sched_fair.c 109 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. #include <linux/cpumask.h>
  25. /*
  26. * Targeted preemption latency for CPU-bound tasks:
  27. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  28. *
  29. * NOTE: this latency value is not the same as the concept of
  30. * 'timeslice length' - timeslices in CFS are of variable length
  31. * and have no persistent notion like in traditional, time-slice
  32. * based scheduling concepts.
  33. *
  34. * (to see the precise effective timeslice length of your workload,
  35. * run vmstat and monitor the context-switches (cs) field)
  36. */
  37. unsigned int sysctl_sched_latency = 6000000ULL;
  38. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  39. /*
  40. * The initial- and re-scaling of tunables is configurable
  41. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  42. *
  43. * Options are:
  44. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  45. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  46. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  47. */
  48. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  49. = SCHED_TUNABLESCALING_LOG;
  50. /*
  51. * Minimal preemption granularity for CPU-bound tasks:
  52. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  53. */
  54. unsigned int sysctl_sched_min_granularity = 750000ULL;
  55. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  56. /*
  57. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  58. */
  59. static unsigned int sched_nr_latency = 8;
  60. /*
  61. * After fork, child runs first. If set to 0 (default) then
  62. * parent will (try to) run first.
  63. */
  64. unsigned int sysctl_sched_child_runs_first __read_mostly;
  65. /*
  66. * SCHED_OTHER wake-up granularity.
  67. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  68. *
  69. * This option delays the preemption effects of decoupled workloads
  70. * and reduces their over-scheduling. Synchronous workloads will still
  71. * have immediate wakeup/sleep latencies.
  72. */
  73. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  74. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  75. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  76. /*
  77. * The exponential sliding window over which load is averaged for shares
  78. * distribution.
  79. * (default: 10msec)
  80. */
  81. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  82. static const struct sched_class fair_sched_class;
  83. /**************************************************************
  84. * CFS operations on generic schedulable entities:
  85. */
  86. #ifdef CONFIG_FAIR_GROUP_SCHED
  87. /* cpu runqueue to which this cfs_rq is attached */
  88. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  89. {
  90. return cfs_rq->rq;
  91. }
  92. /* An entity is a task if it doesn't "own" a runqueue */
  93. #define entity_is_task(se) (!se->my_q)
  94. static inline struct task_struct *task_of(struct sched_entity *se)
  95. {
  96. #ifdef CONFIG_SCHED_DEBUG
  97. WARN_ON_ONCE(!entity_is_task(se));
  98. #endif
  99. return container_of(se, struct task_struct, se);
  100. }
  101. /* Walk up scheduling entities hierarchy */
  102. #define for_each_sched_entity(se) \
  103. for (; se; se = se->parent)
  104. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  105. {
  106. return p->se.cfs_rq;
  107. }
  108. /* runqueue on which this entity is (to be) queued */
  109. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  110. {
  111. return se->cfs_rq;
  112. }
  113. /* runqueue "owned" by this group */
  114. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  115. {
  116. return grp->my_q;
  117. }
  118. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  119. * another cpu ('this_cpu')
  120. */
  121. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  122. {
  123. return cfs_rq->tg->cfs_rq[this_cpu];
  124. }
  125. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  126. {
  127. if (!cfs_rq->on_list) {
  128. /*
  129. * Ensure we either appear before our parent (if already
  130. * enqueued) or force our parent to appear after us when it is
  131. * enqueued. The fact that we always enqueue bottom-up
  132. * reduces this to two cases.
  133. */
  134. if (cfs_rq->tg->parent &&
  135. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  136. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  137. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  138. } else {
  139. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  140. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  141. }
  142. cfs_rq->on_list = 1;
  143. }
  144. }
  145. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  146. {
  147. if (cfs_rq->on_list) {
  148. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  149. cfs_rq->on_list = 0;
  150. }
  151. }
  152. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  153. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  154. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  155. /* Do the two (enqueued) entities belong to the same group ? */
  156. static inline int
  157. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  158. {
  159. if (se->cfs_rq == pse->cfs_rq)
  160. return 1;
  161. return 0;
  162. }
  163. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  164. {
  165. return se->parent;
  166. }
  167. /* return depth at which a sched entity is present in the hierarchy */
  168. static inline int depth_se(struct sched_entity *se)
  169. {
  170. int depth = 0;
  171. for_each_sched_entity(se)
  172. depth++;
  173. return depth;
  174. }
  175. static void
  176. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  177. {
  178. int se_depth, pse_depth;
  179. /*
  180. * preemption test can be made between sibling entities who are in the
  181. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  182. * both tasks until we find their ancestors who are siblings of common
  183. * parent.
  184. */
  185. /* First walk up until both entities are at same depth */
  186. se_depth = depth_se(*se);
  187. pse_depth = depth_se(*pse);
  188. while (se_depth > pse_depth) {
  189. se_depth--;
  190. *se = parent_entity(*se);
  191. }
  192. while (pse_depth > se_depth) {
  193. pse_depth--;
  194. *pse = parent_entity(*pse);
  195. }
  196. while (!is_same_group(*se, *pse)) {
  197. *se = parent_entity(*se);
  198. *pse = parent_entity(*pse);
  199. }
  200. }
  201. #else /* !CONFIG_FAIR_GROUP_SCHED */
  202. static inline struct task_struct *task_of(struct sched_entity *se)
  203. {
  204. return container_of(se, struct task_struct, se);
  205. }
  206. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  207. {
  208. return container_of(cfs_rq, struct rq, cfs);
  209. }
  210. #define entity_is_task(se) 1
  211. #define for_each_sched_entity(se) \
  212. for (; se; se = NULL)
  213. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  214. {
  215. return &task_rq(p)->cfs;
  216. }
  217. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  218. {
  219. struct task_struct *p = task_of(se);
  220. struct rq *rq = task_rq(p);
  221. return &rq->cfs;
  222. }
  223. /* runqueue "owned" by this group */
  224. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  225. {
  226. return NULL;
  227. }
  228. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  229. {
  230. return &cpu_rq(this_cpu)->cfs;
  231. }
  232. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  233. {
  234. }
  235. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  236. {
  237. }
  238. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  239. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  240. static inline int
  241. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  242. {
  243. return 1;
  244. }
  245. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  246. {
  247. return NULL;
  248. }
  249. static inline void
  250. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  251. {
  252. }
  253. #endif /* CONFIG_FAIR_GROUP_SCHED */
  254. /**************************************************************
  255. * Scheduling class tree data structure manipulation methods:
  256. */
  257. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  258. {
  259. s64 delta = (s64)(vruntime - min_vruntime);
  260. if (delta > 0)
  261. min_vruntime = vruntime;
  262. return min_vruntime;
  263. }
  264. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  265. {
  266. s64 delta = (s64)(vruntime - min_vruntime);
  267. if (delta < 0)
  268. min_vruntime = vruntime;
  269. return min_vruntime;
  270. }
  271. static inline int entity_before(struct sched_entity *a,
  272. struct sched_entity *b)
  273. {
  274. return (s64)(a->vruntime - b->vruntime) < 0;
  275. }
  276. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  277. {
  278. return se->vruntime - cfs_rq->min_vruntime;
  279. }
  280. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  281. {
  282. u64 vruntime = cfs_rq->min_vruntime;
  283. if (cfs_rq->curr)
  284. vruntime = cfs_rq->curr->vruntime;
  285. if (cfs_rq->rb_leftmost) {
  286. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  287. struct sched_entity,
  288. run_node);
  289. if (!cfs_rq->curr)
  290. vruntime = se->vruntime;
  291. else
  292. vruntime = min_vruntime(vruntime, se->vruntime);
  293. }
  294. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  295. #ifndef CONFIG_64BIT
  296. smp_wmb();
  297. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  298. #endif
  299. }
  300. /*
  301. * Enqueue an entity into the rb-tree:
  302. */
  303. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  304. {
  305. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  306. struct rb_node *parent = NULL;
  307. struct sched_entity *entry;
  308. s64 key = entity_key(cfs_rq, se);
  309. int leftmost = 1;
  310. /*
  311. * Find the right place in the rbtree:
  312. */
  313. while (*link) {
  314. parent = *link;
  315. entry = rb_entry(parent, struct sched_entity, run_node);
  316. /*
  317. * We dont care about collisions. Nodes with
  318. * the same key stay together.
  319. */
  320. if (key < entity_key(cfs_rq, entry)) {
  321. link = &parent->rb_left;
  322. } else {
  323. link = &parent->rb_right;
  324. leftmost = 0;
  325. }
  326. }
  327. /*
  328. * Maintain a cache of leftmost tree entries (it is frequently
  329. * used):
  330. */
  331. if (leftmost)
  332. cfs_rq->rb_leftmost = &se->run_node;
  333. rb_link_node(&se->run_node, parent, link);
  334. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  335. }
  336. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  337. {
  338. if (cfs_rq->rb_leftmost == &se->run_node) {
  339. struct rb_node *next_node;
  340. next_node = rb_next(&se->run_node);
  341. cfs_rq->rb_leftmost = next_node;
  342. }
  343. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  344. }
  345. static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  346. {
  347. struct rb_node *left = cfs_rq->rb_leftmost;
  348. if (!left)
  349. return NULL;
  350. return rb_entry(left, struct sched_entity, run_node);
  351. }
  352. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  353. {
  354. struct rb_node *next = rb_next(&se->run_node);
  355. if (!next)
  356. return NULL;
  357. return rb_entry(next, struct sched_entity, run_node);
  358. }
  359. #ifdef CONFIG_SCHED_DEBUG
  360. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  361. {
  362. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  363. if (!last)
  364. return NULL;
  365. return rb_entry(last, struct sched_entity, run_node);
  366. }
  367. /**************************************************************
  368. * Scheduling class statistics methods:
  369. */
  370. int sched_proc_update_handler(struct ctl_table *table, int write,
  371. void __user *buffer, size_t *lenp,
  372. loff_t *ppos)
  373. {
  374. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  375. int factor = get_update_sysctl_factor();
  376. if (ret || !write)
  377. return ret;
  378. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  379. sysctl_sched_min_granularity);
  380. #define WRT_SYSCTL(name) \
  381. (normalized_sysctl_##name = sysctl_##name / (factor))
  382. WRT_SYSCTL(sched_min_granularity);
  383. WRT_SYSCTL(sched_latency);
  384. WRT_SYSCTL(sched_wakeup_granularity);
  385. #undef WRT_SYSCTL
  386. return 0;
  387. }
  388. #endif
  389. /*
  390. * delta /= w
  391. */
  392. static inline unsigned long
  393. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  394. {
  395. if (unlikely(se->load.weight != NICE_0_LOAD))
  396. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  397. return delta;
  398. }
  399. /*
  400. * The idea is to set a period in which each task runs once.
  401. *
  402. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  403. * this period because otherwise the slices get too small.
  404. *
  405. * p = (nr <= nl) ? l : l*nr/nl
  406. */
  407. static u64 __sched_period(unsigned long nr_running)
  408. {
  409. u64 period = sysctl_sched_latency;
  410. unsigned long nr_latency = sched_nr_latency;
  411. if (unlikely(nr_running > nr_latency)) {
  412. period = sysctl_sched_min_granularity;
  413. period *= nr_running;
  414. }
  415. return period;
  416. }
  417. /*
  418. * We calculate the wall-time slice from the period by taking a part
  419. * proportional to the weight.
  420. *
  421. * s = p*P[w/rw]
  422. */
  423. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  424. {
  425. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  426. for_each_sched_entity(se) {
  427. struct load_weight *load;
  428. struct load_weight lw;
  429. cfs_rq = cfs_rq_of(se);
  430. load = &cfs_rq->load;
  431. if (unlikely(!se->on_rq)) {
  432. lw = cfs_rq->load;
  433. update_load_add(&lw, se->load.weight);
  434. load = &lw;
  435. }
  436. slice = calc_delta_mine(slice, se->load.weight, load);
  437. }
  438. return slice;
  439. }
  440. /*
  441. * We calculate the vruntime slice of a to be inserted task
  442. *
  443. * vs = s/w
  444. */
  445. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  446. {
  447. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  448. }
  449. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
  450. static void update_cfs_shares(struct cfs_rq *cfs_rq);
  451. /*
  452. * Update the current task's runtime statistics. Skip current tasks that
  453. * are not in our scheduling class.
  454. */
  455. static inline void
  456. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  457. unsigned long delta_exec)
  458. {
  459. unsigned long delta_exec_weighted;
  460. schedstat_set(curr->statistics.exec_max,
  461. max((u64)delta_exec, curr->statistics.exec_max));
  462. curr->sum_exec_runtime += delta_exec;
  463. schedstat_add(cfs_rq, exec_clock, delta_exec);
  464. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  465. curr->vruntime += delta_exec_weighted;
  466. update_min_vruntime(cfs_rq);
  467. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  468. cfs_rq->load_unacc_exec_time += delta_exec;
  469. #endif
  470. }
  471. static void update_curr(struct cfs_rq *cfs_rq)
  472. {
  473. struct sched_entity *curr = cfs_rq->curr;
  474. u64 now = rq_of(cfs_rq)->clock_task;
  475. unsigned long delta_exec;
  476. if (unlikely(!curr))
  477. return;
  478. /*
  479. * Get the amount of time the current task was running
  480. * since the last time we changed load (this cannot
  481. * overflow on 32 bits):
  482. */
  483. delta_exec = (unsigned long)(now - curr->exec_start);
  484. if (!delta_exec)
  485. return;
  486. __update_curr(cfs_rq, curr, delta_exec);
  487. curr->exec_start = now;
  488. if (entity_is_task(curr)) {
  489. struct task_struct *curtask = task_of(curr);
  490. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  491. cpuacct_charge(curtask, delta_exec);
  492. account_group_exec_runtime(curtask, delta_exec);
  493. }
  494. }
  495. static inline void
  496. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  497. {
  498. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  499. }
  500. /*
  501. * Task is being enqueued - update stats:
  502. */
  503. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  504. {
  505. /*
  506. * Are we enqueueing a waiting task? (for current tasks
  507. * a dequeue/enqueue event is a NOP)
  508. */
  509. if (se != cfs_rq->curr)
  510. update_stats_wait_start(cfs_rq, se);
  511. }
  512. static void
  513. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  514. {
  515. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  516. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  517. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  518. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  519. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  520. #ifdef CONFIG_SCHEDSTATS
  521. if (entity_is_task(se)) {
  522. trace_sched_stat_wait(task_of(se),
  523. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  524. }
  525. #endif
  526. schedstat_set(se->statistics.wait_start, 0);
  527. }
  528. static inline void
  529. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  530. {
  531. /*
  532. * Mark the end of the wait period if dequeueing a
  533. * waiting task:
  534. */
  535. if (se != cfs_rq->curr)
  536. update_stats_wait_end(cfs_rq, se);
  537. }
  538. /*
  539. * We are picking a new current task - update its stats:
  540. */
  541. static inline void
  542. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  543. {
  544. /*
  545. * We are starting a new run period:
  546. */
  547. se->exec_start = rq_of(cfs_rq)->clock_task;
  548. }
  549. /**************************************************
  550. * Scheduling class queueing methods:
  551. */
  552. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  553. static void
  554. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  555. {
  556. cfs_rq->task_weight += weight;
  557. }
  558. #else
  559. static inline void
  560. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  561. {
  562. }
  563. #endif
  564. static void
  565. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  566. {
  567. update_load_add(&cfs_rq->load, se->load.weight);
  568. if (!parent_entity(se))
  569. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  570. if (entity_is_task(se)) {
  571. add_cfs_task_weight(cfs_rq, se->load.weight);
  572. list_add(&se->group_node, &cfs_rq->tasks);
  573. }
  574. cfs_rq->nr_running++;
  575. }
  576. static void
  577. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  578. {
  579. update_load_sub(&cfs_rq->load, se->load.weight);
  580. if (!parent_entity(se))
  581. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  582. if (entity_is_task(se)) {
  583. add_cfs_task_weight(cfs_rq, -se->load.weight);
  584. list_del_init(&se->group_node);
  585. }
  586. cfs_rq->nr_running--;
  587. }
  588. #ifdef CONFIG_FAIR_GROUP_SCHED
  589. # ifdef CONFIG_SMP
  590. static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
  591. int global_update)
  592. {
  593. struct task_group *tg = cfs_rq->tg;
  594. long load_avg;
  595. load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
  596. load_avg -= cfs_rq->load_contribution;
  597. if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
  598. atomic_add(load_avg, &tg->load_weight);
  599. cfs_rq->load_contribution += load_avg;
  600. }
  601. }
  602. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  603. {
  604. u64 period = sysctl_sched_shares_window;
  605. u64 now, delta;
  606. unsigned long load = cfs_rq->load.weight;
  607. if (cfs_rq->tg == &root_task_group)
  608. return;
  609. now = rq_of(cfs_rq)->clock_task;
  610. delta = now - cfs_rq->load_stamp;
  611. /* truncate load history at 4 idle periods */
  612. if (cfs_rq->load_stamp > cfs_rq->load_last &&
  613. now - cfs_rq->load_last > 4 * period) {
  614. cfs_rq->load_period = 0;
  615. cfs_rq->load_avg = 0;
  616. delta = period - 1;
  617. }
  618. cfs_rq->load_stamp = now;
  619. cfs_rq->load_unacc_exec_time = 0;
  620. cfs_rq->load_period += delta;
  621. if (load) {
  622. cfs_rq->load_last = now;
  623. cfs_rq->load_avg += delta * load;
  624. }
  625. /* consider updating load contribution on each fold or truncate */
  626. if (global_update || cfs_rq->load_period > period
  627. || !cfs_rq->load_period)
  628. update_cfs_rq_load_contribution(cfs_rq, global_update);
  629. while (cfs_rq->load_period > period) {
  630. /*
  631. * Inline assembly required to prevent the compiler
  632. * optimising this loop into a divmod call.
  633. * See __iter_div_u64_rem() for another example of this.
  634. */
  635. asm("" : "+rm" (cfs_rq->load_period));
  636. cfs_rq->load_period /= 2;
  637. cfs_rq->load_avg /= 2;
  638. }
  639. if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
  640. list_del_leaf_cfs_rq(cfs_rq);
  641. }
  642. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  643. {
  644. long load_weight, load, shares;
  645. load = cfs_rq->load.weight;
  646. load_weight = atomic_read(&tg->load_weight);
  647. load_weight += load;
  648. load_weight -= cfs_rq->load_contribution;
  649. shares = (tg->shares * load);
  650. if (load_weight)
  651. shares /= load_weight;
  652. if (shares < MIN_SHARES)
  653. shares = MIN_SHARES;
  654. if (shares > tg->shares)
  655. shares = tg->shares;
  656. return shares;
  657. }
  658. static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  659. {
  660. if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
  661. update_cfs_load(cfs_rq, 0);
  662. update_cfs_shares(cfs_rq);
  663. }
  664. }
  665. # else /* CONFIG_SMP */
  666. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  667. {
  668. }
  669. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  670. {
  671. return tg->shares;
  672. }
  673. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  674. {
  675. }
  676. # endif /* CONFIG_SMP */
  677. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  678. unsigned long weight)
  679. {
  680. if (se->on_rq) {
  681. /* commit outstanding execution time */
  682. if (cfs_rq->curr == se)
  683. update_curr(cfs_rq);
  684. account_entity_dequeue(cfs_rq, se);
  685. }
  686. update_load_set(&se->load, weight);
  687. if (se->on_rq)
  688. account_entity_enqueue(cfs_rq, se);
  689. }
  690. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  691. {
  692. struct task_group *tg;
  693. struct sched_entity *se;
  694. long shares;
  695. tg = cfs_rq->tg;
  696. se = tg->se[cpu_of(rq_of(cfs_rq))];
  697. if (!se)
  698. return;
  699. #ifndef CONFIG_SMP
  700. if (likely(se->load.weight == tg->shares))
  701. return;
  702. #endif
  703. shares = calc_cfs_shares(cfs_rq, tg);
  704. reweight_entity(cfs_rq_of(se), se, shares);
  705. }
  706. #else /* CONFIG_FAIR_GROUP_SCHED */
  707. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  708. {
  709. }
  710. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  711. {
  712. }
  713. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  714. {
  715. }
  716. #endif /* CONFIG_FAIR_GROUP_SCHED */
  717. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  718. {
  719. #ifdef CONFIG_SCHEDSTATS
  720. struct task_struct *tsk = NULL;
  721. if (entity_is_task(se))
  722. tsk = task_of(se);
  723. if (se->statistics.sleep_start) {
  724. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  725. if ((s64)delta < 0)
  726. delta = 0;
  727. if (unlikely(delta > se->statistics.sleep_max))
  728. se->statistics.sleep_max = delta;
  729. se->statistics.sleep_start = 0;
  730. se->statistics.sum_sleep_runtime += delta;
  731. if (tsk) {
  732. account_scheduler_latency(tsk, delta >> 10, 1);
  733. trace_sched_stat_sleep(tsk, delta);
  734. }
  735. }
  736. if (se->statistics.block_start) {
  737. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  738. if ((s64)delta < 0)
  739. delta = 0;
  740. if (unlikely(delta > se->statistics.block_max))
  741. se->statistics.block_max = delta;
  742. se->statistics.block_start = 0;
  743. se->statistics.sum_sleep_runtime += delta;
  744. if (tsk) {
  745. if (tsk->in_iowait) {
  746. se->statistics.iowait_sum += delta;
  747. se->statistics.iowait_count++;
  748. trace_sched_stat_iowait(tsk, delta);
  749. }
  750. /*
  751. * Blocking time is in units of nanosecs, so shift by
  752. * 20 to get a milliseconds-range estimation of the
  753. * amount of time that the task spent sleeping:
  754. */
  755. if (unlikely(prof_on == SLEEP_PROFILING)) {
  756. profile_hits(SLEEP_PROFILING,
  757. (void *)get_wchan(tsk),
  758. delta >> 20);
  759. }
  760. account_scheduler_latency(tsk, delta >> 10, 0);
  761. }
  762. }
  763. #endif
  764. }
  765. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  766. {
  767. #ifdef CONFIG_SCHED_DEBUG
  768. s64 d = se->vruntime - cfs_rq->min_vruntime;
  769. if (d < 0)
  770. d = -d;
  771. if (d > 3*sysctl_sched_latency)
  772. schedstat_inc(cfs_rq, nr_spread_over);
  773. #endif
  774. }
  775. static void
  776. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  777. {
  778. u64 vruntime = cfs_rq->min_vruntime;
  779. /*
  780. * The 'current' period is already promised to the current tasks,
  781. * however the extra weight of the new task will slow them down a
  782. * little, place the new task so that it fits in the slot that
  783. * stays open at the end.
  784. */
  785. if (initial && sched_feat(START_DEBIT))
  786. vruntime += sched_vslice(cfs_rq, se);
  787. /* sleeps up to a single latency don't count. */
  788. if (!initial) {
  789. unsigned long thresh = sysctl_sched_latency;
  790. /*
  791. * Halve their sleep time's effect, to allow
  792. * for a gentler effect of sleepers:
  793. */
  794. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  795. thresh >>= 1;
  796. vruntime -= thresh;
  797. }
  798. /* ensure we never gain time by being placed backwards. */
  799. vruntime = max_vruntime(se->vruntime, vruntime);
  800. se->vruntime = vruntime;
  801. }
  802. static void
  803. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  804. {
  805. /*
  806. * Update the normalized vruntime before updating min_vruntime
  807. * through callig update_curr().
  808. */
  809. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  810. se->vruntime += cfs_rq->min_vruntime;
  811. /*
  812. * Update run-time statistics of the 'current'.
  813. */
  814. update_curr(cfs_rq);
  815. update_cfs_load(cfs_rq, 0);
  816. account_entity_enqueue(cfs_rq, se);
  817. update_cfs_shares(cfs_rq);
  818. if (flags & ENQUEUE_WAKEUP) {
  819. place_entity(cfs_rq, se, 0);
  820. enqueue_sleeper(cfs_rq, se);
  821. }
  822. update_stats_enqueue(cfs_rq, se);
  823. check_spread(cfs_rq, se);
  824. if (se != cfs_rq->curr)
  825. __enqueue_entity(cfs_rq, se);
  826. se->on_rq = 1;
  827. if (cfs_rq->nr_running == 1)
  828. list_add_leaf_cfs_rq(cfs_rq);
  829. }
  830. static void __clear_buddies_last(struct sched_entity *se)
  831. {
  832. for_each_sched_entity(se) {
  833. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  834. if (cfs_rq->last == se)
  835. cfs_rq->last = NULL;
  836. else
  837. break;
  838. }
  839. }
  840. static void __clear_buddies_next(struct sched_entity *se)
  841. {
  842. for_each_sched_entity(se) {
  843. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  844. if (cfs_rq->next == se)
  845. cfs_rq->next = NULL;
  846. else
  847. break;
  848. }
  849. }
  850. static void __clear_buddies_skip(struct sched_entity *se)
  851. {
  852. for_each_sched_entity(se) {
  853. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  854. if (cfs_rq->skip == se)
  855. cfs_rq->skip = NULL;
  856. else
  857. break;
  858. }
  859. }
  860. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  861. {
  862. if (cfs_rq->last == se)
  863. __clear_buddies_last(se);
  864. if (cfs_rq->next == se)
  865. __clear_buddies_next(se);
  866. if (cfs_rq->skip == se)
  867. __clear_buddies_skip(se);
  868. }
  869. static void
  870. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  871. {
  872. /*
  873. * Update run-time statistics of the 'current'.
  874. */
  875. update_curr(cfs_rq);
  876. update_stats_dequeue(cfs_rq, se);
  877. if (flags & DEQUEUE_SLEEP) {
  878. #ifdef CONFIG_SCHEDSTATS
  879. if (entity_is_task(se)) {
  880. struct task_struct *tsk = task_of(se);
  881. if (tsk->state & TASK_INTERRUPTIBLE)
  882. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  883. if (tsk->state & TASK_UNINTERRUPTIBLE)
  884. se->statistics.block_start = rq_of(cfs_rq)->clock;
  885. }
  886. #endif
  887. }
  888. clear_buddies(cfs_rq, se);
  889. if (se != cfs_rq->curr)
  890. __dequeue_entity(cfs_rq, se);
  891. se->on_rq = 0;
  892. update_cfs_load(cfs_rq, 0);
  893. account_entity_dequeue(cfs_rq, se);
  894. update_min_vruntime(cfs_rq);
  895. update_cfs_shares(cfs_rq);
  896. /*
  897. * Normalize the entity after updating the min_vruntime because the
  898. * update can refer to the ->curr item and we need to reflect this
  899. * movement in our normalized position.
  900. */
  901. if (!(flags & DEQUEUE_SLEEP))
  902. se->vruntime -= cfs_rq->min_vruntime;
  903. }
  904. /*
  905. * Preempt the current task with a newly woken task if needed:
  906. */
  907. static void
  908. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  909. {
  910. unsigned long ideal_runtime, delta_exec;
  911. ideal_runtime = sched_slice(cfs_rq, curr);
  912. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  913. if (delta_exec > ideal_runtime) {
  914. resched_task(rq_of(cfs_rq)->curr);
  915. /*
  916. * The current task ran long enough, ensure it doesn't get
  917. * re-elected due to buddy favours.
  918. */
  919. clear_buddies(cfs_rq, curr);
  920. return;
  921. }
  922. /*
  923. * Ensure that a task that missed wakeup preemption by a
  924. * narrow margin doesn't have to wait for a full slice.
  925. * This also mitigates buddy induced latencies under load.
  926. */
  927. if (!sched_feat(WAKEUP_PREEMPT))
  928. return;
  929. if (delta_exec < sysctl_sched_min_granularity)
  930. return;
  931. if (cfs_rq->nr_running > 1) {
  932. struct sched_entity *se = __pick_first_entity(cfs_rq);
  933. s64 delta = curr->vruntime - se->vruntime;
  934. if (delta < 0)
  935. return;
  936. if (delta > ideal_runtime)
  937. resched_task(rq_of(cfs_rq)->curr);
  938. }
  939. }
  940. static void
  941. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  942. {
  943. /* 'current' is not kept within the tree. */
  944. if (se->on_rq) {
  945. /*
  946. * Any task has to be enqueued before it get to execute on
  947. * a CPU. So account for the time it spent waiting on the
  948. * runqueue.
  949. */
  950. update_stats_wait_end(cfs_rq, se);
  951. __dequeue_entity(cfs_rq, se);
  952. }
  953. update_stats_curr_start(cfs_rq, se);
  954. cfs_rq->curr = se;
  955. #ifdef CONFIG_SCHEDSTATS
  956. /*
  957. * Track our maximum slice length, if the CPU's load is at
  958. * least twice that of our own weight (i.e. dont track it
  959. * when there are only lesser-weight tasks around):
  960. */
  961. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  962. se->statistics.slice_max = max(se->statistics.slice_max,
  963. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  964. }
  965. #endif
  966. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  967. }
  968. static int
  969. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  970. /*
  971. * Pick the next process, keeping these things in mind, in this order:
  972. * 1) keep things fair between processes/task groups
  973. * 2) pick the "next" process, since someone really wants that to run
  974. * 3) pick the "last" process, for cache locality
  975. * 4) do not run the "skip" process, if something else is available
  976. */
  977. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  978. {
  979. struct sched_entity *se = __pick_first_entity(cfs_rq);
  980. struct sched_entity *left = se;
  981. /*
  982. * Avoid running the skip buddy, if running something else can
  983. * be done without getting too unfair.
  984. */
  985. if (cfs_rq->skip == se) {
  986. struct sched_entity *second = __pick_next_entity(se);
  987. if (second && wakeup_preempt_entity(second, left) < 1)
  988. se = second;
  989. }
  990. /*
  991. * Prefer last buddy, try to return the CPU to a preempted task.
  992. */
  993. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  994. se = cfs_rq->last;
  995. /*
  996. * Someone really wants this to run. If it's not unfair, run it.
  997. */
  998. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  999. se = cfs_rq->next;
  1000. clear_buddies(cfs_rq, se);
  1001. return se;
  1002. }
  1003. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  1004. {
  1005. /*
  1006. * If still on the runqueue then deactivate_task()
  1007. * was not called and update_curr() has to be done:
  1008. */
  1009. if (prev->on_rq)
  1010. update_curr(cfs_rq);
  1011. check_spread(cfs_rq, prev);
  1012. if (prev->on_rq) {
  1013. update_stats_wait_start(cfs_rq, prev);
  1014. /* Put 'current' back into the tree. */
  1015. __enqueue_entity(cfs_rq, prev);
  1016. }
  1017. cfs_rq->curr = NULL;
  1018. }
  1019. static void
  1020. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  1021. {
  1022. /*
  1023. * Update run-time statistics of the 'current'.
  1024. */
  1025. update_curr(cfs_rq);
  1026. /*
  1027. * Update share accounting for long-running entities.
  1028. */
  1029. update_entity_shares_tick(cfs_rq);
  1030. #ifdef CONFIG_SCHED_HRTICK
  1031. /*
  1032. * queued ticks are scheduled to match the slice, so don't bother
  1033. * validating it and just reschedule.
  1034. */
  1035. if (queued) {
  1036. resched_task(rq_of(cfs_rq)->curr);
  1037. return;
  1038. }
  1039. /*
  1040. * don't let the period tick interfere with the hrtick preemption
  1041. */
  1042. if (!sched_feat(DOUBLE_TICK) &&
  1043. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  1044. return;
  1045. #endif
  1046. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  1047. check_preempt_tick(cfs_rq, curr);
  1048. }
  1049. /**************************************************
  1050. * CFS operations on tasks:
  1051. */
  1052. #ifdef CONFIG_SCHED_HRTICK
  1053. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1054. {
  1055. struct sched_entity *se = &p->se;
  1056. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1057. WARN_ON(task_rq(p) != rq);
  1058. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  1059. u64 slice = sched_slice(cfs_rq, se);
  1060. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  1061. s64 delta = slice - ran;
  1062. if (delta < 0) {
  1063. if (rq->curr == p)
  1064. resched_task(p);
  1065. return;
  1066. }
  1067. /*
  1068. * Don't schedule slices shorter than 10000ns, that just
  1069. * doesn't make sense. Rely on vruntime for fairness.
  1070. */
  1071. if (rq->curr != p)
  1072. delta = max_t(s64, 10000LL, delta);
  1073. hrtick_start(rq, delta);
  1074. }
  1075. }
  1076. /*
  1077. * called from enqueue/dequeue and updates the hrtick when the
  1078. * current task is from our class and nr_running is low enough
  1079. * to matter.
  1080. */
  1081. static void hrtick_update(struct rq *rq)
  1082. {
  1083. struct task_struct *curr = rq->curr;
  1084. if (curr->sched_class != &fair_sched_class)
  1085. return;
  1086. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  1087. hrtick_start_fair(rq, curr);
  1088. }
  1089. #else /* !CONFIG_SCHED_HRTICK */
  1090. static inline void
  1091. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1092. {
  1093. }
  1094. static inline void hrtick_update(struct rq *rq)
  1095. {
  1096. }
  1097. #endif
  1098. /*
  1099. * The enqueue_task method is called before nr_running is
  1100. * increased. Here we update the fair scheduling stats and
  1101. * then put the task into the rbtree:
  1102. */
  1103. static void
  1104. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1105. {
  1106. struct cfs_rq *cfs_rq;
  1107. struct sched_entity *se = &p->se;
  1108. for_each_sched_entity(se) {
  1109. if (se->on_rq)
  1110. break;
  1111. cfs_rq = cfs_rq_of(se);
  1112. enqueue_entity(cfs_rq, se, flags);
  1113. flags = ENQUEUE_WAKEUP;
  1114. }
  1115. for_each_sched_entity(se) {
  1116. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1117. update_cfs_load(cfs_rq, 0);
  1118. update_cfs_shares(cfs_rq);
  1119. }
  1120. hrtick_update(rq);
  1121. }
  1122. /*
  1123. * The dequeue_task method is called before nr_running is
  1124. * decreased. We remove the task from the rbtree and
  1125. * update the fair scheduling stats:
  1126. */
  1127. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1128. {
  1129. struct cfs_rq *cfs_rq;
  1130. struct sched_entity *se = &p->se;
  1131. for_each_sched_entity(se) {
  1132. cfs_rq = cfs_rq_of(se);
  1133. dequeue_entity(cfs_rq, se, flags);
  1134. /* Don't dequeue parent if it has other entities besides us */
  1135. if (cfs_rq->load.weight)
  1136. break;
  1137. flags |= DEQUEUE_SLEEP;
  1138. }
  1139. for_each_sched_entity(se) {
  1140. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1141. update_cfs_load(cfs_rq, 0);
  1142. update_cfs_shares(cfs_rq);
  1143. }
  1144. hrtick_update(rq);
  1145. }
  1146. #ifdef CONFIG_SMP
  1147. static void task_waking_fair(struct task_struct *p)
  1148. {
  1149. struct sched_entity *se = &p->se;
  1150. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1151. u64 min_vruntime;
  1152. #ifndef CONFIG_64BIT
  1153. u64 min_vruntime_copy;
  1154. do {
  1155. min_vruntime_copy = cfs_rq->min_vruntime_copy;
  1156. smp_rmb();
  1157. min_vruntime = cfs_rq->min_vruntime;
  1158. } while (min_vruntime != min_vruntime_copy);
  1159. #else
  1160. min_vruntime = cfs_rq->min_vruntime;
  1161. #endif
  1162. se->vruntime -= min_vruntime;
  1163. }
  1164. #ifdef CONFIG_FAIR_GROUP_SCHED
  1165. /*
  1166. * effective_load() calculates the load change as seen from the root_task_group
  1167. *
  1168. * Adding load to a group doesn't make a group heavier, but can cause movement
  1169. * of group shares between cpus. Assuming the shares were perfectly aligned one
  1170. * can calculate the shift in shares.
  1171. */
  1172. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  1173. {
  1174. struct sched_entity *se = tg->se[cpu];
  1175. if (!tg->parent)
  1176. return wl;
  1177. for_each_sched_entity(se) {
  1178. long lw, w;
  1179. tg = se->my_q->tg;
  1180. w = se->my_q->load.weight;
  1181. /* use this cpu's instantaneous contribution */
  1182. lw = atomic_read(&tg->load_weight);
  1183. lw -= se->my_q->load_contribution;
  1184. lw += w + wg;
  1185. wl += w;
  1186. if (lw > 0 && wl < lw)
  1187. wl = (wl * tg->shares) / lw;
  1188. else
  1189. wl = tg->shares;
  1190. /* zero point is MIN_SHARES */
  1191. if (wl < MIN_SHARES)
  1192. wl = MIN_SHARES;
  1193. wl -= se->load.weight;
  1194. wg = 0;
  1195. }
  1196. return wl;
  1197. }
  1198. #else
  1199. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  1200. unsigned long wl, unsigned long wg)
  1201. {
  1202. return wl;
  1203. }
  1204. #endif
  1205. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  1206. {
  1207. s64 this_load, load;
  1208. int idx, this_cpu, prev_cpu;
  1209. unsigned long tl_per_task;
  1210. struct task_group *tg;
  1211. unsigned long weight;
  1212. int balanced;
  1213. idx = sd->wake_idx;
  1214. this_cpu = smp_processor_id();
  1215. prev_cpu = task_cpu(p);
  1216. load = source_load(prev_cpu, idx);
  1217. this_load = target_load(this_cpu, idx);
  1218. /*
  1219. * If sync wakeup then subtract the (maximum possible)
  1220. * effect of the currently running task from the load
  1221. * of the current CPU:
  1222. */
  1223. rcu_read_lock();
  1224. if (sync) {
  1225. tg = task_group(current);
  1226. weight = current->se.load.weight;
  1227. this_load += effective_load(tg, this_cpu, -weight, -weight);
  1228. load += effective_load(tg, prev_cpu, 0, -weight);
  1229. }
  1230. tg = task_group(p);
  1231. weight = p->se.load.weight;
  1232. /*
  1233. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  1234. * due to the sync cause above having dropped this_load to 0, we'll
  1235. * always have an imbalance, but there's really nothing you can do
  1236. * about that, so that's good too.
  1237. *
  1238. * Otherwise check if either cpus are near enough in load to allow this
  1239. * task to be woken on this_cpu.
  1240. */
  1241. if (this_load > 0) {
  1242. s64 this_eff_load, prev_eff_load;
  1243. this_eff_load = 100;
  1244. this_eff_load *= power_of(prev_cpu);
  1245. this_eff_load *= this_load +
  1246. effective_load(tg, this_cpu, weight, weight);
  1247. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  1248. prev_eff_load *= power_of(this_cpu);
  1249. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  1250. balanced = this_eff_load <= prev_eff_load;
  1251. } else
  1252. balanced = true;
  1253. rcu_read_unlock();
  1254. /*
  1255. * If the currently running task will sleep within
  1256. * a reasonable amount of time then attract this newly
  1257. * woken task:
  1258. */
  1259. if (sync && balanced)
  1260. return 1;
  1261. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  1262. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1263. if (balanced ||
  1264. (this_load <= load &&
  1265. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  1266. /*
  1267. * This domain has SD_WAKE_AFFINE and
  1268. * p is cache cold in this domain, and
  1269. * there is no bad imbalance.
  1270. */
  1271. schedstat_inc(sd, ttwu_move_affine);
  1272. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  1273. return 1;
  1274. }
  1275. return 0;
  1276. }
  1277. /*
  1278. * find_idlest_group finds and returns the least busy CPU group within the
  1279. * domain.
  1280. */
  1281. static struct sched_group *
  1282. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  1283. int this_cpu, int load_idx)
  1284. {
  1285. struct sched_group *idlest = NULL, *group = sd->groups;
  1286. unsigned long min_load = ULONG_MAX, this_load = 0;
  1287. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1288. do {
  1289. unsigned long load, avg_load;
  1290. int local_group;
  1291. int i;
  1292. /* Skip over this group if it has no CPUs allowed */
  1293. if (!cpumask_intersects(sched_group_cpus(group),
  1294. &p->cpus_allowed))
  1295. continue;
  1296. local_group = cpumask_test_cpu(this_cpu,
  1297. sched_group_cpus(group));
  1298. /* Tally up the load of all CPUs in the group */
  1299. avg_load = 0;
  1300. for_each_cpu(i, sched_group_cpus(group)) {
  1301. /* Bias balancing toward cpus of our domain */
  1302. if (local_group)
  1303. load = source_load(i, load_idx);
  1304. else
  1305. load = target_load(i, load_idx);
  1306. avg_load += load;
  1307. }
  1308. /* Adjust by relative CPU power of the group */
  1309. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1310. if (local_group) {
  1311. this_load = avg_load;
  1312. } else if (avg_load < min_load) {
  1313. min_load = avg_load;
  1314. idlest = group;
  1315. }
  1316. } while (group = group->next, group != sd->groups);
  1317. if (!idlest || 100*this_load < imbalance*min_load)
  1318. return NULL;
  1319. return idlest;
  1320. }
  1321. /*
  1322. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1323. */
  1324. static int
  1325. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1326. {
  1327. unsigned long load, min_load = ULONG_MAX;
  1328. int idlest = -1;
  1329. int i;
  1330. /* Traverse only the allowed CPUs */
  1331. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1332. load = weighted_cpuload(i);
  1333. if (load < min_load || (load == min_load && i == this_cpu)) {
  1334. min_load = load;
  1335. idlest = i;
  1336. }
  1337. }
  1338. return idlest;
  1339. }
  1340. /*
  1341. * Try and locate an idle CPU in the sched_domain.
  1342. */
  1343. static int select_idle_sibling(struct task_struct *p, int target)
  1344. {
  1345. int cpu = smp_processor_id();
  1346. int prev_cpu = task_cpu(p);
  1347. struct sched_domain *sd;
  1348. int i;
  1349. /*
  1350. * If the task is going to be woken-up on this cpu and if it is
  1351. * already idle, then it is the right target.
  1352. */
  1353. if (target == cpu && idle_cpu(cpu))
  1354. return cpu;
  1355. /*
  1356. * If the task is going to be woken-up on the cpu where it previously
  1357. * ran and if it is currently idle, then it the right target.
  1358. */
  1359. if (target == prev_cpu && idle_cpu(prev_cpu))
  1360. return prev_cpu;
  1361. /*
  1362. * Otherwise, iterate the domains and find an elegible idle cpu.
  1363. */
  1364. for_each_domain(target, sd) {
  1365. if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
  1366. break;
  1367. for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
  1368. if (idle_cpu(i)) {
  1369. target = i;
  1370. break;
  1371. }
  1372. }
  1373. /*
  1374. * Lets stop looking for an idle sibling when we reached
  1375. * the domain that spans the current cpu and prev_cpu.
  1376. */
  1377. if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
  1378. cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
  1379. break;
  1380. }
  1381. return target;
  1382. }
  1383. /*
  1384. * sched_balance_self: balance the current task (running on cpu) in domains
  1385. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1386. * SD_BALANCE_EXEC.
  1387. *
  1388. * Balance, ie. select the least loaded group.
  1389. *
  1390. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1391. *
  1392. * preempt must be disabled.
  1393. */
  1394. static int
  1395. select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
  1396. {
  1397. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  1398. int cpu = smp_processor_id();
  1399. int prev_cpu = task_cpu(p);
  1400. int new_cpu = cpu;
  1401. int want_affine = 0;
  1402. int want_sd = 1;
  1403. int sync = wake_flags & WF_SYNC;
  1404. if (sd_flag & SD_BALANCE_WAKE) {
  1405. if (cpumask_test_cpu(cpu, &p->cpus_allowed))
  1406. want_affine = 1;
  1407. new_cpu = prev_cpu;
  1408. }
  1409. for_each_domain(cpu, tmp) {
  1410. if (!(tmp->flags & SD_LOAD_BALANCE))
  1411. continue;
  1412. /*
  1413. * If power savings logic is enabled for a domain, see if we
  1414. * are not overloaded, if so, don't balance wider.
  1415. */
  1416. if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
  1417. unsigned long power = 0;
  1418. unsigned long nr_running = 0;
  1419. unsigned long capacity;
  1420. int i;
  1421. for_each_cpu(i, sched_domain_span(tmp)) {
  1422. power += power_of(i);
  1423. nr_running += cpu_rq(i)->cfs.nr_running;
  1424. }
  1425. capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  1426. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1427. nr_running /= 2;
  1428. if (nr_running < capacity)
  1429. want_sd = 0;
  1430. }
  1431. /*
  1432. * If both cpu and prev_cpu are part of this domain,
  1433. * cpu is a valid SD_WAKE_AFFINE target.
  1434. */
  1435. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  1436. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  1437. affine_sd = tmp;
  1438. want_affine = 0;
  1439. }
  1440. if (!want_sd && !want_affine)
  1441. break;
  1442. if (!(tmp->flags & sd_flag))
  1443. continue;
  1444. if (want_sd)
  1445. sd = tmp;
  1446. }
  1447. if (affine_sd) {
  1448. if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
  1449. return select_idle_sibling(p, cpu);
  1450. else
  1451. return select_idle_sibling(p, prev_cpu);
  1452. }
  1453. while (sd) {
  1454. int load_idx = sd->forkexec_idx;
  1455. struct sched_group *group;
  1456. int weight;
  1457. if (!(sd->flags & sd_flag)) {
  1458. sd = sd->child;
  1459. continue;
  1460. }
  1461. if (sd_flag & SD_BALANCE_WAKE)
  1462. load_idx = sd->wake_idx;
  1463. group = find_idlest_group(sd, p, cpu, load_idx);
  1464. if (!group) {
  1465. sd = sd->child;
  1466. continue;
  1467. }
  1468. new_cpu = find_idlest_cpu(group, p, cpu);
  1469. if (new_cpu == -1 || new_cpu == cpu) {
  1470. /* Now try balancing at a lower domain level of cpu */
  1471. sd = sd->child;
  1472. continue;
  1473. }
  1474. /* Now try balancing at a lower domain level of new_cpu */
  1475. cpu = new_cpu;
  1476. weight = sd->span_weight;
  1477. sd = NULL;
  1478. for_each_domain(cpu, tmp) {
  1479. if (weight <= tmp->span_weight)
  1480. break;
  1481. if (tmp->flags & sd_flag)
  1482. sd = tmp;
  1483. }
  1484. /* while loop will break here if sd == NULL */
  1485. }
  1486. return new_cpu;
  1487. }
  1488. #endif /* CONFIG_SMP */
  1489. static unsigned long
  1490. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  1491. {
  1492. unsigned long gran = sysctl_sched_wakeup_granularity;
  1493. /*
  1494. * Since its curr running now, convert the gran from real-time
  1495. * to virtual-time in his units.
  1496. *
  1497. * By using 'se' instead of 'curr' we penalize light tasks, so
  1498. * they get preempted easier. That is, if 'se' < 'curr' then
  1499. * the resulting gran will be larger, therefore penalizing the
  1500. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  1501. * be smaller, again penalizing the lighter task.
  1502. *
  1503. * This is especially important for buddies when the leftmost
  1504. * task is higher priority than the buddy.
  1505. */
  1506. return calc_delta_fair(gran, se);
  1507. }
  1508. /*
  1509. * Should 'se' preempt 'curr'.
  1510. *
  1511. * |s1
  1512. * |s2
  1513. * |s3
  1514. * g
  1515. * |<--->|c
  1516. *
  1517. * w(c, s1) = -1
  1518. * w(c, s2) = 0
  1519. * w(c, s3) = 1
  1520. *
  1521. */
  1522. static int
  1523. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1524. {
  1525. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1526. if (vdiff <= 0)
  1527. return -1;
  1528. gran = wakeup_gran(curr, se);
  1529. if (vdiff > gran)
  1530. return 1;
  1531. return 0;
  1532. }
  1533. static void set_last_buddy(struct sched_entity *se)
  1534. {
  1535. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1536. for_each_sched_entity(se)
  1537. cfs_rq_of(se)->last = se;
  1538. }
  1539. }
  1540. static void set_next_buddy(struct sched_entity *se)
  1541. {
  1542. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1543. for_each_sched_entity(se)
  1544. cfs_rq_of(se)->next = se;
  1545. }
  1546. }
  1547. static void set_skip_buddy(struct sched_entity *se)
  1548. {
  1549. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1550. for_each_sched_entity(se)
  1551. cfs_rq_of(se)->skip = se;
  1552. }
  1553. }
  1554. /*
  1555. * Preempt the current task with a newly woken task if needed:
  1556. */
  1557. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1558. {
  1559. struct task_struct *curr = rq->curr;
  1560. struct sched_entity *se = &curr->se, *pse = &p->se;
  1561. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1562. int scale = cfs_rq->nr_running >= sched_nr_latency;
  1563. if (unlikely(se == pse))
  1564. return;
  1565. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
  1566. set_next_buddy(pse);
  1567. /*
  1568. * We can come here with TIF_NEED_RESCHED already set from new task
  1569. * wake up path.
  1570. */
  1571. if (test_tsk_need_resched(curr))
  1572. return;
  1573. /* Idle tasks are by definition preempted by non-idle tasks. */
  1574. if (unlikely(curr->policy == SCHED_IDLE) &&
  1575. likely(p->policy != SCHED_IDLE))
  1576. goto preempt;
  1577. /*
  1578. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  1579. * is driven by the tick):
  1580. */
  1581. if (unlikely(p->policy != SCHED_NORMAL))
  1582. return;
  1583. if (!sched_feat(WAKEUP_PREEMPT))
  1584. return;
  1585. update_curr(cfs_rq);
  1586. find_matching_se(&se, &pse);
  1587. BUG_ON(!pse);
  1588. if (wakeup_preempt_entity(se, pse) == 1)
  1589. goto preempt;
  1590. return;
  1591. preempt:
  1592. resched_task(curr);
  1593. /*
  1594. * Only set the backward buddy when the current task is still
  1595. * on the rq. This can happen when a wakeup gets interleaved
  1596. * with schedule on the ->pre_schedule() or idle_balance()
  1597. * point, either of which can * drop the rq lock.
  1598. *
  1599. * Also, during early boot the idle thread is in the fair class,
  1600. * for obvious reasons its a bad idea to schedule back to it.
  1601. */
  1602. if (unlikely(!se->on_rq || curr == rq->idle))
  1603. return;
  1604. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  1605. set_last_buddy(se);
  1606. }
  1607. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1608. {
  1609. struct task_struct *p;
  1610. struct cfs_rq *cfs_rq = &rq->cfs;
  1611. struct sched_entity *se;
  1612. if (!cfs_rq->nr_running)
  1613. return NULL;
  1614. do {
  1615. se = pick_next_entity(cfs_rq);
  1616. set_next_entity(cfs_rq, se);
  1617. cfs_rq = group_cfs_rq(se);
  1618. } while (cfs_rq);
  1619. p = task_of(se);
  1620. hrtick_start_fair(rq, p);
  1621. return p;
  1622. }
  1623. /*
  1624. * Account for a descheduled task:
  1625. */
  1626. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1627. {
  1628. struct sched_entity *se = &prev->se;
  1629. struct cfs_rq *cfs_rq;
  1630. for_each_sched_entity(se) {
  1631. cfs_rq = cfs_rq_of(se);
  1632. put_prev_entity(cfs_rq, se);
  1633. }
  1634. }
  1635. /*
  1636. * sched_yield() is very simple
  1637. *
  1638. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  1639. */
  1640. static void yield_task_fair(struct rq *rq)
  1641. {
  1642. struct task_struct *curr = rq->curr;
  1643. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1644. struct sched_entity *se = &curr->se;
  1645. /*
  1646. * Are we the only task in the tree?
  1647. */
  1648. if (unlikely(rq->nr_running == 1))
  1649. return;
  1650. clear_buddies(cfs_rq, se);
  1651. if (curr->policy != SCHED_BATCH) {
  1652. update_rq_clock(rq);
  1653. /*
  1654. * Update run-time statistics of the 'current'.
  1655. */
  1656. update_curr(cfs_rq);
  1657. }
  1658. set_skip_buddy(se);
  1659. }
  1660. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  1661. {
  1662. struct sched_entity *se = &p->se;
  1663. if (!se->on_rq)
  1664. return false;
  1665. /* Tell the scheduler that we'd really like pse to run next. */
  1666. set_next_buddy(se);
  1667. yield_task_fair(rq);
  1668. return true;
  1669. }
  1670. #ifdef CONFIG_SMP
  1671. /**************************************************
  1672. * Fair scheduling class load-balancing methods:
  1673. */
  1674. /*
  1675. * pull_task - move a task from a remote runqueue to the local runqueue.
  1676. * Both runqueues must be locked.
  1677. */
  1678. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1679. struct rq *this_rq, int this_cpu)
  1680. {
  1681. deactivate_task(src_rq, p, 0);
  1682. set_task_cpu(p, this_cpu);
  1683. activate_task(this_rq, p, 0);
  1684. check_preempt_curr(this_rq, p, 0);
  1685. }
  1686. /*
  1687. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1688. */
  1689. static
  1690. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1691. struct sched_domain *sd, enum cpu_idle_type idle,
  1692. int *all_pinned)
  1693. {
  1694. int tsk_cache_hot = 0;
  1695. /*
  1696. * We do not migrate tasks that are:
  1697. * 1) running (obviously), or
  1698. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1699. * 3) are cache-hot on their current CPU.
  1700. */
  1701. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  1702. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  1703. return 0;
  1704. }
  1705. *all_pinned = 0;
  1706. if (task_running(rq, p)) {
  1707. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  1708. return 0;
  1709. }
  1710. /*
  1711. * Aggressive migration if:
  1712. * 1) task is cache cold, or
  1713. * 2) too many balance attempts have failed.
  1714. */
  1715. tsk_cache_hot = task_hot(p, rq->clock_task, sd);
  1716. if (!tsk_cache_hot ||
  1717. sd->nr_balance_failed > sd->cache_nice_tries) {
  1718. #ifdef CONFIG_SCHEDSTATS
  1719. if (tsk_cache_hot) {
  1720. schedstat_inc(sd, lb_hot_gained[idle]);
  1721. schedstat_inc(p, se.statistics.nr_forced_migrations);
  1722. }
  1723. #endif
  1724. return 1;
  1725. }
  1726. if (tsk_cache_hot) {
  1727. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  1728. return 0;
  1729. }
  1730. return 1;
  1731. }
  1732. /*
  1733. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1734. * part of active balancing operations within "domain".
  1735. * Returns 1 if successful and 0 otherwise.
  1736. *
  1737. * Called with both runqueues locked.
  1738. */
  1739. static int
  1740. move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1741. struct sched_domain *sd, enum cpu_idle_type idle)
  1742. {
  1743. struct task_struct *p, *n;
  1744. struct cfs_rq *cfs_rq;
  1745. int pinned = 0;
  1746. for_each_leaf_cfs_rq(busiest, cfs_rq) {
  1747. list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
  1748. if (!can_migrate_task(p, busiest, this_cpu,
  1749. sd, idle, &pinned))
  1750. continue;
  1751. pull_task(busiest, p, this_rq, this_cpu);
  1752. /*
  1753. * Right now, this is only the second place pull_task()
  1754. * is called, so we can safely collect pull_task()
  1755. * stats here rather than inside pull_task().
  1756. */
  1757. schedstat_inc(sd, lb_gained[idle]);
  1758. return 1;
  1759. }
  1760. }
  1761. return 0;
  1762. }
  1763. static unsigned long
  1764. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1765. unsigned long max_load_move, struct sched_domain *sd,
  1766. enum cpu_idle_type idle, int *all_pinned,
  1767. int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
  1768. {
  1769. int loops = 0, pulled = 0;
  1770. long rem_load_move = max_load_move;
  1771. struct task_struct *p, *n;
  1772. if (max_load_move == 0)
  1773. goto out;
  1774. list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
  1775. if (loops++ > sysctl_sched_nr_migrate)
  1776. break;
  1777. if ((p->se.load.weight >> 1) > rem_load_move ||
  1778. !can_migrate_task(p, busiest, this_cpu, sd, idle,
  1779. all_pinned))
  1780. continue;
  1781. pull_task(busiest, p, this_rq, this_cpu);
  1782. pulled++;
  1783. rem_load_move -= p->se.load.weight;
  1784. #ifdef CONFIG_PREEMPT
  1785. /*
  1786. * NEWIDLE balancing is a source of latency, so preemptible
  1787. * kernels will stop after the first task is pulled to minimize
  1788. * the critical section.
  1789. */
  1790. if (idle == CPU_NEWLY_IDLE)
  1791. break;
  1792. #endif
  1793. /*
  1794. * We only want to steal up to the prescribed amount of
  1795. * weighted load.
  1796. */
  1797. if (rem_load_move <= 0)
  1798. break;
  1799. if (p->prio < *this_best_prio)
  1800. *this_best_prio = p->prio;
  1801. }
  1802. out:
  1803. /*
  1804. * Right now, this is one of only two places pull_task() is called,
  1805. * so we can safely collect pull_task() stats here rather than
  1806. * inside pull_task().
  1807. */
  1808. schedstat_add(sd, lb_gained[idle], pulled);
  1809. return max_load_move - rem_load_move;
  1810. }
  1811. #ifdef CONFIG_FAIR_GROUP_SCHED
  1812. /*
  1813. * update tg->load_weight by folding this cpu's load_avg
  1814. */
  1815. static int update_shares_cpu(struct task_group *tg, int cpu)
  1816. {
  1817. struct cfs_rq *cfs_rq;
  1818. unsigned long flags;
  1819. struct rq *rq;
  1820. if (!tg->se[cpu])
  1821. return 0;
  1822. rq = cpu_rq(cpu);
  1823. cfs_rq = tg->cfs_rq[cpu];
  1824. raw_spin_lock_irqsave(&rq->lock, flags);
  1825. update_rq_clock(rq);
  1826. update_cfs_load(cfs_rq, 1);
  1827. /*
  1828. * We need to update shares after updating tg->load_weight in
  1829. * order to adjust the weight of groups with long running tasks.
  1830. */
  1831. update_cfs_shares(cfs_rq);
  1832. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1833. return 0;
  1834. }
  1835. static void update_shares(int cpu)
  1836. {
  1837. struct cfs_rq *cfs_rq;
  1838. struct rq *rq = cpu_rq(cpu);
  1839. rcu_read_lock();
  1840. for_each_leaf_cfs_rq(rq, cfs_rq)
  1841. update_shares_cpu(cfs_rq->tg, cpu);
  1842. rcu_read_unlock();
  1843. }
  1844. static unsigned long
  1845. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1846. unsigned long max_load_move,
  1847. struct sched_domain *sd, enum cpu_idle_type idle,
  1848. int *all_pinned, int *this_best_prio)
  1849. {
  1850. long rem_load_move = max_load_move;
  1851. int busiest_cpu = cpu_of(busiest);
  1852. struct task_group *tg;
  1853. rcu_read_lock();
  1854. update_h_load(busiest_cpu);
  1855. list_for_each_entry_rcu(tg, &task_groups, list) {
  1856. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1857. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1858. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1859. u64 rem_load, moved_load;
  1860. /*
  1861. * empty group
  1862. */
  1863. if (!busiest_cfs_rq->task_weight)
  1864. continue;
  1865. rem_load = (u64)rem_load_move * busiest_weight;
  1866. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1867. moved_load = balance_tasks(this_rq, this_cpu, busiest,
  1868. rem_load, sd, idle, all_pinned, this_best_prio,
  1869. busiest_cfs_rq);
  1870. if (!moved_load)
  1871. continue;
  1872. moved_load *= busiest_h_load;
  1873. moved_load = div_u64(moved_load, busiest_weight + 1);
  1874. rem_load_move -= moved_load;
  1875. if (rem_load_move < 0)
  1876. break;
  1877. }
  1878. rcu_read_unlock();
  1879. return max_load_move - rem_load_move;
  1880. }
  1881. #else
  1882. static inline void update_shares(int cpu)
  1883. {
  1884. }
  1885. static unsigned long
  1886. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1887. unsigned long max_load_move,
  1888. struct sched_domain *sd, enum cpu_idle_type idle,
  1889. int *all_pinned, int *this_best_prio)
  1890. {
  1891. return balance_tasks(this_rq, this_cpu, busiest,
  1892. max_load_move, sd, idle, all_pinned,
  1893. this_best_prio, &busiest->cfs);
  1894. }
  1895. #endif
  1896. /*
  1897. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1898. * this_rq, as part of a balancing operation within domain "sd".
  1899. * Returns 1 if successful and 0 otherwise.
  1900. *
  1901. * Called with both runqueues locked.
  1902. */
  1903. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1904. unsigned long max_load_move,
  1905. struct sched_domain *sd, enum cpu_idle_type idle,
  1906. int *all_pinned)
  1907. {
  1908. unsigned long total_load_moved = 0, load_moved;
  1909. int this_best_prio = this_rq->curr->prio;
  1910. do {
  1911. load_moved = load_balance_fair(this_rq, this_cpu, busiest,
  1912. max_load_move - total_load_moved,
  1913. sd, idle, all_pinned, &this_best_prio);
  1914. total_load_moved += load_moved;
  1915. #ifdef CONFIG_PREEMPT
  1916. /*
  1917. * NEWIDLE balancing is a source of latency, so preemptible
  1918. * kernels will stop after the first task is pulled to minimize
  1919. * the critical section.
  1920. */
  1921. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  1922. break;
  1923. if (raw_spin_is_contended(&this_rq->lock) ||
  1924. raw_spin_is_contended(&busiest->lock))
  1925. break;
  1926. #endif
  1927. } while (load_moved && max_load_move > total_load_moved);
  1928. return total_load_moved > 0;
  1929. }
  1930. /********** Helpers for find_busiest_group ************************/
  1931. /*
  1932. * sd_lb_stats - Structure to store the statistics of a sched_domain
  1933. * during load balancing.
  1934. */
  1935. struct sd_lb_stats {
  1936. struct sched_group *busiest; /* Busiest group in this sd */
  1937. struct sched_group *this; /* Local group in this sd */
  1938. unsigned long total_load; /* Total load of all groups in sd */
  1939. unsigned long total_pwr; /* Total power of all groups in sd */
  1940. unsigned long avg_load; /* Average load across all groups in sd */
  1941. /** Statistics of this group */
  1942. unsigned long this_load;
  1943. unsigned long this_load_per_task;
  1944. unsigned long this_nr_running;
  1945. unsigned long this_has_capacity;
  1946. unsigned int this_idle_cpus;
  1947. /* Statistics of the busiest group */
  1948. unsigned int busiest_idle_cpus;
  1949. unsigned long max_load;
  1950. unsigned long busiest_load_per_task;
  1951. unsigned long busiest_nr_running;
  1952. unsigned long busiest_group_capacity;
  1953. unsigned long busiest_has_capacity;
  1954. unsigned int busiest_group_weight;
  1955. int group_imb; /* Is there imbalance in this sd */
  1956. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1957. int power_savings_balance; /* Is powersave balance needed for this sd */
  1958. struct sched_group *group_min; /* Least loaded group in sd */
  1959. struct sched_group *group_leader; /* Group which relieves group_min */
  1960. unsigned long min_load_per_task; /* load_per_task in group_min */
  1961. unsigned long leader_nr_running; /* Nr running of group_leader */
  1962. unsigned long min_nr_running; /* Nr running of group_min */
  1963. #endif
  1964. };
  1965. /*
  1966. * sg_lb_stats - stats of a sched_group required for load_balancing
  1967. */
  1968. struct sg_lb_stats {
  1969. unsigned long avg_load; /*Avg load across the CPUs of the group */
  1970. unsigned long group_load; /* Total load over the CPUs of the group */
  1971. unsigned long sum_nr_running; /* Nr tasks running in the group */
  1972. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  1973. unsigned long group_capacity;
  1974. unsigned long idle_cpus;
  1975. unsigned long group_weight;
  1976. int group_imb; /* Is there an imbalance in the group ? */
  1977. int group_has_capacity; /* Is there extra capacity in the group? */
  1978. };
  1979. /**
  1980. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  1981. * @group: The group whose first cpu is to be returned.
  1982. */
  1983. static inline unsigned int group_first_cpu(struct sched_group *group)
  1984. {
  1985. return cpumask_first(sched_group_cpus(group));
  1986. }
  1987. /**
  1988. * get_sd_load_idx - Obtain the load index for a given sched domain.
  1989. * @sd: The sched_domain whose load_idx is to be obtained.
  1990. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  1991. */
  1992. static inline int get_sd_load_idx(struct sched_domain *sd,
  1993. enum cpu_idle_type idle)
  1994. {
  1995. int load_idx;
  1996. switch (idle) {
  1997. case CPU_NOT_IDLE:
  1998. load_idx = sd->busy_idx;
  1999. break;
  2000. case CPU_NEWLY_IDLE:
  2001. load_idx = sd->newidle_idx;
  2002. break;
  2003. default:
  2004. load_idx = sd->idle_idx;
  2005. break;
  2006. }
  2007. return load_idx;
  2008. }
  2009. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2010. /**
  2011. * init_sd_power_savings_stats - Initialize power savings statistics for
  2012. * the given sched_domain, during load balancing.
  2013. *
  2014. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2015. * @sds: Variable containing the statistics for sd.
  2016. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2017. */
  2018. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2019. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2020. {
  2021. /*
  2022. * Busy processors will not participate in power savings
  2023. * balance.
  2024. */
  2025. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2026. sds->power_savings_balance = 0;
  2027. else {
  2028. sds->power_savings_balance = 1;
  2029. sds->min_nr_running = ULONG_MAX;
  2030. sds->leader_nr_running = 0;
  2031. }
  2032. }
  2033. /**
  2034. * update_sd_power_savings_stats - Update the power saving stats for a
  2035. * sched_domain while performing load balancing.
  2036. *
  2037. * @group: sched_group belonging to the sched_domain under consideration.
  2038. * @sds: Variable containing the statistics of the sched_domain
  2039. * @local_group: Does group contain the CPU for which we're performing
  2040. * load balancing ?
  2041. * @sgs: Variable containing the statistics of the group.
  2042. */
  2043. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2044. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2045. {
  2046. if (!sds->power_savings_balance)
  2047. return;
  2048. /*
  2049. * If the local group is idle or completely loaded
  2050. * no need to do power savings balance at this domain
  2051. */
  2052. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2053. !sds->this_nr_running))
  2054. sds->power_savings_balance = 0;
  2055. /*
  2056. * If a group is already running at full capacity or idle,
  2057. * don't include that group in power savings calculations
  2058. */
  2059. if (!sds->power_savings_balance ||
  2060. sgs->sum_nr_running >= sgs->group_capacity ||
  2061. !sgs->sum_nr_running)
  2062. return;
  2063. /*
  2064. * Calculate the group which has the least non-idle load.
  2065. * This is the group from where we need to pick up the load
  2066. * for saving power
  2067. */
  2068. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2069. (sgs->sum_nr_running == sds->min_nr_running &&
  2070. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2071. sds->group_min = group;
  2072. sds->min_nr_running = sgs->sum_nr_running;
  2073. sds->min_load_per_task = sgs->sum_weighted_load /
  2074. sgs->sum_nr_running;
  2075. }
  2076. /*
  2077. * Calculate the group which is almost near its
  2078. * capacity but still has some space to pick up some load
  2079. * from other group and save more power
  2080. */
  2081. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  2082. return;
  2083. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2084. (sgs->sum_nr_running == sds->leader_nr_running &&
  2085. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2086. sds->group_leader = group;
  2087. sds->leader_nr_running = sgs->sum_nr_running;
  2088. }
  2089. }
  2090. /**
  2091. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2092. * @sds: Variable containing the statistics of the sched_domain
  2093. * under consideration.
  2094. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2095. * @imbalance: Variable to store the imbalance.
  2096. *
  2097. * Description:
  2098. * Check if we have potential to perform some power-savings balance.
  2099. * If yes, set the busiest group to be the least loaded group in the
  2100. * sched_domain, so that it's CPUs can be put to idle.
  2101. *
  2102. * Returns 1 if there is potential to perform power-savings balance.
  2103. * Else returns 0.
  2104. */
  2105. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2106. int this_cpu, unsigned long *imbalance)
  2107. {
  2108. if (!sds->power_savings_balance)
  2109. return 0;
  2110. if (sds->this != sds->group_leader ||
  2111. sds->group_leader == sds->group_min)
  2112. return 0;
  2113. *imbalance = sds->min_load_per_task;
  2114. sds->busiest = sds->group_min;
  2115. return 1;
  2116. }
  2117. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2118. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2119. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2120. {
  2121. return;
  2122. }
  2123. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2124. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2125. {
  2126. return;
  2127. }
  2128. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2129. int this_cpu, unsigned long *imbalance)
  2130. {
  2131. return 0;
  2132. }
  2133. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2134. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  2135. {
  2136. return SCHED_LOAD_SCALE;
  2137. }
  2138. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  2139. {
  2140. return default_scale_freq_power(sd, cpu);
  2141. }
  2142. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  2143. {
  2144. unsigned long weight = sd->span_weight;
  2145. unsigned long smt_gain = sd->smt_gain;
  2146. smt_gain /= weight;
  2147. return smt_gain;
  2148. }
  2149. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  2150. {
  2151. return default_scale_smt_power(sd, cpu);
  2152. }
  2153. unsigned long scale_rt_power(int cpu)
  2154. {
  2155. struct rq *rq = cpu_rq(cpu);
  2156. u64 total, available;
  2157. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  2158. if (unlikely(total < rq->rt_avg)) {
  2159. /* Ensures that power won't end up being negative */
  2160. available = 0;
  2161. } else {
  2162. available = total - rq->rt_avg;
  2163. }
  2164. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  2165. total = SCHED_LOAD_SCALE;
  2166. total >>= SCHED_LOAD_SHIFT;
  2167. return div_u64(available, total);
  2168. }
  2169. static void update_cpu_power(struct sched_domain *sd, int cpu)
  2170. {
  2171. unsigned long weight = sd->span_weight;
  2172. unsigned long power = SCHED_LOAD_SCALE;
  2173. struct sched_group *sdg = sd->groups;
  2174. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  2175. if (sched_feat(ARCH_POWER))
  2176. power *= arch_scale_smt_power(sd, cpu);
  2177. else
  2178. power *= default_scale_smt_power(sd, cpu);
  2179. power >>= SCHED_LOAD_SHIFT;
  2180. }
  2181. sdg->cpu_power_orig = power;
  2182. if (sched_feat(ARCH_POWER))
  2183. power *= arch_scale_freq_power(sd, cpu);
  2184. else
  2185. power *= default_scale_freq_power(sd, cpu);
  2186. power >>= SCHED_LOAD_SHIFT;
  2187. power *= scale_rt_power(cpu);
  2188. power >>= SCHED_LOAD_SHIFT;
  2189. if (!power)
  2190. power = 1;
  2191. cpu_rq(cpu)->cpu_power = power;
  2192. sdg->cpu_power = power;
  2193. }
  2194. static void update_group_power(struct sched_domain *sd, int cpu)
  2195. {
  2196. struct sched_domain *child = sd->child;
  2197. struct sched_group *group, *sdg = sd->groups;
  2198. unsigned long power;
  2199. if (!child) {
  2200. update_cpu_power(sd, cpu);
  2201. return;
  2202. }
  2203. power = 0;
  2204. group = child->groups;
  2205. do {
  2206. power += group->cpu_power;
  2207. group = group->next;
  2208. } while (group != child->groups);
  2209. sdg->cpu_power = power;
  2210. }
  2211. /*
  2212. * Try and fix up capacity for tiny siblings, this is needed when
  2213. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  2214. * which on its own isn't powerful enough.
  2215. *
  2216. * See update_sd_pick_busiest() and check_asym_packing().
  2217. */
  2218. static inline int
  2219. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  2220. {
  2221. /*
  2222. * Only siblings can have significantly less than SCHED_LOAD_SCALE
  2223. */
  2224. if (sd->level != SD_LV_SIBLING)
  2225. return 0;
  2226. /*
  2227. * If ~90% of the cpu_power is still there, we're good.
  2228. */
  2229. if (group->cpu_power * 32 > group->cpu_power_orig * 29)
  2230. return 1;
  2231. return 0;
  2232. }
  2233. /**
  2234. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  2235. * @sd: The sched_domain whose statistics are to be updated.
  2236. * @group: sched_group whose statistics are to be updated.
  2237. * @this_cpu: Cpu for which load balance is currently performed.
  2238. * @idle: Idle status of this_cpu
  2239. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2240. * @local_group: Does group contain this_cpu.
  2241. * @cpus: Set of cpus considered for load balancing.
  2242. * @balance: Should we balance.
  2243. * @sgs: variable to hold the statistics for this group.
  2244. */
  2245. static inline void update_sg_lb_stats(struct sched_domain *sd,
  2246. struct sched_group *group, int this_cpu,
  2247. enum cpu_idle_type idle, int load_idx,
  2248. int local_group, const struct cpumask *cpus,
  2249. int *balance, struct sg_lb_stats *sgs)
  2250. {
  2251. unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
  2252. int i;
  2253. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2254. unsigned long avg_load_per_task = 0;
  2255. if (local_group)
  2256. balance_cpu = group_first_cpu(group);
  2257. /* Tally up the load of all CPUs in the group */
  2258. max_cpu_load = 0;
  2259. min_cpu_load = ~0UL;
  2260. max_nr_running = 0;
  2261. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2262. struct rq *rq = cpu_rq(i);
  2263. /* Bias balancing toward cpus of our domain */
  2264. if (local_group) {
  2265. if (idle_cpu(i) && !first_idle_cpu) {
  2266. first_idle_cpu = 1;
  2267. balance_cpu = i;
  2268. }
  2269. load = target_load(i, load_idx);
  2270. } else {
  2271. load = source_load(i, load_idx);
  2272. if (load > max_cpu_load) {
  2273. max_cpu_load = load;
  2274. max_nr_running = rq->nr_running;
  2275. }
  2276. if (min_cpu_load > load)
  2277. min_cpu_load = load;
  2278. }
  2279. sgs->group_load += load;
  2280. sgs->sum_nr_running += rq->nr_running;
  2281. sgs->sum_weighted_load += weighted_cpuload(i);
  2282. if (idle_cpu(i))
  2283. sgs->idle_cpus++;
  2284. }
  2285. /*
  2286. * First idle cpu or the first cpu(busiest) in this sched group
  2287. * is eligible for doing load balancing at this and above
  2288. * domains. In the newly idle case, we will allow all the cpu's
  2289. * to do the newly idle load balance.
  2290. */
  2291. if (idle != CPU_NEWLY_IDLE && local_group) {
  2292. if (balance_cpu != this_cpu) {
  2293. *balance = 0;
  2294. return;
  2295. }
  2296. update_group_power(sd, this_cpu);
  2297. }
  2298. /* Adjust by relative CPU power of the group */
  2299. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  2300. /*
  2301. * Consider the group unbalanced when the imbalance is larger
  2302. * than the average weight of a task.
  2303. *
  2304. * APZ: with cgroup the avg task weight can vary wildly and
  2305. * might not be a suitable number - should we keep a
  2306. * normalized nr_running number somewhere that negates
  2307. * the hierarchy?
  2308. */
  2309. if (sgs->sum_nr_running)
  2310. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  2311. if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
  2312. sgs->group_imb = 1;
  2313. sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  2314. if (!sgs->group_capacity)
  2315. sgs->group_capacity = fix_small_capacity(sd, group);
  2316. sgs->group_weight = group->group_weight;
  2317. if (sgs->group_capacity > sgs->sum_nr_running)
  2318. sgs->group_has_capacity = 1;
  2319. }
  2320. /**
  2321. * update_sd_pick_busiest - return 1 on busiest group
  2322. * @sd: sched_domain whose statistics are to be checked
  2323. * @sds: sched_domain statistics
  2324. * @sg: sched_group candidate to be checked for being the busiest
  2325. * @sgs: sched_group statistics
  2326. * @this_cpu: the current cpu
  2327. *
  2328. * Determine if @sg is a busier group than the previously selected
  2329. * busiest group.
  2330. */
  2331. static bool update_sd_pick_busiest(struct sched_domain *sd,
  2332. struct sd_lb_stats *sds,
  2333. struct sched_group *sg,
  2334. struct sg_lb_stats *sgs,
  2335. int this_cpu)
  2336. {
  2337. if (sgs->avg_load <= sds->max_load)
  2338. return false;
  2339. if (sgs->sum_nr_running > sgs->group_capacity)
  2340. return true;
  2341. if (sgs->group_imb)
  2342. return true;
  2343. /*
  2344. * ASYM_PACKING needs to move all the work to the lowest
  2345. * numbered CPUs in the group, therefore mark all groups
  2346. * higher than ourself as busy.
  2347. */
  2348. if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  2349. this_cpu < group_first_cpu(sg)) {
  2350. if (!sds->busiest)
  2351. return true;
  2352. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  2353. return true;
  2354. }
  2355. return false;
  2356. }
  2357. /**
  2358. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  2359. * @sd: sched_domain whose statistics are to be updated.
  2360. * @this_cpu: Cpu for which load balance is currently performed.
  2361. * @idle: Idle status of this_cpu
  2362. * @cpus: Set of cpus considered for load balancing.
  2363. * @balance: Should we balance.
  2364. * @sds: variable to hold the statistics for this sched_domain.
  2365. */
  2366. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  2367. enum cpu_idle_type idle, const struct cpumask *cpus,
  2368. int *balance, struct sd_lb_stats *sds)
  2369. {
  2370. struct sched_domain *child = sd->child;
  2371. struct sched_group *sg = sd->groups;
  2372. struct sg_lb_stats sgs;
  2373. int load_idx, prefer_sibling = 0;
  2374. if (child && child->flags & SD_PREFER_SIBLING)
  2375. prefer_sibling = 1;
  2376. init_sd_power_savings_stats(sd, sds, idle);
  2377. load_idx = get_sd_load_idx(sd, idle);
  2378. do {
  2379. int local_group;
  2380. local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
  2381. memset(&sgs, 0, sizeof(sgs));
  2382. update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
  2383. local_group, cpus, balance, &sgs);
  2384. if (local_group && !(*balance))
  2385. return;
  2386. sds->total_load += sgs.group_load;
  2387. sds->total_pwr += sg->cpu_power;
  2388. /*
  2389. * In case the child domain prefers tasks go to siblings
  2390. * first, lower the sg capacity to one so that we'll try
  2391. * and move all the excess tasks away. We lower the capacity
  2392. * of a group only if the local group has the capacity to fit
  2393. * these excess tasks, i.e. nr_running < group_capacity. The
  2394. * extra check prevents the case where you always pull from the
  2395. * heaviest group when it is already under-utilized (possible
  2396. * with a large weight task outweighs the tasks on the system).
  2397. */
  2398. if (prefer_sibling && !local_group && sds->this_has_capacity)
  2399. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  2400. if (local_group) {
  2401. sds->this_load = sgs.avg_load;
  2402. sds->this = sg;
  2403. sds->this_nr_running = sgs.sum_nr_running;
  2404. sds->this_load_per_task = sgs.sum_weighted_load;
  2405. sds->this_has_capacity = sgs.group_has_capacity;
  2406. sds->this_idle_cpus = sgs.idle_cpus;
  2407. } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
  2408. sds->max_load = sgs.avg_load;
  2409. sds->busiest = sg;
  2410. sds->busiest_nr_running = sgs.sum_nr_running;
  2411. sds->busiest_idle_cpus = sgs.idle_cpus;
  2412. sds->busiest_group_capacity = sgs.group_capacity;
  2413. sds->busiest_load_per_task = sgs.sum_weighted_load;
  2414. sds->busiest_has_capacity = sgs.group_has_capacity;
  2415. sds->busiest_group_weight = sgs.group_weight;
  2416. sds->group_imb = sgs.group_imb;
  2417. }
  2418. update_sd_power_savings_stats(sg, sds, local_group, &sgs);
  2419. sg = sg->next;
  2420. } while (sg != sd->groups);
  2421. }
  2422. int __weak arch_sd_sibling_asym_packing(void)
  2423. {
  2424. return 0*SD_ASYM_PACKING;
  2425. }
  2426. /**
  2427. * check_asym_packing - Check to see if the group is packed into the
  2428. * sched doman.
  2429. *
  2430. * This is primarily intended to used at the sibling level. Some
  2431. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  2432. * case of POWER7, it can move to lower SMT modes only when higher
  2433. * threads are idle. When in lower SMT modes, the threads will
  2434. * perform better since they share less core resources. Hence when we
  2435. * have idle threads, we want them to be the higher ones.
  2436. *
  2437. * This packing function is run on idle threads. It checks to see if
  2438. * the busiest CPU in this domain (core in the P7 case) has a higher
  2439. * CPU number than the packing function is being run on. Here we are
  2440. * assuming lower CPU number will be equivalent to lower a SMT thread
  2441. * number.
  2442. *
  2443. * Returns 1 when packing is required and a task should be moved to
  2444. * this CPU. The amount of the imbalance is returned in *imbalance.
  2445. *
  2446. * @sd: The sched_domain whose packing is to be checked.
  2447. * @sds: Statistics of the sched_domain which is to be packed
  2448. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2449. * @imbalance: returns amount of imbalanced due to packing.
  2450. */
  2451. static int check_asym_packing(struct sched_domain *sd,
  2452. struct sd_lb_stats *sds,
  2453. int this_cpu, unsigned long *imbalance)
  2454. {
  2455. int busiest_cpu;
  2456. if (!(sd->flags & SD_ASYM_PACKING))
  2457. return 0;
  2458. if (!sds->busiest)
  2459. return 0;
  2460. busiest_cpu = group_first_cpu(sds->busiest);
  2461. if (this_cpu > busiest_cpu)
  2462. return 0;
  2463. *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
  2464. SCHED_LOAD_SCALE);
  2465. return 1;
  2466. }
  2467. /**
  2468. * fix_small_imbalance - Calculate the minor imbalance that exists
  2469. * amongst the groups of a sched_domain, during
  2470. * load balancing.
  2471. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  2472. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2473. * @imbalance: Variable to store the imbalance.
  2474. */
  2475. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  2476. int this_cpu, unsigned long *imbalance)
  2477. {
  2478. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  2479. unsigned int imbn = 2;
  2480. unsigned long scaled_busy_load_per_task;
  2481. if (sds->this_nr_running) {
  2482. sds->this_load_per_task /= sds->this_nr_running;
  2483. if (sds->busiest_load_per_task >
  2484. sds->this_load_per_task)
  2485. imbn = 1;
  2486. } else
  2487. sds->this_load_per_task =
  2488. cpu_avg_load_per_task(this_cpu);
  2489. scaled_busy_load_per_task = sds->busiest_load_per_task
  2490. * SCHED_LOAD_SCALE;
  2491. scaled_busy_load_per_task /= sds->busiest->cpu_power;
  2492. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  2493. (scaled_busy_load_per_task * imbn)) {
  2494. *imbalance = sds->busiest_load_per_task;
  2495. return;
  2496. }
  2497. /*
  2498. * OK, we don't have enough imbalance to justify moving tasks,
  2499. * however we may be able to increase total CPU power used by
  2500. * moving them.
  2501. */
  2502. pwr_now += sds->busiest->cpu_power *
  2503. min(sds->busiest_load_per_task, sds->max_load);
  2504. pwr_now += sds->this->cpu_power *
  2505. min(sds->this_load_per_task, sds->this_load);
  2506. pwr_now /= SCHED_LOAD_SCALE;
  2507. /* Amount of load we'd subtract */
  2508. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2509. sds->busiest->cpu_power;
  2510. if (sds->max_load > tmp)
  2511. pwr_move += sds->busiest->cpu_power *
  2512. min(sds->busiest_load_per_task, sds->max_load - tmp);
  2513. /* Amount of load we'd add */
  2514. if (sds->max_load * sds->busiest->cpu_power <
  2515. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  2516. tmp = (sds->max_load * sds->busiest->cpu_power) /
  2517. sds->this->cpu_power;
  2518. else
  2519. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2520. sds->this->cpu_power;
  2521. pwr_move += sds->this->cpu_power *
  2522. min(sds->this_load_per_task, sds->this_load + tmp);
  2523. pwr_move /= SCHED_LOAD_SCALE;
  2524. /* Move if we gain throughput */
  2525. if (pwr_move > pwr_now)
  2526. *imbalance = sds->busiest_load_per_task;
  2527. }
  2528. /**
  2529. * calculate_imbalance - Calculate the amount of imbalance present within the
  2530. * groups of a given sched_domain during load balance.
  2531. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  2532. * @this_cpu: Cpu for which currently load balance is being performed.
  2533. * @imbalance: The variable to store the imbalance.
  2534. */
  2535. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  2536. unsigned long *imbalance)
  2537. {
  2538. unsigned long max_pull, load_above_capacity = ~0UL;
  2539. sds->busiest_load_per_task /= sds->busiest_nr_running;
  2540. if (sds->group_imb) {
  2541. sds->busiest_load_per_task =
  2542. min(sds->busiest_load_per_task, sds->avg_load);
  2543. }
  2544. /*
  2545. * In the presence of smp nice balancing, certain scenarios can have
  2546. * max load less than avg load(as we skip the groups at or below
  2547. * its cpu_power, while calculating max_load..)
  2548. */
  2549. if (sds->max_load < sds->avg_load) {
  2550. *imbalance = 0;
  2551. return fix_small_imbalance(sds, this_cpu, imbalance);
  2552. }
  2553. if (!sds->group_imb) {
  2554. /*
  2555. * Don't want to pull so many tasks that a group would go idle.
  2556. */
  2557. load_above_capacity = (sds->busiest_nr_running -
  2558. sds->busiest_group_capacity);
  2559. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
  2560. load_above_capacity /= sds->busiest->cpu_power;
  2561. }
  2562. /*
  2563. * We're trying to get all the cpus to the average_load, so we don't
  2564. * want to push ourselves above the average load, nor do we wish to
  2565. * reduce the max loaded cpu below the average load. At the same time,
  2566. * we also don't want to reduce the group load below the group capacity
  2567. * (so that we can implement power-savings policies etc). Thus we look
  2568. * for the minimum possible imbalance.
  2569. * Be careful of negative numbers as they'll appear as very large values
  2570. * with unsigned longs.
  2571. */
  2572. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  2573. /* How much load to actually move to equalise the imbalance */
  2574. *imbalance = min(max_pull * sds->busiest->cpu_power,
  2575. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  2576. / SCHED_LOAD_SCALE;
  2577. /*
  2578. * if *imbalance is less than the average load per runnable task
  2579. * there is no guarantee that any tasks will be moved so we'll have
  2580. * a think about bumping its value to force at least one task to be
  2581. * moved
  2582. */
  2583. if (*imbalance < sds->busiest_load_per_task)
  2584. return fix_small_imbalance(sds, this_cpu, imbalance);
  2585. }
  2586. /******* find_busiest_group() helpers end here *********************/
  2587. /**
  2588. * find_busiest_group - Returns the busiest group within the sched_domain
  2589. * if there is an imbalance. If there isn't an imbalance, and
  2590. * the user has opted for power-savings, it returns a group whose
  2591. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  2592. * such a group exists.
  2593. *
  2594. * Also calculates the amount of weighted load which should be moved
  2595. * to restore balance.
  2596. *
  2597. * @sd: The sched_domain whose busiest group is to be returned.
  2598. * @this_cpu: The cpu for which load balancing is currently being performed.
  2599. * @imbalance: Variable which stores amount of weighted load which should
  2600. * be moved to restore balance/put a group to idle.
  2601. * @idle: The idle status of this_cpu.
  2602. * @cpus: The set of CPUs under consideration for load-balancing.
  2603. * @balance: Pointer to a variable indicating if this_cpu
  2604. * is the appropriate cpu to perform load balancing at this_level.
  2605. *
  2606. * Returns: - the busiest group if imbalance exists.
  2607. * - If no imbalance and user has opted for power-savings balance,
  2608. * return the least loaded group whose CPUs can be
  2609. * put to idle by rebalancing its tasks onto our group.
  2610. */
  2611. static struct sched_group *
  2612. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2613. unsigned long *imbalance, enum cpu_idle_type idle,
  2614. const struct cpumask *cpus, int *balance)
  2615. {
  2616. struct sd_lb_stats sds;
  2617. memset(&sds, 0, sizeof(sds));
  2618. /*
  2619. * Compute the various statistics relavent for load balancing at
  2620. * this level.
  2621. */
  2622. update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
  2623. /*
  2624. * this_cpu is not the appropriate cpu to perform load balancing at
  2625. * this level.
  2626. */
  2627. if (!(*balance))
  2628. goto ret;
  2629. if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
  2630. check_asym_packing(sd, &sds, this_cpu, imbalance))
  2631. return sds.busiest;
  2632. /* There is no busy sibling group to pull tasks from */
  2633. if (!sds.busiest || sds.busiest_nr_running == 0)
  2634. goto out_balanced;
  2635. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  2636. /*
  2637. * If the busiest group is imbalanced the below checks don't
  2638. * work because they assumes all things are equal, which typically
  2639. * isn't true due to cpus_allowed constraints and the like.
  2640. */
  2641. if (sds.group_imb)
  2642. goto force_balance;
  2643. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  2644. if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  2645. !sds.busiest_has_capacity)
  2646. goto force_balance;
  2647. /*
  2648. * If the local group is more busy than the selected busiest group
  2649. * don't try and pull any tasks.
  2650. */
  2651. if (sds.this_load >= sds.max_load)
  2652. goto out_balanced;
  2653. /*
  2654. * Don't pull any tasks if this group is already above the domain
  2655. * average load.
  2656. */
  2657. if (sds.this_load >= sds.avg_load)
  2658. goto out_balanced;
  2659. if (idle == CPU_IDLE) {
  2660. /*
  2661. * This cpu is idle. If the busiest group load doesn't
  2662. * have more tasks than the number of available cpu's and
  2663. * there is no imbalance between this and busiest group
  2664. * wrt to idle cpu's, it is balanced.
  2665. */
  2666. if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
  2667. sds.busiest_nr_running <= sds.busiest_group_weight)
  2668. goto out_balanced;
  2669. } else {
  2670. /*
  2671. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  2672. * imbalance_pct to be conservative.
  2673. */
  2674. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  2675. goto out_balanced;
  2676. }
  2677. force_balance:
  2678. /* Looks like there is an imbalance. Compute it */
  2679. calculate_imbalance(&sds, this_cpu, imbalance);
  2680. return sds.busiest;
  2681. out_balanced:
  2682. /*
  2683. * There is no obvious imbalance. But check if we can do some balancing
  2684. * to save power.
  2685. */
  2686. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  2687. return sds.busiest;
  2688. ret:
  2689. *imbalance = 0;
  2690. return NULL;
  2691. }
  2692. /*
  2693. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2694. */
  2695. static struct rq *
  2696. find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
  2697. enum cpu_idle_type idle, unsigned long imbalance,
  2698. const struct cpumask *cpus)
  2699. {
  2700. struct rq *busiest = NULL, *rq;
  2701. unsigned long max_load = 0;
  2702. int i;
  2703. for_each_cpu(i, sched_group_cpus(group)) {
  2704. unsigned long power = power_of(i);
  2705. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  2706. unsigned long wl;
  2707. if (!capacity)
  2708. capacity = fix_small_capacity(sd, group);
  2709. if (!cpumask_test_cpu(i, cpus))
  2710. continue;
  2711. rq = cpu_rq(i);
  2712. wl = weighted_cpuload(i);
  2713. /*
  2714. * When comparing with imbalance, use weighted_cpuload()
  2715. * which is not scaled with the cpu power.
  2716. */
  2717. if (capacity && rq->nr_running == 1 && wl > imbalance)
  2718. continue;
  2719. /*
  2720. * For the load comparisons with the other cpu's, consider
  2721. * the weighted_cpuload() scaled with the cpu power, so that
  2722. * the load can be moved away from the cpu that is potentially
  2723. * running at a lower capacity.
  2724. */
  2725. wl = (wl * SCHED_LOAD_SCALE) / power;
  2726. if (wl > max_load) {
  2727. max_load = wl;
  2728. busiest = rq;
  2729. }
  2730. }
  2731. return busiest;
  2732. }
  2733. /*
  2734. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2735. * so long as it is large enough.
  2736. */
  2737. #define MAX_PINNED_INTERVAL 512
  2738. /* Working cpumask for load_balance and load_balance_newidle. */
  2739. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  2740. static int need_active_balance(struct sched_domain *sd, int idle,
  2741. int busiest_cpu, int this_cpu)
  2742. {
  2743. if (idle == CPU_NEWLY_IDLE) {
  2744. /*
  2745. * ASYM_PACKING needs to force migrate tasks from busy but
  2746. * higher numbered CPUs in order to pack all tasks in the
  2747. * lowest numbered CPUs.
  2748. */
  2749. if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
  2750. return 1;
  2751. /*
  2752. * The only task running in a non-idle cpu can be moved to this
  2753. * cpu in an attempt to completely freeup the other CPU
  2754. * package.
  2755. *
  2756. * The package power saving logic comes from
  2757. * find_busiest_group(). If there are no imbalance, then
  2758. * f_b_g() will return NULL. However when sched_mc={1,2} then
  2759. * f_b_g() will select a group from which a running task may be
  2760. * pulled to this cpu in order to make the other package idle.
  2761. * If there is no opportunity to make a package idle and if
  2762. * there are no imbalance, then f_b_g() will return NULL and no
  2763. * action will be taken in load_balance_newidle().
  2764. *
  2765. * Under normal task pull operation due to imbalance, there
  2766. * will be more than one task in the source run queue and
  2767. * move_tasks() will succeed. ld_moved will be true and this
  2768. * active balance code will not be triggered.
  2769. */
  2770. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  2771. return 0;
  2772. }
  2773. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  2774. }
  2775. static int active_load_balance_cpu_stop(void *data);
  2776. /*
  2777. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2778. * tasks if there is an imbalance.
  2779. */
  2780. static int load_balance(int this_cpu, struct rq *this_rq,
  2781. struct sched_domain *sd, enum cpu_idle_type idle,
  2782. int *balance)
  2783. {
  2784. int ld_moved, all_pinned = 0, active_balance = 0;
  2785. struct sched_group *group;
  2786. unsigned long imbalance;
  2787. struct rq *busiest;
  2788. unsigned long flags;
  2789. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  2790. cpumask_copy(cpus, cpu_active_mask);
  2791. schedstat_inc(sd, lb_count[idle]);
  2792. redo:
  2793. group = find_busiest_group(sd, this_cpu, &imbalance, idle,
  2794. cpus, balance);
  2795. if (*balance == 0)
  2796. goto out_balanced;
  2797. if (!group) {
  2798. schedstat_inc(sd, lb_nobusyg[idle]);
  2799. goto out_balanced;
  2800. }
  2801. busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
  2802. if (!busiest) {
  2803. schedstat_inc(sd, lb_nobusyq[idle]);
  2804. goto out_balanced;
  2805. }
  2806. BUG_ON(busiest == this_rq);
  2807. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2808. ld_moved = 0;
  2809. if (busiest->nr_running > 1) {
  2810. /*
  2811. * Attempt to move tasks. If find_busiest_group has found
  2812. * an imbalance but busiest->nr_running <= 1, the group is
  2813. * still unbalanced. ld_moved simply stays zero, so it is
  2814. * correctly treated as an imbalance.
  2815. */
  2816. all_pinned = 1;
  2817. local_irq_save(flags);
  2818. double_rq_lock(this_rq, busiest);
  2819. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2820. imbalance, sd, idle, &all_pinned);
  2821. double_rq_unlock(this_rq, busiest);
  2822. local_irq_restore(flags);
  2823. /*
  2824. * some other cpu did the load balance for us.
  2825. */
  2826. if (ld_moved && this_cpu != smp_processor_id())
  2827. resched_cpu(this_cpu);
  2828. /* All tasks on this runqueue were pinned by CPU affinity */
  2829. if (unlikely(all_pinned)) {
  2830. cpumask_clear_cpu(cpu_of(busiest), cpus);
  2831. if (!cpumask_empty(cpus))
  2832. goto redo;
  2833. goto out_balanced;
  2834. }
  2835. }
  2836. if (!ld_moved) {
  2837. schedstat_inc(sd, lb_failed[idle]);
  2838. /*
  2839. * Increment the failure counter only on periodic balance.
  2840. * We do not want newidle balance, which can be very
  2841. * frequent, pollute the failure counter causing
  2842. * excessive cache_hot migrations and active balances.
  2843. */
  2844. if (idle != CPU_NEWLY_IDLE)
  2845. sd->nr_balance_failed++;
  2846. if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
  2847. raw_spin_lock_irqsave(&busiest->lock, flags);
  2848. /* don't kick the active_load_balance_cpu_stop,
  2849. * if the curr task on busiest cpu can't be
  2850. * moved to this_cpu
  2851. */
  2852. if (!cpumask_test_cpu(this_cpu,
  2853. &busiest->curr->cpus_allowed)) {
  2854. raw_spin_unlock_irqrestore(&busiest->lock,
  2855. flags);
  2856. all_pinned = 1;
  2857. goto out_one_pinned;
  2858. }
  2859. /*
  2860. * ->active_balance synchronizes accesses to
  2861. * ->active_balance_work. Once set, it's cleared
  2862. * only after active load balance is finished.
  2863. */
  2864. if (!busiest->active_balance) {
  2865. busiest->active_balance = 1;
  2866. busiest->push_cpu = this_cpu;
  2867. active_balance = 1;
  2868. }
  2869. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  2870. if (active_balance)
  2871. stop_one_cpu_nowait(cpu_of(busiest),
  2872. active_load_balance_cpu_stop, busiest,
  2873. &busiest->active_balance_work);
  2874. /*
  2875. * We've kicked active balancing, reset the failure
  2876. * counter.
  2877. */
  2878. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2879. }
  2880. } else
  2881. sd->nr_balance_failed = 0;
  2882. if (likely(!active_balance)) {
  2883. /* We were unbalanced, so reset the balancing interval */
  2884. sd->balance_interval = sd->min_interval;
  2885. } else {
  2886. /*
  2887. * If we've begun active balancing, start to back off. This
  2888. * case may not be covered by the all_pinned logic if there
  2889. * is only 1 task on the busy runqueue (because we don't call
  2890. * move_tasks).
  2891. */
  2892. if (sd->balance_interval < sd->max_interval)
  2893. sd->balance_interval *= 2;
  2894. }
  2895. goto out;
  2896. out_balanced:
  2897. schedstat_inc(sd, lb_balanced[idle]);
  2898. sd->nr_balance_failed = 0;
  2899. out_one_pinned:
  2900. /* tune up the balancing interval */
  2901. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2902. (sd->balance_interval < sd->max_interval))
  2903. sd->balance_interval *= 2;
  2904. ld_moved = 0;
  2905. out:
  2906. return ld_moved;
  2907. }
  2908. /*
  2909. * idle_balance is called by schedule() if this_cpu is about to become
  2910. * idle. Attempts to pull tasks from other CPUs.
  2911. */
  2912. static void idle_balance(int this_cpu, struct rq *this_rq)
  2913. {
  2914. struct sched_domain *sd;
  2915. int pulled_task = 0;
  2916. unsigned long next_balance = jiffies + HZ;
  2917. this_rq->idle_stamp = this_rq->clock;
  2918. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  2919. return;
  2920. /*
  2921. * Drop the rq->lock, but keep IRQ/preempt disabled.
  2922. */
  2923. raw_spin_unlock(&this_rq->lock);
  2924. update_shares(this_cpu);
  2925. for_each_domain(this_cpu, sd) {
  2926. unsigned long interval;
  2927. int balance = 1;
  2928. if (!(sd->flags & SD_LOAD_BALANCE))
  2929. continue;
  2930. if (sd->flags & SD_BALANCE_NEWIDLE) {
  2931. /* If we've pulled tasks over stop searching: */
  2932. pulled_task = load_balance(this_cpu, this_rq,
  2933. sd, CPU_NEWLY_IDLE, &balance);
  2934. }
  2935. interval = msecs_to_jiffies(sd->balance_interval);
  2936. if (time_after(next_balance, sd->last_balance + interval))
  2937. next_balance = sd->last_balance + interval;
  2938. if (pulled_task) {
  2939. this_rq->idle_stamp = 0;
  2940. break;
  2941. }
  2942. }
  2943. raw_spin_lock(&this_rq->lock);
  2944. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2945. /*
  2946. * We are going idle. next_balance may be set based on
  2947. * a busy processor. So reset next_balance.
  2948. */
  2949. this_rq->next_balance = next_balance;
  2950. }
  2951. }
  2952. /*
  2953. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  2954. * running tasks off the busiest CPU onto idle CPUs. It requires at
  2955. * least 1 task to be running on each physical CPU where possible, and
  2956. * avoids physical / logical imbalances.
  2957. */
  2958. static int active_load_balance_cpu_stop(void *data)
  2959. {
  2960. struct rq *busiest_rq = data;
  2961. int busiest_cpu = cpu_of(busiest_rq);
  2962. int target_cpu = busiest_rq->push_cpu;
  2963. struct rq *target_rq = cpu_rq(target_cpu);
  2964. struct sched_domain *sd;
  2965. raw_spin_lock_irq(&busiest_rq->lock);
  2966. /* make sure the requested cpu hasn't gone down in the meantime */
  2967. if (unlikely(busiest_cpu != smp_processor_id() ||
  2968. !busiest_rq->active_balance))
  2969. goto out_unlock;
  2970. /* Is there any task to move? */
  2971. if (busiest_rq->nr_running <= 1)
  2972. goto out_unlock;
  2973. /*
  2974. * This condition is "impossible", if it occurs
  2975. * we need to fix it. Originally reported by
  2976. * Bjorn Helgaas on a 128-cpu setup.
  2977. */
  2978. BUG_ON(busiest_rq == target_rq);
  2979. /* move a task from busiest_rq to target_rq */
  2980. double_lock_balance(busiest_rq, target_rq);
  2981. /* Search for an sd spanning us and the target CPU. */
  2982. for_each_domain(target_cpu, sd) {
  2983. if ((sd->flags & SD_LOAD_BALANCE) &&
  2984. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  2985. break;
  2986. }
  2987. if (likely(sd)) {
  2988. schedstat_inc(sd, alb_count);
  2989. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2990. sd, CPU_IDLE))
  2991. schedstat_inc(sd, alb_pushed);
  2992. else
  2993. schedstat_inc(sd, alb_failed);
  2994. }
  2995. double_unlock_balance(busiest_rq, target_rq);
  2996. out_unlock:
  2997. busiest_rq->active_balance = 0;
  2998. raw_spin_unlock_irq(&busiest_rq->lock);
  2999. return 0;
  3000. }
  3001. #ifdef CONFIG_NO_HZ
  3002. static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
  3003. static void trigger_sched_softirq(void *data)
  3004. {
  3005. raise_softirq_irqoff(SCHED_SOFTIRQ);
  3006. }
  3007. static inline void init_sched_softirq_csd(struct call_single_data *csd)
  3008. {
  3009. csd->func = trigger_sched_softirq;
  3010. csd->info = NULL;
  3011. csd->flags = 0;
  3012. csd->priv = 0;
  3013. }
  3014. /*
  3015. * idle load balancing details
  3016. * - One of the idle CPUs nominates itself as idle load_balancer, while
  3017. * entering idle.
  3018. * - This idle load balancer CPU will also go into tickless mode when
  3019. * it is idle, just like all other idle CPUs
  3020. * - When one of the busy CPUs notice that there may be an idle rebalancing
  3021. * needed, they will kick the idle load balancer, which then does idle
  3022. * load balancing for all the idle CPUs.
  3023. */
  3024. static struct {
  3025. atomic_t load_balancer;
  3026. atomic_t first_pick_cpu;
  3027. atomic_t second_pick_cpu;
  3028. cpumask_var_t idle_cpus_mask;
  3029. cpumask_var_t grp_idle_mask;
  3030. unsigned long next_balance; /* in jiffy units */
  3031. } nohz ____cacheline_aligned;
  3032. int get_nohz_load_balancer(void)
  3033. {
  3034. return atomic_read(&nohz.load_balancer);
  3035. }
  3036. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3037. /**
  3038. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3039. * @cpu: The cpu whose lowest level of sched domain is to
  3040. * be returned.
  3041. * @flag: The flag to check for the lowest sched_domain
  3042. * for the given cpu.
  3043. *
  3044. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3045. */
  3046. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3047. {
  3048. struct sched_domain *sd;
  3049. for_each_domain(cpu, sd)
  3050. if (sd && (sd->flags & flag))
  3051. break;
  3052. return sd;
  3053. }
  3054. /**
  3055. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3056. * @cpu: The cpu whose domains we're iterating over.
  3057. * @sd: variable holding the value of the power_savings_sd
  3058. * for cpu.
  3059. * @flag: The flag to filter the sched_domains to be iterated.
  3060. *
  3061. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3062. * set, starting from the lowest sched_domain to the highest.
  3063. */
  3064. #define for_each_flag_domain(cpu, sd, flag) \
  3065. for (sd = lowest_flag_domain(cpu, flag); \
  3066. (sd && (sd->flags & flag)); sd = sd->parent)
  3067. /**
  3068. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3069. * @ilb_group: group to be checked for semi-idleness
  3070. *
  3071. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3072. *
  3073. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3074. * and atleast one non-idle CPU. This helper function checks if the given
  3075. * sched_group is semi-idle or not.
  3076. */
  3077. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3078. {
  3079. cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
  3080. sched_group_cpus(ilb_group));
  3081. /*
  3082. * A sched_group is semi-idle when it has atleast one busy cpu
  3083. * and atleast one idle cpu.
  3084. */
  3085. if (cpumask_empty(nohz.grp_idle_mask))
  3086. return 0;
  3087. if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
  3088. return 0;
  3089. return 1;
  3090. }
  3091. /**
  3092. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3093. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3094. *
  3095. * Returns: Returns the id of the idle load balancer if it exists,
  3096. * Else, returns >= nr_cpu_ids.
  3097. *
  3098. * This algorithm picks the idle load balancer such that it belongs to a
  3099. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3100. * completely idle packages/cores just for the purpose of idle load balancing
  3101. * when there are other idle cpu's which are better suited for that job.
  3102. */
  3103. static int find_new_ilb(int cpu)
  3104. {
  3105. struct sched_domain *sd;
  3106. struct sched_group *ilb_group;
  3107. /*
  3108. * Have idle load balancer selection from semi-idle packages only
  3109. * when power-aware load balancing is enabled
  3110. */
  3111. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3112. goto out_done;
  3113. /*
  3114. * Optimize for the case when we have no idle CPUs or only one
  3115. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3116. */
  3117. if (cpumask_weight(nohz.idle_cpus_mask) < 2)
  3118. goto out_done;
  3119. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3120. ilb_group = sd->groups;
  3121. do {
  3122. if (is_semi_idle_group(ilb_group))
  3123. return cpumask_first(nohz.grp_idle_mask);
  3124. ilb_group = ilb_group->next;
  3125. } while (ilb_group != sd->groups);
  3126. }
  3127. out_done:
  3128. return nr_cpu_ids;
  3129. }
  3130. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3131. static inline int find_new_ilb(int call_cpu)
  3132. {
  3133. return nr_cpu_ids;
  3134. }
  3135. #endif
  3136. /*
  3137. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  3138. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  3139. * CPU (if there is one).
  3140. */
  3141. static void nohz_balancer_kick(int cpu)
  3142. {
  3143. int ilb_cpu;
  3144. nohz.next_balance++;
  3145. ilb_cpu = get_nohz_load_balancer();
  3146. if (ilb_cpu >= nr_cpu_ids) {
  3147. ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
  3148. if (ilb_cpu >= nr_cpu_ids)
  3149. return;
  3150. }
  3151. if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
  3152. struct call_single_data *cp;
  3153. cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
  3154. cp = &per_cpu(remote_sched_softirq_cb, cpu);
  3155. __smp_call_function_single(ilb_cpu, cp, 0);
  3156. }
  3157. return;
  3158. }
  3159. /*
  3160. * This routine will try to nominate the ilb (idle load balancing)
  3161. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3162. * load balancing on behalf of all those cpus.
  3163. *
  3164. * When the ilb owner becomes busy, we will not have new ilb owner until some
  3165. * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
  3166. * idle load balancing by kicking one of the idle CPUs.
  3167. *
  3168. * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
  3169. * ilb owner CPU in future (when there is a need for idle load balancing on
  3170. * behalf of all idle CPUs).
  3171. */
  3172. void select_nohz_load_balancer(int stop_tick)
  3173. {
  3174. int cpu = smp_processor_id();
  3175. if (stop_tick) {
  3176. if (!cpu_active(cpu)) {
  3177. if (atomic_read(&nohz.load_balancer) != cpu)
  3178. return;
  3179. /*
  3180. * If we are going offline and still the leader,
  3181. * give up!
  3182. */
  3183. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3184. nr_cpu_ids) != cpu)
  3185. BUG();
  3186. return;
  3187. }
  3188. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  3189. if (atomic_read(&nohz.first_pick_cpu) == cpu)
  3190. atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
  3191. if (atomic_read(&nohz.second_pick_cpu) == cpu)
  3192. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3193. if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
  3194. int new_ilb;
  3195. /* make me the ilb owner */
  3196. if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
  3197. cpu) != nr_cpu_ids)
  3198. return;
  3199. /*
  3200. * Check to see if there is a more power-efficient
  3201. * ilb.
  3202. */
  3203. new_ilb = find_new_ilb(cpu);
  3204. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3205. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  3206. resched_cpu(new_ilb);
  3207. return;
  3208. }
  3209. return;
  3210. }
  3211. } else {
  3212. if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
  3213. return;
  3214. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  3215. if (atomic_read(&nohz.load_balancer) == cpu)
  3216. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3217. nr_cpu_ids) != cpu)
  3218. BUG();
  3219. }
  3220. return;
  3221. }
  3222. #endif
  3223. static DEFINE_SPINLOCK(balancing);
  3224. static unsigned long __read_mostly max_load_balance_interval = HZ/10;
  3225. /*
  3226. * Scale the max load_balance interval with the number of CPUs in the system.
  3227. * This trades load-balance latency on larger machines for less cross talk.
  3228. */
  3229. static void update_max_interval(void)
  3230. {
  3231. max_load_balance_interval = HZ*num_online_cpus()/10;
  3232. }
  3233. /*
  3234. * It checks each scheduling domain to see if it is due to be balanced,
  3235. * and initiates a balancing operation if so.
  3236. *
  3237. * Balancing parameters are set up in arch_init_sched_domains.
  3238. */
  3239. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3240. {
  3241. int balance = 1;
  3242. struct rq *rq = cpu_rq(cpu);
  3243. unsigned long interval;
  3244. struct sched_domain *sd;
  3245. /* Earliest time when we have to do rebalance again */
  3246. unsigned long next_balance = jiffies + 60*HZ;
  3247. int update_next_balance = 0;
  3248. int need_serialize;
  3249. update_shares(cpu);
  3250. for_each_domain(cpu, sd) {
  3251. if (!(sd->flags & SD_LOAD_BALANCE))
  3252. continue;
  3253. interval = sd->balance_interval;
  3254. if (idle != CPU_IDLE)
  3255. interval *= sd->busy_factor;
  3256. /* scale ms to jiffies */
  3257. interval = msecs_to_jiffies(interval);
  3258. interval = clamp(interval, 1UL, max_load_balance_interval);
  3259. need_serialize = sd->flags & SD_SERIALIZE;
  3260. if (need_serialize) {
  3261. if (!spin_trylock(&balancing))
  3262. goto out;
  3263. }
  3264. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3265. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3266. /*
  3267. * We've pulled tasks over so either we're no
  3268. * longer idle.
  3269. */
  3270. idle = CPU_NOT_IDLE;
  3271. }
  3272. sd->last_balance = jiffies;
  3273. }
  3274. if (need_serialize)
  3275. spin_unlock(&balancing);
  3276. out:
  3277. if (time_after(next_balance, sd->last_balance + interval)) {
  3278. next_balance = sd->last_balance + interval;
  3279. update_next_balance = 1;
  3280. }
  3281. /*
  3282. * Stop the load balance at this level. There is another
  3283. * CPU in our sched group which is doing load balancing more
  3284. * actively.
  3285. */
  3286. if (!balance)
  3287. break;
  3288. }
  3289. /*
  3290. * next_balance will be updated only when there is a need.
  3291. * When the cpu is attached to null domain for ex, it will not be
  3292. * updated.
  3293. */
  3294. if (likely(update_next_balance))
  3295. rq->next_balance = next_balance;
  3296. }
  3297. #ifdef CONFIG_NO_HZ
  3298. /*
  3299. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  3300. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3301. */
  3302. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  3303. {
  3304. struct rq *this_rq = cpu_rq(this_cpu);
  3305. struct rq *rq;
  3306. int balance_cpu;
  3307. if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
  3308. return;
  3309. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  3310. if (balance_cpu == this_cpu)
  3311. continue;
  3312. /*
  3313. * If this cpu gets work to do, stop the load balancing
  3314. * work being done for other cpus. Next load
  3315. * balancing owner will pick it up.
  3316. */
  3317. if (need_resched()) {
  3318. this_rq->nohz_balance_kick = 0;
  3319. break;
  3320. }
  3321. raw_spin_lock_irq(&this_rq->lock);
  3322. update_rq_clock(this_rq);
  3323. update_cpu_load(this_rq);
  3324. raw_spin_unlock_irq(&this_rq->lock);
  3325. rebalance_domains(balance_cpu, CPU_IDLE);
  3326. rq = cpu_rq(balance_cpu);
  3327. if (time_after(this_rq->next_balance, rq->next_balance))
  3328. this_rq->next_balance = rq->next_balance;
  3329. }
  3330. nohz.next_balance = this_rq->next_balance;
  3331. this_rq->nohz_balance_kick = 0;
  3332. }
  3333. /*
  3334. * Current heuristic for kicking the idle load balancer
  3335. * - first_pick_cpu is the one of the busy CPUs. It will kick
  3336. * idle load balancer when it has more than one process active. This
  3337. * eliminates the need for idle load balancing altogether when we have
  3338. * only one running process in the system (common case).
  3339. * - If there are more than one busy CPU, idle load balancer may have
  3340. * to run for active_load_balance to happen (i.e., two busy CPUs are
  3341. * SMT or core siblings and can run better if they move to different
  3342. * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
  3343. * which will kick idle load balancer as soon as it has any load.
  3344. */
  3345. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  3346. {
  3347. unsigned long now = jiffies;
  3348. int ret;
  3349. int first_pick_cpu, second_pick_cpu;
  3350. if (time_before(now, nohz.next_balance))
  3351. return 0;
  3352. if (rq->idle_at_tick)
  3353. return 0;
  3354. first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
  3355. second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
  3356. if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
  3357. second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
  3358. return 0;
  3359. ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
  3360. if (ret == nr_cpu_ids || ret == cpu) {
  3361. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3362. if (rq->nr_running > 1)
  3363. return 1;
  3364. } else {
  3365. ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
  3366. if (ret == nr_cpu_ids || ret == cpu) {
  3367. if (rq->nr_running)
  3368. return 1;
  3369. }
  3370. }
  3371. return 0;
  3372. }
  3373. #else
  3374. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  3375. #endif
  3376. /*
  3377. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3378. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  3379. */
  3380. static void run_rebalance_domains(struct softirq_action *h)
  3381. {
  3382. int this_cpu = smp_processor_id();
  3383. struct rq *this_rq = cpu_rq(this_cpu);
  3384. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3385. CPU_IDLE : CPU_NOT_IDLE;
  3386. rebalance_domains(this_cpu, idle);
  3387. /*
  3388. * If this cpu has a pending nohz_balance_kick, then do the
  3389. * balancing on behalf of the other idle cpus whose ticks are
  3390. * stopped.
  3391. */
  3392. nohz_idle_balance(this_cpu, idle);
  3393. }
  3394. static inline int on_null_domain(int cpu)
  3395. {
  3396. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  3397. }
  3398. /*
  3399. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3400. */
  3401. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3402. {
  3403. /* Don't need to rebalance while attached to NULL domain */
  3404. if (time_after_eq(jiffies, rq->next_balance) &&
  3405. likely(!on_null_domain(cpu)))
  3406. raise_softirq(SCHED_SOFTIRQ);
  3407. #ifdef CONFIG_NO_HZ
  3408. else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  3409. nohz_balancer_kick(cpu);
  3410. #endif
  3411. }
  3412. static void rq_online_fair(struct rq *rq)
  3413. {
  3414. update_sysctl();
  3415. }
  3416. static void rq_offline_fair(struct rq *rq)
  3417. {
  3418. update_sysctl();
  3419. }
  3420. #else /* CONFIG_SMP */
  3421. /*
  3422. * on UP we do not need to balance between CPUs:
  3423. */
  3424. static inline void idle_balance(int cpu, struct rq *rq)
  3425. {
  3426. }
  3427. #endif /* CONFIG_SMP */
  3428. /*
  3429. * scheduler tick hitting a task of our scheduling class:
  3430. */
  3431. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  3432. {
  3433. struct cfs_rq *cfs_rq;
  3434. struct sched_entity *se = &curr->se;
  3435. for_each_sched_entity(se) {
  3436. cfs_rq = cfs_rq_of(se);
  3437. entity_tick(cfs_rq, se, queued);
  3438. }
  3439. }
  3440. /*
  3441. * called on fork with the child task as argument from the parent's context
  3442. * - child not yet on the tasklist
  3443. * - preemption disabled
  3444. */
  3445. static void task_fork_fair(struct task_struct *p)
  3446. {
  3447. struct cfs_rq *cfs_rq = task_cfs_rq(current);
  3448. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  3449. int this_cpu = smp_processor_id();
  3450. struct rq *rq = this_rq();
  3451. unsigned long flags;
  3452. raw_spin_lock_irqsave(&rq->lock, flags);
  3453. update_rq_clock(rq);
  3454. if (unlikely(task_cpu(p) != this_cpu)) {
  3455. rcu_read_lock();
  3456. __set_task_cpu(p, this_cpu);
  3457. rcu_read_unlock();
  3458. }
  3459. update_curr(cfs_rq);
  3460. if (curr)
  3461. se->vruntime = curr->vruntime;
  3462. place_entity(cfs_rq, se, 1);
  3463. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  3464. /*
  3465. * Upon rescheduling, sched_class::put_prev_task() will place
  3466. * 'current' within the tree based on its new key value.
  3467. */
  3468. swap(curr->vruntime, se->vruntime);
  3469. resched_task(rq->curr);
  3470. }
  3471. se->vruntime -= cfs_rq->min_vruntime;
  3472. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3473. }
  3474. /*
  3475. * Priority of the task has changed. Check to see if we preempt
  3476. * the current task.
  3477. */
  3478. static void
  3479. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  3480. {
  3481. if (!p->se.on_rq)
  3482. return;
  3483. /*
  3484. * Reschedule if we are currently running on this runqueue and
  3485. * our priority decreased, or if we are not currently running on
  3486. * this runqueue and our priority is higher than the current's
  3487. */
  3488. if (rq->curr == p) {
  3489. if (p->prio > oldprio)
  3490. resched_task(rq->curr);
  3491. } else
  3492. check_preempt_curr(rq, p, 0);
  3493. }
  3494. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  3495. {
  3496. struct sched_entity *se = &p->se;
  3497. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3498. /*
  3499. * Ensure the task's vruntime is normalized, so that when its
  3500. * switched back to the fair class the enqueue_entity(.flags=0) will
  3501. * do the right thing.
  3502. *
  3503. * If it was on_rq, then the dequeue_entity(.flags=0) will already
  3504. * have normalized the vruntime, if it was !on_rq, then only when
  3505. * the task is sleeping will it still have non-normalized vruntime.
  3506. */
  3507. if (!se->on_rq && p->state != TASK_RUNNING) {
  3508. /*
  3509. * Fix up our vruntime so that the current sleep doesn't
  3510. * cause 'unlimited' sleep bonus.
  3511. */
  3512. place_entity(cfs_rq, se, 0);
  3513. se->vruntime -= cfs_rq->min_vruntime;
  3514. }
  3515. }
  3516. /*
  3517. * We switched to the sched_fair class.
  3518. */
  3519. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  3520. {
  3521. if (!p->se.on_rq)
  3522. return;
  3523. /*
  3524. * We were most likely switched from sched_rt, so
  3525. * kick off the schedule if running, otherwise just see
  3526. * if we can still preempt the current task.
  3527. */
  3528. if (rq->curr == p)
  3529. resched_task(rq->curr);
  3530. else
  3531. check_preempt_curr(rq, p, 0);
  3532. }
  3533. /* Account for a task changing its policy or group.
  3534. *
  3535. * This routine is mostly called to set cfs_rq->curr field when a task
  3536. * migrates between groups/classes.
  3537. */
  3538. static void set_curr_task_fair(struct rq *rq)
  3539. {
  3540. struct sched_entity *se = &rq->curr->se;
  3541. for_each_sched_entity(se)
  3542. set_next_entity(cfs_rq_of(se), se);
  3543. }
  3544. #ifdef CONFIG_FAIR_GROUP_SCHED
  3545. static void task_move_group_fair(struct task_struct *p, int on_rq)
  3546. {
  3547. /*
  3548. * If the task was not on the rq at the time of this cgroup movement
  3549. * it must have been asleep, sleeping tasks keep their ->vruntime
  3550. * absolute on their old rq until wakeup (needed for the fair sleeper
  3551. * bonus in place_entity()).
  3552. *
  3553. * If it was on the rq, we've just 'preempted' it, which does convert
  3554. * ->vruntime to a relative base.
  3555. *
  3556. * Make sure both cases convert their relative position when migrating
  3557. * to another cgroup's rq. This does somewhat interfere with the
  3558. * fair sleeper stuff for the first placement, but who cares.
  3559. */
  3560. if (!on_rq)
  3561. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  3562. set_task_rq(p, task_cpu(p));
  3563. if (!on_rq)
  3564. p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
  3565. }
  3566. #endif
  3567. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  3568. {
  3569. struct sched_entity *se = &task->se;
  3570. unsigned int rr_interval = 0;
  3571. /*
  3572. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  3573. * idle runqueue:
  3574. */
  3575. if (rq->cfs.load.weight)
  3576. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  3577. return rr_interval;
  3578. }
  3579. /*
  3580. * All the scheduling class methods:
  3581. */
  3582. static const struct sched_class fair_sched_class = {
  3583. .next = &idle_sched_class,
  3584. .enqueue_task = enqueue_task_fair,
  3585. .dequeue_task = dequeue_task_fair,
  3586. .yield_task = yield_task_fair,
  3587. .yield_to_task = yield_to_task_fair,
  3588. .check_preempt_curr = check_preempt_wakeup,
  3589. .pick_next_task = pick_next_task_fair,
  3590. .put_prev_task = put_prev_task_fair,
  3591. #ifdef CONFIG_SMP
  3592. .select_task_rq = select_task_rq_fair,
  3593. .rq_online = rq_online_fair,
  3594. .rq_offline = rq_offline_fair,
  3595. .task_waking = task_waking_fair,
  3596. #endif
  3597. .set_curr_task = set_curr_task_fair,
  3598. .task_tick = task_tick_fair,
  3599. .task_fork = task_fork_fair,
  3600. .prio_changed = prio_changed_fair,
  3601. .switched_from = switched_from_fair,
  3602. .switched_to = switched_to_fair,
  3603. .get_rr_interval = get_rr_interval_fair,
  3604. #ifdef CONFIG_FAIR_GROUP_SCHED
  3605. .task_move_group = task_move_group_fair,
  3606. #endif
  3607. };
  3608. #ifdef CONFIG_SCHED_DEBUG
  3609. static void print_cfs_stats(struct seq_file *m, int cpu)
  3610. {
  3611. struct cfs_rq *cfs_rq;
  3612. rcu_read_lock();
  3613. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  3614. print_cfs_rq(m, cpu, cfs_rq);
  3615. rcu_read_unlock();
  3616. }
  3617. #endif