core.c 174 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554
  1. /*
  2. * Performance events core code:
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  7. * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  8. *
  9. * For licensing details see kernel-base/COPYING
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/mm.h>
  13. #include <linux/cpu.h>
  14. #include <linux/smp.h>
  15. #include <linux/idr.h>
  16. #include <linux/file.h>
  17. #include <linux/poll.h>
  18. #include <linux/slab.h>
  19. #include <linux/hash.h>
  20. #include <linux/sysfs.h>
  21. #include <linux/dcache.h>
  22. #include <linux/percpu.h>
  23. #include <linux/ptrace.h>
  24. #include <linux/reboot.h>
  25. #include <linux/vmstat.h>
  26. #include <linux/device.h>
  27. #include <linux/export.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/hardirq.h>
  30. #include <linux/rculist.h>
  31. #include <linux/uaccess.h>
  32. #include <linux/syscalls.h>
  33. #include <linux/anon_inodes.h>
  34. #include <linux/kernel_stat.h>
  35. #include <linux/perf_event.h>
  36. #include <linux/ftrace_event.h>
  37. #include <linux/hw_breakpoint.h>
  38. #include <linux/mm_types.h>
  39. #include <linux/cgroup.h>
  40. #include "internal.h"
  41. #include <asm/irq_regs.h>
  42. struct remote_function_call {
  43. struct task_struct *p;
  44. int (*func)(void *info);
  45. void *info;
  46. int ret;
  47. };
  48. static void remote_function(void *data)
  49. {
  50. struct remote_function_call *tfc = data;
  51. struct task_struct *p = tfc->p;
  52. if (p) {
  53. tfc->ret = -EAGAIN;
  54. if (task_cpu(p) != smp_processor_id() || !task_curr(p))
  55. return;
  56. }
  57. tfc->ret = tfc->func(tfc->info);
  58. }
  59. /**
  60. * task_function_call - call a function on the cpu on which a task runs
  61. * @p: the task to evaluate
  62. * @func: the function to be called
  63. * @info: the function call argument
  64. *
  65. * Calls the function @func when the task is currently running. This might
  66. * be on the current CPU, which just calls the function directly
  67. *
  68. * returns: @func return value, or
  69. * -ESRCH - when the process isn't running
  70. * -EAGAIN - when the process moved away
  71. */
  72. static int
  73. task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
  74. {
  75. struct remote_function_call data = {
  76. .p = p,
  77. .func = func,
  78. .info = info,
  79. .ret = -ESRCH, /* No such (running) process */
  80. };
  81. if (task_curr(p))
  82. smp_call_function_single(task_cpu(p), remote_function, &data, 1);
  83. return data.ret;
  84. }
  85. /**
  86. * cpu_function_call - call a function on the cpu
  87. * @func: the function to be called
  88. * @info: the function call argument
  89. *
  90. * Calls the function @func on the remote cpu.
  91. *
  92. * returns: @func return value or -ENXIO when the cpu is offline
  93. */
  94. static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
  95. {
  96. struct remote_function_call data = {
  97. .p = NULL,
  98. .func = func,
  99. .info = info,
  100. .ret = -ENXIO, /* No such CPU */
  101. };
  102. smp_call_function_single(cpu, remote_function, &data, 1);
  103. return data.ret;
  104. }
  105. #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
  106. PERF_FLAG_FD_OUTPUT |\
  107. PERF_FLAG_PID_CGROUP)
  108. /*
  109. * branch priv levels that need permission checks
  110. */
  111. #define PERF_SAMPLE_BRANCH_PERM_PLM \
  112. (PERF_SAMPLE_BRANCH_KERNEL |\
  113. PERF_SAMPLE_BRANCH_HV)
  114. enum event_type_t {
  115. EVENT_FLEXIBLE = 0x1,
  116. EVENT_PINNED = 0x2,
  117. EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
  118. };
  119. /*
  120. * perf_sched_events : >0 events exist
  121. * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
  122. */
  123. struct static_key_deferred perf_sched_events __read_mostly;
  124. static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
  125. static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
  126. static atomic_t nr_mmap_events __read_mostly;
  127. static atomic_t nr_comm_events __read_mostly;
  128. static atomic_t nr_task_events __read_mostly;
  129. static LIST_HEAD(pmus);
  130. static DEFINE_MUTEX(pmus_lock);
  131. static struct srcu_struct pmus_srcu;
  132. /*
  133. * perf event paranoia level:
  134. * -1 - not paranoid at all
  135. * 0 - disallow raw tracepoint access for unpriv
  136. * 1 - disallow cpu events for unpriv
  137. * 2 - disallow kernel profiling for unpriv
  138. */
  139. int sysctl_perf_event_paranoid __read_mostly = 1;
  140. /* Minimum for 512 kiB + 1 user control page */
  141. int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
  142. /*
  143. * max perf event sample rate
  144. */
  145. #define DEFAULT_MAX_SAMPLE_RATE 100000
  146. int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
  147. static int max_samples_per_tick __read_mostly =
  148. DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
  149. int perf_proc_update_handler(struct ctl_table *table, int write,
  150. void __user *buffer, size_t *lenp,
  151. loff_t *ppos)
  152. {
  153. int ret = proc_dointvec(table, write, buffer, lenp, ppos);
  154. if (ret || !write)
  155. return ret;
  156. max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
  157. return 0;
  158. }
  159. static atomic64_t perf_event_id;
  160. static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
  161. enum event_type_t event_type);
  162. static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
  163. enum event_type_t event_type,
  164. struct task_struct *task);
  165. static void update_context_time(struct perf_event_context *ctx);
  166. static u64 perf_event_time(struct perf_event *event);
  167. static void ring_buffer_attach(struct perf_event *event,
  168. struct ring_buffer *rb);
  169. void __weak perf_event_print_debug(void) { }
  170. extern __weak const char *perf_pmu_name(void)
  171. {
  172. return "pmu";
  173. }
  174. static inline u64 perf_clock(void)
  175. {
  176. return local_clock();
  177. }
  178. static inline struct perf_cpu_context *
  179. __get_cpu_context(struct perf_event_context *ctx)
  180. {
  181. return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
  182. }
  183. static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
  184. struct perf_event_context *ctx)
  185. {
  186. raw_spin_lock(&cpuctx->ctx.lock);
  187. if (ctx)
  188. raw_spin_lock(&ctx->lock);
  189. }
  190. static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
  191. struct perf_event_context *ctx)
  192. {
  193. if (ctx)
  194. raw_spin_unlock(&ctx->lock);
  195. raw_spin_unlock(&cpuctx->ctx.lock);
  196. }
  197. #ifdef CONFIG_CGROUP_PERF
  198. /*
  199. * perf_cgroup_info keeps track of time_enabled for a cgroup.
  200. * This is a per-cpu dynamically allocated data structure.
  201. */
  202. struct perf_cgroup_info {
  203. u64 time;
  204. u64 timestamp;
  205. };
  206. struct perf_cgroup {
  207. struct cgroup_subsys_state css;
  208. struct perf_cgroup_info __percpu *info;
  209. };
  210. /*
  211. * Must ensure cgroup is pinned (css_get) before calling
  212. * this function. In other words, we cannot call this function
  213. * if there is no cgroup event for the current CPU context.
  214. */
  215. static inline struct perf_cgroup *
  216. perf_cgroup_from_task(struct task_struct *task)
  217. {
  218. return container_of(task_subsys_state(task, perf_subsys_id),
  219. struct perf_cgroup, css);
  220. }
  221. static inline bool
  222. perf_cgroup_match(struct perf_event *event)
  223. {
  224. struct perf_event_context *ctx = event->ctx;
  225. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  226. return !event->cgrp || event->cgrp == cpuctx->cgrp;
  227. }
  228. static inline bool perf_tryget_cgroup(struct perf_event *event)
  229. {
  230. return css_tryget(&event->cgrp->css);
  231. }
  232. static inline void perf_put_cgroup(struct perf_event *event)
  233. {
  234. css_put(&event->cgrp->css);
  235. }
  236. static inline void perf_detach_cgroup(struct perf_event *event)
  237. {
  238. perf_put_cgroup(event);
  239. event->cgrp = NULL;
  240. }
  241. static inline int is_cgroup_event(struct perf_event *event)
  242. {
  243. return event->cgrp != NULL;
  244. }
  245. static inline u64 perf_cgroup_event_time(struct perf_event *event)
  246. {
  247. struct perf_cgroup_info *t;
  248. t = per_cpu_ptr(event->cgrp->info, event->cpu);
  249. return t->time;
  250. }
  251. static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
  252. {
  253. struct perf_cgroup_info *info;
  254. u64 now;
  255. now = perf_clock();
  256. info = this_cpu_ptr(cgrp->info);
  257. info->time += now - info->timestamp;
  258. info->timestamp = now;
  259. }
  260. static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
  261. {
  262. struct perf_cgroup *cgrp_out = cpuctx->cgrp;
  263. if (cgrp_out)
  264. __update_cgrp_time(cgrp_out);
  265. }
  266. static inline void update_cgrp_time_from_event(struct perf_event *event)
  267. {
  268. struct perf_cgroup *cgrp;
  269. /*
  270. * ensure we access cgroup data only when needed and
  271. * when we know the cgroup is pinned (css_get)
  272. */
  273. if (!is_cgroup_event(event))
  274. return;
  275. cgrp = perf_cgroup_from_task(current);
  276. /*
  277. * Do not update time when cgroup is not active
  278. */
  279. if (cgrp == event->cgrp)
  280. __update_cgrp_time(event->cgrp);
  281. }
  282. static inline void
  283. perf_cgroup_set_timestamp(struct task_struct *task,
  284. struct perf_event_context *ctx)
  285. {
  286. struct perf_cgroup *cgrp;
  287. struct perf_cgroup_info *info;
  288. /*
  289. * ctx->lock held by caller
  290. * ensure we do not access cgroup data
  291. * unless we have the cgroup pinned (css_get)
  292. */
  293. if (!task || !ctx->nr_cgroups)
  294. return;
  295. cgrp = perf_cgroup_from_task(task);
  296. info = this_cpu_ptr(cgrp->info);
  297. info->timestamp = ctx->timestamp;
  298. }
  299. #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
  300. #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
  301. /*
  302. * reschedule events based on the cgroup constraint of task.
  303. *
  304. * mode SWOUT : schedule out everything
  305. * mode SWIN : schedule in based on cgroup for next
  306. */
  307. void perf_cgroup_switch(struct task_struct *task, int mode)
  308. {
  309. struct perf_cpu_context *cpuctx;
  310. struct pmu *pmu;
  311. unsigned long flags;
  312. /*
  313. * disable interrupts to avoid geting nr_cgroup
  314. * changes via __perf_event_disable(). Also
  315. * avoids preemption.
  316. */
  317. local_irq_save(flags);
  318. /*
  319. * we reschedule only in the presence of cgroup
  320. * constrained events.
  321. */
  322. rcu_read_lock();
  323. list_for_each_entry_rcu(pmu, &pmus, entry) {
  324. cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  325. if (cpuctx->unique_pmu != pmu)
  326. continue; /* ensure we process each cpuctx once */
  327. /*
  328. * perf_cgroup_events says at least one
  329. * context on this CPU has cgroup events.
  330. *
  331. * ctx->nr_cgroups reports the number of cgroup
  332. * events for a context.
  333. */
  334. if (cpuctx->ctx.nr_cgroups > 0) {
  335. perf_ctx_lock(cpuctx, cpuctx->task_ctx);
  336. perf_pmu_disable(cpuctx->ctx.pmu);
  337. if (mode & PERF_CGROUP_SWOUT) {
  338. cpu_ctx_sched_out(cpuctx, EVENT_ALL);
  339. /*
  340. * must not be done before ctxswout due
  341. * to event_filter_match() in event_sched_out()
  342. */
  343. cpuctx->cgrp = NULL;
  344. }
  345. if (mode & PERF_CGROUP_SWIN) {
  346. WARN_ON_ONCE(cpuctx->cgrp);
  347. /*
  348. * set cgrp before ctxsw in to allow
  349. * event_filter_match() to not have to pass
  350. * task around
  351. */
  352. cpuctx->cgrp = perf_cgroup_from_task(task);
  353. cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
  354. }
  355. perf_pmu_enable(cpuctx->ctx.pmu);
  356. perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
  357. }
  358. }
  359. rcu_read_unlock();
  360. local_irq_restore(flags);
  361. }
  362. static inline void perf_cgroup_sched_out(struct task_struct *task,
  363. struct task_struct *next)
  364. {
  365. struct perf_cgroup *cgrp1;
  366. struct perf_cgroup *cgrp2 = NULL;
  367. /*
  368. * we come here when we know perf_cgroup_events > 0
  369. */
  370. cgrp1 = perf_cgroup_from_task(task);
  371. /*
  372. * next is NULL when called from perf_event_enable_on_exec()
  373. * that will systematically cause a cgroup_switch()
  374. */
  375. if (next)
  376. cgrp2 = perf_cgroup_from_task(next);
  377. /*
  378. * only schedule out current cgroup events if we know
  379. * that we are switching to a different cgroup. Otherwise,
  380. * do no touch the cgroup events.
  381. */
  382. if (cgrp1 != cgrp2)
  383. perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
  384. }
  385. static inline void perf_cgroup_sched_in(struct task_struct *prev,
  386. struct task_struct *task)
  387. {
  388. struct perf_cgroup *cgrp1;
  389. struct perf_cgroup *cgrp2 = NULL;
  390. /*
  391. * we come here when we know perf_cgroup_events > 0
  392. */
  393. cgrp1 = perf_cgroup_from_task(task);
  394. /* prev can never be NULL */
  395. cgrp2 = perf_cgroup_from_task(prev);
  396. /*
  397. * only need to schedule in cgroup events if we are changing
  398. * cgroup during ctxsw. Cgroup events were not scheduled
  399. * out of ctxsw out if that was not the case.
  400. */
  401. if (cgrp1 != cgrp2)
  402. perf_cgroup_switch(task, PERF_CGROUP_SWIN);
  403. }
  404. static inline int perf_cgroup_connect(int fd, struct perf_event *event,
  405. struct perf_event_attr *attr,
  406. struct perf_event *group_leader)
  407. {
  408. struct perf_cgroup *cgrp;
  409. struct cgroup_subsys_state *css;
  410. struct fd f = fdget(fd);
  411. int ret = 0;
  412. if (!f.file)
  413. return -EBADF;
  414. css = cgroup_css_from_dir(f.file, perf_subsys_id);
  415. if (IS_ERR(css)) {
  416. ret = PTR_ERR(css);
  417. goto out;
  418. }
  419. cgrp = container_of(css, struct perf_cgroup, css);
  420. event->cgrp = cgrp;
  421. /* must be done before we fput() the file */
  422. if (!perf_tryget_cgroup(event)) {
  423. event->cgrp = NULL;
  424. ret = -ENOENT;
  425. goto out;
  426. }
  427. /*
  428. * all events in a group must monitor
  429. * the same cgroup because a task belongs
  430. * to only one perf cgroup at a time
  431. */
  432. if (group_leader && group_leader->cgrp != cgrp) {
  433. perf_detach_cgroup(event);
  434. ret = -EINVAL;
  435. }
  436. out:
  437. fdput(f);
  438. return ret;
  439. }
  440. static inline void
  441. perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
  442. {
  443. struct perf_cgroup_info *t;
  444. t = per_cpu_ptr(event->cgrp->info, event->cpu);
  445. event->shadow_ctx_time = now - t->timestamp;
  446. }
  447. static inline void
  448. perf_cgroup_defer_enabled(struct perf_event *event)
  449. {
  450. /*
  451. * when the current task's perf cgroup does not match
  452. * the event's, we need to remember to call the
  453. * perf_mark_enable() function the first time a task with
  454. * a matching perf cgroup is scheduled in.
  455. */
  456. if (is_cgroup_event(event) && !perf_cgroup_match(event))
  457. event->cgrp_defer_enabled = 1;
  458. }
  459. static inline void
  460. perf_cgroup_mark_enabled(struct perf_event *event,
  461. struct perf_event_context *ctx)
  462. {
  463. struct perf_event *sub;
  464. u64 tstamp = perf_event_time(event);
  465. if (!event->cgrp_defer_enabled)
  466. return;
  467. event->cgrp_defer_enabled = 0;
  468. event->tstamp_enabled = tstamp - event->total_time_enabled;
  469. list_for_each_entry(sub, &event->sibling_list, group_entry) {
  470. if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
  471. sub->tstamp_enabled = tstamp - sub->total_time_enabled;
  472. sub->cgrp_defer_enabled = 0;
  473. }
  474. }
  475. }
  476. #else /* !CONFIG_CGROUP_PERF */
  477. static inline bool
  478. perf_cgroup_match(struct perf_event *event)
  479. {
  480. return true;
  481. }
  482. static inline void perf_detach_cgroup(struct perf_event *event)
  483. {}
  484. static inline int is_cgroup_event(struct perf_event *event)
  485. {
  486. return 0;
  487. }
  488. static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
  489. {
  490. return 0;
  491. }
  492. static inline void update_cgrp_time_from_event(struct perf_event *event)
  493. {
  494. }
  495. static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
  496. {
  497. }
  498. static inline void perf_cgroup_sched_out(struct task_struct *task,
  499. struct task_struct *next)
  500. {
  501. }
  502. static inline void perf_cgroup_sched_in(struct task_struct *prev,
  503. struct task_struct *task)
  504. {
  505. }
  506. static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
  507. struct perf_event_attr *attr,
  508. struct perf_event *group_leader)
  509. {
  510. return -EINVAL;
  511. }
  512. static inline void
  513. perf_cgroup_set_timestamp(struct task_struct *task,
  514. struct perf_event_context *ctx)
  515. {
  516. }
  517. void
  518. perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
  519. {
  520. }
  521. static inline void
  522. perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
  523. {
  524. }
  525. static inline u64 perf_cgroup_event_time(struct perf_event *event)
  526. {
  527. return 0;
  528. }
  529. static inline void
  530. perf_cgroup_defer_enabled(struct perf_event *event)
  531. {
  532. }
  533. static inline void
  534. perf_cgroup_mark_enabled(struct perf_event *event,
  535. struct perf_event_context *ctx)
  536. {
  537. }
  538. #endif
  539. void perf_pmu_disable(struct pmu *pmu)
  540. {
  541. int *count = this_cpu_ptr(pmu->pmu_disable_count);
  542. if (!(*count)++)
  543. pmu->pmu_disable(pmu);
  544. }
  545. void perf_pmu_enable(struct pmu *pmu)
  546. {
  547. int *count = this_cpu_ptr(pmu->pmu_disable_count);
  548. if (!--(*count))
  549. pmu->pmu_enable(pmu);
  550. }
  551. static DEFINE_PER_CPU(struct list_head, rotation_list);
  552. /*
  553. * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
  554. * because they're strictly cpu affine and rotate_start is called with IRQs
  555. * disabled, while rotate_context is called from IRQ context.
  556. */
  557. static void perf_pmu_rotate_start(struct pmu *pmu)
  558. {
  559. struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  560. struct list_head *head = &__get_cpu_var(rotation_list);
  561. WARN_ON(!irqs_disabled());
  562. if (list_empty(&cpuctx->rotation_list))
  563. list_add(&cpuctx->rotation_list, head);
  564. }
  565. static void get_ctx(struct perf_event_context *ctx)
  566. {
  567. WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
  568. }
  569. static void put_ctx(struct perf_event_context *ctx)
  570. {
  571. if (atomic_dec_and_test(&ctx->refcount)) {
  572. if (ctx->parent_ctx)
  573. put_ctx(ctx->parent_ctx);
  574. if (ctx->task)
  575. put_task_struct(ctx->task);
  576. kfree_rcu(ctx, rcu_head);
  577. }
  578. }
  579. static void unclone_ctx(struct perf_event_context *ctx)
  580. {
  581. if (ctx->parent_ctx) {
  582. put_ctx(ctx->parent_ctx);
  583. ctx->parent_ctx = NULL;
  584. }
  585. }
  586. static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
  587. {
  588. /*
  589. * only top level events have the pid namespace they were created in
  590. */
  591. if (event->parent)
  592. event = event->parent;
  593. return task_tgid_nr_ns(p, event->ns);
  594. }
  595. static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
  596. {
  597. /*
  598. * only top level events have the pid namespace they were created in
  599. */
  600. if (event->parent)
  601. event = event->parent;
  602. return task_pid_nr_ns(p, event->ns);
  603. }
  604. /*
  605. * If we inherit events we want to return the parent event id
  606. * to userspace.
  607. */
  608. static u64 primary_event_id(struct perf_event *event)
  609. {
  610. u64 id = event->id;
  611. if (event->parent)
  612. id = event->parent->id;
  613. return id;
  614. }
  615. /*
  616. * Get the perf_event_context for a task and lock it.
  617. * This has to cope with with the fact that until it is locked,
  618. * the context could get moved to another task.
  619. */
  620. static struct perf_event_context *
  621. perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
  622. {
  623. struct perf_event_context *ctx;
  624. rcu_read_lock();
  625. retry:
  626. ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
  627. if (ctx) {
  628. /*
  629. * If this context is a clone of another, it might
  630. * get swapped for another underneath us by
  631. * perf_event_task_sched_out, though the
  632. * rcu_read_lock() protects us from any context
  633. * getting freed. Lock the context and check if it
  634. * got swapped before we could get the lock, and retry
  635. * if so. If we locked the right context, then it
  636. * can't get swapped on us any more.
  637. */
  638. raw_spin_lock_irqsave(&ctx->lock, *flags);
  639. if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
  640. raw_spin_unlock_irqrestore(&ctx->lock, *flags);
  641. goto retry;
  642. }
  643. if (!atomic_inc_not_zero(&ctx->refcount)) {
  644. raw_spin_unlock_irqrestore(&ctx->lock, *flags);
  645. ctx = NULL;
  646. }
  647. }
  648. rcu_read_unlock();
  649. return ctx;
  650. }
  651. /*
  652. * Get the context for a task and increment its pin_count so it
  653. * can't get swapped to another task. This also increments its
  654. * reference count so that the context can't get freed.
  655. */
  656. static struct perf_event_context *
  657. perf_pin_task_context(struct task_struct *task, int ctxn)
  658. {
  659. struct perf_event_context *ctx;
  660. unsigned long flags;
  661. ctx = perf_lock_task_context(task, ctxn, &flags);
  662. if (ctx) {
  663. ++ctx->pin_count;
  664. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  665. }
  666. return ctx;
  667. }
  668. static void perf_unpin_context(struct perf_event_context *ctx)
  669. {
  670. unsigned long flags;
  671. raw_spin_lock_irqsave(&ctx->lock, flags);
  672. --ctx->pin_count;
  673. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  674. }
  675. /*
  676. * Update the record of the current time in a context.
  677. */
  678. static void update_context_time(struct perf_event_context *ctx)
  679. {
  680. u64 now = perf_clock();
  681. ctx->time += now - ctx->timestamp;
  682. ctx->timestamp = now;
  683. }
  684. static u64 perf_event_time(struct perf_event *event)
  685. {
  686. struct perf_event_context *ctx = event->ctx;
  687. if (is_cgroup_event(event))
  688. return perf_cgroup_event_time(event);
  689. return ctx ? ctx->time : 0;
  690. }
  691. /*
  692. * Update the total_time_enabled and total_time_running fields for a event.
  693. * The caller of this function needs to hold the ctx->lock.
  694. */
  695. static void update_event_times(struct perf_event *event)
  696. {
  697. struct perf_event_context *ctx = event->ctx;
  698. u64 run_end;
  699. if (event->state < PERF_EVENT_STATE_INACTIVE ||
  700. event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
  701. return;
  702. /*
  703. * in cgroup mode, time_enabled represents
  704. * the time the event was enabled AND active
  705. * tasks were in the monitored cgroup. This is
  706. * independent of the activity of the context as
  707. * there may be a mix of cgroup and non-cgroup events.
  708. *
  709. * That is why we treat cgroup events differently
  710. * here.
  711. */
  712. if (is_cgroup_event(event))
  713. run_end = perf_cgroup_event_time(event);
  714. else if (ctx->is_active)
  715. run_end = ctx->time;
  716. else
  717. run_end = event->tstamp_stopped;
  718. event->total_time_enabled = run_end - event->tstamp_enabled;
  719. if (event->state == PERF_EVENT_STATE_INACTIVE)
  720. run_end = event->tstamp_stopped;
  721. else
  722. run_end = perf_event_time(event);
  723. event->total_time_running = run_end - event->tstamp_running;
  724. }
  725. /*
  726. * Update total_time_enabled and total_time_running for all events in a group.
  727. */
  728. static void update_group_times(struct perf_event *leader)
  729. {
  730. struct perf_event *event;
  731. update_event_times(leader);
  732. list_for_each_entry(event, &leader->sibling_list, group_entry)
  733. update_event_times(event);
  734. }
  735. static struct list_head *
  736. ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
  737. {
  738. if (event->attr.pinned)
  739. return &ctx->pinned_groups;
  740. else
  741. return &ctx->flexible_groups;
  742. }
  743. /*
  744. * Add a event from the lists for its context.
  745. * Must be called with ctx->mutex and ctx->lock held.
  746. */
  747. static void
  748. list_add_event(struct perf_event *event, struct perf_event_context *ctx)
  749. {
  750. WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
  751. event->attach_state |= PERF_ATTACH_CONTEXT;
  752. /*
  753. * If we're a stand alone event or group leader, we go to the context
  754. * list, group events are kept attached to the group so that
  755. * perf_group_detach can, at all times, locate all siblings.
  756. */
  757. if (event->group_leader == event) {
  758. struct list_head *list;
  759. if (is_software_event(event))
  760. event->group_flags |= PERF_GROUP_SOFTWARE;
  761. list = ctx_group_list(event, ctx);
  762. list_add_tail(&event->group_entry, list);
  763. }
  764. if (is_cgroup_event(event))
  765. ctx->nr_cgroups++;
  766. if (has_branch_stack(event))
  767. ctx->nr_branch_stack++;
  768. list_add_rcu(&event->event_entry, &ctx->event_list);
  769. if (!ctx->nr_events)
  770. perf_pmu_rotate_start(ctx->pmu);
  771. ctx->nr_events++;
  772. if (event->attr.inherit_stat)
  773. ctx->nr_stat++;
  774. }
  775. /*
  776. * Initialize event state based on the perf_event_attr::disabled.
  777. */
  778. static inline void perf_event__state_init(struct perf_event *event)
  779. {
  780. event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
  781. PERF_EVENT_STATE_INACTIVE;
  782. }
  783. /*
  784. * Called at perf_event creation and when events are attached/detached from a
  785. * group.
  786. */
  787. static void perf_event__read_size(struct perf_event *event)
  788. {
  789. int entry = sizeof(u64); /* value */
  790. int size = 0;
  791. int nr = 1;
  792. if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  793. size += sizeof(u64);
  794. if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  795. size += sizeof(u64);
  796. if (event->attr.read_format & PERF_FORMAT_ID)
  797. entry += sizeof(u64);
  798. if (event->attr.read_format & PERF_FORMAT_GROUP) {
  799. nr += event->group_leader->nr_siblings;
  800. size += sizeof(u64);
  801. }
  802. size += entry * nr;
  803. event->read_size = size;
  804. }
  805. static void perf_event__header_size(struct perf_event *event)
  806. {
  807. struct perf_sample_data *data;
  808. u64 sample_type = event->attr.sample_type;
  809. u16 size = 0;
  810. perf_event__read_size(event);
  811. if (sample_type & PERF_SAMPLE_IP)
  812. size += sizeof(data->ip);
  813. if (sample_type & PERF_SAMPLE_ADDR)
  814. size += sizeof(data->addr);
  815. if (sample_type & PERF_SAMPLE_PERIOD)
  816. size += sizeof(data->period);
  817. if (sample_type & PERF_SAMPLE_WEIGHT)
  818. size += sizeof(data->weight);
  819. if (sample_type & PERF_SAMPLE_READ)
  820. size += event->read_size;
  821. if (sample_type & PERF_SAMPLE_DATA_SRC)
  822. size += sizeof(data->data_src.val);
  823. event->header_size = size;
  824. }
  825. static void perf_event__id_header_size(struct perf_event *event)
  826. {
  827. struct perf_sample_data *data;
  828. u64 sample_type = event->attr.sample_type;
  829. u16 size = 0;
  830. if (sample_type & PERF_SAMPLE_TID)
  831. size += sizeof(data->tid_entry);
  832. if (sample_type & PERF_SAMPLE_TIME)
  833. size += sizeof(data->time);
  834. if (sample_type & PERF_SAMPLE_ID)
  835. size += sizeof(data->id);
  836. if (sample_type & PERF_SAMPLE_STREAM_ID)
  837. size += sizeof(data->stream_id);
  838. if (sample_type & PERF_SAMPLE_CPU)
  839. size += sizeof(data->cpu_entry);
  840. event->id_header_size = size;
  841. }
  842. static void perf_group_attach(struct perf_event *event)
  843. {
  844. struct perf_event *group_leader = event->group_leader, *pos;
  845. /*
  846. * We can have double attach due to group movement in perf_event_open.
  847. */
  848. if (event->attach_state & PERF_ATTACH_GROUP)
  849. return;
  850. event->attach_state |= PERF_ATTACH_GROUP;
  851. if (group_leader == event)
  852. return;
  853. if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
  854. !is_software_event(event))
  855. group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
  856. list_add_tail(&event->group_entry, &group_leader->sibling_list);
  857. group_leader->nr_siblings++;
  858. perf_event__header_size(group_leader);
  859. list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
  860. perf_event__header_size(pos);
  861. }
  862. /*
  863. * Remove a event from the lists for its context.
  864. * Must be called with ctx->mutex and ctx->lock held.
  865. */
  866. static void
  867. list_del_event(struct perf_event *event, struct perf_event_context *ctx)
  868. {
  869. struct perf_cpu_context *cpuctx;
  870. /*
  871. * We can have double detach due to exit/hot-unplug + close.
  872. */
  873. if (!(event->attach_state & PERF_ATTACH_CONTEXT))
  874. return;
  875. event->attach_state &= ~PERF_ATTACH_CONTEXT;
  876. if (is_cgroup_event(event)) {
  877. ctx->nr_cgroups--;
  878. cpuctx = __get_cpu_context(ctx);
  879. /*
  880. * if there are no more cgroup events
  881. * then cler cgrp to avoid stale pointer
  882. * in update_cgrp_time_from_cpuctx()
  883. */
  884. if (!ctx->nr_cgroups)
  885. cpuctx->cgrp = NULL;
  886. }
  887. if (has_branch_stack(event))
  888. ctx->nr_branch_stack--;
  889. ctx->nr_events--;
  890. if (event->attr.inherit_stat)
  891. ctx->nr_stat--;
  892. list_del_rcu(&event->event_entry);
  893. if (event->group_leader == event)
  894. list_del_init(&event->group_entry);
  895. update_group_times(event);
  896. /*
  897. * If event was in error state, then keep it
  898. * that way, otherwise bogus counts will be
  899. * returned on read(). The only way to get out
  900. * of error state is by explicit re-enabling
  901. * of the event
  902. */
  903. if (event->state > PERF_EVENT_STATE_OFF)
  904. event->state = PERF_EVENT_STATE_OFF;
  905. }
  906. static void perf_group_detach(struct perf_event *event)
  907. {
  908. struct perf_event *sibling, *tmp;
  909. struct list_head *list = NULL;
  910. /*
  911. * We can have double detach due to exit/hot-unplug + close.
  912. */
  913. if (!(event->attach_state & PERF_ATTACH_GROUP))
  914. return;
  915. event->attach_state &= ~PERF_ATTACH_GROUP;
  916. /*
  917. * If this is a sibling, remove it from its group.
  918. */
  919. if (event->group_leader != event) {
  920. list_del_init(&event->group_entry);
  921. event->group_leader->nr_siblings--;
  922. goto out;
  923. }
  924. if (!list_empty(&event->group_entry))
  925. list = &event->group_entry;
  926. /*
  927. * If this was a group event with sibling events then
  928. * upgrade the siblings to singleton events by adding them
  929. * to whatever list we are on.
  930. */
  931. list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
  932. if (list)
  933. list_move_tail(&sibling->group_entry, list);
  934. sibling->group_leader = sibling;
  935. /* Inherit group flags from the previous leader */
  936. sibling->group_flags = event->group_flags;
  937. }
  938. out:
  939. perf_event__header_size(event->group_leader);
  940. list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
  941. perf_event__header_size(tmp);
  942. }
  943. static inline int
  944. event_filter_match(struct perf_event *event)
  945. {
  946. return (event->cpu == -1 || event->cpu == smp_processor_id())
  947. && perf_cgroup_match(event);
  948. }
  949. static void
  950. event_sched_out(struct perf_event *event,
  951. struct perf_cpu_context *cpuctx,
  952. struct perf_event_context *ctx)
  953. {
  954. u64 tstamp = perf_event_time(event);
  955. u64 delta;
  956. /*
  957. * An event which could not be activated because of
  958. * filter mismatch still needs to have its timings
  959. * maintained, otherwise bogus information is return
  960. * via read() for time_enabled, time_running:
  961. */
  962. if (event->state == PERF_EVENT_STATE_INACTIVE
  963. && !event_filter_match(event)) {
  964. delta = tstamp - event->tstamp_stopped;
  965. event->tstamp_running += delta;
  966. event->tstamp_stopped = tstamp;
  967. }
  968. if (event->state != PERF_EVENT_STATE_ACTIVE)
  969. return;
  970. event->state = PERF_EVENT_STATE_INACTIVE;
  971. if (event->pending_disable) {
  972. event->pending_disable = 0;
  973. event->state = PERF_EVENT_STATE_OFF;
  974. }
  975. event->tstamp_stopped = tstamp;
  976. event->pmu->del(event, 0);
  977. event->oncpu = -1;
  978. if (!is_software_event(event))
  979. cpuctx->active_oncpu--;
  980. ctx->nr_active--;
  981. if (event->attr.freq && event->attr.sample_freq)
  982. ctx->nr_freq--;
  983. if (event->attr.exclusive || !cpuctx->active_oncpu)
  984. cpuctx->exclusive = 0;
  985. }
  986. static void
  987. group_sched_out(struct perf_event *group_event,
  988. struct perf_cpu_context *cpuctx,
  989. struct perf_event_context *ctx)
  990. {
  991. struct perf_event *event;
  992. int state = group_event->state;
  993. event_sched_out(group_event, cpuctx, ctx);
  994. /*
  995. * Schedule out siblings (if any):
  996. */
  997. list_for_each_entry(event, &group_event->sibling_list, group_entry)
  998. event_sched_out(event, cpuctx, ctx);
  999. if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
  1000. cpuctx->exclusive = 0;
  1001. }
  1002. /*
  1003. * Cross CPU call to remove a performance event
  1004. *
  1005. * We disable the event on the hardware level first. After that we
  1006. * remove it from the context list.
  1007. */
  1008. static int __perf_remove_from_context(void *info)
  1009. {
  1010. struct perf_event *event = info;
  1011. struct perf_event_context *ctx = event->ctx;
  1012. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1013. raw_spin_lock(&ctx->lock);
  1014. event_sched_out(event, cpuctx, ctx);
  1015. list_del_event(event, ctx);
  1016. if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
  1017. ctx->is_active = 0;
  1018. cpuctx->task_ctx = NULL;
  1019. }
  1020. raw_spin_unlock(&ctx->lock);
  1021. return 0;
  1022. }
  1023. /*
  1024. * Remove the event from a task's (or a CPU's) list of events.
  1025. *
  1026. * CPU events are removed with a smp call. For task events we only
  1027. * call when the task is on a CPU.
  1028. *
  1029. * If event->ctx is a cloned context, callers must make sure that
  1030. * every task struct that event->ctx->task could possibly point to
  1031. * remains valid. This is OK when called from perf_release since
  1032. * that only calls us on the top-level context, which can't be a clone.
  1033. * When called from perf_event_exit_task, it's OK because the
  1034. * context has been detached from its task.
  1035. */
  1036. static void perf_remove_from_context(struct perf_event *event)
  1037. {
  1038. struct perf_event_context *ctx = event->ctx;
  1039. struct task_struct *task = ctx->task;
  1040. lockdep_assert_held(&ctx->mutex);
  1041. if (!task) {
  1042. /*
  1043. * Per cpu events are removed via an smp call and
  1044. * the removal is always successful.
  1045. */
  1046. cpu_function_call(event->cpu, __perf_remove_from_context, event);
  1047. return;
  1048. }
  1049. retry:
  1050. if (!task_function_call(task, __perf_remove_from_context, event))
  1051. return;
  1052. raw_spin_lock_irq(&ctx->lock);
  1053. /*
  1054. * If we failed to find a running task, but find the context active now
  1055. * that we've acquired the ctx->lock, retry.
  1056. */
  1057. if (ctx->is_active) {
  1058. raw_spin_unlock_irq(&ctx->lock);
  1059. goto retry;
  1060. }
  1061. /*
  1062. * Since the task isn't running, its safe to remove the event, us
  1063. * holding the ctx->lock ensures the task won't get scheduled in.
  1064. */
  1065. list_del_event(event, ctx);
  1066. raw_spin_unlock_irq(&ctx->lock);
  1067. }
  1068. /*
  1069. * Cross CPU call to disable a performance event
  1070. */
  1071. int __perf_event_disable(void *info)
  1072. {
  1073. struct perf_event *event = info;
  1074. struct perf_event_context *ctx = event->ctx;
  1075. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1076. /*
  1077. * If this is a per-task event, need to check whether this
  1078. * event's task is the current task on this cpu.
  1079. *
  1080. * Can trigger due to concurrent perf_event_context_sched_out()
  1081. * flipping contexts around.
  1082. */
  1083. if (ctx->task && cpuctx->task_ctx != ctx)
  1084. return -EINVAL;
  1085. raw_spin_lock(&ctx->lock);
  1086. /*
  1087. * If the event is on, turn it off.
  1088. * If it is in error state, leave it in error state.
  1089. */
  1090. if (event->state >= PERF_EVENT_STATE_INACTIVE) {
  1091. update_context_time(ctx);
  1092. update_cgrp_time_from_event(event);
  1093. update_group_times(event);
  1094. if (event == event->group_leader)
  1095. group_sched_out(event, cpuctx, ctx);
  1096. else
  1097. event_sched_out(event, cpuctx, ctx);
  1098. event->state = PERF_EVENT_STATE_OFF;
  1099. }
  1100. raw_spin_unlock(&ctx->lock);
  1101. return 0;
  1102. }
  1103. /*
  1104. * Disable a event.
  1105. *
  1106. * If event->ctx is a cloned context, callers must make sure that
  1107. * every task struct that event->ctx->task could possibly point to
  1108. * remains valid. This condition is satisifed when called through
  1109. * perf_event_for_each_child or perf_event_for_each because they
  1110. * hold the top-level event's child_mutex, so any descendant that
  1111. * goes to exit will block in sync_child_event.
  1112. * When called from perf_pending_event it's OK because event->ctx
  1113. * is the current context on this CPU and preemption is disabled,
  1114. * hence we can't get into perf_event_task_sched_out for this context.
  1115. */
  1116. void perf_event_disable(struct perf_event *event)
  1117. {
  1118. struct perf_event_context *ctx = event->ctx;
  1119. struct task_struct *task = ctx->task;
  1120. if (!task) {
  1121. /*
  1122. * Disable the event on the cpu that it's on
  1123. */
  1124. cpu_function_call(event->cpu, __perf_event_disable, event);
  1125. return;
  1126. }
  1127. retry:
  1128. if (!task_function_call(task, __perf_event_disable, event))
  1129. return;
  1130. raw_spin_lock_irq(&ctx->lock);
  1131. /*
  1132. * If the event is still active, we need to retry the cross-call.
  1133. */
  1134. if (event->state == PERF_EVENT_STATE_ACTIVE) {
  1135. raw_spin_unlock_irq(&ctx->lock);
  1136. /*
  1137. * Reload the task pointer, it might have been changed by
  1138. * a concurrent perf_event_context_sched_out().
  1139. */
  1140. task = ctx->task;
  1141. goto retry;
  1142. }
  1143. /*
  1144. * Since we have the lock this context can't be scheduled
  1145. * in, so we can change the state safely.
  1146. */
  1147. if (event->state == PERF_EVENT_STATE_INACTIVE) {
  1148. update_group_times(event);
  1149. event->state = PERF_EVENT_STATE_OFF;
  1150. }
  1151. raw_spin_unlock_irq(&ctx->lock);
  1152. }
  1153. EXPORT_SYMBOL_GPL(perf_event_disable);
  1154. static void perf_set_shadow_time(struct perf_event *event,
  1155. struct perf_event_context *ctx,
  1156. u64 tstamp)
  1157. {
  1158. /*
  1159. * use the correct time source for the time snapshot
  1160. *
  1161. * We could get by without this by leveraging the
  1162. * fact that to get to this function, the caller
  1163. * has most likely already called update_context_time()
  1164. * and update_cgrp_time_xx() and thus both timestamp
  1165. * are identical (or very close). Given that tstamp is,
  1166. * already adjusted for cgroup, we could say that:
  1167. * tstamp - ctx->timestamp
  1168. * is equivalent to
  1169. * tstamp - cgrp->timestamp.
  1170. *
  1171. * Then, in perf_output_read(), the calculation would
  1172. * work with no changes because:
  1173. * - event is guaranteed scheduled in
  1174. * - no scheduled out in between
  1175. * - thus the timestamp would be the same
  1176. *
  1177. * But this is a bit hairy.
  1178. *
  1179. * So instead, we have an explicit cgroup call to remain
  1180. * within the time time source all along. We believe it
  1181. * is cleaner and simpler to understand.
  1182. */
  1183. if (is_cgroup_event(event))
  1184. perf_cgroup_set_shadow_time(event, tstamp);
  1185. else
  1186. event->shadow_ctx_time = tstamp - ctx->timestamp;
  1187. }
  1188. #define MAX_INTERRUPTS (~0ULL)
  1189. static void perf_log_throttle(struct perf_event *event, int enable);
  1190. static int
  1191. event_sched_in(struct perf_event *event,
  1192. struct perf_cpu_context *cpuctx,
  1193. struct perf_event_context *ctx)
  1194. {
  1195. u64 tstamp = perf_event_time(event);
  1196. if (event->state <= PERF_EVENT_STATE_OFF)
  1197. return 0;
  1198. event->state = PERF_EVENT_STATE_ACTIVE;
  1199. event->oncpu = smp_processor_id();
  1200. /*
  1201. * Unthrottle events, since we scheduled we might have missed several
  1202. * ticks already, also for a heavily scheduling task there is little
  1203. * guarantee it'll get a tick in a timely manner.
  1204. */
  1205. if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
  1206. perf_log_throttle(event, 1);
  1207. event->hw.interrupts = 0;
  1208. }
  1209. /*
  1210. * The new state must be visible before we turn it on in the hardware:
  1211. */
  1212. smp_wmb();
  1213. if (event->pmu->add(event, PERF_EF_START)) {
  1214. event->state = PERF_EVENT_STATE_INACTIVE;
  1215. event->oncpu = -1;
  1216. return -EAGAIN;
  1217. }
  1218. event->tstamp_running += tstamp - event->tstamp_stopped;
  1219. perf_set_shadow_time(event, ctx, tstamp);
  1220. if (!is_software_event(event))
  1221. cpuctx->active_oncpu++;
  1222. ctx->nr_active++;
  1223. if (event->attr.freq && event->attr.sample_freq)
  1224. ctx->nr_freq++;
  1225. if (event->attr.exclusive)
  1226. cpuctx->exclusive = 1;
  1227. return 0;
  1228. }
  1229. static int
  1230. group_sched_in(struct perf_event *group_event,
  1231. struct perf_cpu_context *cpuctx,
  1232. struct perf_event_context *ctx)
  1233. {
  1234. struct perf_event *event, *partial_group = NULL;
  1235. struct pmu *pmu = group_event->pmu;
  1236. u64 now = ctx->time;
  1237. bool simulate = false;
  1238. if (group_event->state == PERF_EVENT_STATE_OFF)
  1239. return 0;
  1240. pmu->start_txn(pmu);
  1241. if (event_sched_in(group_event, cpuctx, ctx)) {
  1242. pmu->cancel_txn(pmu);
  1243. return -EAGAIN;
  1244. }
  1245. /*
  1246. * Schedule in siblings as one group (if any):
  1247. */
  1248. list_for_each_entry(event, &group_event->sibling_list, group_entry) {
  1249. if (event_sched_in(event, cpuctx, ctx)) {
  1250. partial_group = event;
  1251. goto group_error;
  1252. }
  1253. }
  1254. if (!pmu->commit_txn(pmu))
  1255. return 0;
  1256. group_error:
  1257. /*
  1258. * Groups can be scheduled in as one unit only, so undo any
  1259. * partial group before returning:
  1260. * The events up to the failed event are scheduled out normally,
  1261. * tstamp_stopped will be updated.
  1262. *
  1263. * The failed events and the remaining siblings need to have
  1264. * their timings updated as if they had gone thru event_sched_in()
  1265. * and event_sched_out(). This is required to get consistent timings
  1266. * across the group. This also takes care of the case where the group
  1267. * could never be scheduled by ensuring tstamp_stopped is set to mark
  1268. * the time the event was actually stopped, such that time delta
  1269. * calculation in update_event_times() is correct.
  1270. */
  1271. list_for_each_entry(event, &group_event->sibling_list, group_entry) {
  1272. if (event == partial_group)
  1273. simulate = true;
  1274. if (simulate) {
  1275. event->tstamp_running += now - event->tstamp_stopped;
  1276. event->tstamp_stopped = now;
  1277. } else {
  1278. event_sched_out(event, cpuctx, ctx);
  1279. }
  1280. }
  1281. event_sched_out(group_event, cpuctx, ctx);
  1282. pmu->cancel_txn(pmu);
  1283. return -EAGAIN;
  1284. }
  1285. /*
  1286. * Work out whether we can put this event group on the CPU now.
  1287. */
  1288. static int group_can_go_on(struct perf_event *event,
  1289. struct perf_cpu_context *cpuctx,
  1290. int can_add_hw)
  1291. {
  1292. /*
  1293. * Groups consisting entirely of software events can always go on.
  1294. */
  1295. if (event->group_flags & PERF_GROUP_SOFTWARE)
  1296. return 1;
  1297. /*
  1298. * If an exclusive group is already on, no other hardware
  1299. * events can go on.
  1300. */
  1301. if (cpuctx->exclusive)
  1302. return 0;
  1303. /*
  1304. * If this group is exclusive and there are already
  1305. * events on the CPU, it can't go on.
  1306. */
  1307. if (event->attr.exclusive && cpuctx->active_oncpu)
  1308. return 0;
  1309. /*
  1310. * Otherwise, try to add it if all previous groups were able
  1311. * to go on.
  1312. */
  1313. return can_add_hw;
  1314. }
  1315. static void add_event_to_ctx(struct perf_event *event,
  1316. struct perf_event_context *ctx)
  1317. {
  1318. u64 tstamp = perf_event_time(event);
  1319. list_add_event(event, ctx);
  1320. perf_group_attach(event);
  1321. event->tstamp_enabled = tstamp;
  1322. event->tstamp_running = tstamp;
  1323. event->tstamp_stopped = tstamp;
  1324. }
  1325. static void task_ctx_sched_out(struct perf_event_context *ctx);
  1326. static void
  1327. ctx_sched_in(struct perf_event_context *ctx,
  1328. struct perf_cpu_context *cpuctx,
  1329. enum event_type_t event_type,
  1330. struct task_struct *task);
  1331. static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
  1332. struct perf_event_context *ctx,
  1333. struct task_struct *task)
  1334. {
  1335. cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
  1336. if (ctx)
  1337. ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
  1338. cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
  1339. if (ctx)
  1340. ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
  1341. }
  1342. /*
  1343. * Cross CPU call to install and enable a performance event
  1344. *
  1345. * Must be called with ctx->mutex held
  1346. */
  1347. static int __perf_install_in_context(void *info)
  1348. {
  1349. struct perf_event *event = info;
  1350. struct perf_event_context *ctx = event->ctx;
  1351. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1352. struct perf_event_context *task_ctx = cpuctx->task_ctx;
  1353. struct task_struct *task = current;
  1354. perf_ctx_lock(cpuctx, task_ctx);
  1355. perf_pmu_disable(cpuctx->ctx.pmu);
  1356. /*
  1357. * If there was an active task_ctx schedule it out.
  1358. */
  1359. if (task_ctx)
  1360. task_ctx_sched_out(task_ctx);
  1361. /*
  1362. * If the context we're installing events in is not the
  1363. * active task_ctx, flip them.
  1364. */
  1365. if (ctx->task && task_ctx != ctx) {
  1366. if (task_ctx)
  1367. raw_spin_unlock(&task_ctx->lock);
  1368. raw_spin_lock(&ctx->lock);
  1369. task_ctx = ctx;
  1370. }
  1371. if (task_ctx) {
  1372. cpuctx->task_ctx = task_ctx;
  1373. task = task_ctx->task;
  1374. }
  1375. cpu_ctx_sched_out(cpuctx, EVENT_ALL);
  1376. update_context_time(ctx);
  1377. /*
  1378. * update cgrp time only if current cgrp
  1379. * matches event->cgrp. Must be done before
  1380. * calling add_event_to_ctx()
  1381. */
  1382. update_cgrp_time_from_event(event);
  1383. add_event_to_ctx(event, ctx);
  1384. /*
  1385. * Schedule everything back in
  1386. */
  1387. perf_event_sched_in(cpuctx, task_ctx, task);
  1388. perf_pmu_enable(cpuctx->ctx.pmu);
  1389. perf_ctx_unlock(cpuctx, task_ctx);
  1390. return 0;
  1391. }
  1392. /*
  1393. * Attach a performance event to a context
  1394. *
  1395. * First we add the event to the list with the hardware enable bit
  1396. * in event->hw_config cleared.
  1397. *
  1398. * If the event is attached to a task which is on a CPU we use a smp
  1399. * call to enable it in the task context. The task might have been
  1400. * scheduled away, but we check this in the smp call again.
  1401. */
  1402. static void
  1403. perf_install_in_context(struct perf_event_context *ctx,
  1404. struct perf_event *event,
  1405. int cpu)
  1406. {
  1407. struct task_struct *task = ctx->task;
  1408. lockdep_assert_held(&ctx->mutex);
  1409. event->ctx = ctx;
  1410. if (event->cpu != -1)
  1411. event->cpu = cpu;
  1412. if (!task) {
  1413. /*
  1414. * Per cpu events are installed via an smp call and
  1415. * the install is always successful.
  1416. */
  1417. cpu_function_call(cpu, __perf_install_in_context, event);
  1418. return;
  1419. }
  1420. retry:
  1421. if (!task_function_call(task, __perf_install_in_context, event))
  1422. return;
  1423. raw_spin_lock_irq(&ctx->lock);
  1424. /*
  1425. * If we failed to find a running task, but find the context active now
  1426. * that we've acquired the ctx->lock, retry.
  1427. */
  1428. if (ctx->is_active) {
  1429. raw_spin_unlock_irq(&ctx->lock);
  1430. goto retry;
  1431. }
  1432. /*
  1433. * Since the task isn't running, its safe to add the event, us holding
  1434. * the ctx->lock ensures the task won't get scheduled in.
  1435. */
  1436. add_event_to_ctx(event, ctx);
  1437. raw_spin_unlock_irq(&ctx->lock);
  1438. }
  1439. /*
  1440. * Put a event into inactive state and update time fields.
  1441. * Enabling the leader of a group effectively enables all
  1442. * the group members that aren't explicitly disabled, so we
  1443. * have to update their ->tstamp_enabled also.
  1444. * Note: this works for group members as well as group leaders
  1445. * since the non-leader members' sibling_lists will be empty.
  1446. */
  1447. static void __perf_event_mark_enabled(struct perf_event *event)
  1448. {
  1449. struct perf_event *sub;
  1450. u64 tstamp = perf_event_time(event);
  1451. event->state = PERF_EVENT_STATE_INACTIVE;
  1452. event->tstamp_enabled = tstamp - event->total_time_enabled;
  1453. list_for_each_entry(sub, &event->sibling_list, group_entry) {
  1454. if (sub->state >= PERF_EVENT_STATE_INACTIVE)
  1455. sub->tstamp_enabled = tstamp - sub->total_time_enabled;
  1456. }
  1457. }
  1458. /*
  1459. * Cross CPU call to enable a performance event
  1460. */
  1461. static int __perf_event_enable(void *info)
  1462. {
  1463. struct perf_event *event = info;
  1464. struct perf_event_context *ctx = event->ctx;
  1465. struct perf_event *leader = event->group_leader;
  1466. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1467. int err;
  1468. if (WARN_ON_ONCE(!ctx->is_active))
  1469. return -EINVAL;
  1470. raw_spin_lock(&ctx->lock);
  1471. update_context_time(ctx);
  1472. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  1473. goto unlock;
  1474. /*
  1475. * set current task's cgroup time reference point
  1476. */
  1477. perf_cgroup_set_timestamp(current, ctx);
  1478. __perf_event_mark_enabled(event);
  1479. if (!event_filter_match(event)) {
  1480. if (is_cgroup_event(event))
  1481. perf_cgroup_defer_enabled(event);
  1482. goto unlock;
  1483. }
  1484. /*
  1485. * If the event is in a group and isn't the group leader,
  1486. * then don't put it on unless the group is on.
  1487. */
  1488. if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
  1489. goto unlock;
  1490. if (!group_can_go_on(event, cpuctx, 1)) {
  1491. err = -EEXIST;
  1492. } else {
  1493. if (event == leader)
  1494. err = group_sched_in(event, cpuctx, ctx);
  1495. else
  1496. err = event_sched_in(event, cpuctx, ctx);
  1497. }
  1498. if (err) {
  1499. /*
  1500. * If this event can't go on and it's part of a
  1501. * group, then the whole group has to come off.
  1502. */
  1503. if (leader != event)
  1504. group_sched_out(leader, cpuctx, ctx);
  1505. if (leader->attr.pinned) {
  1506. update_group_times(leader);
  1507. leader->state = PERF_EVENT_STATE_ERROR;
  1508. }
  1509. }
  1510. unlock:
  1511. raw_spin_unlock(&ctx->lock);
  1512. return 0;
  1513. }
  1514. /*
  1515. * Enable a event.
  1516. *
  1517. * If event->ctx is a cloned context, callers must make sure that
  1518. * every task struct that event->ctx->task could possibly point to
  1519. * remains valid. This condition is satisfied when called through
  1520. * perf_event_for_each_child or perf_event_for_each as described
  1521. * for perf_event_disable.
  1522. */
  1523. void perf_event_enable(struct perf_event *event)
  1524. {
  1525. struct perf_event_context *ctx = event->ctx;
  1526. struct task_struct *task = ctx->task;
  1527. if (!task) {
  1528. /*
  1529. * Enable the event on the cpu that it's on
  1530. */
  1531. cpu_function_call(event->cpu, __perf_event_enable, event);
  1532. return;
  1533. }
  1534. raw_spin_lock_irq(&ctx->lock);
  1535. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  1536. goto out;
  1537. /*
  1538. * If the event is in error state, clear that first.
  1539. * That way, if we see the event in error state below, we
  1540. * know that it has gone back into error state, as distinct
  1541. * from the task having been scheduled away before the
  1542. * cross-call arrived.
  1543. */
  1544. if (event->state == PERF_EVENT_STATE_ERROR)
  1545. event->state = PERF_EVENT_STATE_OFF;
  1546. retry:
  1547. if (!ctx->is_active) {
  1548. __perf_event_mark_enabled(event);
  1549. goto out;
  1550. }
  1551. raw_spin_unlock_irq(&ctx->lock);
  1552. if (!task_function_call(task, __perf_event_enable, event))
  1553. return;
  1554. raw_spin_lock_irq(&ctx->lock);
  1555. /*
  1556. * If the context is active and the event is still off,
  1557. * we need to retry the cross-call.
  1558. */
  1559. if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
  1560. /*
  1561. * task could have been flipped by a concurrent
  1562. * perf_event_context_sched_out()
  1563. */
  1564. task = ctx->task;
  1565. goto retry;
  1566. }
  1567. out:
  1568. raw_spin_unlock_irq(&ctx->lock);
  1569. }
  1570. EXPORT_SYMBOL_GPL(perf_event_enable);
  1571. int perf_event_refresh(struct perf_event *event, int refresh)
  1572. {
  1573. /*
  1574. * not supported on inherited events
  1575. */
  1576. if (event->attr.inherit || !is_sampling_event(event))
  1577. return -EINVAL;
  1578. atomic_add(refresh, &event->event_limit);
  1579. perf_event_enable(event);
  1580. return 0;
  1581. }
  1582. EXPORT_SYMBOL_GPL(perf_event_refresh);
  1583. static void ctx_sched_out(struct perf_event_context *ctx,
  1584. struct perf_cpu_context *cpuctx,
  1585. enum event_type_t event_type)
  1586. {
  1587. struct perf_event *event;
  1588. int is_active = ctx->is_active;
  1589. ctx->is_active &= ~event_type;
  1590. if (likely(!ctx->nr_events))
  1591. return;
  1592. update_context_time(ctx);
  1593. update_cgrp_time_from_cpuctx(cpuctx);
  1594. if (!ctx->nr_active)
  1595. return;
  1596. perf_pmu_disable(ctx->pmu);
  1597. if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
  1598. list_for_each_entry(event, &ctx->pinned_groups, group_entry)
  1599. group_sched_out(event, cpuctx, ctx);
  1600. }
  1601. if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
  1602. list_for_each_entry(event, &ctx->flexible_groups, group_entry)
  1603. group_sched_out(event, cpuctx, ctx);
  1604. }
  1605. perf_pmu_enable(ctx->pmu);
  1606. }
  1607. /*
  1608. * Test whether two contexts are equivalent, i.e. whether they
  1609. * have both been cloned from the same version of the same context
  1610. * and they both have the same number of enabled events.
  1611. * If the number of enabled events is the same, then the set
  1612. * of enabled events should be the same, because these are both
  1613. * inherited contexts, therefore we can't access individual events
  1614. * in them directly with an fd; we can only enable/disable all
  1615. * events via prctl, or enable/disable all events in a family
  1616. * via ioctl, which will have the same effect on both contexts.
  1617. */
  1618. static int context_equiv(struct perf_event_context *ctx1,
  1619. struct perf_event_context *ctx2)
  1620. {
  1621. return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
  1622. && ctx1->parent_gen == ctx2->parent_gen
  1623. && !ctx1->pin_count && !ctx2->pin_count;
  1624. }
  1625. static void __perf_event_sync_stat(struct perf_event *event,
  1626. struct perf_event *next_event)
  1627. {
  1628. u64 value;
  1629. if (!event->attr.inherit_stat)
  1630. return;
  1631. /*
  1632. * Update the event value, we cannot use perf_event_read()
  1633. * because we're in the middle of a context switch and have IRQs
  1634. * disabled, which upsets smp_call_function_single(), however
  1635. * we know the event must be on the current CPU, therefore we
  1636. * don't need to use it.
  1637. */
  1638. switch (event->state) {
  1639. case PERF_EVENT_STATE_ACTIVE:
  1640. event->pmu->read(event);
  1641. /* fall-through */
  1642. case PERF_EVENT_STATE_INACTIVE:
  1643. update_event_times(event);
  1644. break;
  1645. default:
  1646. break;
  1647. }
  1648. /*
  1649. * In order to keep per-task stats reliable we need to flip the event
  1650. * values when we flip the contexts.
  1651. */
  1652. value = local64_read(&next_event->count);
  1653. value = local64_xchg(&event->count, value);
  1654. local64_set(&next_event->count, value);
  1655. swap(event->total_time_enabled, next_event->total_time_enabled);
  1656. swap(event->total_time_running, next_event->total_time_running);
  1657. /*
  1658. * Since we swizzled the values, update the user visible data too.
  1659. */
  1660. perf_event_update_userpage(event);
  1661. perf_event_update_userpage(next_event);
  1662. }
  1663. #define list_next_entry(pos, member) \
  1664. list_entry(pos->member.next, typeof(*pos), member)
  1665. static void perf_event_sync_stat(struct perf_event_context *ctx,
  1666. struct perf_event_context *next_ctx)
  1667. {
  1668. struct perf_event *event, *next_event;
  1669. if (!ctx->nr_stat)
  1670. return;
  1671. update_context_time(ctx);
  1672. event = list_first_entry(&ctx->event_list,
  1673. struct perf_event, event_entry);
  1674. next_event = list_first_entry(&next_ctx->event_list,
  1675. struct perf_event, event_entry);
  1676. while (&event->event_entry != &ctx->event_list &&
  1677. &next_event->event_entry != &next_ctx->event_list) {
  1678. __perf_event_sync_stat(event, next_event);
  1679. event = list_next_entry(event, event_entry);
  1680. next_event = list_next_entry(next_event, event_entry);
  1681. }
  1682. }
  1683. static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
  1684. struct task_struct *next)
  1685. {
  1686. struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
  1687. struct perf_event_context *next_ctx;
  1688. struct perf_event_context *parent;
  1689. struct perf_cpu_context *cpuctx;
  1690. int do_switch = 1;
  1691. if (likely(!ctx))
  1692. return;
  1693. cpuctx = __get_cpu_context(ctx);
  1694. if (!cpuctx->task_ctx)
  1695. return;
  1696. rcu_read_lock();
  1697. parent = rcu_dereference(ctx->parent_ctx);
  1698. next_ctx = next->perf_event_ctxp[ctxn];
  1699. if (parent && next_ctx &&
  1700. rcu_dereference(next_ctx->parent_ctx) == parent) {
  1701. /*
  1702. * Looks like the two contexts are clones, so we might be
  1703. * able to optimize the context switch. We lock both
  1704. * contexts and check that they are clones under the
  1705. * lock (including re-checking that neither has been
  1706. * uncloned in the meantime). It doesn't matter which
  1707. * order we take the locks because no other cpu could
  1708. * be trying to lock both of these tasks.
  1709. */
  1710. raw_spin_lock(&ctx->lock);
  1711. raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
  1712. if (context_equiv(ctx, next_ctx)) {
  1713. /*
  1714. * XXX do we need a memory barrier of sorts
  1715. * wrt to rcu_dereference() of perf_event_ctxp
  1716. */
  1717. task->perf_event_ctxp[ctxn] = next_ctx;
  1718. next->perf_event_ctxp[ctxn] = ctx;
  1719. ctx->task = next;
  1720. next_ctx->task = task;
  1721. do_switch = 0;
  1722. perf_event_sync_stat(ctx, next_ctx);
  1723. }
  1724. raw_spin_unlock(&next_ctx->lock);
  1725. raw_spin_unlock(&ctx->lock);
  1726. }
  1727. rcu_read_unlock();
  1728. if (do_switch) {
  1729. raw_spin_lock(&ctx->lock);
  1730. ctx_sched_out(ctx, cpuctx, EVENT_ALL);
  1731. cpuctx->task_ctx = NULL;
  1732. raw_spin_unlock(&ctx->lock);
  1733. }
  1734. }
  1735. #define for_each_task_context_nr(ctxn) \
  1736. for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
  1737. /*
  1738. * Called from scheduler to remove the events of the current task,
  1739. * with interrupts disabled.
  1740. *
  1741. * We stop each event and update the event value in event->count.
  1742. *
  1743. * This does not protect us against NMI, but disable()
  1744. * sets the disabled bit in the control field of event _before_
  1745. * accessing the event control register. If a NMI hits, then it will
  1746. * not restart the event.
  1747. */
  1748. void __perf_event_task_sched_out(struct task_struct *task,
  1749. struct task_struct *next)
  1750. {
  1751. int ctxn;
  1752. for_each_task_context_nr(ctxn)
  1753. perf_event_context_sched_out(task, ctxn, next);
  1754. /*
  1755. * if cgroup events exist on this CPU, then we need
  1756. * to check if we have to switch out PMU state.
  1757. * cgroup event are system-wide mode only
  1758. */
  1759. if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
  1760. perf_cgroup_sched_out(task, next);
  1761. }
  1762. static void task_ctx_sched_out(struct perf_event_context *ctx)
  1763. {
  1764. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1765. if (!cpuctx->task_ctx)
  1766. return;
  1767. if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
  1768. return;
  1769. ctx_sched_out(ctx, cpuctx, EVENT_ALL);
  1770. cpuctx->task_ctx = NULL;
  1771. }
  1772. /*
  1773. * Called with IRQs disabled
  1774. */
  1775. static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
  1776. enum event_type_t event_type)
  1777. {
  1778. ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
  1779. }
  1780. static void
  1781. ctx_pinned_sched_in(struct perf_event_context *ctx,
  1782. struct perf_cpu_context *cpuctx)
  1783. {
  1784. struct perf_event *event;
  1785. list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
  1786. if (event->state <= PERF_EVENT_STATE_OFF)
  1787. continue;
  1788. if (!event_filter_match(event))
  1789. continue;
  1790. /* may need to reset tstamp_enabled */
  1791. if (is_cgroup_event(event))
  1792. perf_cgroup_mark_enabled(event, ctx);
  1793. if (group_can_go_on(event, cpuctx, 1))
  1794. group_sched_in(event, cpuctx, ctx);
  1795. /*
  1796. * If this pinned group hasn't been scheduled,
  1797. * put it in error state.
  1798. */
  1799. if (event->state == PERF_EVENT_STATE_INACTIVE) {
  1800. update_group_times(event);
  1801. event->state = PERF_EVENT_STATE_ERROR;
  1802. }
  1803. }
  1804. }
  1805. static void
  1806. ctx_flexible_sched_in(struct perf_event_context *ctx,
  1807. struct perf_cpu_context *cpuctx)
  1808. {
  1809. struct perf_event *event;
  1810. int can_add_hw = 1;
  1811. list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
  1812. /* Ignore events in OFF or ERROR state */
  1813. if (event->state <= PERF_EVENT_STATE_OFF)
  1814. continue;
  1815. /*
  1816. * Listen to the 'cpu' scheduling filter constraint
  1817. * of events:
  1818. */
  1819. if (!event_filter_match(event))
  1820. continue;
  1821. /* may need to reset tstamp_enabled */
  1822. if (is_cgroup_event(event))
  1823. perf_cgroup_mark_enabled(event, ctx);
  1824. if (group_can_go_on(event, cpuctx, can_add_hw)) {
  1825. if (group_sched_in(event, cpuctx, ctx))
  1826. can_add_hw = 0;
  1827. }
  1828. }
  1829. }
  1830. static void
  1831. ctx_sched_in(struct perf_event_context *ctx,
  1832. struct perf_cpu_context *cpuctx,
  1833. enum event_type_t event_type,
  1834. struct task_struct *task)
  1835. {
  1836. u64 now;
  1837. int is_active = ctx->is_active;
  1838. ctx->is_active |= event_type;
  1839. if (likely(!ctx->nr_events))
  1840. return;
  1841. now = perf_clock();
  1842. ctx->timestamp = now;
  1843. perf_cgroup_set_timestamp(task, ctx);
  1844. /*
  1845. * First go through the list and put on any pinned groups
  1846. * in order to give them the best chance of going on.
  1847. */
  1848. if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
  1849. ctx_pinned_sched_in(ctx, cpuctx);
  1850. /* Then walk through the lower prio flexible groups */
  1851. if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
  1852. ctx_flexible_sched_in(ctx, cpuctx);
  1853. }
  1854. static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
  1855. enum event_type_t event_type,
  1856. struct task_struct *task)
  1857. {
  1858. struct perf_event_context *ctx = &cpuctx->ctx;
  1859. ctx_sched_in(ctx, cpuctx, event_type, task);
  1860. }
  1861. static void perf_event_context_sched_in(struct perf_event_context *ctx,
  1862. struct task_struct *task)
  1863. {
  1864. struct perf_cpu_context *cpuctx;
  1865. cpuctx = __get_cpu_context(ctx);
  1866. if (cpuctx->task_ctx == ctx)
  1867. return;
  1868. perf_ctx_lock(cpuctx, ctx);
  1869. perf_pmu_disable(ctx->pmu);
  1870. /*
  1871. * We want to keep the following priority order:
  1872. * cpu pinned (that don't need to move), task pinned,
  1873. * cpu flexible, task flexible.
  1874. */
  1875. cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
  1876. if (ctx->nr_events)
  1877. cpuctx->task_ctx = ctx;
  1878. perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
  1879. perf_pmu_enable(ctx->pmu);
  1880. perf_ctx_unlock(cpuctx, ctx);
  1881. /*
  1882. * Since these rotations are per-cpu, we need to ensure the
  1883. * cpu-context we got scheduled on is actually rotating.
  1884. */
  1885. perf_pmu_rotate_start(ctx->pmu);
  1886. }
  1887. /*
  1888. * When sampling the branck stack in system-wide, it may be necessary
  1889. * to flush the stack on context switch. This happens when the branch
  1890. * stack does not tag its entries with the pid of the current task.
  1891. * Otherwise it becomes impossible to associate a branch entry with a
  1892. * task. This ambiguity is more likely to appear when the branch stack
  1893. * supports priv level filtering and the user sets it to monitor only
  1894. * at the user level (which could be a useful measurement in system-wide
  1895. * mode). In that case, the risk is high of having a branch stack with
  1896. * branch from multiple tasks. Flushing may mean dropping the existing
  1897. * entries or stashing them somewhere in the PMU specific code layer.
  1898. *
  1899. * This function provides the context switch callback to the lower code
  1900. * layer. It is invoked ONLY when there is at least one system-wide context
  1901. * with at least one active event using taken branch sampling.
  1902. */
  1903. static void perf_branch_stack_sched_in(struct task_struct *prev,
  1904. struct task_struct *task)
  1905. {
  1906. struct perf_cpu_context *cpuctx;
  1907. struct pmu *pmu;
  1908. unsigned long flags;
  1909. /* no need to flush branch stack if not changing task */
  1910. if (prev == task)
  1911. return;
  1912. local_irq_save(flags);
  1913. rcu_read_lock();
  1914. list_for_each_entry_rcu(pmu, &pmus, entry) {
  1915. cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  1916. /*
  1917. * check if the context has at least one
  1918. * event using PERF_SAMPLE_BRANCH_STACK
  1919. */
  1920. if (cpuctx->ctx.nr_branch_stack > 0
  1921. && pmu->flush_branch_stack) {
  1922. pmu = cpuctx->ctx.pmu;
  1923. perf_ctx_lock(cpuctx, cpuctx->task_ctx);
  1924. perf_pmu_disable(pmu);
  1925. pmu->flush_branch_stack();
  1926. perf_pmu_enable(pmu);
  1927. perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
  1928. }
  1929. }
  1930. rcu_read_unlock();
  1931. local_irq_restore(flags);
  1932. }
  1933. /*
  1934. * Called from scheduler to add the events of the current task
  1935. * with interrupts disabled.
  1936. *
  1937. * We restore the event value and then enable it.
  1938. *
  1939. * This does not protect us against NMI, but enable()
  1940. * sets the enabled bit in the control field of event _before_
  1941. * accessing the event control register. If a NMI hits, then it will
  1942. * keep the event running.
  1943. */
  1944. void __perf_event_task_sched_in(struct task_struct *prev,
  1945. struct task_struct *task)
  1946. {
  1947. struct perf_event_context *ctx;
  1948. int ctxn;
  1949. for_each_task_context_nr(ctxn) {
  1950. ctx = task->perf_event_ctxp[ctxn];
  1951. if (likely(!ctx))
  1952. continue;
  1953. perf_event_context_sched_in(ctx, task);
  1954. }
  1955. /*
  1956. * if cgroup events exist on this CPU, then we need
  1957. * to check if we have to switch in PMU state.
  1958. * cgroup event are system-wide mode only
  1959. */
  1960. if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
  1961. perf_cgroup_sched_in(prev, task);
  1962. /* check for system-wide branch_stack events */
  1963. if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
  1964. perf_branch_stack_sched_in(prev, task);
  1965. }
  1966. static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
  1967. {
  1968. u64 frequency = event->attr.sample_freq;
  1969. u64 sec = NSEC_PER_SEC;
  1970. u64 divisor, dividend;
  1971. int count_fls, nsec_fls, frequency_fls, sec_fls;
  1972. count_fls = fls64(count);
  1973. nsec_fls = fls64(nsec);
  1974. frequency_fls = fls64(frequency);
  1975. sec_fls = 30;
  1976. /*
  1977. * We got @count in @nsec, with a target of sample_freq HZ
  1978. * the target period becomes:
  1979. *
  1980. * @count * 10^9
  1981. * period = -------------------
  1982. * @nsec * sample_freq
  1983. *
  1984. */
  1985. /*
  1986. * Reduce accuracy by one bit such that @a and @b converge
  1987. * to a similar magnitude.
  1988. */
  1989. #define REDUCE_FLS(a, b) \
  1990. do { \
  1991. if (a##_fls > b##_fls) { \
  1992. a >>= 1; \
  1993. a##_fls--; \
  1994. } else { \
  1995. b >>= 1; \
  1996. b##_fls--; \
  1997. } \
  1998. } while (0)
  1999. /*
  2000. * Reduce accuracy until either term fits in a u64, then proceed with
  2001. * the other, so that finally we can do a u64/u64 division.
  2002. */
  2003. while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
  2004. REDUCE_FLS(nsec, frequency);
  2005. REDUCE_FLS(sec, count);
  2006. }
  2007. if (count_fls + sec_fls > 64) {
  2008. divisor = nsec * frequency;
  2009. while (count_fls + sec_fls > 64) {
  2010. REDUCE_FLS(count, sec);
  2011. divisor >>= 1;
  2012. }
  2013. dividend = count * sec;
  2014. } else {
  2015. dividend = count * sec;
  2016. while (nsec_fls + frequency_fls > 64) {
  2017. REDUCE_FLS(nsec, frequency);
  2018. dividend >>= 1;
  2019. }
  2020. divisor = nsec * frequency;
  2021. }
  2022. if (!divisor)
  2023. return dividend;
  2024. return div64_u64(dividend, divisor);
  2025. }
  2026. static DEFINE_PER_CPU(int, perf_throttled_count);
  2027. static DEFINE_PER_CPU(u64, perf_throttled_seq);
  2028. static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
  2029. {
  2030. struct hw_perf_event *hwc = &event->hw;
  2031. s64 period, sample_period;
  2032. s64 delta;
  2033. period = perf_calculate_period(event, nsec, count);
  2034. delta = (s64)(period - hwc->sample_period);
  2035. delta = (delta + 7) / 8; /* low pass filter */
  2036. sample_period = hwc->sample_period + delta;
  2037. if (!sample_period)
  2038. sample_period = 1;
  2039. hwc->sample_period = sample_period;
  2040. if (local64_read(&hwc->period_left) > 8*sample_period) {
  2041. if (disable)
  2042. event->pmu->stop(event, PERF_EF_UPDATE);
  2043. local64_set(&hwc->period_left, 0);
  2044. if (disable)
  2045. event->pmu->start(event, PERF_EF_RELOAD);
  2046. }
  2047. }
  2048. /*
  2049. * combine freq adjustment with unthrottling to avoid two passes over the
  2050. * events. At the same time, make sure, having freq events does not change
  2051. * the rate of unthrottling as that would introduce bias.
  2052. */
  2053. static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
  2054. int needs_unthr)
  2055. {
  2056. struct perf_event *event;
  2057. struct hw_perf_event *hwc;
  2058. u64 now, period = TICK_NSEC;
  2059. s64 delta;
  2060. /*
  2061. * only need to iterate over all events iff:
  2062. * - context have events in frequency mode (needs freq adjust)
  2063. * - there are events to unthrottle on this cpu
  2064. */
  2065. if (!(ctx->nr_freq || needs_unthr))
  2066. return;
  2067. raw_spin_lock(&ctx->lock);
  2068. perf_pmu_disable(ctx->pmu);
  2069. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  2070. if (event->state != PERF_EVENT_STATE_ACTIVE)
  2071. continue;
  2072. if (!event_filter_match(event))
  2073. continue;
  2074. hwc = &event->hw;
  2075. if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
  2076. hwc->interrupts = 0;
  2077. perf_log_throttle(event, 1);
  2078. event->pmu->start(event, 0);
  2079. }
  2080. if (!event->attr.freq || !event->attr.sample_freq)
  2081. continue;
  2082. /*
  2083. * stop the event and update event->count
  2084. */
  2085. event->pmu->stop(event, PERF_EF_UPDATE);
  2086. now = local64_read(&event->count);
  2087. delta = now - hwc->freq_count_stamp;
  2088. hwc->freq_count_stamp = now;
  2089. /*
  2090. * restart the event
  2091. * reload only if value has changed
  2092. * we have stopped the event so tell that
  2093. * to perf_adjust_period() to avoid stopping it
  2094. * twice.
  2095. */
  2096. if (delta > 0)
  2097. perf_adjust_period(event, period, delta, false);
  2098. event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
  2099. }
  2100. perf_pmu_enable(ctx->pmu);
  2101. raw_spin_unlock(&ctx->lock);
  2102. }
  2103. /*
  2104. * Round-robin a context's events:
  2105. */
  2106. static void rotate_ctx(struct perf_event_context *ctx)
  2107. {
  2108. /*
  2109. * Rotate the first entry last of non-pinned groups. Rotation might be
  2110. * disabled by the inheritance code.
  2111. */
  2112. if (!ctx->rotate_disable)
  2113. list_rotate_left(&ctx->flexible_groups);
  2114. }
  2115. /*
  2116. * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
  2117. * because they're strictly cpu affine and rotate_start is called with IRQs
  2118. * disabled, while rotate_context is called from IRQ context.
  2119. */
  2120. static void perf_rotate_context(struct perf_cpu_context *cpuctx)
  2121. {
  2122. struct perf_event_context *ctx = NULL;
  2123. int rotate = 0, remove = 1;
  2124. if (cpuctx->ctx.nr_events) {
  2125. remove = 0;
  2126. if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
  2127. rotate = 1;
  2128. }
  2129. ctx = cpuctx->task_ctx;
  2130. if (ctx && ctx->nr_events) {
  2131. remove = 0;
  2132. if (ctx->nr_events != ctx->nr_active)
  2133. rotate = 1;
  2134. }
  2135. if (!rotate)
  2136. goto done;
  2137. perf_ctx_lock(cpuctx, cpuctx->task_ctx);
  2138. perf_pmu_disable(cpuctx->ctx.pmu);
  2139. cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
  2140. if (ctx)
  2141. ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
  2142. rotate_ctx(&cpuctx->ctx);
  2143. if (ctx)
  2144. rotate_ctx(ctx);
  2145. perf_event_sched_in(cpuctx, ctx, current);
  2146. perf_pmu_enable(cpuctx->ctx.pmu);
  2147. perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
  2148. done:
  2149. if (remove)
  2150. list_del_init(&cpuctx->rotation_list);
  2151. }
  2152. void perf_event_task_tick(void)
  2153. {
  2154. struct list_head *head = &__get_cpu_var(rotation_list);
  2155. struct perf_cpu_context *cpuctx, *tmp;
  2156. struct perf_event_context *ctx;
  2157. int throttled;
  2158. WARN_ON(!irqs_disabled());
  2159. __this_cpu_inc(perf_throttled_seq);
  2160. throttled = __this_cpu_xchg(perf_throttled_count, 0);
  2161. list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
  2162. ctx = &cpuctx->ctx;
  2163. perf_adjust_freq_unthr_context(ctx, throttled);
  2164. ctx = cpuctx->task_ctx;
  2165. if (ctx)
  2166. perf_adjust_freq_unthr_context(ctx, throttled);
  2167. if (cpuctx->jiffies_interval == 1 ||
  2168. !(jiffies % cpuctx->jiffies_interval))
  2169. perf_rotate_context(cpuctx);
  2170. }
  2171. }
  2172. static int event_enable_on_exec(struct perf_event *event,
  2173. struct perf_event_context *ctx)
  2174. {
  2175. if (!event->attr.enable_on_exec)
  2176. return 0;
  2177. event->attr.enable_on_exec = 0;
  2178. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  2179. return 0;
  2180. __perf_event_mark_enabled(event);
  2181. return 1;
  2182. }
  2183. /*
  2184. * Enable all of a task's events that have been marked enable-on-exec.
  2185. * This expects task == current.
  2186. */
  2187. static void perf_event_enable_on_exec(struct perf_event_context *ctx)
  2188. {
  2189. struct perf_event *event;
  2190. unsigned long flags;
  2191. int enabled = 0;
  2192. int ret;
  2193. local_irq_save(flags);
  2194. if (!ctx || !ctx->nr_events)
  2195. goto out;
  2196. /*
  2197. * We must ctxsw out cgroup events to avoid conflict
  2198. * when invoking perf_task_event_sched_in() later on
  2199. * in this function. Otherwise we end up trying to
  2200. * ctxswin cgroup events which are already scheduled
  2201. * in.
  2202. */
  2203. perf_cgroup_sched_out(current, NULL);
  2204. raw_spin_lock(&ctx->lock);
  2205. task_ctx_sched_out(ctx);
  2206. list_for_each_entry(event, &ctx->event_list, event_entry) {
  2207. ret = event_enable_on_exec(event, ctx);
  2208. if (ret)
  2209. enabled = 1;
  2210. }
  2211. /*
  2212. * Unclone this context if we enabled any event.
  2213. */
  2214. if (enabled)
  2215. unclone_ctx(ctx);
  2216. raw_spin_unlock(&ctx->lock);
  2217. /*
  2218. * Also calls ctxswin for cgroup events, if any:
  2219. */
  2220. perf_event_context_sched_in(ctx, ctx->task);
  2221. out:
  2222. local_irq_restore(flags);
  2223. }
  2224. /*
  2225. * Cross CPU call to read the hardware event
  2226. */
  2227. static void __perf_event_read(void *info)
  2228. {
  2229. struct perf_event *event = info;
  2230. struct perf_event_context *ctx = event->ctx;
  2231. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  2232. /*
  2233. * If this is a task context, we need to check whether it is
  2234. * the current task context of this cpu. If not it has been
  2235. * scheduled out before the smp call arrived. In that case
  2236. * event->count would have been updated to a recent sample
  2237. * when the event was scheduled out.
  2238. */
  2239. if (ctx->task && cpuctx->task_ctx != ctx)
  2240. return;
  2241. raw_spin_lock(&ctx->lock);
  2242. if (ctx->is_active) {
  2243. update_context_time(ctx);
  2244. update_cgrp_time_from_event(event);
  2245. }
  2246. update_event_times(event);
  2247. if (event->state == PERF_EVENT_STATE_ACTIVE)
  2248. event->pmu->read(event);
  2249. raw_spin_unlock(&ctx->lock);
  2250. }
  2251. static inline u64 perf_event_count(struct perf_event *event)
  2252. {
  2253. return local64_read(&event->count) + atomic64_read(&event->child_count);
  2254. }
  2255. static u64 perf_event_read(struct perf_event *event)
  2256. {
  2257. /*
  2258. * If event is enabled and currently active on a CPU, update the
  2259. * value in the event structure:
  2260. */
  2261. if (event->state == PERF_EVENT_STATE_ACTIVE) {
  2262. smp_call_function_single(event->oncpu,
  2263. __perf_event_read, event, 1);
  2264. } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
  2265. struct perf_event_context *ctx = event->ctx;
  2266. unsigned long flags;
  2267. raw_spin_lock_irqsave(&ctx->lock, flags);
  2268. /*
  2269. * may read while context is not active
  2270. * (e.g., thread is blocked), in that case
  2271. * we cannot update context time
  2272. */
  2273. if (ctx->is_active) {
  2274. update_context_time(ctx);
  2275. update_cgrp_time_from_event(event);
  2276. }
  2277. update_event_times(event);
  2278. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  2279. }
  2280. return perf_event_count(event);
  2281. }
  2282. /*
  2283. * Initialize the perf_event context in a task_struct:
  2284. */
  2285. static void __perf_event_init_context(struct perf_event_context *ctx)
  2286. {
  2287. raw_spin_lock_init(&ctx->lock);
  2288. mutex_init(&ctx->mutex);
  2289. INIT_LIST_HEAD(&ctx->pinned_groups);
  2290. INIT_LIST_HEAD(&ctx->flexible_groups);
  2291. INIT_LIST_HEAD(&ctx->event_list);
  2292. atomic_set(&ctx->refcount, 1);
  2293. }
  2294. static struct perf_event_context *
  2295. alloc_perf_context(struct pmu *pmu, struct task_struct *task)
  2296. {
  2297. struct perf_event_context *ctx;
  2298. ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
  2299. if (!ctx)
  2300. return NULL;
  2301. __perf_event_init_context(ctx);
  2302. if (task) {
  2303. ctx->task = task;
  2304. get_task_struct(task);
  2305. }
  2306. ctx->pmu = pmu;
  2307. return ctx;
  2308. }
  2309. static struct task_struct *
  2310. find_lively_task_by_vpid(pid_t vpid)
  2311. {
  2312. struct task_struct *task;
  2313. int err;
  2314. rcu_read_lock();
  2315. if (!vpid)
  2316. task = current;
  2317. else
  2318. task = find_task_by_vpid(vpid);
  2319. if (task)
  2320. get_task_struct(task);
  2321. rcu_read_unlock();
  2322. if (!task)
  2323. return ERR_PTR(-ESRCH);
  2324. /* Reuse ptrace permission checks for now. */
  2325. err = -EACCES;
  2326. if (!ptrace_may_access(task, PTRACE_MODE_READ))
  2327. goto errout;
  2328. return task;
  2329. errout:
  2330. put_task_struct(task);
  2331. return ERR_PTR(err);
  2332. }
  2333. /*
  2334. * Returns a matching context with refcount and pincount.
  2335. */
  2336. static struct perf_event_context *
  2337. find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
  2338. {
  2339. struct perf_event_context *ctx;
  2340. struct perf_cpu_context *cpuctx;
  2341. unsigned long flags;
  2342. int ctxn, err;
  2343. if (!task) {
  2344. /* Must be root to operate on a CPU event: */
  2345. if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  2346. return ERR_PTR(-EACCES);
  2347. /*
  2348. * We could be clever and allow to attach a event to an
  2349. * offline CPU and activate it when the CPU comes up, but
  2350. * that's for later.
  2351. */
  2352. if (!cpu_online(cpu))
  2353. return ERR_PTR(-ENODEV);
  2354. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  2355. ctx = &cpuctx->ctx;
  2356. get_ctx(ctx);
  2357. ++ctx->pin_count;
  2358. return ctx;
  2359. }
  2360. err = -EINVAL;
  2361. ctxn = pmu->task_ctx_nr;
  2362. if (ctxn < 0)
  2363. goto errout;
  2364. retry:
  2365. ctx = perf_lock_task_context(task, ctxn, &flags);
  2366. if (ctx) {
  2367. unclone_ctx(ctx);
  2368. ++ctx->pin_count;
  2369. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  2370. } else {
  2371. ctx = alloc_perf_context(pmu, task);
  2372. err = -ENOMEM;
  2373. if (!ctx)
  2374. goto errout;
  2375. err = 0;
  2376. mutex_lock(&task->perf_event_mutex);
  2377. /*
  2378. * If it has already passed perf_event_exit_task().
  2379. * we must see PF_EXITING, it takes this mutex too.
  2380. */
  2381. if (task->flags & PF_EXITING)
  2382. err = -ESRCH;
  2383. else if (task->perf_event_ctxp[ctxn])
  2384. err = -EAGAIN;
  2385. else {
  2386. get_ctx(ctx);
  2387. ++ctx->pin_count;
  2388. rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
  2389. }
  2390. mutex_unlock(&task->perf_event_mutex);
  2391. if (unlikely(err)) {
  2392. put_ctx(ctx);
  2393. if (err == -EAGAIN)
  2394. goto retry;
  2395. goto errout;
  2396. }
  2397. }
  2398. return ctx;
  2399. errout:
  2400. return ERR_PTR(err);
  2401. }
  2402. static void perf_event_free_filter(struct perf_event *event);
  2403. static void free_event_rcu(struct rcu_head *head)
  2404. {
  2405. struct perf_event *event;
  2406. event = container_of(head, struct perf_event, rcu_head);
  2407. if (event->ns)
  2408. put_pid_ns(event->ns);
  2409. perf_event_free_filter(event);
  2410. kfree(event);
  2411. }
  2412. static void ring_buffer_put(struct ring_buffer *rb);
  2413. static void free_event(struct perf_event *event)
  2414. {
  2415. irq_work_sync(&event->pending);
  2416. if (!event->parent) {
  2417. if (event->attach_state & PERF_ATTACH_TASK)
  2418. static_key_slow_dec_deferred(&perf_sched_events);
  2419. if (event->attr.mmap || event->attr.mmap_data)
  2420. atomic_dec(&nr_mmap_events);
  2421. if (event->attr.comm)
  2422. atomic_dec(&nr_comm_events);
  2423. if (event->attr.task)
  2424. atomic_dec(&nr_task_events);
  2425. if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
  2426. put_callchain_buffers();
  2427. if (is_cgroup_event(event)) {
  2428. atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
  2429. static_key_slow_dec_deferred(&perf_sched_events);
  2430. }
  2431. if (has_branch_stack(event)) {
  2432. static_key_slow_dec_deferred(&perf_sched_events);
  2433. /* is system-wide event */
  2434. if (!(event->attach_state & PERF_ATTACH_TASK))
  2435. atomic_dec(&per_cpu(perf_branch_stack_events,
  2436. event->cpu));
  2437. }
  2438. }
  2439. if (event->rb) {
  2440. ring_buffer_put(event->rb);
  2441. event->rb = NULL;
  2442. }
  2443. if (is_cgroup_event(event))
  2444. perf_detach_cgroup(event);
  2445. if (event->destroy)
  2446. event->destroy(event);
  2447. if (event->ctx)
  2448. put_ctx(event->ctx);
  2449. call_rcu(&event->rcu_head, free_event_rcu);
  2450. }
  2451. int perf_event_release_kernel(struct perf_event *event)
  2452. {
  2453. struct perf_event_context *ctx = event->ctx;
  2454. WARN_ON_ONCE(ctx->parent_ctx);
  2455. /*
  2456. * There are two ways this annotation is useful:
  2457. *
  2458. * 1) there is a lock recursion from perf_event_exit_task
  2459. * see the comment there.
  2460. *
  2461. * 2) there is a lock-inversion with mmap_sem through
  2462. * perf_event_read_group(), which takes faults while
  2463. * holding ctx->mutex, however this is called after
  2464. * the last filedesc died, so there is no possibility
  2465. * to trigger the AB-BA case.
  2466. */
  2467. mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
  2468. raw_spin_lock_irq(&ctx->lock);
  2469. perf_group_detach(event);
  2470. raw_spin_unlock_irq(&ctx->lock);
  2471. perf_remove_from_context(event);
  2472. mutex_unlock(&ctx->mutex);
  2473. free_event(event);
  2474. return 0;
  2475. }
  2476. EXPORT_SYMBOL_GPL(perf_event_release_kernel);
  2477. /*
  2478. * Called when the last reference to the file is gone.
  2479. */
  2480. static void put_event(struct perf_event *event)
  2481. {
  2482. struct task_struct *owner;
  2483. if (!atomic_long_dec_and_test(&event->refcount))
  2484. return;
  2485. rcu_read_lock();
  2486. owner = ACCESS_ONCE(event->owner);
  2487. /*
  2488. * Matches the smp_wmb() in perf_event_exit_task(). If we observe
  2489. * !owner it means the list deletion is complete and we can indeed
  2490. * free this event, otherwise we need to serialize on
  2491. * owner->perf_event_mutex.
  2492. */
  2493. smp_read_barrier_depends();
  2494. if (owner) {
  2495. /*
  2496. * Since delayed_put_task_struct() also drops the last
  2497. * task reference we can safely take a new reference
  2498. * while holding the rcu_read_lock().
  2499. */
  2500. get_task_struct(owner);
  2501. }
  2502. rcu_read_unlock();
  2503. if (owner) {
  2504. mutex_lock(&owner->perf_event_mutex);
  2505. /*
  2506. * We have to re-check the event->owner field, if it is cleared
  2507. * we raced with perf_event_exit_task(), acquiring the mutex
  2508. * ensured they're done, and we can proceed with freeing the
  2509. * event.
  2510. */
  2511. if (event->owner)
  2512. list_del_init(&event->owner_entry);
  2513. mutex_unlock(&owner->perf_event_mutex);
  2514. put_task_struct(owner);
  2515. }
  2516. perf_event_release_kernel(event);
  2517. }
  2518. static int perf_release(struct inode *inode, struct file *file)
  2519. {
  2520. put_event(file->private_data);
  2521. return 0;
  2522. }
  2523. u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
  2524. {
  2525. struct perf_event *child;
  2526. u64 total = 0;
  2527. *enabled = 0;
  2528. *running = 0;
  2529. mutex_lock(&event->child_mutex);
  2530. total += perf_event_read(event);
  2531. *enabled += event->total_time_enabled +
  2532. atomic64_read(&event->child_total_time_enabled);
  2533. *running += event->total_time_running +
  2534. atomic64_read(&event->child_total_time_running);
  2535. list_for_each_entry(child, &event->child_list, child_list) {
  2536. total += perf_event_read(child);
  2537. *enabled += child->total_time_enabled;
  2538. *running += child->total_time_running;
  2539. }
  2540. mutex_unlock(&event->child_mutex);
  2541. return total;
  2542. }
  2543. EXPORT_SYMBOL_GPL(perf_event_read_value);
  2544. static int perf_event_read_group(struct perf_event *event,
  2545. u64 read_format, char __user *buf)
  2546. {
  2547. struct perf_event *leader = event->group_leader, *sub;
  2548. int n = 0, size = 0, ret = -EFAULT;
  2549. struct perf_event_context *ctx = leader->ctx;
  2550. u64 values[5];
  2551. u64 count, enabled, running;
  2552. mutex_lock(&ctx->mutex);
  2553. count = perf_event_read_value(leader, &enabled, &running);
  2554. values[n++] = 1 + leader->nr_siblings;
  2555. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  2556. values[n++] = enabled;
  2557. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  2558. values[n++] = running;
  2559. values[n++] = count;
  2560. if (read_format & PERF_FORMAT_ID)
  2561. values[n++] = primary_event_id(leader);
  2562. size = n * sizeof(u64);
  2563. if (copy_to_user(buf, values, size))
  2564. goto unlock;
  2565. ret = size;
  2566. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  2567. n = 0;
  2568. values[n++] = perf_event_read_value(sub, &enabled, &running);
  2569. if (read_format & PERF_FORMAT_ID)
  2570. values[n++] = primary_event_id(sub);
  2571. size = n * sizeof(u64);
  2572. if (copy_to_user(buf + ret, values, size)) {
  2573. ret = -EFAULT;
  2574. goto unlock;
  2575. }
  2576. ret += size;
  2577. }
  2578. unlock:
  2579. mutex_unlock(&ctx->mutex);
  2580. return ret;
  2581. }
  2582. static int perf_event_read_one(struct perf_event *event,
  2583. u64 read_format, char __user *buf)
  2584. {
  2585. u64 enabled, running;
  2586. u64 values[4];
  2587. int n = 0;
  2588. values[n++] = perf_event_read_value(event, &enabled, &running);
  2589. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  2590. values[n++] = enabled;
  2591. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  2592. values[n++] = running;
  2593. if (read_format & PERF_FORMAT_ID)
  2594. values[n++] = primary_event_id(event);
  2595. if (copy_to_user(buf, values, n * sizeof(u64)))
  2596. return -EFAULT;
  2597. return n * sizeof(u64);
  2598. }
  2599. /*
  2600. * Read the performance event - simple non blocking version for now
  2601. */
  2602. static ssize_t
  2603. perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
  2604. {
  2605. u64 read_format = event->attr.read_format;
  2606. int ret;
  2607. /*
  2608. * Return end-of-file for a read on a event that is in
  2609. * error state (i.e. because it was pinned but it couldn't be
  2610. * scheduled on to the CPU at some point).
  2611. */
  2612. if (event->state == PERF_EVENT_STATE_ERROR)
  2613. return 0;
  2614. if (count < event->read_size)
  2615. return -ENOSPC;
  2616. WARN_ON_ONCE(event->ctx->parent_ctx);
  2617. if (read_format & PERF_FORMAT_GROUP)
  2618. ret = perf_event_read_group(event, read_format, buf);
  2619. else
  2620. ret = perf_event_read_one(event, read_format, buf);
  2621. return ret;
  2622. }
  2623. static ssize_t
  2624. perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
  2625. {
  2626. struct perf_event *event = file->private_data;
  2627. return perf_read_hw(event, buf, count);
  2628. }
  2629. static unsigned int perf_poll(struct file *file, poll_table *wait)
  2630. {
  2631. struct perf_event *event = file->private_data;
  2632. struct ring_buffer *rb;
  2633. unsigned int events = POLL_HUP;
  2634. /*
  2635. * Race between perf_event_set_output() and perf_poll(): perf_poll()
  2636. * grabs the rb reference but perf_event_set_output() overrides it.
  2637. * Here is the timeline for two threads T1, T2:
  2638. * t0: T1, rb = rcu_dereference(event->rb)
  2639. * t1: T2, old_rb = event->rb
  2640. * t2: T2, event->rb = new rb
  2641. * t3: T2, ring_buffer_detach(old_rb)
  2642. * t4: T1, ring_buffer_attach(rb1)
  2643. * t5: T1, poll_wait(event->waitq)
  2644. *
  2645. * To avoid this problem, we grab mmap_mutex in perf_poll()
  2646. * thereby ensuring that the assignment of the new ring buffer
  2647. * and the detachment of the old buffer appear atomic to perf_poll()
  2648. */
  2649. mutex_lock(&event->mmap_mutex);
  2650. rcu_read_lock();
  2651. rb = rcu_dereference(event->rb);
  2652. if (rb) {
  2653. ring_buffer_attach(event, rb);
  2654. events = atomic_xchg(&rb->poll, 0);
  2655. }
  2656. rcu_read_unlock();
  2657. mutex_unlock(&event->mmap_mutex);
  2658. poll_wait(file, &event->waitq, wait);
  2659. return events;
  2660. }
  2661. static void perf_event_reset(struct perf_event *event)
  2662. {
  2663. (void)perf_event_read(event);
  2664. local64_set(&event->count, 0);
  2665. perf_event_update_userpage(event);
  2666. }
  2667. /*
  2668. * Holding the top-level event's child_mutex means that any
  2669. * descendant process that has inherited this event will block
  2670. * in sync_child_event if it goes to exit, thus satisfying the
  2671. * task existence requirements of perf_event_enable/disable.
  2672. */
  2673. static void perf_event_for_each_child(struct perf_event *event,
  2674. void (*func)(struct perf_event *))
  2675. {
  2676. struct perf_event *child;
  2677. WARN_ON_ONCE(event->ctx->parent_ctx);
  2678. mutex_lock(&event->child_mutex);
  2679. func(event);
  2680. list_for_each_entry(child, &event->child_list, child_list)
  2681. func(child);
  2682. mutex_unlock(&event->child_mutex);
  2683. }
  2684. static void perf_event_for_each(struct perf_event *event,
  2685. void (*func)(struct perf_event *))
  2686. {
  2687. struct perf_event_context *ctx = event->ctx;
  2688. struct perf_event *sibling;
  2689. WARN_ON_ONCE(ctx->parent_ctx);
  2690. mutex_lock(&ctx->mutex);
  2691. event = event->group_leader;
  2692. perf_event_for_each_child(event, func);
  2693. list_for_each_entry(sibling, &event->sibling_list, group_entry)
  2694. perf_event_for_each_child(sibling, func);
  2695. mutex_unlock(&ctx->mutex);
  2696. }
  2697. static int perf_event_period(struct perf_event *event, u64 __user *arg)
  2698. {
  2699. struct perf_event_context *ctx = event->ctx;
  2700. int ret = 0;
  2701. u64 value;
  2702. if (!is_sampling_event(event))
  2703. return -EINVAL;
  2704. if (copy_from_user(&value, arg, sizeof(value)))
  2705. return -EFAULT;
  2706. if (!value)
  2707. return -EINVAL;
  2708. raw_spin_lock_irq(&ctx->lock);
  2709. if (event->attr.freq) {
  2710. if (value > sysctl_perf_event_sample_rate) {
  2711. ret = -EINVAL;
  2712. goto unlock;
  2713. }
  2714. event->attr.sample_freq = value;
  2715. } else {
  2716. event->attr.sample_period = value;
  2717. event->hw.sample_period = value;
  2718. }
  2719. unlock:
  2720. raw_spin_unlock_irq(&ctx->lock);
  2721. return ret;
  2722. }
  2723. static const struct file_operations perf_fops;
  2724. static inline int perf_fget_light(int fd, struct fd *p)
  2725. {
  2726. struct fd f = fdget(fd);
  2727. if (!f.file)
  2728. return -EBADF;
  2729. if (f.file->f_op != &perf_fops) {
  2730. fdput(f);
  2731. return -EBADF;
  2732. }
  2733. *p = f;
  2734. return 0;
  2735. }
  2736. static int perf_event_set_output(struct perf_event *event,
  2737. struct perf_event *output_event);
  2738. static int perf_event_set_filter(struct perf_event *event, void __user *arg);
  2739. static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  2740. {
  2741. struct perf_event *event = file->private_data;
  2742. void (*func)(struct perf_event *);
  2743. u32 flags = arg;
  2744. switch (cmd) {
  2745. case PERF_EVENT_IOC_ENABLE:
  2746. func = perf_event_enable;
  2747. break;
  2748. case PERF_EVENT_IOC_DISABLE:
  2749. func = perf_event_disable;
  2750. break;
  2751. case PERF_EVENT_IOC_RESET:
  2752. func = perf_event_reset;
  2753. break;
  2754. case PERF_EVENT_IOC_REFRESH:
  2755. return perf_event_refresh(event, arg);
  2756. case PERF_EVENT_IOC_PERIOD:
  2757. return perf_event_period(event, (u64 __user *)arg);
  2758. case PERF_EVENT_IOC_SET_OUTPUT:
  2759. {
  2760. int ret;
  2761. if (arg != -1) {
  2762. struct perf_event *output_event;
  2763. struct fd output;
  2764. ret = perf_fget_light(arg, &output);
  2765. if (ret)
  2766. return ret;
  2767. output_event = output.file->private_data;
  2768. ret = perf_event_set_output(event, output_event);
  2769. fdput(output);
  2770. } else {
  2771. ret = perf_event_set_output(event, NULL);
  2772. }
  2773. return ret;
  2774. }
  2775. case PERF_EVENT_IOC_SET_FILTER:
  2776. return perf_event_set_filter(event, (void __user *)arg);
  2777. default:
  2778. return -ENOTTY;
  2779. }
  2780. if (flags & PERF_IOC_FLAG_GROUP)
  2781. perf_event_for_each(event, func);
  2782. else
  2783. perf_event_for_each_child(event, func);
  2784. return 0;
  2785. }
  2786. int perf_event_task_enable(void)
  2787. {
  2788. struct perf_event *event;
  2789. mutex_lock(&current->perf_event_mutex);
  2790. list_for_each_entry(event, &current->perf_event_list, owner_entry)
  2791. perf_event_for_each_child(event, perf_event_enable);
  2792. mutex_unlock(&current->perf_event_mutex);
  2793. return 0;
  2794. }
  2795. int perf_event_task_disable(void)
  2796. {
  2797. struct perf_event *event;
  2798. mutex_lock(&current->perf_event_mutex);
  2799. list_for_each_entry(event, &current->perf_event_list, owner_entry)
  2800. perf_event_for_each_child(event, perf_event_disable);
  2801. mutex_unlock(&current->perf_event_mutex);
  2802. return 0;
  2803. }
  2804. static int perf_event_index(struct perf_event *event)
  2805. {
  2806. if (event->hw.state & PERF_HES_STOPPED)
  2807. return 0;
  2808. if (event->state != PERF_EVENT_STATE_ACTIVE)
  2809. return 0;
  2810. return event->pmu->event_idx(event);
  2811. }
  2812. static void calc_timer_values(struct perf_event *event,
  2813. u64 *now,
  2814. u64 *enabled,
  2815. u64 *running)
  2816. {
  2817. u64 ctx_time;
  2818. *now = perf_clock();
  2819. ctx_time = event->shadow_ctx_time + *now;
  2820. *enabled = ctx_time - event->tstamp_enabled;
  2821. *running = ctx_time - event->tstamp_running;
  2822. }
  2823. void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
  2824. {
  2825. }
  2826. /*
  2827. * Callers need to ensure there can be no nesting of this function, otherwise
  2828. * the seqlock logic goes bad. We can not serialize this because the arch
  2829. * code calls this from NMI context.
  2830. */
  2831. void perf_event_update_userpage(struct perf_event *event)
  2832. {
  2833. struct perf_event_mmap_page *userpg;
  2834. struct ring_buffer *rb;
  2835. u64 enabled, running, now;
  2836. rcu_read_lock();
  2837. /*
  2838. * compute total_time_enabled, total_time_running
  2839. * based on snapshot values taken when the event
  2840. * was last scheduled in.
  2841. *
  2842. * we cannot simply called update_context_time()
  2843. * because of locking issue as we can be called in
  2844. * NMI context
  2845. */
  2846. calc_timer_values(event, &now, &enabled, &running);
  2847. rb = rcu_dereference(event->rb);
  2848. if (!rb)
  2849. goto unlock;
  2850. userpg = rb->user_page;
  2851. /*
  2852. * Disable preemption so as to not let the corresponding user-space
  2853. * spin too long if we get preempted.
  2854. */
  2855. preempt_disable();
  2856. ++userpg->lock;
  2857. barrier();
  2858. userpg->index = perf_event_index(event);
  2859. userpg->offset = perf_event_count(event);
  2860. if (userpg->index)
  2861. userpg->offset -= local64_read(&event->hw.prev_count);
  2862. userpg->time_enabled = enabled +
  2863. atomic64_read(&event->child_total_time_enabled);
  2864. userpg->time_running = running +
  2865. atomic64_read(&event->child_total_time_running);
  2866. arch_perf_update_userpage(userpg, now);
  2867. barrier();
  2868. ++userpg->lock;
  2869. preempt_enable();
  2870. unlock:
  2871. rcu_read_unlock();
  2872. }
  2873. static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  2874. {
  2875. struct perf_event *event = vma->vm_file->private_data;
  2876. struct ring_buffer *rb;
  2877. int ret = VM_FAULT_SIGBUS;
  2878. if (vmf->flags & FAULT_FLAG_MKWRITE) {
  2879. if (vmf->pgoff == 0)
  2880. ret = 0;
  2881. return ret;
  2882. }
  2883. rcu_read_lock();
  2884. rb = rcu_dereference(event->rb);
  2885. if (!rb)
  2886. goto unlock;
  2887. if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
  2888. goto unlock;
  2889. vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
  2890. if (!vmf->page)
  2891. goto unlock;
  2892. get_page(vmf->page);
  2893. vmf->page->mapping = vma->vm_file->f_mapping;
  2894. vmf->page->index = vmf->pgoff;
  2895. ret = 0;
  2896. unlock:
  2897. rcu_read_unlock();
  2898. return ret;
  2899. }
  2900. static void ring_buffer_attach(struct perf_event *event,
  2901. struct ring_buffer *rb)
  2902. {
  2903. unsigned long flags;
  2904. if (!list_empty(&event->rb_entry))
  2905. return;
  2906. spin_lock_irqsave(&rb->event_lock, flags);
  2907. if (!list_empty(&event->rb_entry))
  2908. goto unlock;
  2909. list_add(&event->rb_entry, &rb->event_list);
  2910. unlock:
  2911. spin_unlock_irqrestore(&rb->event_lock, flags);
  2912. }
  2913. static void ring_buffer_detach(struct perf_event *event,
  2914. struct ring_buffer *rb)
  2915. {
  2916. unsigned long flags;
  2917. if (list_empty(&event->rb_entry))
  2918. return;
  2919. spin_lock_irqsave(&rb->event_lock, flags);
  2920. list_del_init(&event->rb_entry);
  2921. wake_up_all(&event->waitq);
  2922. spin_unlock_irqrestore(&rb->event_lock, flags);
  2923. }
  2924. static void ring_buffer_wakeup(struct perf_event *event)
  2925. {
  2926. struct ring_buffer *rb;
  2927. rcu_read_lock();
  2928. rb = rcu_dereference(event->rb);
  2929. if (!rb)
  2930. goto unlock;
  2931. list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
  2932. wake_up_all(&event->waitq);
  2933. unlock:
  2934. rcu_read_unlock();
  2935. }
  2936. static void rb_free_rcu(struct rcu_head *rcu_head)
  2937. {
  2938. struct ring_buffer *rb;
  2939. rb = container_of(rcu_head, struct ring_buffer, rcu_head);
  2940. rb_free(rb);
  2941. }
  2942. static struct ring_buffer *ring_buffer_get(struct perf_event *event)
  2943. {
  2944. struct ring_buffer *rb;
  2945. rcu_read_lock();
  2946. rb = rcu_dereference(event->rb);
  2947. if (rb) {
  2948. if (!atomic_inc_not_zero(&rb->refcount))
  2949. rb = NULL;
  2950. }
  2951. rcu_read_unlock();
  2952. return rb;
  2953. }
  2954. static void ring_buffer_put(struct ring_buffer *rb)
  2955. {
  2956. struct perf_event *event, *n;
  2957. unsigned long flags;
  2958. if (!atomic_dec_and_test(&rb->refcount))
  2959. return;
  2960. spin_lock_irqsave(&rb->event_lock, flags);
  2961. list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
  2962. list_del_init(&event->rb_entry);
  2963. wake_up_all(&event->waitq);
  2964. }
  2965. spin_unlock_irqrestore(&rb->event_lock, flags);
  2966. call_rcu(&rb->rcu_head, rb_free_rcu);
  2967. }
  2968. static void perf_mmap_open(struct vm_area_struct *vma)
  2969. {
  2970. struct perf_event *event = vma->vm_file->private_data;
  2971. atomic_inc(&event->mmap_count);
  2972. }
  2973. static void perf_mmap_close(struct vm_area_struct *vma)
  2974. {
  2975. struct perf_event *event = vma->vm_file->private_data;
  2976. if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
  2977. unsigned long size = perf_data_size(event->rb);
  2978. struct user_struct *user = event->mmap_user;
  2979. struct ring_buffer *rb = event->rb;
  2980. atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
  2981. vma->vm_mm->pinned_vm -= event->mmap_locked;
  2982. rcu_assign_pointer(event->rb, NULL);
  2983. ring_buffer_detach(event, rb);
  2984. mutex_unlock(&event->mmap_mutex);
  2985. ring_buffer_put(rb);
  2986. free_uid(user);
  2987. }
  2988. }
  2989. static const struct vm_operations_struct perf_mmap_vmops = {
  2990. .open = perf_mmap_open,
  2991. .close = perf_mmap_close,
  2992. .fault = perf_mmap_fault,
  2993. .page_mkwrite = perf_mmap_fault,
  2994. };
  2995. static int perf_mmap(struct file *file, struct vm_area_struct *vma)
  2996. {
  2997. struct perf_event *event = file->private_data;
  2998. unsigned long user_locked, user_lock_limit;
  2999. struct user_struct *user = current_user();
  3000. unsigned long locked, lock_limit;
  3001. struct ring_buffer *rb;
  3002. unsigned long vma_size;
  3003. unsigned long nr_pages;
  3004. long user_extra, extra;
  3005. int ret = 0, flags = 0;
  3006. /*
  3007. * Don't allow mmap() of inherited per-task counters. This would
  3008. * create a performance issue due to all children writing to the
  3009. * same rb.
  3010. */
  3011. if (event->cpu == -1 && event->attr.inherit)
  3012. return -EINVAL;
  3013. if (!(vma->vm_flags & VM_SHARED))
  3014. return -EINVAL;
  3015. vma_size = vma->vm_end - vma->vm_start;
  3016. nr_pages = (vma_size / PAGE_SIZE) - 1;
  3017. /*
  3018. * If we have rb pages ensure they're a power-of-two number, so we
  3019. * can do bitmasks instead of modulo.
  3020. */
  3021. if (nr_pages != 0 && !is_power_of_2(nr_pages))
  3022. return -EINVAL;
  3023. if (vma_size != PAGE_SIZE * (1 + nr_pages))
  3024. return -EINVAL;
  3025. if (vma->vm_pgoff != 0)
  3026. return -EINVAL;
  3027. WARN_ON_ONCE(event->ctx->parent_ctx);
  3028. mutex_lock(&event->mmap_mutex);
  3029. if (event->rb) {
  3030. if (event->rb->nr_pages == nr_pages)
  3031. atomic_inc(&event->rb->refcount);
  3032. else
  3033. ret = -EINVAL;
  3034. goto unlock;
  3035. }
  3036. user_extra = nr_pages + 1;
  3037. user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
  3038. /*
  3039. * Increase the limit linearly with more CPUs:
  3040. */
  3041. user_lock_limit *= num_online_cpus();
  3042. user_locked = atomic_long_read(&user->locked_vm) + user_extra;
  3043. extra = 0;
  3044. if (user_locked > user_lock_limit)
  3045. extra = user_locked - user_lock_limit;
  3046. lock_limit = rlimit(RLIMIT_MEMLOCK);
  3047. lock_limit >>= PAGE_SHIFT;
  3048. locked = vma->vm_mm->pinned_vm + extra;
  3049. if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
  3050. !capable(CAP_IPC_LOCK)) {
  3051. ret = -EPERM;
  3052. goto unlock;
  3053. }
  3054. WARN_ON(event->rb);
  3055. if (vma->vm_flags & VM_WRITE)
  3056. flags |= RING_BUFFER_WRITABLE;
  3057. rb = rb_alloc(nr_pages,
  3058. event->attr.watermark ? event->attr.wakeup_watermark : 0,
  3059. event->cpu, flags);
  3060. if (!rb) {
  3061. ret = -ENOMEM;
  3062. goto unlock;
  3063. }
  3064. rcu_assign_pointer(event->rb, rb);
  3065. atomic_long_add(user_extra, &user->locked_vm);
  3066. event->mmap_locked = extra;
  3067. event->mmap_user = get_current_user();
  3068. vma->vm_mm->pinned_vm += event->mmap_locked;
  3069. perf_event_update_userpage(event);
  3070. unlock:
  3071. if (!ret)
  3072. atomic_inc(&event->mmap_count);
  3073. mutex_unlock(&event->mmap_mutex);
  3074. vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
  3075. vma->vm_ops = &perf_mmap_vmops;
  3076. return ret;
  3077. }
  3078. static int perf_fasync(int fd, struct file *filp, int on)
  3079. {
  3080. struct inode *inode = file_inode(filp);
  3081. struct perf_event *event = filp->private_data;
  3082. int retval;
  3083. mutex_lock(&inode->i_mutex);
  3084. retval = fasync_helper(fd, filp, on, &event->fasync);
  3085. mutex_unlock(&inode->i_mutex);
  3086. if (retval < 0)
  3087. return retval;
  3088. return 0;
  3089. }
  3090. static const struct file_operations perf_fops = {
  3091. .llseek = no_llseek,
  3092. .release = perf_release,
  3093. .read = perf_read,
  3094. .poll = perf_poll,
  3095. .unlocked_ioctl = perf_ioctl,
  3096. .compat_ioctl = perf_ioctl,
  3097. .mmap = perf_mmap,
  3098. .fasync = perf_fasync,
  3099. };
  3100. /*
  3101. * Perf event wakeup
  3102. *
  3103. * If there's data, ensure we set the poll() state and publish everything
  3104. * to user-space before waking everybody up.
  3105. */
  3106. void perf_event_wakeup(struct perf_event *event)
  3107. {
  3108. ring_buffer_wakeup(event);
  3109. if (event->pending_kill) {
  3110. kill_fasync(&event->fasync, SIGIO, event->pending_kill);
  3111. event->pending_kill = 0;
  3112. }
  3113. }
  3114. static void perf_pending_event(struct irq_work *entry)
  3115. {
  3116. struct perf_event *event = container_of(entry,
  3117. struct perf_event, pending);
  3118. if (event->pending_disable) {
  3119. event->pending_disable = 0;
  3120. __perf_event_disable(event);
  3121. }
  3122. if (event->pending_wakeup) {
  3123. event->pending_wakeup = 0;
  3124. perf_event_wakeup(event);
  3125. }
  3126. }
  3127. /*
  3128. * We assume there is only KVM supporting the callbacks.
  3129. * Later on, we might change it to a list if there is
  3130. * another virtualization implementation supporting the callbacks.
  3131. */
  3132. struct perf_guest_info_callbacks *perf_guest_cbs;
  3133. int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
  3134. {
  3135. perf_guest_cbs = cbs;
  3136. return 0;
  3137. }
  3138. EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
  3139. int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
  3140. {
  3141. perf_guest_cbs = NULL;
  3142. return 0;
  3143. }
  3144. EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
  3145. static void
  3146. perf_output_sample_regs(struct perf_output_handle *handle,
  3147. struct pt_regs *regs, u64 mask)
  3148. {
  3149. int bit;
  3150. for_each_set_bit(bit, (const unsigned long *) &mask,
  3151. sizeof(mask) * BITS_PER_BYTE) {
  3152. u64 val;
  3153. val = perf_reg_value(regs, bit);
  3154. perf_output_put(handle, val);
  3155. }
  3156. }
  3157. static void perf_sample_regs_user(struct perf_regs_user *regs_user,
  3158. struct pt_regs *regs)
  3159. {
  3160. if (!user_mode(regs)) {
  3161. if (current->mm)
  3162. regs = task_pt_regs(current);
  3163. else
  3164. regs = NULL;
  3165. }
  3166. if (regs) {
  3167. regs_user->regs = regs;
  3168. regs_user->abi = perf_reg_abi(current);
  3169. }
  3170. }
  3171. /*
  3172. * Get remaining task size from user stack pointer.
  3173. *
  3174. * It'd be better to take stack vma map and limit this more
  3175. * precisly, but there's no way to get it safely under interrupt,
  3176. * so using TASK_SIZE as limit.
  3177. */
  3178. static u64 perf_ustack_task_size(struct pt_regs *regs)
  3179. {
  3180. unsigned long addr = perf_user_stack_pointer(regs);
  3181. if (!addr || addr >= TASK_SIZE)
  3182. return 0;
  3183. return TASK_SIZE - addr;
  3184. }
  3185. static u16
  3186. perf_sample_ustack_size(u16 stack_size, u16 header_size,
  3187. struct pt_regs *regs)
  3188. {
  3189. u64 task_size;
  3190. /* No regs, no stack pointer, no dump. */
  3191. if (!regs)
  3192. return 0;
  3193. /*
  3194. * Check if we fit in with the requested stack size into the:
  3195. * - TASK_SIZE
  3196. * If we don't, we limit the size to the TASK_SIZE.
  3197. *
  3198. * - remaining sample size
  3199. * If we don't, we customize the stack size to
  3200. * fit in to the remaining sample size.
  3201. */
  3202. task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
  3203. stack_size = min(stack_size, (u16) task_size);
  3204. /* Current header size plus static size and dynamic size. */
  3205. header_size += 2 * sizeof(u64);
  3206. /* Do we fit in with the current stack dump size? */
  3207. if ((u16) (header_size + stack_size) < header_size) {
  3208. /*
  3209. * If we overflow the maximum size for the sample,
  3210. * we customize the stack dump size to fit in.
  3211. */
  3212. stack_size = USHRT_MAX - header_size - sizeof(u64);
  3213. stack_size = round_up(stack_size, sizeof(u64));
  3214. }
  3215. return stack_size;
  3216. }
  3217. static void
  3218. perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
  3219. struct pt_regs *regs)
  3220. {
  3221. /* Case of a kernel thread, nothing to dump */
  3222. if (!regs) {
  3223. u64 size = 0;
  3224. perf_output_put(handle, size);
  3225. } else {
  3226. unsigned long sp;
  3227. unsigned int rem;
  3228. u64 dyn_size;
  3229. /*
  3230. * We dump:
  3231. * static size
  3232. * - the size requested by user or the best one we can fit
  3233. * in to the sample max size
  3234. * data
  3235. * - user stack dump data
  3236. * dynamic size
  3237. * - the actual dumped size
  3238. */
  3239. /* Static size. */
  3240. perf_output_put(handle, dump_size);
  3241. /* Data. */
  3242. sp = perf_user_stack_pointer(regs);
  3243. rem = __output_copy_user(handle, (void *) sp, dump_size);
  3244. dyn_size = dump_size - rem;
  3245. perf_output_skip(handle, rem);
  3246. /* Dynamic size. */
  3247. perf_output_put(handle, dyn_size);
  3248. }
  3249. }
  3250. static void __perf_event_header__init_id(struct perf_event_header *header,
  3251. struct perf_sample_data *data,
  3252. struct perf_event *event)
  3253. {
  3254. u64 sample_type = event->attr.sample_type;
  3255. data->type = sample_type;
  3256. header->size += event->id_header_size;
  3257. if (sample_type & PERF_SAMPLE_TID) {
  3258. /* namespace issues */
  3259. data->tid_entry.pid = perf_event_pid(event, current);
  3260. data->tid_entry.tid = perf_event_tid(event, current);
  3261. }
  3262. if (sample_type & PERF_SAMPLE_TIME)
  3263. data->time = perf_clock();
  3264. if (sample_type & PERF_SAMPLE_ID)
  3265. data->id = primary_event_id(event);
  3266. if (sample_type & PERF_SAMPLE_STREAM_ID)
  3267. data->stream_id = event->id;
  3268. if (sample_type & PERF_SAMPLE_CPU) {
  3269. data->cpu_entry.cpu = raw_smp_processor_id();
  3270. data->cpu_entry.reserved = 0;
  3271. }
  3272. }
  3273. void perf_event_header__init_id(struct perf_event_header *header,
  3274. struct perf_sample_data *data,
  3275. struct perf_event *event)
  3276. {
  3277. if (event->attr.sample_id_all)
  3278. __perf_event_header__init_id(header, data, event);
  3279. }
  3280. static void __perf_event__output_id_sample(struct perf_output_handle *handle,
  3281. struct perf_sample_data *data)
  3282. {
  3283. u64 sample_type = data->type;
  3284. if (sample_type & PERF_SAMPLE_TID)
  3285. perf_output_put(handle, data->tid_entry);
  3286. if (sample_type & PERF_SAMPLE_TIME)
  3287. perf_output_put(handle, data->time);
  3288. if (sample_type & PERF_SAMPLE_ID)
  3289. perf_output_put(handle, data->id);
  3290. if (sample_type & PERF_SAMPLE_STREAM_ID)
  3291. perf_output_put(handle, data->stream_id);
  3292. if (sample_type & PERF_SAMPLE_CPU)
  3293. perf_output_put(handle, data->cpu_entry);
  3294. }
  3295. void perf_event__output_id_sample(struct perf_event *event,
  3296. struct perf_output_handle *handle,
  3297. struct perf_sample_data *sample)
  3298. {
  3299. if (event->attr.sample_id_all)
  3300. __perf_event__output_id_sample(handle, sample);
  3301. }
  3302. static void perf_output_read_one(struct perf_output_handle *handle,
  3303. struct perf_event *event,
  3304. u64 enabled, u64 running)
  3305. {
  3306. u64 read_format = event->attr.read_format;
  3307. u64 values[4];
  3308. int n = 0;
  3309. values[n++] = perf_event_count(event);
  3310. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
  3311. values[n++] = enabled +
  3312. atomic64_read(&event->child_total_time_enabled);
  3313. }
  3314. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
  3315. values[n++] = running +
  3316. atomic64_read(&event->child_total_time_running);
  3317. }
  3318. if (read_format & PERF_FORMAT_ID)
  3319. values[n++] = primary_event_id(event);
  3320. __output_copy(handle, values, n * sizeof(u64));
  3321. }
  3322. /*
  3323. * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
  3324. */
  3325. static void perf_output_read_group(struct perf_output_handle *handle,
  3326. struct perf_event *event,
  3327. u64 enabled, u64 running)
  3328. {
  3329. struct perf_event *leader = event->group_leader, *sub;
  3330. u64 read_format = event->attr.read_format;
  3331. u64 values[5];
  3332. int n = 0;
  3333. values[n++] = 1 + leader->nr_siblings;
  3334. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  3335. values[n++] = enabled;
  3336. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  3337. values[n++] = running;
  3338. if (leader != event)
  3339. leader->pmu->read(leader);
  3340. values[n++] = perf_event_count(leader);
  3341. if (read_format & PERF_FORMAT_ID)
  3342. values[n++] = primary_event_id(leader);
  3343. __output_copy(handle, values, n * sizeof(u64));
  3344. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  3345. n = 0;
  3346. if (sub != event)
  3347. sub->pmu->read(sub);
  3348. values[n++] = perf_event_count(sub);
  3349. if (read_format & PERF_FORMAT_ID)
  3350. values[n++] = primary_event_id(sub);
  3351. __output_copy(handle, values, n * sizeof(u64));
  3352. }
  3353. }
  3354. #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
  3355. PERF_FORMAT_TOTAL_TIME_RUNNING)
  3356. static void perf_output_read(struct perf_output_handle *handle,
  3357. struct perf_event *event)
  3358. {
  3359. u64 enabled = 0, running = 0, now;
  3360. u64 read_format = event->attr.read_format;
  3361. /*
  3362. * compute total_time_enabled, total_time_running
  3363. * based on snapshot values taken when the event
  3364. * was last scheduled in.
  3365. *
  3366. * we cannot simply called update_context_time()
  3367. * because of locking issue as we are called in
  3368. * NMI context
  3369. */
  3370. if (read_format & PERF_FORMAT_TOTAL_TIMES)
  3371. calc_timer_values(event, &now, &enabled, &running);
  3372. if (event->attr.read_format & PERF_FORMAT_GROUP)
  3373. perf_output_read_group(handle, event, enabled, running);
  3374. else
  3375. perf_output_read_one(handle, event, enabled, running);
  3376. }
  3377. void perf_output_sample(struct perf_output_handle *handle,
  3378. struct perf_event_header *header,
  3379. struct perf_sample_data *data,
  3380. struct perf_event *event)
  3381. {
  3382. u64 sample_type = data->type;
  3383. perf_output_put(handle, *header);
  3384. if (sample_type & PERF_SAMPLE_IP)
  3385. perf_output_put(handle, data->ip);
  3386. if (sample_type & PERF_SAMPLE_TID)
  3387. perf_output_put(handle, data->tid_entry);
  3388. if (sample_type & PERF_SAMPLE_TIME)
  3389. perf_output_put(handle, data->time);
  3390. if (sample_type & PERF_SAMPLE_ADDR)
  3391. perf_output_put(handle, data->addr);
  3392. if (sample_type & PERF_SAMPLE_ID)
  3393. perf_output_put(handle, data->id);
  3394. if (sample_type & PERF_SAMPLE_STREAM_ID)
  3395. perf_output_put(handle, data->stream_id);
  3396. if (sample_type & PERF_SAMPLE_CPU)
  3397. perf_output_put(handle, data->cpu_entry);
  3398. if (sample_type & PERF_SAMPLE_PERIOD)
  3399. perf_output_put(handle, data->period);
  3400. if (sample_type & PERF_SAMPLE_READ)
  3401. perf_output_read(handle, event);
  3402. if (sample_type & PERF_SAMPLE_CALLCHAIN) {
  3403. if (data->callchain) {
  3404. int size = 1;
  3405. if (data->callchain)
  3406. size += data->callchain->nr;
  3407. size *= sizeof(u64);
  3408. __output_copy(handle, data->callchain, size);
  3409. } else {
  3410. u64 nr = 0;
  3411. perf_output_put(handle, nr);
  3412. }
  3413. }
  3414. if (sample_type & PERF_SAMPLE_RAW) {
  3415. if (data->raw) {
  3416. perf_output_put(handle, data->raw->size);
  3417. __output_copy(handle, data->raw->data,
  3418. data->raw->size);
  3419. } else {
  3420. struct {
  3421. u32 size;
  3422. u32 data;
  3423. } raw = {
  3424. .size = sizeof(u32),
  3425. .data = 0,
  3426. };
  3427. perf_output_put(handle, raw);
  3428. }
  3429. }
  3430. if (!event->attr.watermark) {
  3431. int wakeup_events = event->attr.wakeup_events;
  3432. if (wakeup_events) {
  3433. struct ring_buffer *rb = handle->rb;
  3434. int events = local_inc_return(&rb->events);
  3435. if (events >= wakeup_events) {
  3436. local_sub(wakeup_events, &rb->events);
  3437. local_inc(&rb->wakeup);
  3438. }
  3439. }
  3440. }
  3441. if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
  3442. if (data->br_stack) {
  3443. size_t size;
  3444. size = data->br_stack->nr
  3445. * sizeof(struct perf_branch_entry);
  3446. perf_output_put(handle, data->br_stack->nr);
  3447. perf_output_copy(handle, data->br_stack->entries, size);
  3448. } else {
  3449. /*
  3450. * we always store at least the value of nr
  3451. */
  3452. u64 nr = 0;
  3453. perf_output_put(handle, nr);
  3454. }
  3455. }
  3456. if (sample_type & PERF_SAMPLE_REGS_USER) {
  3457. u64 abi = data->regs_user.abi;
  3458. /*
  3459. * If there are no regs to dump, notice it through
  3460. * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
  3461. */
  3462. perf_output_put(handle, abi);
  3463. if (abi) {
  3464. u64 mask = event->attr.sample_regs_user;
  3465. perf_output_sample_regs(handle,
  3466. data->regs_user.regs,
  3467. mask);
  3468. }
  3469. }
  3470. if (sample_type & PERF_SAMPLE_STACK_USER)
  3471. perf_output_sample_ustack(handle,
  3472. data->stack_user_size,
  3473. data->regs_user.regs);
  3474. if (sample_type & PERF_SAMPLE_WEIGHT)
  3475. perf_output_put(handle, data->weight);
  3476. if (sample_type & PERF_SAMPLE_DATA_SRC)
  3477. perf_output_put(handle, data->data_src.val);
  3478. }
  3479. void perf_prepare_sample(struct perf_event_header *header,
  3480. struct perf_sample_data *data,
  3481. struct perf_event *event,
  3482. struct pt_regs *regs)
  3483. {
  3484. u64 sample_type = event->attr.sample_type;
  3485. header->type = PERF_RECORD_SAMPLE;
  3486. header->size = sizeof(*header) + event->header_size;
  3487. header->misc = 0;
  3488. header->misc |= perf_misc_flags(regs);
  3489. __perf_event_header__init_id(header, data, event);
  3490. if (sample_type & PERF_SAMPLE_IP)
  3491. data->ip = perf_instruction_pointer(regs);
  3492. if (sample_type & PERF_SAMPLE_CALLCHAIN) {
  3493. int size = 1;
  3494. data->callchain = perf_callchain(event, regs);
  3495. if (data->callchain)
  3496. size += data->callchain->nr;
  3497. header->size += size * sizeof(u64);
  3498. }
  3499. if (sample_type & PERF_SAMPLE_RAW) {
  3500. int size = sizeof(u32);
  3501. if (data->raw)
  3502. size += data->raw->size;
  3503. else
  3504. size += sizeof(u32);
  3505. WARN_ON_ONCE(size & (sizeof(u64)-1));
  3506. header->size += size;
  3507. }
  3508. if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
  3509. int size = sizeof(u64); /* nr */
  3510. if (data->br_stack) {
  3511. size += data->br_stack->nr
  3512. * sizeof(struct perf_branch_entry);
  3513. }
  3514. header->size += size;
  3515. }
  3516. if (sample_type & PERF_SAMPLE_REGS_USER) {
  3517. /* regs dump ABI info */
  3518. int size = sizeof(u64);
  3519. perf_sample_regs_user(&data->regs_user, regs);
  3520. if (data->regs_user.regs) {
  3521. u64 mask = event->attr.sample_regs_user;
  3522. size += hweight64(mask) * sizeof(u64);
  3523. }
  3524. header->size += size;
  3525. }
  3526. if (sample_type & PERF_SAMPLE_STACK_USER) {
  3527. /*
  3528. * Either we need PERF_SAMPLE_STACK_USER bit to be allways
  3529. * processed as the last one or have additional check added
  3530. * in case new sample type is added, because we could eat
  3531. * up the rest of the sample size.
  3532. */
  3533. struct perf_regs_user *uregs = &data->regs_user;
  3534. u16 stack_size = event->attr.sample_stack_user;
  3535. u16 size = sizeof(u64);
  3536. if (!uregs->abi)
  3537. perf_sample_regs_user(uregs, regs);
  3538. stack_size = perf_sample_ustack_size(stack_size, header->size,
  3539. uregs->regs);
  3540. /*
  3541. * If there is something to dump, add space for the dump
  3542. * itself and for the field that tells the dynamic size,
  3543. * which is how many have been actually dumped.
  3544. */
  3545. if (stack_size)
  3546. size += sizeof(u64) + stack_size;
  3547. data->stack_user_size = stack_size;
  3548. header->size += size;
  3549. }
  3550. }
  3551. static void perf_event_output(struct perf_event *event,
  3552. struct perf_sample_data *data,
  3553. struct pt_regs *regs)
  3554. {
  3555. struct perf_output_handle handle;
  3556. struct perf_event_header header;
  3557. /* protect the callchain buffers */
  3558. rcu_read_lock();
  3559. perf_prepare_sample(&header, data, event, regs);
  3560. if (perf_output_begin(&handle, event, header.size))
  3561. goto exit;
  3562. perf_output_sample(&handle, &header, data, event);
  3563. perf_output_end(&handle);
  3564. exit:
  3565. rcu_read_unlock();
  3566. }
  3567. /*
  3568. * read event_id
  3569. */
  3570. struct perf_read_event {
  3571. struct perf_event_header header;
  3572. u32 pid;
  3573. u32 tid;
  3574. };
  3575. static void
  3576. perf_event_read_event(struct perf_event *event,
  3577. struct task_struct *task)
  3578. {
  3579. struct perf_output_handle handle;
  3580. struct perf_sample_data sample;
  3581. struct perf_read_event read_event = {
  3582. .header = {
  3583. .type = PERF_RECORD_READ,
  3584. .misc = 0,
  3585. .size = sizeof(read_event) + event->read_size,
  3586. },
  3587. .pid = perf_event_pid(event, task),
  3588. .tid = perf_event_tid(event, task),
  3589. };
  3590. int ret;
  3591. perf_event_header__init_id(&read_event.header, &sample, event);
  3592. ret = perf_output_begin(&handle, event, read_event.header.size);
  3593. if (ret)
  3594. return;
  3595. perf_output_put(&handle, read_event);
  3596. perf_output_read(&handle, event);
  3597. perf_event__output_id_sample(event, &handle, &sample);
  3598. perf_output_end(&handle);
  3599. }
  3600. /*
  3601. * task tracking -- fork/exit
  3602. *
  3603. * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
  3604. */
  3605. struct perf_task_event {
  3606. struct task_struct *task;
  3607. struct perf_event_context *task_ctx;
  3608. struct {
  3609. struct perf_event_header header;
  3610. u32 pid;
  3611. u32 ppid;
  3612. u32 tid;
  3613. u32 ptid;
  3614. u64 time;
  3615. } event_id;
  3616. };
  3617. static void perf_event_task_output(struct perf_event *event,
  3618. struct perf_task_event *task_event)
  3619. {
  3620. struct perf_output_handle handle;
  3621. struct perf_sample_data sample;
  3622. struct task_struct *task = task_event->task;
  3623. int ret, size = task_event->event_id.header.size;
  3624. perf_event_header__init_id(&task_event->event_id.header, &sample, event);
  3625. ret = perf_output_begin(&handle, event,
  3626. task_event->event_id.header.size);
  3627. if (ret)
  3628. goto out;
  3629. task_event->event_id.pid = perf_event_pid(event, task);
  3630. task_event->event_id.ppid = perf_event_pid(event, current);
  3631. task_event->event_id.tid = perf_event_tid(event, task);
  3632. task_event->event_id.ptid = perf_event_tid(event, current);
  3633. perf_output_put(&handle, task_event->event_id);
  3634. perf_event__output_id_sample(event, &handle, &sample);
  3635. perf_output_end(&handle);
  3636. out:
  3637. task_event->event_id.header.size = size;
  3638. }
  3639. static int perf_event_task_match(struct perf_event *event)
  3640. {
  3641. if (event->state < PERF_EVENT_STATE_INACTIVE)
  3642. return 0;
  3643. if (!event_filter_match(event))
  3644. return 0;
  3645. if (event->attr.comm || event->attr.mmap ||
  3646. event->attr.mmap_data || event->attr.task)
  3647. return 1;
  3648. return 0;
  3649. }
  3650. static void perf_event_task_ctx(struct perf_event_context *ctx,
  3651. struct perf_task_event *task_event)
  3652. {
  3653. struct perf_event *event;
  3654. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  3655. if (perf_event_task_match(event))
  3656. perf_event_task_output(event, task_event);
  3657. }
  3658. }
  3659. static void perf_event_task_event(struct perf_task_event *task_event)
  3660. {
  3661. struct perf_cpu_context *cpuctx;
  3662. struct perf_event_context *ctx;
  3663. struct pmu *pmu;
  3664. int ctxn;
  3665. rcu_read_lock();
  3666. list_for_each_entry_rcu(pmu, &pmus, entry) {
  3667. cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
  3668. if (cpuctx->unique_pmu != pmu)
  3669. goto next;
  3670. perf_event_task_ctx(&cpuctx->ctx, task_event);
  3671. ctx = task_event->task_ctx;
  3672. if (!ctx) {
  3673. ctxn = pmu->task_ctx_nr;
  3674. if (ctxn < 0)
  3675. goto next;
  3676. ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
  3677. if (ctx)
  3678. perf_event_task_ctx(ctx, task_event);
  3679. }
  3680. next:
  3681. put_cpu_ptr(pmu->pmu_cpu_context);
  3682. }
  3683. if (task_event->task_ctx)
  3684. perf_event_task_ctx(task_event->task_ctx, task_event);
  3685. rcu_read_unlock();
  3686. }
  3687. static void perf_event_task(struct task_struct *task,
  3688. struct perf_event_context *task_ctx,
  3689. int new)
  3690. {
  3691. struct perf_task_event task_event;
  3692. if (!atomic_read(&nr_comm_events) &&
  3693. !atomic_read(&nr_mmap_events) &&
  3694. !atomic_read(&nr_task_events))
  3695. return;
  3696. task_event = (struct perf_task_event){
  3697. .task = task,
  3698. .task_ctx = task_ctx,
  3699. .event_id = {
  3700. .header = {
  3701. .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
  3702. .misc = 0,
  3703. .size = sizeof(task_event.event_id),
  3704. },
  3705. /* .pid */
  3706. /* .ppid */
  3707. /* .tid */
  3708. /* .ptid */
  3709. .time = perf_clock(),
  3710. },
  3711. };
  3712. perf_event_task_event(&task_event);
  3713. }
  3714. void perf_event_fork(struct task_struct *task)
  3715. {
  3716. perf_event_task(task, NULL, 1);
  3717. }
  3718. /*
  3719. * comm tracking
  3720. */
  3721. struct perf_comm_event {
  3722. struct task_struct *task;
  3723. char *comm;
  3724. int comm_size;
  3725. struct {
  3726. struct perf_event_header header;
  3727. u32 pid;
  3728. u32 tid;
  3729. } event_id;
  3730. };
  3731. static void perf_event_comm_output(struct perf_event *event,
  3732. struct perf_comm_event *comm_event)
  3733. {
  3734. struct perf_output_handle handle;
  3735. struct perf_sample_data sample;
  3736. int size = comm_event->event_id.header.size;
  3737. int ret;
  3738. perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
  3739. ret = perf_output_begin(&handle, event,
  3740. comm_event->event_id.header.size);
  3741. if (ret)
  3742. goto out;
  3743. comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
  3744. comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
  3745. perf_output_put(&handle, comm_event->event_id);
  3746. __output_copy(&handle, comm_event->comm,
  3747. comm_event->comm_size);
  3748. perf_event__output_id_sample(event, &handle, &sample);
  3749. perf_output_end(&handle);
  3750. out:
  3751. comm_event->event_id.header.size = size;
  3752. }
  3753. static int perf_event_comm_match(struct perf_event *event)
  3754. {
  3755. if (event->state < PERF_EVENT_STATE_INACTIVE)
  3756. return 0;
  3757. if (!event_filter_match(event))
  3758. return 0;
  3759. if (event->attr.comm)
  3760. return 1;
  3761. return 0;
  3762. }
  3763. static void perf_event_comm_ctx(struct perf_event_context *ctx,
  3764. struct perf_comm_event *comm_event)
  3765. {
  3766. struct perf_event *event;
  3767. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  3768. if (perf_event_comm_match(event))
  3769. perf_event_comm_output(event, comm_event);
  3770. }
  3771. }
  3772. static void perf_event_comm_event(struct perf_comm_event *comm_event)
  3773. {
  3774. struct perf_cpu_context *cpuctx;
  3775. struct perf_event_context *ctx;
  3776. char comm[TASK_COMM_LEN];
  3777. unsigned int size;
  3778. struct pmu *pmu;
  3779. int ctxn;
  3780. memset(comm, 0, sizeof(comm));
  3781. strlcpy(comm, comm_event->task->comm, sizeof(comm));
  3782. size = ALIGN(strlen(comm)+1, sizeof(u64));
  3783. comm_event->comm = comm;
  3784. comm_event->comm_size = size;
  3785. comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
  3786. rcu_read_lock();
  3787. list_for_each_entry_rcu(pmu, &pmus, entry) {
  3788. cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
  3789. if (cpuctx->unique_pmu != pmu)
  3790. goto next;
  3791. perf_event_comm_ctx(&cpuctx->ctx, comm_event);
  3792. ctxn = pmu->task_ctx_nr;
  3793. if (ctxn < 0)
  3794. goto next;
  3795. ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
  3796. if (ctx)
  3797. perf_event_comm_ctx(ctx, comm_event);
  3798. next:
  3799. put_cpu_ptr(pmu->pmu_cpu_context);
  3800. }
  3801. rcu_read_unlock();
  3802. }
  3803. void perf_event_comm(struct task_struct *task)
  3804. {
  3805. struct perf_comm_event comm_event;
  3806. struct perf_event_context *ctx;
  3807. int ctxn;
  3808. for_each_task_context_nr(ctxn) {
  3809. ctx = task->perf_event_ctxp[ctxn];
  3810. if (!ctx)
  3811. continue;
  3812. perf_event_enable_on_exec(ctx);
  3813. }
  3814. if (!atomic_read(&nr_comm_events))
  3815. return;
  3816. comm_event = (struct perf_comm_event){
  3817. .task = task,
  3818. /* .comm */
  3819. /* .comm_size */
  3820. .event_id = {
  3821. .header = {
  3822. .type = PERF_RECORD_COMM,
  3823. .misc = 0,
  3824. /* .size */
  3825. },
  3826. /* .pid */
  3827. /* .tid */
  3828. },
  3829. };
  3830. perf_event_comm_event(&comm_event);
  3831. }
  3832. /*
  3833. * mmap tracking
  3834. */
  3835. struct perf_mmap_event {
  3836. struct vm_area_struct *vma;
  3837. const char *file_name;
  3838. int file_size;
  3839. struct {
  3840. struct perf_event_header header;
  3841. u32 pid;
  3842. u32 tid;
  3843. u64 start;
  3844. u64 len;
  3845. u64 pgoff;
  3846. } event_id;
  3847. };
  3848. static void perf_event_mmap_output(struct perf_event *event,
  3849. struct perf_mmap_event *mmap_event)
  3850. {
  3851. struct perf_output_handle handle;
  3852. struct perf_sample_data sample;
  3853. int size = mmap_event->event_id.header.size;
  3854. int ret;
  3855. perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
  3856. ret = perf_output_begin(&handle, event,
  3857. mmap_event->event_id.header.size);
  3858. if (ret)
  3859. goto out;
  3860. mmap_event->event_id.pid = perf_event_pid(event, current);
  3861. mmap_event->event_id.tid = perf_event_tid(event, current);
  3862. perf_output_put(&handle, mmap_event->event_id);
  3863. __output_copy(&handle, mmap_event->file_name,
  3864. mmap_event->file_size);
  3865. perf_event__output_id_sample(event, &handle, &sample);
  3866. perf_output_end(&handle);
  3867. out:
  3868. mmap_event->event_id.header.size = size;
  3869. }
  3870. static int perf_event_mmap_match(struct perf_event *event,
  3871. struct perf_mmap_event *mmap_event,
  3872. int executable)
  3873. {
  3874. if (event->state < PERF_EVENT_STATE_INACTIVE)
  3875. return 0;
  3876. if (!event_filter_match(event))
  3877. return 0;
  3878. if ((!executable && event->attr.mmap_data) ||
  3879. (executable && event->attr.mmap))
  3880. return 1;
  3881. return 0;
  3882. }
  3883. static void perf_event_mmap_ctx(struct perf_event_context *ctx,
  3884. struct perf_mmap_event *mmap_event,
  3885. int executable)
  3886. {
  3887. struct perf_event *event;
  3888. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  3889. if (perf_event_mmap_match(event, mmap_event, executable))
  3890. perf_event_mmap_output(event, mmap_event);
  3891. }
  3892. }
  3893. static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
  3894. {
  3895. struct perf_cpu_context *cpuctx;
  3896. struct perf_event_context *ctx;
  3897. struct vm_area_struct *vma = mmap_event->vma;
  3898. struct file *file = vma->vm_file;
  3899. unsigned int size;
  3900. char tmp[16];
  3901. char *buf = NULL;
  3902. const char *name;
  3903. struct pmu *pmu;
  3904. int ctxn;
  3905. memset(tmp, 0, sizeof(tmp));
  3906. if (file) {
  3907. /*
  3908. * d_path works from the end of the rb backwards, so we
  3909. * need to add enough zero bytes after the string to handle
  3910. * the 64bit alignment we do later.
  3911. */
  3912. buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
  3913. if (!buf) {
  3914. name = strncpy(tmp, "//enomem", sizeof(tmp));
  3915. goto got_name;
  3916. }
  3917. name = d_path(&file->f_path, buf, PATH_MAX);
  3918. if (IS_ERR(name)) {
  3919. name = strncpy(tmp, "//toolong", sizeof(tmp));
  3920. goto got_name;
  3921. }
  3922. } else {
  3923. if (arch_vma_name(mmap_event->vma)) {
  3924. name = strncpy(tmp, arch_vma_name(mmap_event->vma),
  3925. sizeof(tmp));
  3926. goto got_name;
  3927. }
  3928. if (!vma->vm_mm) {
  3929. name = strncpy(tmp, "[vdso]", sizeof(tmp));
  3930. goto got_name;
  3931. } else if (vma->vm_start <= vma->vm_mm->start_brk &&
  3932. vma->vm_end >= vma->vm_mm->brk) {
  3933. name = strncpy(tmp, "[heap]", sizeof(tmp));
  3934. goto got_name;
  3935. } else if (vma->vm_start <= vma->vm_mm->start_stack &&
  3936. vma->vm_end >= vma->vm_mm->start_stack) {
  3937. name = strncpy(tmp, "[stack]", sizeof(tmp));
  3938. goto got_name;
  3939. }
  3940. name = strncpy(tmp, "//anon", sizeof(tmp));
  3941. goto got_name;
  3942. }
  3943. got_name:
  3944. size = ALIGN(strlen(name)+1, sizeof(u64));
  3945. mmap_event->file_name = name;
  3946. mmap_event->file_size = size;
  3947. if (!(vma->vm_flags & VM_EXEC))
  3948. mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
  3949. mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
  3950. rcu_read_lock();
  3951. list_for_each_entry_rcu(pmu, &pmus, entry) {
  3952. cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
  3953. if (cpuctx->unique_pmu != pmu)
  3954. goto next;
  3955. perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
  3956. vma->vm_flags & VM_EXEC);
  3957. ctxn = pmu->task_ctx_nr;
  3958. if (ctxn < 0)
  3959. goto next;
  3960. ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
  3961. if (ctx) {
  3962. perf_event_mmap_ctx(ctx, mmap_event,
  3963. vma->vm_flags & VM_EXEC);
  3964. }
  3965. next:
  3966. put_cpu_ptr(pmu->pmu_cpu_context);
  3967. }
  3968. rcu_read_unlock();
  3969. kfree(buf);
  3970. }
  3971. void perf_event_mmap(struct vm_area_struct *vma)
  3972. {
  3973. struct perf_mmap_event mmap_event;
  3974. if (!atomic_read(&nr_mmap_events))
  3975. return;
  3976. mmap_event = (struct perf_mmap_event){
  3977. .vma = vma,
  3978. /* .file_name */
  3979. /* .file_size */
  3980. .event_id = {
  3981. .header = {
  3982. .type = PERF_RECORD_MMAP,
  3983. .misc = PERF_RECORD_MISC_USER,
  3984. /* .size */
  3985. },
  3986. /* .pid */
  3987. /* .tid */
  3988. .start = vma->vm_start,
  3989. .len = vma->vm_end - vma->vm_start,
  3990. .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
  3991. },
  3992. };
  3993. perf_event_mmap_event(&mmap_event);
  3994. }
  3995. /*
  3996. * IRQ throttle logging
  3997. */
  3998. static void perf_log_throttle(struct perf_event *event, int enable)
  3999. {
  4000. struct perf_output_handle handle;
  4001. struct perf_sample_data sample;
  4002. int ret;
  4003. struct {
  4004. struct perf_event_header header;
  4005. u64 time;
  4006. u64 id;
  4007. u64 stream_id;
  4008. } throttle_event = {
  4009. .header = {
  4010. .type = PERF_RECORD_THROTTLE,
  4011. .misc = 0,
  4012. .size = sizeof(throttle_event),
  4013. },
  4014. .time = perf_clock(),
  4015. .id = primary_event_id(event),
  4016. .stream_id = event->id,
  4017. };
  4018. if (enable)
  4019. throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
  4020. perf_event_header__init_id(&throttle_event.header, &sample, event);
  4021. ret = perf_output_begin(&handle, event,
  4022. throttle_event.header.size);
  4023. if (ret)
  4024. return;
  4025. perf_output_put(&handle, throttle_event);
  4026. perf_event__output_id_sample(event, &handle, &sample);
  4027. perf_output_end(&handle);
  4028. }
  4029. /*
  4030. * Generic event overflow handling, sampling.
  4031. */
  4032. static int __perf_event_overflow(struct perf_event *event,
  4033. int throttle, struct perf_sample_data *data,
  4034. struct pt_regs *regs)
  4035. {
  4036. int events = atomic_read(&event->event_limit);
  4037. struct hw_perf_event *hwc = &event->hw;
  4038. u64 seq;
  4039. int ret = 0;
  4040. /*
  4041. * Non-sampling counters might still use the PMI to fold short
  4042. * hardware counters, ignore those.
  4043. */
  4044. if (unlikely(!is_sampling_event(event)))
  4045. return 0;
  4046. seq = __this_cpu_read(perf_throttled_seq);
  4047. if (seq != hwc->interrupts_seq) {
  4048. hwc->interrupts_seq = seq;
  4049. hwc->interrupts = 1;
  4050. } else {
  4051. hwc->interrupts++;
  4052. if (unlikely(throttle
  4053. && hwc->interrupts >= max_samples_per_tick)) {
  4054. __this_cpu_inc(perf_throttled_count);
  4055. hwc->interrupts = MAX_INTERRUPTS;
  4056. perf_log_throttle(event, 0);
  4057. ret = 1;
  4058. }
  4059. }
  4060. if (event->attr.freq) {
  4061. u64 now = perf_clock();
  4062. s64 delta = now - hwc->freq_time_stamp;
  4063. hwc->freq_time_stamp = now;
  4064. if (delta > 0 && delta < 2*TICK_NSEC)
  4065. perf_adjust_period(event, delta, hwc->last_period, true);
  4066. }
  4067. /*
  4068. * XXX event_limit might not quite work as expected on inherited
  4069. * events
  4070. */
  4071. event->pending_kill = POLL_IN;
  4072. if (events && atomic_dec_and_test(&event->event_limit)) {
  4073. ret = 1;
  4074. event->pending_kill = POLL_HUP;
  4075. event->pending_disable = 1;
  4076. irq_work_queue(&event->pending);
  4077. }
  4078. if (event->overflow_handler)
  4079. event->overflow_handler(event, data, regs);
  4080. else
  4081. perf_event_output(event, data, regs);
  4082. if (event->fasync && event->pending_kill) {
  4083. event->pending_wakeup = 1;
  4084. irq_work_queue(&event->pending);
  4085. }
  4086. return ret;
  4087. }
  4088. int perf_event_overflow(struct perf_event *event,
  4089. struct perf_sample_data *data,
  4090. struct pt_regs *regs)
  4091. {
  4092. return __perf_event_overflow(event, 1, data, regs);
  4093. }
  4094. /*
  4095. * Generic software event infrastructure
  4096. */
  4097. struct swevent_htable {
  4098. struct swevent_hlist *swevent_hlist;
  4099. struct mutex hlist_mutex;
  4100. int hlist_refcount;
  4101. /* Recursion avoidance in each contexts */
  4102. int recursion[PERF_NR_CONTEXTS];
  4103. };
  4104. static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
  4105. /*
  4106. * We directly increment event->count and keep a second value in
  4107. * event->hw.period_left to count intervals. This period event
  4108. * is kept in the range [-sample_period, 0] so that we can use the
  4109. * sign as trigger.
  4110. */
  4111. static u64 perf_swevent_set_period(struct perf_event *event)
  4112. {
  4113. struct hw_perf_event *hwc = &event->hw;
  4114. u64 period = hwc->last_period;
  4115. u64 nr, offset;
  4116. s64 old, val;
  4117. hwc->last_period = hwc->sample_period;
  4118. again:
  4119. old = val = local64_read(&hwc->period_left);
  4120. if (val < 0)
  4121. return 0;
  4122. nr = div64_u64(period + val, period);
  4123. offset = nr * period;
  4124. val -= offset;
  4125. if (local64_cmpxchg(&hwc->period_left, old, val) != old)
  4126. goto again;
  4127. return nr;
  4128. }
  4129. static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
  4130. struct perf_sample_data *data,
  4131. struct pt_regs *regs)
  4132. {
  4133. struct hw_perf_event *hwc = &event->hw;
  4134. int throttle = 0;
  4135. if (!overflow)
  4136. overflow = perf_swevent_set_period(event);
  4137. if (hwc->interrupts == MAX_INTERRUPTS)
  4138. return;
  4139. for (; overflow; overflow--) {
  4140. if (__perf_event_overflow(event, throttle,
  4141. data, regs)) {
  4142. /*
  4143. * We inhibit the overflow from happening when
  4144. * hwc->interrupts == MAX_INTERRUPTS.
  4145. */
  4146. break;
  4147. }
  4148. throttle = 1;
  4149. }
  4150. }
  4151. static void perf_swevent_event(struct perf_event *event, u64 nr,
  4152. struct perf_sample_data *data,
  4153. struct pt_regs *regs)
  4154. {
  4155. struct hw_perf_event *hwc = &event->hw;
  4156. local64_add(nr, &event->count);
  4157. if (!regs)
  4158. return;
  4159. if (!is_sampling_event(event))
  4160. return;
  4161. if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
  4162. data->period = nr;
  4163. return perf_swevent_overflow(event, 1, data, regs);
  4164. } else
  4165. data->period = event->hw.last_period;
  4166. if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
  4167. return perf_swevent_overflow(event, 1, data, regs);
  4168. if (local64_add_negative(nr, &hwc->period_left))
  4169. return;
  4170. perf_swevent_overflow(event, 0, data, regs);
  4171. }
  4172. static int perf_exclude_event(struct perf_event *event,
  4173. struct pt_regs *regs)
  4174. {
  4175. if (event->hw.state & PERF_HES_STOPPED)
  4176. return 1;
  4177. if (regs) {
  4178. if (event->attr.exclude_user && user_mode(regs))
  4179. return 1;
  4180. if (event->attr.exclude_kernel && !user_mode(regs))
  4181. return 1;
  4182. }
  4183. return 0;
  4184. }
  4185. static int perf_swevent_match(struct perf_event *event,
  4186. enum perf_type_id type,
  4187. u32 event_id,
  4188. struct perf_sample_data *data,
  4189. struct pt_regs *regs)
  4190. {
  4191. if (event->attr.type != type)
  4192. return 0;
  4193. if (event->attr.config != event_id)
  4194. return 0;
  4195. if (perf_exclude_event(event, regs))
  4196. return 0;
  4197. return 1;
  4198. }
  4199. static inline u64 swevent_hash(u64 type, u32 event_id)
  4200. {
  4201. u64 val = event_id | (type << 32);
  4202. return hash_64(val, SWEVENT_HLIST_BITS);
  4203. }
  4204. static inline struct hlist_head *
  4205. __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
  4206. {
  4207. u64 hash = swevent_hash(type, event_id);
  4208. return &hlist->heads[hash];
  4209. }
  4210. /* For the read side: events when they trigger */
  4211. static inline struct hlist_head *
  4212. find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
  4213. {
  4214. struct swevent_hlist *hlist;
  4215. hlist = rcu_dereference(swhash->swevent_hlist);
  4216. if (!hlist)
  4217. return NULL;
  4218. return __find_swevent_head(hlist, type, event_id);
  4219. }
  4220. /* For the event head insertion and removal in the hlist */
  4221. static inline struct hlist_head *
  4222. find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
  4223. {
  4224. struct swevent_hlist *hlist;
  4225. u32 event_id = event->attr.config;
  4226. u64 type = event->attr.type;
  4227. /*
  4228. * Event scheduling is always serialized against hlist allocation
  4229. * and release. Which makes the protected version suitable here.
  4230. * The context lock guarantees that.
  4231. */
  4232. hlist = rcu_dereference_protected(swhash->swevent_hlist,
  4233. lockdep_is_held(&event->ctx->lock));
  4234. if (!hlist)
  4235. return NULL;
  4236. return __find_swevent_head(hlist, type, event_id);
  4237. }
  4238. static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
  4239. u64 nr,
  4240. struct perf_sample_data *data,
  4241. struct pt_regs *regs)
  4242. {
  4243. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  4244. struct perf_event *event;
  4245. struct hlist_head *head;
  4246. rcu_read_lock();
  4247. head = find_swevent_head_rcu(swhash, type, event_id);
  4248. if (!head)
  4249. goto end;
  4250. hlist_for_each_entry_rcu(event, head, hlist_entry) {
  4251. if (perf_swevent_match(event, type, event_id, data, regs))
  4252. perf_swevent_event(event, nr, data, regs);
  4253. }
  4254. end:
  4255. rcu_read_unlock();
  4256. }
  4257. int perf_swevent_get_recursion_context(void)
  4258. {
  4259. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  4260. return get_recursion_context(swhash->recursion);
  4261. }
  4262. EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
  4263. inline void perf_swevent_put_recursion_context(int rctx)
  4264. {
  4265. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  4266. put_recursion_context(swhash->recursion, rctx);
  4267. }
  4268. void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
  4269. {
  4270. struct perf_sample_data data;
  4271. int rctx;
  4272. preempt_disable_notrace();
  4273. rctx = perf_swevent_get_recursion_context();
  4274. if (rctx < 0)
  4275. return;
  4276. perf_sample_data_init(&data, addr, 0);
  4277. do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
  4278. perf_swevent_put_recursion_context(rctx);
  4279. preempt_enable_notrace();
  4280. }
  4281. static void perf_swevent_read(struct perf_event *event)
  4282. {
  4283. }
  4284. static int perf_swevent_add(struct perf_event *event, int flags)
  4285. {
  4286. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  4287. struct hw_perf_event *hwc = &event->hw;
  4288. struct hlist_head *head;
  4289. if (is_sampling_event(event)) {
  4290. hwc->last_period = hwc->sample_period;
  4291. perf_swevent_set_period(event);
  4292. }
  4293. hwc->state = !(flags & PERF_EF_START);
  4294. head = find_swevent_head(swhash, event);
  4295. if (WARN_ON_ONCE(!head))
  4296. return -EINVAL;
  4297. hlist_add_head_rcu(&event->hlist_entry, head);
  4298. return 0;
  4299. }
  4300. static void perf_swevent_del(struct perf_event *event, int flags)
  4301. {
  4302. hlist_del_rcu(&event->hlist_entry);
  4303. }
  4304. static void perf_swevent_start(struct perf_event *event, int flags)
  4305. {
  4306. event->hw.state = 0;
  4307. }
  4308. static void perf_swevent_stop(struct perf_event *event, int flags)
  4309. {
  4310. event->hw.state = PERF_HES_STOPPED;
  4311. }
  4312. /* Deref the hlist from the update side */
  4313. static inline struct swevent_hlist *
  4314. swevent_hlist_deref(struct swevent_htable *swhash)
  4315. {
  4316. return rcu_dereference_protected(swhash->swevent_hlist,
  4317. lockdep_is_held(&swhash->hlist_mutex));
  4318. }
  4319. static void swevent_hlist_release(struct swevent_htable *swhash)
  4320. {
  4321. struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
  4322. if (!hlist)
  4323. return;
  4324. rcu_assign_pointer(swhash->swevent_hlist, NULL);
  4325. kfree_rcu(hlist, rcu_head);
  4326. }
  4327. static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
  4328. {
  4329. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  4330. mutex_lock(&swhash->hlist_mutex);
  4331. if (!--swhash->hlist_refcount)
  4332. swevent_hlist_release(swhash);
  4333. mutex_unlock(&swhash->hlist_mutex);
  4334. }
  4335. static void swevent_hlist_put(struct perf_event *event)
  4336. {
  4337. int cpu;
  4338. if (event->cpu != -1) {
  4339. swevent_hlist_put_cpu(event, event->cpu);
  4340. return;
  4341. }
  4342. for_each_possible_cpu(cpu)
  4343. swevent_hlist_put_cpu(event, cpu);
  4344. }
  4345. static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
  4346. {
  4347. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  4348. int err = 0;
  4349. mutex_lock(&swhash->hlist_mutex);
  4350. if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
  4351. struct swevent_hlist *hlist;
  4352. hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
  4353. if (!hlist) {
  4354. err = -ENOMEM;
  4355. goto exit;
  4356. }
  4357. rcu_assign_pointer(swhash->swevent_hlist, hlist);
  4358. }
  4359. swhash->hlist_refcount++;
  4360. exit:
  4361. mutex_unlock(&swhash->hlist_mutex);
  4362. return err;
  4363. }
  4364. static int swevent_hlist_get(struct perf_event *event)
  4365. {
  4366. int err;
  4367. int cpu, failed_cpu;
  4368. if (event->cpu != -1)
  4369. return swevent_hlist_get_cpu(event, event->cpu);
  4370. get_online_cpus();
  4371. for_each_possible_cpu(cpu) {
  4372. err = swevent_hlist_get_cpu(event, cpu);
  4373. if (err) {
  4374. failed_cpu = cpu;
  4375. goto fail;
  4376. }
  4377. }
  4378. put_online_cpus();
  4379. return 0;
  4380. fail:
  4381. for_each_possible_cpu(cpu) {
  4382. if (cpu == failed_cpu)
  4383. break;
  4384. swevent_hlist_put_cpu(event, cpu);
  4385. }
  4386. put_online_cpus();
  4387. return err;
  4388. }
  4389. struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
  4390. static void sw_perf_event_destroy(struct perf_event *event)
  4391. {
  4392. u64 event_id = event->attr.config;
  4393. WARN_ON(event->parent);
  4394. static_key_slow_dec(&perf_swevent_enabled[event_id]);
  4395. swevent_hlist_put(event);
  4396. }
  4397. static int perf_swevent_init(struct perf_event *event)
  4398. {
  4399. int event_id = event->attr.config;
  4400. if (event->attr.type != PERF_TYPE_SOFTWARE)
  4401. return -ENOENT;
  4402. /*
  4403. * no branch sampling for software events
  4404. */
  4405. if (has_branch_stack(event))
  4406. return -EOPNOTSUPP;
  4407. switch (event_id) {
  4408. case PERF_COUNT_SW_CPU_CLOCK:
  4409. case PERF_COUNT_SW_TASK_CLOCK:
  4410. return -ENOENT;
  4411. default:
  4412. break;
  4413. }
  4414. if (event_id >= PERF_COUNT_SW_MAX)
  4415. return -ENOENT;
  4416. if (!event->parent) {
  4417. int err;
  4418. err = swevent_hlist_get(event);
  4419. if (err)
  4420. return err;
  4421. static_key_slow_inc(&perf_swevent_enabled[event_id]);
  4422. event->destroy = sw_perf_event_destroy;
  4423. }
  4424. return 0;
  4425. }
  4426. static int perf_swevent_event_idx(struct perf_event *event)
  4427. {
  4428. return 0;
  4429. }
  4430. static struct pmu perf_swevent = {
  4431. .task_ctx_nr = perf_sw_context,
  4432. .event_init = perf_swevent_init,
  4433. .add = perf_swevent_add,
  4434. .del = perf_swevent_del,
  4435. .start = perf_swevent_start,
  4436. .stop = perf_swevent_stop,
  4437. .read = perf_swevent_read,
  4438. .event_idx = perf_swevent_event_idx,
  4439. };
  4440. #ifdef CONFIG_EVENT_TRACING
  4441. static int perf_tp_filter_match(struct perf_event *event,
  4442. struct perf_sample_data *data)
  4443. {
  4444. void *record = data->raw->data;
  4445. if (likely(!event->filter) || filter_match_preds(event->filter, record))
  4446. return 1;
  4447. return 0;
  4448. }
  4449. static int perf_tp_event_match(struct perf_event *event,
  4450. struct perf_sample_data *data,
  4451. struct pt_regs *regs)
  4452. {
  4453. if (event->hw.state & PERF_HES_STOPPED)
  4454. return 0;
  4455. /*
  4456. * All tracepoints are from kernel-space.
  4457. */
  4458. if (event->attr.exclude_kernel)
  4459. return 0;
  4460. if (!perf_tp_filter_match(event, data))
  4461. return 0;
  4462. return 1;
  4463. }
  4464. void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
  4465. struct pt_regs *regs, struct hlist_head *head, int rctx,
  4466. struct task_struct *task)
  4467. {
  4468. struct perf_sample_data data;
  4469. struct perf_event *event;
  4470. struct perf_raw_record raw = {
  4471. .size = entry_size,
  4472. .data = record,
  4473. };
  4474. perf_sample_data_init(&data, addr, 0);
  4475. data.raw = &raw;
  4476. hlist_for_each_entry_rcu(event, head, hlist_entry) {
  4477. if (perf_tp_event_match(event, &data, regs))
  4478. perf_swevent_event(event, count, &data, regs);
  4479. }
  4480. /*
  4481. * If we got specified a target task, also iterate its context and
  4482. * deliver this event there too.
  4483. */
  4484. if (task && task != current) {
  4485. struct perf_event_context *ctx;
  4486. struct trace_entry *entry = record;
  4487. rcu_read_lock();
  4488. ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
  4489. if (!ctx)
  4490. goto unlock;
  4491. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  4492. if (event->attr.type != PERF_TYPE_TRACEPOINT)
  4493. continue;
  4494. if (event->attr.config != entry->type)
  4495. continue;
  4496. if (perf_tp_event_match(event, &data, regs))
  4497. perf_swevent_event(event, count, &data, regs);
  4498. }
  4499. unlock:
  4500. rcu_read_unlock();
  4501. }
  4502. perf_swevent_put_recursion_context(rctx);
  4503. }
  4504. EXPORT_SYMBOL_GPL(perf_tp_event);
  4505. static void tp_perf_event_destroy(struct perf_event *event)
  4506. {
  4507. perf_trace_destroy(event);
  4508. }
  4509. static int perf_tp_event_init(struct perf_event *event)
  4510. {
  4511. int err;
  4512. if (event->attr.type != PERF_TYPE_TRACEPOINT)
  4513. return -ENOENT;
  4514. /*
  4515. * no branch sampling for tracepoint events
  4516. */
  4517. if (has_branch_stack(event))
  4518. return -EOPNOTSUPP;
  4519. err = perf_trace_init(event);
  4520. if (err)
  4521. return err;
  4522. event->destroy = tp_perf_event_destroy;
  4523. return 0;
  4524. }
  4525. static struct pmu perf_tracepoint = {
  4526. .task_ctx_nr = perf_sw_context,
  4527. .event_init = perf_tp_event_init,
  4528. .add = perf_trace_add,
  4529. .del = perf_trace_del,
  4530. .start = perf_swevent_start,
  4531. .stop = perf_swevent_stop,
  4532. .read = perf_swevent_read,
  4533. .event_idx = perf_swevent_event_idx,
  4534. };
  4535. static inline void perf_tp_register(void)
  4536. {
  4537. perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
  4538. }
  4539. static int perf_event_set_filter(struct perf_event *event, void __user *arg)
  4540. {
  4541. char *filter_str;
  4542. int ret;
  4543. if (event->attr.type != PERF_TYPE_TRACEPOINT)
  4544. return -EINVAL;
  4545. filter_str = strndup_user(arg, PAGE_SIZE);
  4546. if (IS_ERR(filter_str))
  4547. return PTR_ERR(filter_str);
  4548. ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
  4549. kfree(filter_str);
  4550. return ret;
  4551. }
  4552. static void perf_event_free_filter(struct perf_event *event)
  4553. {
  4554. ftrace_profile_free_filter(event);
  4555. }
  4556. #else
  4557. static inline void perf_tp_register(void)
  4558. {
  4559. }
  4560. static int perf_event_set_filter(struct perf_event *event, void __user *arg)
  4561. {
  4562. return -ENOENT;
  4563. }
  4564. static void perf_event_free_filter(struct perf_event *event)
  4565. {
  4566. }
  4567. #endif /* CONFIG_EVENT_TRACING */
  4568. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  4569. void perf_bp_event(struct perf_event *bp, void *data)
  4570. {
  4571. struct perf_sample_data sample;
  4572. struct pt_regs *regs = data;
  4573. perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
  4574. if (!bp->hw.state && !perf_exclude_event(bp, regs))
  4575. perf_swevent_event(bp, 1, &sample, regs);
  4576. }
  4577. #endif
  4578. /*
  4579. * hrtimer based swevent callback
  4580. */
  4581. static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
  4582. {
  4583. enum hrtimer_restart ret = HRTIMER_RESTART;
  4584. struct perf_sample_data data;
  4585. struct pt_regs *regs;
  4586. struct perf_event *event;
  4587. u64 period;
  4588. event = container_of(hrtimer, struct perf_event, hw.hrtimer);
  4589. if (event->state != PERF_EVENT_STATE_ACTIVE)
  4590. return HRTIMER_NORESTART;
  4591. event->pmu->read(event);
  4592. perf_sample_data_init(&data, 0, event->hw.last_period);
  4593. regs = get_irq_regs();
  4594. if (regs && !perf_exclude_event(event, regs)) {
  4595. if (!(event->attr.exclude_idle && is_idle_task(current)))
  4596. if (__perf_event_overflow(event, 1, &data, regs))
  4597. ret = HRTIMER_NORESTART;
  4598. }
  4599. period = max_t(u64, 10000, event->hw.sample_period);
  4600. hrtimer_forward_now(hrtimer, ns_to_ktime(period));
  4601. return ret;
  4602. }
  4603. static void perf_swevent_start_hrtimer(struct perf_event *event)
  4604. {
  4605. struct hw_perf_event *hwc = &event->hw;
  4606. s64 period;
  4607. if (!is_sampling_event(event))
  4608. return;
  4609. period = local64_read(&hwc->period_left);
  4610. if (period) {
  4611. if (period < 0)
  4612. period = 10000;
  4613. local64_set(&hwc->period_left, 0);
  4614. } else {
  4615. period = max_t(u64, 10000, hwc->sample_period);
  4616. }
  4617. __hrtimer_start_range_ns(&hwc->hrtimer,
  4618. ns_to_ktime(period), 0,
  4619. HRTIMER_MODE_REL_PINNED, 0);
  4620. }
  4621. static void perf_swevent_cancel_hrtimer(struct perf_event *event)
  4622. {
  4623. struct hw_perf_event *hwc = &event->hw;
  4624. if (is_sampling_event(event)) {
  4625. ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
  4626. local64_set(&hwc->period_left, ktime_to_ns(remaining));
  4627. hrtimer_cancel(&hwc->hrtimer);
  4628. }
  4629. }
  4630. static void perf_swevent_init_hrtimer(struct perf_event *event)
  4631. {
  4632. struct hw_perf_event *hwc = &event->hw;
  4633. if (!is_sampling_event(event))
  4634. return;
  4635. hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  4636. hwc->hrtimer.function = perf_swevent_hrtimer;
  4637. /*
  4638. * Since hrtimers have a fixed rate, we can do a static freq->period
  4639. * mapping and avoid the whole period adjust feedback stuff.
  4640. */
  4641. if (event->attr.freq) {
  4642. long freq = event->attr.sample_freq;
  4643. event->attr.sample_period = NSEC_PER_SEC / freq;
  4644. hwc->sample_period = event->attr.sample_period;
  4645. local64_set(&hwc->period_left, hwc->sample_period);
  4646. hwc->last_period = hwc->sample_period;
  4647. event->attr.freq = 0;
  4648. }
  4649. }
  4650. /*
  4651. * Software event: cpu wall time clock
  4652. */
  4653. static void cpu_clock_event_update(struct perf_event *event)
  4654. {
  4655. s64 prev;
  4656. u64 now;
  4657. now = local_clock();
  4658. prev = local64_xchg(&event->hw.prev_count, now);
  4659. local64_add(now - prev, &event->count);
  4660. }
  4661. static void cpu_clock_event_start(struct perf_event *event, int flags)
  4662. {
  4663. local64_set(&event->hw.prev_count, local_clock());
  4664. perf_swevent_start_hrtimer(event);
  4665. }
  4666. static void cpu_clock_event_stop(struct perf_event *event, int flags)
  4667. {
  4668. perf_swevent_cancel_hrtimer(event);
  4669. cpu_clock_event_update(event);
  4670. }
  4671. static int cpu_clock_event_add(struct perf_event *event, int flags)
  4672. {
  4673. if (flags & PERF_EF_START)
  4674. cpu_clock_event_start(event, flags);
  4675. return 0;
  4676. }
  4677. static void cpu_clock_event_del(struct perf_event *event, int flags)
  4678. {
  4679. cpu_clock_event_stop(event, flags);
  4680. }
  4681. static void cpu_clock_event_read(struct perf_event *event)
  4682. {
  4683. cpu_clock_event_update(event);
  4684. }
  4685. static int cpu_clock_event_init(struct perf_event *event)
  4686. {
  4687. if (event->attr.type != PERF_TYPE_SOFTWARE)
  4688. return -ENOENT;
  4689. if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
  4690. return -ENOENT;
  4691. /*
  4692. * no branch sampling for software events
  4693. */
  4694. if (has_branch_stack(event))
  4695. return -EOPNOTSUPP;
  4696. perf_swevent_init_hrtimer(event);
  4697. return 0;
  4698. }
  4699. static struct pmu perf_cpu_clock = {
  4700. .task_ctx_nr = perf_sw_context,
  4701. .event_init = cpu_clock_event_init,
  4702. .add = cpu_clock_event_add,
  4703. .del = cpu_clock_event_del,
  4704. .start = cpu_clock_event_start,
  4705. .stop = cpu_clock_event_stop,
  4706. .read = cpu_clock_event_read,
  4707. .event_idx = perf_swevent_event_idx,
  4708. };
  4709. /*
  4710. * Software event: task time clock
  4711. */
  4712. static void task_clock_event_update(struct perf_event *event, u64 now)
  4713. {
  4714. u64 prev;
  4715. s64 delta;
  4716. prev = local64_xchg(&event->hw.prev_count, now);
  4717. delta = now - prev;
  4718. local64_add(delta, &event->count);
  4719. }
  4720. static void task_clock_event_start(struct perf_event *event, int flags)
  4721. {
  4722. local64_set(&event->hw.prev_count, event->ctx->time);
  4723. perf_swevent_start_hrtimer(event);
  4724. }
  4725. static void task_clock_event_stop(struct perf_event *event, int flags)
  4726. {
  4727. perf_swevent_cancel_hrtimer(event);
  4728. task_clock_event_update(event, event->ctx->time);
  4729. }
  4730. static int task_clock_event_add(struct perf_event *event, int flags)
  4731. {
  4732. if (flags & PERF_EF_START)
  4733. task_clock_event_start(event, flags);
  4734. return 0;
  4735. }
  4736. static void task_clock_event_del(struct perf_event *event, int flags)
  4737. {
  4738. task_clock_event_stop(event, PERF_EF_UPDATE);
  4739. }
  4740. static void task_clock_event_read(struct perf_event *event)
  4741. {
  4742. u64 now = perf_clock();
  4743. u64 delta = now - event->ctx->timestamp;
  4744. u64 time = event->ctx->time + delta;
  4745. task_clock_event_update(event, time);
  4746. }
  4747. static int task_clock_event_init(struct perf_event *event)
  4748. {
  4749. if (event->attr.type != PERF_TYPE_SOFTWARE)
  4750. return -ENOENT;
  4751. if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
  4752. return -ENOENT;
  4753. /*
  4754. * no branch sampling for software events
  4755. */
  4756. if (has_branch_stack(event))
  4757. return -EOPNOTSUPP;
  4758. perf_swevent_init_hrtimer(event);
  4759. return 0;
  4760. }
  4761. static struct pmu perf_task_clock = {
  4762. .task_ctx_nr = perf_sw_context,
  4763. .event_init = task_clock_event_init,
  4764. .add = task_clock_event_add,
  4765. .del = task_clock_event_del,
  4766. .start = task_clock_event_start,
  4767. .stop = task_clock_event_stop,
  4768. .read = task_clock_event_read,
  4769. .event_idx = perf_swevent_event_idx,
  4770. };
  4771. static void perf_pmu_nop_void(struct pmu *pmu)
  4772. {
  4773. }
  4774. static int perf_pmu_nop_int(struct pmu *pmu)
  4775. {
  4776. return 0;
  4777. }
  4778. static void perf_pmu_start_txn(struct pmu *pmu)
  4779. {
  4780. perf_pmu_disable(pmu);
  4781. }
  4782. static int perf_pmu_commit_txn(struct pmu *pmu)
  4783. {
  4784. perf_pmu_enable(pmu);
  4785. return 0;
  4786. }
  4787. static void perf_pmu_cancel_txn(struct pmu *pmu)
  4788. {
  4789. perf_pmu_enable(pmu);
  4790. }
  4791. static int perf_event_idx_default(struct perf_event *event)
  4792. {
  4793. return event->hw.idx + 1;
  4794. }
  4795. /*
  4796. * Ensures all contexts with the same task_ctx_nr have the same
  4797. * pmu_cpu_context too.
  4798. */
  4799. static void *find_pmu_context(int ctxn)
  4800. {
  4801. struct pmu *pmu;
  4802. if (ctxn < 0)
  4803. return NULL;
  4804. list_for_each_entry(pmu, &pmus, entry) {
  4805. if (pmu->task_ctx_nr == ctxn)
  4806. return pmu->pmu_cpu_context;
  4807. }
  4808. return NULL;
  4809. }
  4810. static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
  4811. {
  4812. int cpu;
  4813. for_each_possible_cpu(cpu) {
  4814. struct perf_cpu_context *cpuctx;
  4815. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  4816. if (cpuctx->unique_pmu == old_pmu)
  4817. cpuctx->unique_pmu = pmu;
  4818. }
  4819. }
  4820. static void free_pmu_context(struct pmu *pmu)
  4821. {
  4822. struct pmu *i;
  4823. mutex_lock(&pmus_lock);
  4824. /*
  4825. * Like a real lame refcount.
  4826. */
  4827. list_for_each_entry(i, &pmus, entry) {
  4828. if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
  4829. update_pmu_context(i, pmu);
  4830. goto out;
  4831. }
  4832. }
  4833. free_percpu(pmu->pmu_cpu_context);
  4834. out:
  4835. mutex_unlock(&pmus_lock);
  4836. }
  4837. static struct idr pmu_idr;
  4838. static ssize_t
  4839. type_show(struct device *dev, struct device_attribute *attr, char *page)
  4840. {
  4841. struct pmu *pmu = dev_get_drvdata(dev);
  4842. return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
  4843. }
  4844. static struct device_attribute pmu_dev_attrs[] = {
  4845. __ATTR_RO(type),
  4846. __ATTR_NULL,
  4847. };
  4848. static int pmu_bus_running;
  4849. static struct bus_type pmu_bus = {
  4850. .name = "event_source",
  4851. .dev_attrs = pmu_dev_attrs,
  4852. };
  4853. static void pmu_dev_release(struct device *dev)
  4854. {
  4855. kfree(dev);
  4856. }
  4857. static int pmu_dev_alloc(struct pmu *pmu)
  4858. {
  4859. int ret = -ENOMEM;
  4860. pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
  4861. if (!pmu->dev)
  4862. goto out;
  4863. pmu->dev->groups = pmu->attr_groups;
  4864. device_initialize(pmu->dev);
  4865. ret = dev_set_name(pmu->dev, "%s", pmu->name);
  4866. if (ret)
  4867. goto free_dev;
  4868. dev_set_drvdata(pmu->dev, pmu);
  4869. pmu->dev->bus = &pmu_bus;
  4870. pmu->dev->release = pmu_dev_release;
  4871. ret = device_add(pmu->dev);
  4872. if (ret)
  4873. goto free_dev;
  4874. out:
  4875. return ret;
  4876. free_dev:
  4877. put_device(pmu->dev);
  4878. goto out;
  4879. }
  4880. static struct lock_class_key cpuctx_mutex;
  4881. static struct lock_class_key cpuctx_lock;
  4882. int perf_pmu_register(struct pmu *pmu, char *name, int type)
  4883. {
  4884. int cpu, ret;
  4885. mutex_lock(&pmus_lock);
  4886. ret = -ENOMEM;
  4887. pmu->pmu_disable_count = alloc_percpu(int);
  4888. if (!pmu->pmu_disable_count)
  4889. goto unlock;
  4890. pmu->type = -1;
  4891. if (!name)
  4892. goto skip_type;
  4893. pmu->name = name;
  4894. if (type < 0) {
  4895. type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
  4896. if (type < 0) {
  4897. ret = type;
  4898. goto free_pdc;
  4899. }
  4900. }
  4901. pmu->type = type;
  4902. if (pmu_bus_running) {
  4903. ret = pmu_dev_alloc(pmu);
  4904. if (ret)
  4905. goto free_idr;
  4906. }
  4907. skip_type:
  4908. pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
  4909. if (pmu->pmu_cpu_context)
  4910. goto got_cpu_context;
  4911. pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
  4912. if (!pmu->pmu_cpu_context)
  4913. goto free_dev;
  4914. for_each_possible_cpu(cpu) {
  4915. struct perf_cpu_context *cpuctx;
  4916. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  4917. __perf_event_init_context(&cpuctx->ctx);
  4918. lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
  4919. lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
  4920. cpuctx->ctx.type = cpu_context;
  4921. cpuctx->ctx.pmu = pmu;
  4922. cpuctx->jiffies_interval = 1;
  4923. INIT_LIST_HEAD(&cpuctx->rotation_list);
  4924. cpuctx->unique_pmu = pmu;
  4925. }
  4926. got_cpu_context:
  4927. if (!pmu->start_txn) {
  4928. if (pmu->pmu_enable) {
  4929. /*
  4930. * If we have pmu_enable/pmu_disable calls, install
  4931. * transaction stubs that use that to try and batch
  4932. * hardware accesses.
  4933. */
  4934. pmu->start_txn = perf_pmu_start_txn;
  4935. pmu->commit_txn = perf_pmu_commit_txn;
  4936. pmu->cancel_txn = perf_pmu_cancel_txn;
  4937. } else {
  4938. pmu->start_txn = perf_pmu_nop_void;
  4939. pmu->commit_txn = perf_pmu_nop_int;
  4940. pmu->cancel_txn = perf_pmu_nop_void;
  4941. }
  4942. }
  4943. if (!pmu->pmu_enable) {
  4944. pmu->pmu_enable = perf_pmu_nop_void;
  4945. pmu->pmu_disable = perf_pmu_nop_void;
  4946. }
  4947. if (!pmu->event_idx)
  4948. pmu->event_idx = perf_event_idx_default;
  4949. list_add_rcu(&pmu->entry, &pmus);
  4950. ret = 0;
  4951. unlock:
  4952. mutex_unlock(&pmus_lock);
  4953. return ret;
  4954. free_dev:
  4955. device_del(pmu->dev);
  4956. put_device(pmu->dev);
  4957. free_idr:
  4958. if (pmu->type >= PERF_TYPE_MAX)
  4959. idr_remove(&pmu_idr, pmu->type);
  4960. free_pdc:
  4961. free_percpu(pmu->pmu_disable_count);
  4962. goto unlock;
  4963. }
  4964. void perf_pmu_unregister(struct pmu *pmu)
  4965. {
  4966. mutex_lock(&pmus_lock);
  4967. list_del_rcu(&pmu->entry);
  4968. mutex_unlock(&pmus_lock);
  4969. /*
  4970. * We dereference the pmu list under both SRCU and regular RCU, so
  4971. * synchronize against both of those.
  4972. */
  4973. synchronize_srcu(&pmus_srcu);
  4974. synchronize_rcu();
  4975. free_percpu(pmu->pmu_disable_count);
  4976. if (pmu->type >= PERF_TYPE_MAX)
  4977. idr_remove(&pmu_idr, pmu->type);
  4978. device_del(pmu->dev);
  4979. put_device(pmu->dev);
  4980. free_pmu_context(pmu);
  4981. }
  4982. struct pmu *perf_init_event(struct perf_event *event)
  4983. {
  4984. struct pmu *pmu = NULL;
  4985. int idx;
  4986. int ret;
  4987. idx = srcu_read_lock(&pmus_srcu);
  4988. rcu_read_lock();
  4989. pmu = idr_find(&pmu_idr, event->attr.type);
  4990. rcu_read_unlock();
  4991. if (pmu) {
  4992. event->pmu = pmu;
  4993. ret = pmu->event_init(event);
  4994. if (ret)
  4995. pmu = ERR_PTR(ret);
  4996. goto unlock;
  4997. }
  4998. list_for_each_entry_rcu(pmu, &pmus, entry) {
  4999. event->pmu = pmu;
  5000. ret = pmu->event_init(event);
  5001. if (!ret)
  5002. goto unlock;
  5003. if (ret != -ENOENT) {
  5004. pmu = ERR_PTR(ret);
  5005. goto unlock;
  5006. }
  5007. }
  5008. pmu = ERR_PTR(-ENOENT);
  5009. unlock:
  5010. srcu_read_unlock(&pmus_srcu, idx);
  5011. return pmu;
  5012. }
  5013. /*
  5014. * Allocate and initialize a event structure
  5015. */
  5016. static struct perf_event *
  5017. perf_event_alloc(struct perf_event_attr *attr, int cpu,
  5018. struct task_struct *task,
  5019. struct perf_event *group_leader,
  5020. struct perf_event *parent_event,
  5021. perf_overflow_handler_t overflow_handler,
  5022. void *context)
  5023. {
  5024. struct pmu *pmu;
  5025. struct perf_event *event;
  5026. struct hw_perf_event *hwc;
  5027. long err;
  5028. if ((unsigned)cpu >= nr_cpu_ids) {
  5029. if (!task || cpu != -1)
  5030. return ERR_PTR(-EINVAL);
  5031. }
  5032. event = kzalloc(sizeof(*event), GFP_KERNEL);
  5033. if (!event)
  5034. return ERR_PTR(-ENOMEM);
  5035. /*
  5036. * Single events are their own group leaders, with an
  5037. * empty sibling list:
  5038. */
  5039. if (!group_leader)
  5040. group_leader = event;
  5041. mutex_init(&event->child_mutex);
  5042. INIT_LIST_HEAD(&event->child_list);
  5043. INIT_LIST_HEAD(&event->group_entry);
  5044. INIT_LIST_HEAD(&event->event_entry);
  5045. INIT_LIST_HEAD(&event->sibling_list);
  5046. INIT_LIST_HEAD(&event->rb_entry);
  5047. init_waitqueue_head(&event->waitq);
  5048. init_irq_work(&event->pending, perf_pending_event);
  5049. mutex_init(&event->mmap_mutex);
  5050. atomic_long_set(&event->refcount, 1);
  5051. event->cpu = cpu;
  5052. event->attr = *attr;
  5053. event->group_leader = group_leader;
  5054. event->pmu = NULL;
  5055. event->oncpu = -1;
  5056. event->parent = parent_event;
  5057. event->ns = get_pid_ns(task_active_pid_ns(current));
  5058. event->id = atomic64_inc_return(&perf_event_id);
  5059. event->state = PERF_EVENT_STATE_INACTIVE;
  5060. if (task) {
  5061. event->attach_state = PERF_ATTACH_TASK;
  5062. if (attr->type == PERF_TYPE_TRACEPOINT)
  5063. event->hw.tp_target = task;
  5064. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  5065. /*
  5066. * hw_breakpoint is a bit difficult here..
  5067. */
  5068. else if (attr->type == PERF_TYPE_BREAKPOINT)
  5069. event->hw.bp_target = task;
  5070. #endif
  5071. }
  5072. if (!overflow_handler && parent_event) {
  5073. overflow_handler = parent_event->overflow_handler;
  5074. context = parent_event->overflow_handler_context;
  5075. }
  5076. event->overflow_handler = overflow_handler;
  5077. event->overflow_handler_context = context;
  5078. perf_event__state_init(event);
  5079. pmu = NULL;
  5080. hwc = &event->hw;
  5081. hwc->sample_period = attr->sample_period;
  5082. if (attr->freq && attr->sample_freq)
  5083. hwc->sample_period = 1;
  5084. hwc->last_period = hwc->sample_period;
  5085. local64_set(&hwc->period_left, hwc->sample_period);
  5086. /*
  5087. * we currently do not support PERF_FORMAT_GROUP on inherited events
  5088. */
  5089. if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
  5090. goto done;
  5091. pmu = perf_init_event(event);
  5092. done:
  5093. err = 0;
  5094. if (!pmu)
  5095. err = -EINVAL;
  5096. else if (IS_ERR(pmu))
  5097. err = PTR_ERR(pmu);
  5098. if (err) {
  5099. if (event->ns)
  5100. put_pid_ns(event->ns);
  5101. kfree(event);
  5102. return ERR_PTR(err);
  5103. }
  5104. if (!event->parent) {
  5105. if (event->attach_state & PERF_ATTACH_TASK)
  5106. static_key_slow_inc(&perf_sched_events.key);
  5107. if (event->attr.mmap || event->attr.mmap_data)
  5108. atomic_inc(&nr_mmap_events);
  5109. if (event->attr.comm)
  5110. atomic_inc(&nr_comm_events);
  5111. if (event->attr.task)
  5112. atomic_inc(&nr_task_events);
  5113. if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
  5114. err = get_callchain_buffers();
  5115. if (err) {
  5116. free_event(event);
  5117. return ERR_PTR(err);
  5118. }
  5119. }
  5120. if (has_branch_stack(event)) {
  5121. static_key_slow_inc(&perf_sched_events.key);
  5122. if (!(event->attach_state & PERF_ATTACH_TASK))
  5123. atomic_inc(&per_cpu(perf_branch_stack_events,
  5124. event->cpu));
  5125. }
  5126. }
  5127. return event;
  5128. }
  5129. static int perf_copy_attr(struct perf_event_attr __user *uattr,
  5130. struct perf_event_attr *attr)
  5131. {
  5132. u32 size;
  5133. int ret;
  5134. if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
  5135. return -EFAULT;
  5136. /*
  5137. * zero the full structure, so that a short copy will be nice.
  5138. */
  5139. memset(attr, 0, sizeof(*attr));
  5140. ret = get_user(size, &uattr->size);
  5141. if (ret)
  5142. return ret;
  5143. if (size > PAGE_SIZE) /* silly large */
  5144. goto err_size;
  5145. if (!size) /* abi compat */
  5146. size = PERF_ATTR_SIZE_VER0;
  5147. if (size < PERF_ATTR_SIZE_VER0)
  5148. goto err_size;
  5149. /*
  5150. * If we're handed a bigger struct than we know of,
  5151. * ensure all the unknown bits are 0 - i.e. new
  5152. * user-space does not rely on any kernel feature
  5153. * extensions we dont know about yet.
  5154. */
  5155. if (size > sizeof(*attr)) {
  5156. unsigned char __user *addr;
  5157. unsigned char __user *end;
  5158. unsigned char val;
  5159. addr = (void __user *)uattr + sizeof(*attr);
  5160. end = (void __user *)uattr + size;
  5161. for (; addr < end; addr++) {
  5162. ret = get_user(val, addr);
  5163. if (ret)
  5164. return ret;
  5165. if (val)
  5166. goto err_size;
  5167. }
  5168. size = sizeof(*attr);
  5169. }
  5170. ret = copy_from_user(attr, uattr, size);
  5171. if (ret)
  5172. return -EFAULT;
  5173. if (attr->__reserved_1)
  5174. return -EINVAL;
  5175. if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
  5176. return -EINVAL;
  5177. if (attr->read_format & ~(PERF_FORMAT_MAX-1))
  5178. return -EINVAL;
  5179. if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
  5180. u64 mask = attr->branch_sample_type;
  5181. /* only using defined bits */
  5182. if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
  5183. return -EINVAL;
  5184. /* at least one branch bit must be set */
  5185. if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
  5186. return -EINVAL;
  5187. /* kernel level capture: check permissions */
  5188. if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
  5189. && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
  5190. return -EACCES;
  5191. /* propagate priv level, when not set for branch */
  5192. if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
  5193. /* exclude_kernel checked on syscall entry */
  5194. if (!attr->exclude_kernel)
  5195. mask |= PERF_SAMPLE_BRANCH_KERNEL;
  5196. if (!attr->exclude_user)
  5197. mask |= PERF_SAMPLE_BRANCH_USER;
  5198. if (!attr->exclude_hv)
  5199. mask |= PERF_SAMPLE_BRANCH_HV;
  5200. /*
  5201. * adjust user setting (for HW filter setup)
  5202. */
  5203. attr->branch_sample_type = mask;
  5204. }
  5205. }
  5206. if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
  5207. ret = perf_reg_validate(attr->sample_regs_user);
  5208. if (ret)
  5209. return ret;
  5210. }
  5211. if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
  5212. if (!arch_perf_have_user_stack_dump())
  5213. return -ENOSYS;
  5214. /*
  5215. * We have __u32 type for the size, but so far
  5216. * we can only use __u16 as maximum due to the
  5217. * __u16 sample size limit.
  5218. */
  5219. if (attr->sample_stack_user >= USHRT_MAX)
  5220. ret = -EINVAL;
  5221. else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
  5222. ret = -EINVAL;
  5223. }
  5224. out:
  5225. return ret;
  5226. err_size:
  5227. put_user(sizeof(*attr), &uattr->size);
  5228. ret = -E2BIG;
  5229. goto out;
  5230. }
  5231. static int
  5232. perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
  5233. {
  5234. struct ring_buffer *rb = NULL, *old_rb = NULL;
  5235. int ret = -EINVAL;
  5236. if (!output_event)
  5237. goto set;
  5238. /* don't allow circular references */
  5239. if (event == output_event)
  5240. goto out;
  5241. /*
  5242. * Don't allow cross-cpu buffers
  5243. */
  5244. if (output_event->cpu != event->cpu)
  5245. goto out;
  5246. /*
  5247. * If its not a per-cpu rb, it must be the same task.
  5248. */
  5249. if (output_event->cpu == -1 && output_event->ctx != event->ctx)
  5250. goto out;
  5251. set:
  5252. mutex_lock(&event->mmap_mutex);
  5253. /* Can't redirect output if we've got an active mmap() */
  5254. if (atomic_read(&event->mmap_count))
  5255. goto unlock;
  5256. if (output_event) {
  5257. /* get the rb we want to redirect to */
  5258. rb = ring_buffer_get(output_event);
  5259. if (!rb)
  5260. goto unlock;
  5261. }
  5262. old_rb = event->rb;
  5263. rcu_assign_pointer(event->rb, rb);
  5264. if (old_rb)
  5265. ring_buffer_detach(event, old_rb);
  5266. ret = 0;
  5267. unlock:
  5268. mutex_unlock(&event->mmap_mutex);
  5269. if (old_rb)
  5270. ring_buffer_put(old_rb);
  5271. out:
  5272. return ret;
  5273. }
  5274. /**
  5275. * sys_perf_event_open - open a performance event, associate it to a task/cpu
  5276. *
  5277. * @attr_uptr: event_id type attributes for monitoring/sampling
  5278. * @pid: target pid
  5279. * @cpu: target cpu
  5280. * @group_fd: group leader event fd
  5281. */
  5282. SYSCALL_DEFINE5(perf_event_open,
  5283. struct perf_event_attr __user *, attr_uptr,
  5284. pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
  5285. {
  5286. struct perf_event *group_leader = NULL, *output_event = NULL;
  5287. struct perf_event *event, *sibling;
  5288. struct perf_event_attr attr;
  5289. struct perf_event_context *ctx;
  5290. struct file *event_file = NULL;
  5291. struct fd group = {NULL, 0};
  5292. struct task_struct *task = NULL;
  5293. struct pmu *pmu;
  5294. int event_fd;
  5295. int move_group = 0;
  5296. int err;
  5297. /* for future expandability... */
  5298. if (flags & ~PERF_FLAG_ALL)
  5299. return -EINVAL;
  5300. err = perf_copy_attr(attr_uptr, &attr);
  5301. if (err)
  5302. return err;
  5303. if (!attr.exclude_kernel) {
  5304. if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
  5305. return -EACCES;
  5306. }
  5307. if (attr.freq) {
  5308. if (attr.sample_freq > sysctl_perf_event_sample_rate)
  5309. return -EINVAL;
  5310. }
  5311. /*
  5312. * In cgroup mode, the pid argument is used to pass the fd
  5313. * opened to the cgroup directory in cgroupfs. The cpu argument
  5314. * designates the cpu on which to monitor threads from that
  5315. * cgroup.
  5316. */
  5317. if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
  5318. return -EINVAL;
  5319. event_fd = get_unused_fd();
  5320. if (event_fd < 0)
  5321. return event_fd;
  5322. if (group_fd != -1) {
  5323. err = perf_fget_light(group_fd, &group);
  5324. if (err)
  5325. goto err_fd;
  5326. group_leader = group.file->private_data;
  5327. if (flags & PERF_FLAG_FD_OUTPUT)
  5328. output_event = group_leader;
  5329. if (flags & PERF_FLAG_FD_NO_GROUP)
  5330. group_leader = NULL;
  5331. }
  5332. if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
  5333. task = find_lively_task_by_vpid(pid);
  5334. if (IS_ERR(task)) {
  5335. err = PTR_ERR(task);
  5336. goto err_group_fd;
  5337. }
  5338. }
  5339. get_online_cpus();
  5340. event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
  5341. NULL, NULL);
  5342. if (IS_ERR(event)) {
  5343. err = PTR_ERR(event);
  5344. goto err_task;
  5345. }
  5346. if (flags & PERF_FLAG_PID_CGROUP) {
  5347. err = perf_cgroup_connect(pid, event, &attr, group_leader);
  5348. if (err)
  5349. goto err_alloc;
  5350. /*
  5351. * one more event:
  5352. * - that has cgroup constraint on event->cpu
  5353. * - that may need work on context switch
  5354. */
  5355. atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
  5356. static_key_slow_inc(&perf_sched_events.key);
  5357. }
  5358. /*
  5359. * Special case software events and allow them to be part of
  5360. * any hardware group.
  5361. */
  5362. pmu = event->pmu;
  5363. if (group_leader &&
  5364. (is_software_event(event) != is_software_event(group_leader))) {
  5365. if (is_software_event(event)) {
  5366. /*
  5367. * If event and group_leader are not both a software
  5368. * event, and event is, then group leader is not.
  5369. *
  5370. * Allow the addition of software events to !software
  5371. * groups, this is safe because software events never
  5372. * fail to schedule.
  5373. */
  5374. pmu = group_leader->pmu;
  5375. } else if (is_software_event(group_leader) &&
  5376. (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
  5377. /*
  5378. * In case the group is a pure software group, and we
  5379. * try to add a hardware event, move the whole group to
  5380. * the hardware context.
  5381. */
  5382. move_group = 1;
  5383. }
  5384. }
  5385. /*
  5386. * Get the target context (task or percpu):
  5387. */
  5388. ctx = find_get_context(pmu, task, event->cpu);
  5389. if (IS_ERR(ctx)) {
  5390. err = PTR_ERR(ctx);
  5391. goto err_alloc;
  5392. }
  5393. if (task) {
  5394. put_task_struct(task);
  5395. task = NULL;
  5396. }
  5397. /*
  5398. * Look up the group leader (we will attach this event to it):
  5399. */
  5400. if (group_leader) {
  5401. err = -EINVAL;
  5402. /*
  5403. * Do not allow a recursive hierarchy (this new sibling
  5404. * becoming part of another group-sibling):
  5405. */
  5406. if (group_leader->group_leader != group_leader)
  5407. goto err_context;
  5408. /*
  5409. * Do not allow to attach to a group in a different
  5410. * task or CPU context:
  5411. */
  5412. if (move_group) {
  5413. if (group_leader->ctx->type != ctx->type)
  5414. goto err_context;
  5415. } else {
  5416. if (group_leader->ctx != ctx)
  5417. goto err_context;
  5418. }
  5419. /*
  5420. * Only a group leader can be exclusive or pinned
  5421. */
  5422. if (attr.exclusive || attr.pinned)
  5423. goto err_context;
  5424. }
  5425. if (output_event) {
  5426. err = perf_event_set_output(event, output_event);
  5427. if (err)
  5428. goto err_context;
  5429. }
  5430. event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
  5431. if (IS_ERR(event_file)) {
  5432. err = PTR_ERR(event_file);
  5433. goto err_context;
  5434. }
  5435. if (move_group) {
  5436. struct perf_event_context *gctx = group_leader->ctx;
  5437. mutex_lock(&gctx->mutex);
  5438. perf_remove_from_context(group_leader);
  5439. /*
  5440. * Removing from the context ends up with disabled
  5441. * event. What we want here is event in the initial
  5442. * startup state, ready to be add into new context.
  5443. */
  5444. perf_event__state_init(group_leader);
  5445. list_for_each_entry(sibling, &group_leader->sibling_list,
  5446. group_entry) {
  5447. perf_remove_from_context(sibling);
  5448. perf_event__state_init(sibling);
  5449. put_ctx(gctx);
  5450. }
  5451. mutex_unlock(&gctx->mutex);
  5452. put_ctx(gctx);
  5453. }
  5454. WARN_ON_ONCE(ctx->parent_ctx);
  5455. mutex_lock(&ctx->mutex);
  5456. if (move_group) {
  5457. synchronize_rcu();
  5458. perf_install_in_context(ctx, group_leader, event->cpu);
  5459. get_ctx(ctx);
  5460. list_for_each_entry(sibling, &group_leader->sibling_list,
  5461. group_entry) {
  5462. perf_install_in_context(ctx, sibling, event->cpu);
  5463. get_ctx(ctx);
  5464. }
  5465. }
  5466. perf_install_in_context(ctx, event, event->cpu);
  5467. ++ctx->generation;
  5468. perf_unpin_context(ctx);
  5469. mutex_unlock(&ctx->mutex);
  5470. put_online_cpus();
  5471. event->owner = current;
  5472. mutex_lock(&current->perf_event_mutex);
  5473. list_add_tail(&event->owner_entry, &current->perf_event_list);
  5474. mutex_unlock(&current->perf_event_mutex);
  5475. /*
  5476. * Precalculate sample_data sizes
  5477. */
  5478. perf_event__header_size(event);
  5479. perf_event__id_header_size(event);
  5480. /*
  5481. * Drop the reference on the group_event after placing the
  5482. * new event on the sibling_list. This ensures destruction
  5483. * of the group leader will find the pointer to itself in
  5484. * perf_group_detach().
  5485. */
  5486. fdput(group);
  5487. fd_install(event_fd, event_file);
  5488. return event_fd;
  5489. err_context:
  5490. perf_unpin_context(ctx);
  5491. put_ctx(ctx);
  5492. err_alloc:
  5493. free_event(event);
  5494. err_task:
  5495. put_online_cpus();
  5496. if (task)
  5497. put_task_struct(task);
  5498. err_group_fd:
  5499. fdput(group);
  5500. err_fd:
  5501. put_unused_fd(event_fd);
  5502. return err;
  5503. }
  5504. /**
  5505. * perf_event_create_kernel_counter
  5506. *
  5507. * @attr: attributes of the counter to create
  5508. * @cpu: cpu in which the counter is bound
  5509. * @task: task to profile (NULL for percpu)
  5510. */
  5511. struct perf_event *
  5512. perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
  5513. struct task_struct *task,
  5514. perf_overflow_handler_t overflow_handler,
  5515. void *context)
  5516. {
  5517. struct perf_event_context *ctx;
  5518. struct perf_event *event;
  5519. int err;
  5520. /*
  5521. * Get the target context (task or percpu):
  5522. */
  5523. event = perf_event_alloc(attr, cpu, task, NULL, NULL,
  5524. overflow_handler, context);
  5525. if (IS_ERR(event)) {
  5526. err = PTR_ERR(event);
  5527. goto err;
  5528. }
  5529. ctx = find_get_context(event->pmu, task, cpu);
  5530. if (IS_ERR(ctx)) {
  5531. err = PTR_ERR(ctx);
  5532. goto err_free;
  5533. }
  5534. WARN_ON_ONCE(ctx->parent_ctx);
  5535. mutex_lock(&ctx->mutex);
  5536. perf_install_in_context(ctx, event, cpu);
  5537. ++ctx->generation;
  5538. perf_unpin_context(ctx);
  5539. mutex_unlock(&ctx->mutex);
  5540. return event;
  5541. err_free:
  5542. free_event(event);
  5543. err:
  5544. return ERR_PTR(err);
  5545. }
  5546. EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
  5547. void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
  5548. {
  5549. struct perf_event_context *src_ctx;
  5550. struct perf_event_context *dst_ctx;
  5551. struct perf_event *event, *tmp;
  5552. LIST_HEAD(events);
  5553. src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
  5554. dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
  5555. mutex_lock(&src_ctx->mutex);
  5556. list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
  5557. event_entry) {
  5558. perf_remove_from_context(event);
  5559. put_ctx(src_ctx);
  5560. list_add(&event->event_entry, &events);
  5561. }
  5562. mutex_unlock(&src_ctx->mutex);
  5563. synchronize_rcu();
  5564. mutex_lock(&dst_ctx->mutex);
  5565. list_for_each_entry_safe(event, tmp, &events, event_entry) {
  5566. list_del(&event->event_entry);
  5567. if (event->state >= PERF_EVENT_STATE_OFF)
  5568. event->state = PERF_EVENT_STATE_INACTIVE;
  5569. perf_install_in_context(dst_ctx, event, dst_cpu);
  5570. get_ctx(dst_ctx);
  5571. }
  5572. mutex_unlock(&dst_ctx->mutex);
  5573. }
  5574. EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
  5575. static void sync_child_event(struct perf_event *child_event,
  5576. struct task_struct *child)
  5577. {
  5578. struct perf_event *parent_event = child_event->parent;
  5579. u64 child_val;
  5580. if (child_event->attr.inherit_stat)
  5581. perf_event_read_event(child_event, child);
  5582. child_val = perf_event_count(child_event);
  5583. /*
  5584. * Add back the child's count to the parent's count:
  5585. */
  5586. atomic64_add(child_val, &parent_event->child_count);
  5587. atomic64_add(child_event->total_time_enabled,
  5588. &parent_event->child_total_time_enabled);
  5589. atomic64_add(child_event->total_time_running,
  5590. &parent_event->child_total_time_running);
  5591. /*
  5592. * Remove this event from the parent's list
  5593. */
  5594. WARN_ON_ONCE(parent_event->ctx->parent_ctx);
  5595. mutex_lock(&parent_event->child_mutex);
  5596. list_del_init(&child_event->child_list);
  5597. mutex_unlock(&parent_event->child_mutex);
  5598. /*
  5599. * Release the parent event, if this was the last
  5600. * reference to it.
  5601. */
  5602. put_event(parent_event);
  5603. }
  5604. static void
  5605. __perf_event_exit_task(struct perf_event *child_event,
  5606. struct perf_event_context *child_ctx,
  5607. struct task_struct *child)
  5608. {
  5609. if (child_event->parent) {
  5610. raw_spin_lock_irq(&child_ctx->lock);
  5611. perf_group_detach(child_event);
  5612. raw_spin_unlock_irq(&child_ctx->lock);
  5613. }
  5614. perf_remove_from_context(child_event);
  5615. /*
  5616. * It can happen that the parent exits first, and has events
  5617. * that are still around due to the child reference. These
  5618. * events need to be zapped.
  5619. */
  5620. if (child_event->parent) {
  5621. sync_child_event(child_event, child);
  5622. free_event(child_event);
  5623. }
  5624. }
  5625. static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
  5626. {
  5627. struct perf_event *child_event, *tmp;
  5628. struct perf_event_context *child_ctx;
  5629. unsigned long flags;
  5630. if (likely(!child->perf_event_ctxp[ctxn])) {
  5631. perf_event_task(child, NULL, 0);
  5632. return;
  5633. }
  5634. local_irq_save(flags);
  5635. /*
  5636. * We can't reschedule here because interrupts are disabled,
  5637. * and either child is current or it is a task that can't be
  5638. * scheduled, so we are now safe from rescheduling changing
  5639. * our context.
  5640. */
  5641. child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
  5642. /*
  5643. * Take the context lock here so that if find_get_context is
  5644. * reading child->perf_event_ctxp, we wait until it has
  5645. * incremented the context's refcount before we do put_ctx below.
  5646. */
  5647. raw_spin_lock(&child_ctx->lock);
  5648. task_ctx_sched_out(child_ctx);
  5649. child->perf_event_ctxp[ctxn] = NULL;
  5650. /*
  5651. * If this context is a clone; unclone it so it can't get
  5652. * swapped to another process while we're removing all
  5653. * the events from it.
  5654. */
  5655. unclone_ctx(child_ctx);
  5656. update_context_time(child_ctx);
  5657. raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
  5658. /*
  5659. * Report the task dead after unscheduling the events so that we
  5660. * won't get any samples after PERF_RECORD_EXIT. We can however still
  5661. * get a few PERF_RECORD_READ events.
  5662. */
  5663. perf_event_task(child, child_ctx, 0);
  5664. /*
  5665. * We can recurse on the same lock type through:
  5666. *
  5667. * __perf_event_exit_task()
  5668. * sync_child_event()
  5669. * put_event()
  5670. * mutex_lock(&ctx->mutex)
  5671. *
  5672. * But since its the parent context it won't be the same instance.
  5673. */
  5674. mutex_lock(&child_ctx->mutex);
  5675. again:
  5676. list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
  5677. group_entry)
  5678. __perf_event_exit_task(child_event, child_ctx, child);
  5679. list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
  5680. group_entry)
  5681. __perf_event_exit_task(child_event, child_ctx, child);
  5682. /*
  5683. * If the last event was a group event, it will have appended all
  5684. * its siblings to the list, but we obtained 'tmp' before that which
  5685. * will still point to the list head terminating the iteration.
  5686. */
  5687. if (!list_empty(&child_ctx->pinned_groups) ||
  5688. !list_empty(&child_ctx->flexible_groups))
  5689. goto again;
  5690. mutex_unlock(&child_ctx->mutex);
  5691. put_ctx(child_ctx);
  5692. }
  5693. /*
  5694. * When a child task exits, feed back event values to parent events.
  5695. */
  5696. void perf_event_exit_task(struct task_struct *child)
  5697. {
  5698. struct perf_event *event, *tmp;
  5699. int ctxn;
  5700. mutex_lock(&child->perf_event_mutex);
  5701. list_for_each_entry_safe(event, tmp, &child->perf_event_list,
  5702. owner_entry) {
  5703. list_del_init(&event->owner_entry);
  5704. /*
  5705. * Ensure the list deletion is visible before we clear
  5706. * the owner, closes a race against perf_release() where
  5707. * we need to serialize on the owner->perf_event_mutex.
  5708. */
  5709. smp_wmb();
  5710. event->owner = NULL;
  5711. }
  5712. mutex_unlock(&child->perf_event_mutex);
  5713. for_each_task_context_nr(ctxn)
  5714. perf_event_exit_task_context(child, ctxn);
  5715. }
  5716. static void perf_free_event(struct perf_event *event,
  5717. struct perf_event_context *ctx)
  5718. {
  5719. struct perf_event *parent = event->parent;
  5720. if (WARN_ON_ONCE(!parent))
  5721. return;
  5722. mutex_lock(&parent->child_mutex);
  5723. list_del_init(&event->child_list);
  5724. mutex_unlock(&parent->child_mutex);
  5725. put_event(parent);
  5726. perf_group_detach(event);
  5727. list_del_event(event, ctx);
  5728. free_event(event);
  5729. }
  5730. /*
  5731. * free an unexposed, unused context as created by inheritance by
  5732. * perf_event_init_task below, used by fork() in case of fail.
  5733. */
  5734. void perf_event_free_task(struct task_struct *task)
  5735. {
  5736. struct perf_event_context *ctx;
  5737. struct perf_event *event, *tmp;
  5738. int ctxn;
  5739. for_each_task_context_nr(ctxn) {
  5740. ctx = task->perf_event_ctxp[ctxn];
  5741. if (!ctx)
  5742. continue;
  5743. mutex_lock(&ctx->mutex);
  5744. again:
  5745. list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
  5746. group_entry)
  5747. perf_free_event(event, ctx);
  5748. list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
  5749. group_entry)
  5750. perf_free_event(event, ctx);
  5751. if (!list_empty(&ctx->pinned_groups) ||
  5752. !list_empty(&ctx->flexible_groups))
  5753. goto again;
  5754. mutex_unlock(&ctx->mutex);
  5755. put_ctx(ctx);
  5756. }
  5757. }
  5758. void perf_event_delayed_put(struct task_struct *task)
  5759. {
  5760. int ctxn;
  5761. for_each_task_context_nr(ctxn)
  5762. WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
  5763. }
  5764. /*
  5765. * inherit a event from parent task to child task:
  5766. */
  5767. static struct perf_event *
  5768. inherit_event(struct perf_event *parent_event,
  5769. struct task_struct *parent,
  5770. struct perf_event_context *parent_ctx,
  5771. struct task_struct *child,
  5772. struct perf_event *group_leader,
  5773. struct perf_event_context *child_ctx)
  5774. {
  5775. struct perf_event *child_event;
  5776. unsigned long flags;
  5777. /*
  5778. * Instead of creating recursive hierarchies of events,
  5779. * we link inherited events back to the original parent,
  5780. * which has a filp for sure, which we use as the reference
  5781. * count:
  5782. */
  5783. if (parent_event->parent)
  5784. parent_event = parent_event->parent;
  5785. child_event = perf_event_alloc(&parent_event->attr,
  5786. parent_event->cpu,
  5787. child,
  5788. group_leader, parent_event,
  5789. NULL, NULL);
  5790. if (IS_ERR(child_event))
  5791. return child_event;
  5792. if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
  5793. free_event(child_event);
  5794. return NULL;
  5795. }
  5796. get_ctx(child_ctx);
  5797. /*
  5798. * Make the child state follow the state of the parent event,
  5799. * not its attr.disabled bit. We hold the parent's mutex,
  5800. * so we won't race with perf_event_{en, dis}able_family.
  5801. */
  5802. if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
  5803. child_event->state = PERF_EVENT_STATE_INACTIVE;
  5804. else
  5805. child_event->state = PERF_EVENT_STATE_OFF;
  5806. if (parent_event->attr.freq) {
  5807. u64 sample_period = parent_event->hw.sample_period;
  5808. struct hw_perf_event *hwc = &child_event->hw;
  5809. hwc->sample_period = sample_period;
  5810. hwc->last_period = sample_period;
  5811. local64_set(&hwc->period_left, sample_period);
  5812. }
  5813. child_event->ctx = child_ctx;
  5814. child_event->overflow_handler = parent_event->overflow_handler;
  5815. child_event->overflow_handler_context
  5816. = parent_event->overflow_handler_context;
  5817. /*
  5818. * Precalculate sample_data sizes
  5819. */
  5820. perf_event__header_size(child_event);
  5821. perf_event__id_header_size(child_event);
  5822. /*
  5823. * Link it up in the child's context:
  5824. */
  5825. raw_spin_lock_irqsave(&child_ctx->lock, flags);
  5826. add_event_to_ctx(child_event, child_ctx);
  5827. raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
  5828. /*
  5829. * Link this into the parent event's child list
  5830. */
  5831. WARN_ON_ONCE(parent_event->ctx->parent_ctx);
  5832. mutex_lock(&parent_event->child_mutex);
  5833. list_add_tail(&child_event->child_list, &parent_event->child_list);
  5834. mutex_unlock(&parent_event->child_mutex);
  5835. return child_event;
  5836. }
  5837. static int inherit_group(struct perf_event *parent_event,
  5838. struct task_struct *parent,
  5839. struct perf_event_context *parent_ctx,
  5840. struct task_struct *child,
  5841. struct perf_event_context *child_ctx)
  5842. {
  5843. struct perf_event *leader;
  5844. struct perf_event *sub;
  5845. struct perf_event *child_ctr;
  5846. leader = inherit_event(parent_event, parent, parent_ctx,
  5847. child, NULL, child_ctx);
  5848. if (IS_ERR(leader))
  5849. return PTR_ERR(leader);
  5850. list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
  5851. child_ctr = inherit_event(sub, parent, parent_ctx,
  5852. child, leader, child_ctx);
  5853. if (IS_ERR(child_ctr))
  5854. return PTR_ERR(child_ctr);
  5855. }
  5856. return 0;
  5857. }
  5858. static int
  5859. inherit_task_group(struct perf_event *event, struct task_struct *parent,
  5860. struct perf_event_context *parent_ctx,
  5861. struct task_struct *child, int ctxn,
  5862. int *inherited_all)
  5863. {
  5864. int ret;
  5865. struct perf_event_context *child_ctx;
  5866. if (!event->attr.inherit) {
  5867. *inherited_all = 0;
  5868. return 0;
  5869. }
  5870. child_ctx = child->perf_event_ctxp[ctxn];
  5871. if (!child_ctx) {
  5872. /*
  5873. * This is executed from the parent task context, so
  5874. * inherit events that have been marked for cloning.
  5875. * First allocate and initialize a context for the
  5876. * child.
  5877. */
  5878. child_ctx = alloc_perf_context(event->pmu, child);
  5879. if (!child_ctx)
  5880. return -ENOMEM;
  5881. child->perf_event_ctxp[ctxn] = child_ctx;
  5882. }
  5883. ret = inherit_group(event, parent, parent_ctx,
  5884. child, child_ctx);
  5885. if (ret)
  5886. *inherited_all = 0;
  5887. return ret;
  5888. }
  5889. /*
  5890. * Initialize the perf_event context in task_struct
  5891. */
  5892. int perf_event_init_context(struct task_struct *child, int ctxn)
  5893. {
  5894. struct perf_event_context *child_ctx, *parent_ctx;
  5895. struct perf_event_context *cloned_ctx;
  5896. struct perf_event *event;
  5897. struct task_struct *parent = current;
  5898. int inherited_all = 1;
  5899. unsigned long flags;
  5900. int ret = 0;
  5901. if (likely(!parent->perf_event_ctxp[ctxn]))
  5902. return 0;
  5903. /*
  5904. * If the parent's context is a clone, pin it so it won't get
  5905. * swapped under us.
  5906. */
  5907. parent_ctx = perf_pin_task_context(parent, ctxn);
  5908. /*
  5909. * No need to check if parent_ctx != NULL here; since we saw
  5910. * it non-NULL earlier, the only reason for it to become NULL
  5911. * is if we exit, and since we're currently in the middle of
  5912. * a fork we can't be exiting at the same time.
  5913. */
  5914. /*
  5915. * Lock the parent list. No need to lock the child - not PID
  5916. * hashed yet and not running, so nobody can access it.
  5917. */
  5918. mutex_lock(&parent_ctx->mutex);
  5919. /*
  5920. * We dont have to disable NMIs - we are only looking at
  5921. * the list, not manipulating it:
  5922. */
  5923. list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
  5924. ret = inherit_task_group(event, parent, parent_ctx,
  5925. child, ctxn, &inherited_all);
  5926. if (ret)
  5927. break;
  5928. }
  5929. /*
  5930. * We can't hold ctx->lock when iterating the ->flexible_group list due
  5931. * to allocations, but we need to prevent rotation because
  5932. * rotate_ctx() will change the list from interrupt context.
  5933. */
  5934. raw_spin_lock_irqsave(&parent_ctx->lock, flags);
  5935. parent_ctx->rotate_disable = 1;
  5936. raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
  5937. list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
  5938. ret = inherit_task_group(event, parent, parent_ctx,
  5939. child, ctxn, &inherited_all);
  5940. if (ret)
  5941. break;
  5942. }
  5943. raw_spin_lock_irqsave(&parent_ctx->lock, flags);
  5944. parent_ctx->rotate_disable = 0;
  5945. child_ctx = child->perf_event_ctxp[ctxn];
  5946. if (child_ctx && inherited_all) {
  5947. /*
  5948. * Mark the child context as a clone of the parent
  5949. * context, or of whatever the parent is a clone of.
  5950. *
  5951. * Note that if the parent is a clone, the holding of
  5952. * parent_ctx->lock avoids it from being uncloned.
  5953. */
  5954. cloned_ctx = parent_ctx->parent_ctx;
  5955. if (cloned_ctx) {
  5956. child_ctx->parent_ctx = cloned_ctx;
  5957. child_ctx->parent_gen = parent_ctx->parent_gen;
  5958. } else {
  5959. child_ctx->parent_ctx = parent_ctx;
  5960. child_ctx->parent_gen = parent_ctx->generation;
  5961. }
  5962. get_ctx(child_ctx->parent_ctx);
  5963. }
  5964. raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
  5965. mutex_unlock(&parent_ctx->mutex);
  5966. perf_unpin_context(parent_ctx);
  5967. put_ctx(parent_ctx);
  5968. return ret;
  5969. }
  5970. /*
  5971. * Initialize the perf_event context in task_struct
  5972. */
  5973. int perf_event_init_task(struct task_struct *child)
  5974. {
  5975. int ctxn, ret;
  5976. memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
  5977. mutex_init(&child->perf_event_mutex);
  5978. INIT_LIST_HEAD(&child->perf_event_list);
  5979. for_each_task_context_nr(ctxn) {
  5980. ret = perf_event_init_context(child, ctxn);
  5981. if (ret)
  5982. return ret;
  5983. }
  5984. return 0;
  5985. }
  5986. static void __init perf_event_init_all_cpus(void)
  5987. {
  5988. struct swevent_htable *swhash;
  5989. int cpu;
  5990. for_each_possible_cpu(cpu) {
  5991. swhash = &per_cpu(swevent_htable, cpu);
  5992. mutex_init(&swhash->hlist_mutex);
  5993. INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
  5994. }
  5995. }
  5996. static void __cpuinit perf_event_init_cpu(int cpu)
  5997. {
  5998. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  5999. mutex_lock(&swhash->hlist_mutex);
  6000. if (swhash->hlist_refcount > 0) {
  6001. struct swevent_hlist *hlist;
  6002. hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
  6003. WARN_ON(!hlist);
  6004. rcu_assign_pointer(swhash->swevent_hlist, hlist);
  6005. }
  6006. mutex_unlock(&swhash->hlist_mutex);
  6007. }
  6008. #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
  6009. static void perf_pmu_rotate_stop(struct pmu *pmu)
  6010. {
  6011. struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  6012. WARN_ON(!irqs_disabled());
  6013. list_del_init(&cpuctx->rotation_list);
  6014. }
  6015. static void __perf_event_exit_context(void *__info)
  6016. {
  6017. struct perf_event_context *ctx = __info;
  6018. struct perf_event *event, *tmp;
  6019. perf_pmu_rotate_stop(ctx->pmu);
  6020. list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
  6021. __perf_remove_from_context(event);
  6022. list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
  6023. __perf_remove_from_context(event);
  6024. }
  6025. static void perf_event_exit_cpu_context(int cpu)
  6026. {
  6027. struct perf_event_context *ctx;
  6028. struct pmu *pmu;
  6029. int idx;
  6030. idx = srcu_read_lock(&pmus_srcu);
  6031. list_for_each_entry_rcu(pmu, &pmus, entry) {
  6032. ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
  6033. mutex_lock(&ctx->mutex);
  6034. smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
  6035. mutex_unlock(&ctx->mutex);
  6036. }
  6037. srcu_read_unlock(&pmus_srcu, idx);
  6038. }
  6039. static void perf_event_exit_cpu(int cpu)
  6040. {
  6041. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  6042. mutex_lock(&swhash->hlist_mutex);
  6043. swevent_hlist_release(swhash);
  6044. mutex_unlock(&swhash->hlist_mutex);
  6045. perf_event_exit_cpu_context(cpu);
  6046. }
  6047. #else
  6048. static inline void perf_event_exit_cpu(int cpu) { }
  6049. #endif
  6050. static int
  6051. perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
  6052. {
  6053. int cpu;
  6054. for_each_online_cpu(cpu)
  6055. perf_event_exit_cpu(cpu);
  6056. return NOTIFY_OK;
  6057. }
  6058. /*
  6059. * Run the perf reboot notifier at the very last possible moment so that
  6060. * the generic watchdog code runs as long as possible.
  6061. */
  6062. static struct notifier_block perf_reboot_notifier = {
  6063. .notifier_call = perf_reboot,
  6064. .priority = INT_MIN,
  6065. };
  6066. static int __cpuinit
  6067. perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
  6068. {
  6069. unsigned int cpu = (long)hcpu;
  6070. switch (action & ~CPU_TASKS_FROZEN) {
  6071. case CPU_UP_PREPARE:
  6072. case CPU_DOWN_FAILED:
  6073. perf_event_init_cpu(cpu);
  6074. break;
  6075. case CPU_UP_CANCELED:
  6076. case CPU_DOWN_PREPARE:
  6077. perf_event_exit_cpu(cpu);
  6078. break;
  6079. default:
  6080. break;
  6081. }
  6082. return NOTIFY_OK;
  6083. }
  6084. void __init perf_event_init(void)
  6085. {
  6086. int ret;
  6087. idr_init(&pmu_idr);
  6088. perf_event_init_all_cpus();
  6089. init_srcu_struct(&pmus_srcu);
  6090. perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
  6091. perf_pmu_register(&perf_cpu_clock, NULL, -1);
  6092. perf_pmu_register(&perf_task_clock, NULL, -1);
  6093. perf_tp_register();
  6094. perf_cpu_notifier(perf_cpu_notify);
  6095. register_reboot_notifier(&perf_reboot_notifier);
  6096. ret = init_hw_breakpoint();
  6097. WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
  6098. /* do not patch jump label more than once per second */
  6099. jump_label_rate_limit(&perf_sched_events, HZ);
  6100. /*
  6101. * Build time assertion that we keep the data_head at the intended
  6102. * location. IOW, validation we got the __reserved[] size right.
  6103. */
  6104. BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
  6105. != 1024);
  6106. }
  6107. static int __init perf_event_sysfs_init(void)
  6108. {
  6109. struct pmu *pmu;
  6110. int ret;
  6111. mutex_lock(&pmus_lock);
  6112. ret = bus_register(&pmu_bus);
  6113. if (ret)
  6114. goto unlock;
  6115. list_for_each_entry(pmu, &pmus, entry) {
  6116. if (!pmu->name || pmu->type < 0)
  6117. continue;
  6118. ret = pmu_dev_alloc(pmu);
  6119. WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
  6120. }
  6121. pmu_bus_running = 1;
  6122. ret = 0;
  6123. unlock:
  6124. mutex_unlock(&pmus_lock);
  6125. return ret;
  6126. }
  6127. device_initcall(perf_event_sysfs_init);
  6128. #ifdef CONFIG_CGROUP_PERF
  6129. static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
  6130. {
  6131. struct perf_cgroup *jc;
  6132. jc = kzalloc(sizeof(*jc), GFP_KERNEL);
  6133. if (!jc)
  6134. return ERR_PTR(-ENOMEM);
  6135. jc->info = alloc_percpu(struct perf_cgroup_info);
  6136. if (!jc->info) {
  6137. kfree(jc);
  6138. return ERR_PTR(-ENOMEM);
  6139. }
  6140. return &jc->css;
  6141. }
  6142. static void perf_cgroup_css_free(struct cgroup *cont)
  6143. {
  6144. struct perf_cgroup *jc;
  6145. jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
  6146. struct perf_cgroup, css);
  6147. free_percpu(jc->info);
  6148. kfree(jc);
  6149. }
  6150. static int __perf_cgroup_move(void *info)
  6151. {
  6152. struct task_struct *task = info;
  6153. perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
  6154. return 0;
  6155. }
  6156. static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
  6157. {
  6158. struct task_struct *task;
  6159. cgroup_taskset_for_each(task, cgrp, tset)
  6160. task_function_call(task, __perf_cgroup_move, task);
  6161. }
  6162. static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
  6163. struct task_struct *task)
  6164. {
  6165. /*
  6166. * cgroup_exit() is called in the copy_process() failure path.
  6167. * Ignore this case since the task hasn't ran yet, this avoids
  6168. * trying to poke a half freed task state from generic code.
  6169. */
  6170. if (!(task->flags & PF_EXITING))
  6171. return;
  6172. task_function_call(task, __perf_cgroup_move, task);
  6173. }
  6174. struct cgroup_subsys perf_subsys = {
  6175. .name = "perf_event",
  6176. .subsys_id = perf_subsys_id,
  6177. .css_alloc = perf_cgroup_css_alloc,
  6178. .css_free = perf_cgroup_css_free,
  6179. .exit = perf_cgroup_exit,
  6180. .attach = perf_cgroup_attach,
  6181. /*
  6182. * perf_event cgroup doesn't handle nesting correctly.
  6183. * ctx->nr_cgroups adjustments should be propagated through the
  6184. * cgroup hierarchy. Fix it and remove the following.
  6185. */
  6186. .broken_hierarchy = true,
  6187. };
  6188. #endif /* CONFIG_CGROUP_PERF */