. }
  1851. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  1852. {
  1853. int olddbg = dbg;
  1854. dbg = 0;
  1855. audit_msg = msg;
  1856. audit_rmap(vcpu);
  1857. audit_write_protection(vcpu);
  1858. audit_mappings(vcpu);
  1859. dbg = olddbg;
  1860. }
  1861. #endif