xfs_super.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968
  1. /*
  2. * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_bit.h"
  20. #include "xfs_log.h"
  21. #include "xfs_clnt.h"
  22. #include "xfs_inum.h"
  23. #include "xfs_trans.h"
  24. #include "xfs_sb.h"
  25. #include "xfs_ag.h"
  26. #include "xfs_dir.h"
  27. #include "xfs_dir2.h"
  28. #include "xfs_alloc.h"
  29. #include "xfs_dmapi.h"
  30. #include "xfs_quota.h"
  31. #include "xfs_mount.h"
  32. #include "xfs_bmap_btree.h"
  33. #include "xfs_alloc_btree.h"
  34. #include "xfs_ialloc_btree.h"
  35. #include "xfs_dir_sf.h"
  36. #include "xfs_dir2_sf.h"
  37. #include "xfs_attr_sf.h"
  38. #include "xfs_dinode.h"
  39. #include "xfs_inode.h"
  40. #include "xfs_btree.h"
  41. #include "xfs_ialloc.h"
  42. #include "xfs_bmap.h"
  43. #include "xfs_rtalloc.h"
  44. #include "xfs_error.h"
  45. #include "xfs_itable.h"
  46. #include "xfs_rw.h"
  47. #include "xfs_acl.h"
  48. #include "xfs_cap.h"
  49. #include "xfs_mac.h"
  50. #include "xfs_attr.h"
  51. #include "xfs_buf_item.h"
  52. #include "xfs_utils.h"
  53. #include "xfs_version.h"
  54. #include <linux/namei.h>
  55. #include <linux/init.h>
  56. #include <linux/mount.h>
  57. #include <linux/mempool.h>
  58. #include <linux/writeback.h>
  59. #include <linux/kthread.h>
  60. STATIC struct quotactl_ops xfs_quotactl_operations;
  61. STATIC struct super_operations xfs_super_operations;
  62. STATIC kmem_zone_t *xfs_vnode_zone;
  63. STATIC kmem_zone_t *xfs_ioend_zone;
  64. mempool_t *xfs_ioend_pool;
  65. STATIC struct xfs_mount_args *
  66. xfs_args_allocate(
  67. struct super_block *sb,
  68. int silent)
  69. {
  70. struct xfs_mount_args *args;
  71. args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP);
  72. args->logbufs = args->logbufsize = -1;
  73. strncpy(args->fsname, sb->s_id, MAXNAMELEN);
  74. /* Copy the already-parsed mount(2) flags we're interested in */
  75. if (sb->s_flags & MS_DIRSYNC)
  76. args->flags |= XFSMNT_DIRSYNC;
  77. if (sb->s_flags & MS_SYNCHRONOUS)
  78. args->flags |= XFSMNT_WSYNC;
  79. if (silent)
  80. args->flags |= XFSMNT_QUIET;
  81. args->flags |= XFSMNT_32BITINODES;
  82. return args;
  83. }
  84. __uint64_t
  85. xfs_max_file_offset(
  86. unsigned int blockshift)
  87. {
  88. unsigned int pagefactor = 1;
  89. unsigned int bitshift = BITS_PER_LONG - 1;
  90. /* Figure out maximum filesize, on Linux this can depend on
  91. * the filesystem blocksize (on 32 bit platforms).
  92. * __block_prepare_write does this in an [unsigned] long...
  93. * page->index << (PAGE_CACHE_SHIFT - bbits)
  94. * So, for page sized blocks (4K on 32 bit platforms),
  95. * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
  96. * (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
  97. * but for smaller blocksizes it is less (bbits = log2 bsize).
  98. * Note1: get_block_t takes a long (implicit cast from above)
  99. * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
  100. * can optionally convert the [unsigned] long from above into
  101. * an [unsigned] long long.
  102. */
  103. #if BITS_PER_LONG == 32
  104. # if defined(CONFIG_LBD)
  105. ASSERT(sizeof(sector_t) == 8);
  106. pagefactor = PAGE_CACHE_SIZE;
  107. bitshift = BITS_PER_LONG;
  108. # else
  109. pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
  110. # endif
  111. #endif
  112. return (((__uint64_t)pagefactor) << bitshift) - 1;
  113. }
  114. STATIC __inline__ void
  115. xfs_set_inodeops(
  116. struct inode *inode)
  117. {
  118. switch (inode->i_mode & S_IFMT) {
  119. case S_IFREG:
  120. inode->i_op = &xfs_inode_operations;
  121. inode->i_fop = &xfs_file_operations;
  122. inode->i_mapping->a_ops = &xfs_address_space_operations;
  123. break;
  124. case S_IFDIR:
  125. inode->i_op = &xfs_dir_inode_operations;
  126. inode->i_fop = &xfs_dir_file_operations;
  127. break;
  128. case S_IFLNK:
  129. inode->i_op = &xfs_symlink_inode_operations;
  130. if (inode->i_blocks)
  131. inode->i_mapping->a_ops = &xfs_address_space_operations;
  132. break;
  133. default:
  134. inode->i_op = &xfs_inode_operations;
  135. init_special_inode(inode, inode->i_mode, inode->i_rdev);
  136. break;
  137. }
  138. }
  139. STATIC __inline__ void
  140. xfs_revalidate_inode(
  141. xfs_mount_t *mp,
  142. vnode_t *vp,
  143. xfs_inode_t *ip)
  144. {
  145. struct inode *inode = vn_to_inode(vp);
  146. inode->i_mode = ip->i_d.di_mode;
  147. inode->i_nlink = ip->i_d.di_nlink;
  148. inode->i_uid = ip->i_d.di_uid;
  149. inode->i_gid = ip->i_d.di_gid;
  150. switch (inode->i_mode & S_IFMT) {
  151. case S_IFBLK:
  152. case S_IFCHR:
  153. inode->i_rdev =
  154. MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff,
  155. sysv_minor(ip->i_df.if_u2.if_rdev));
  156. break;
  157. default:
  158. inode->i_rdev = 0;
  159. break;
  160. }
  161. inode->i_blksize = xfs_preferred_iosize(mp);
  162. inode->i_generation = ip->i_d.di_gen;
  163. i_size_write(inode, ip->i_d.di_size);
  164. inode->i_blocks =
  165. XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
  166. inode->i_atime.tv_sec = ip->i_d.di_atime.t_sec;
  167. inode->i_atime.tv_nsec = ip->i_d.di_atime.t_nsec;
  168. inode->i_mtime.tv_sec = ip->i_d.di_mtime.t_sec;
  169. inode->i_mtime.tv_nsec = ip->i_d.di_mtime.t_nsec;
  170. inode->i_ctime.tv_sec = ip->i_d.di_ctime.t_sec;
  171. inode->i_ctime.tv_nsec = ip->i_d.di_ctime.t_nsec;
  172. if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
  173. inode->i_flags |= S_IMMUTABLE;
  174. else
  175. inode->i_flags &= ~S_IMMUTABLE;
  176. if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
  177. inode->i_flags |= S_APPEND;
  178. else
  179. inode->i_flags &= ~S_APPEND;
  180. if (ip->i_d.di_flags & XFS_DIFLAG_SYNC)
  181. inode->i_flags |= S_SYNC;
  182. else
  183. inode->i_flags &= ~S_SYNC;
  184. if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME)
  185. inode->i_flags |= S_NOATIME;
  186. else
  187. inode->i_flags &= ~S_NOATIME;
  188. vp->v_flag &= ~VMODIFIED;
  189. }
  190. void
  191. xfs_initialize_vnode(
  192. bhv_desc_t *bdp,
  193. vnode_t *vp,
  194. bhv_desc_t *inode_bhv,
  195. int unlock)
  196. {
  197. xfs_inode_t *ip = XFS_BHVTOI(inode_bhv);
  198. struct inode *inode = vn_to_inode(vp);
  199. if (!inode_bhv->bd_vobj) {
  200. vp->v_vfsp = bhvtovfs(bdp);
  201. bhv_desc_init(inode_bhv, ip, vp, &xfs_vnodeops);
  202. bhv_insert(VN_BHV_HEAD(vp), inode_bhv);
  203. }
  204. /*
  205. * We need to set the ops vectors, and unlock the inode, but if
  206. * we have been called during the new inode create process, it is
  207. * too early to fill in the Linux inode. We will get called a
  208. * second time once the inode is properly set up, and then we can
  209. * finish our work.
  210. */
  211. if (ip->i_d.di_mode != 0 && unlock && (inode->i_state & I_NEW)) {
  212. xfs_revalidate_inode(XFS_BHVTOM(bdp), vp, ip);
  213. xfs_set_inodeops(inode);
  214. ip->i_flags &= ~XFS_INEW;
  215. barrier();
  216. unlock_new_inode(inode);
  217. }
  218. }
  219. int
  220. xfs_blkdev_get(
  221. xfs_mount_t *mp,
  222. const char *name,
  223. struct block_device **bdevp)
  224. {
  225. int error = 0;
  226. *bdevp = open_bdev_excl(name, 0, mp);
  227. if (IS_ERR(*bdevp)) {
  228. error = PTR_ERR(*bdevp);
  229. printk("XFS: Invalid device [%s], error=%d\n", name, error);
  230. }
  231. return -error;
  232. }
  233. void
  234. xfs_blkdev_put(
  235. struct block_device *bdev)
  236. {
  237. if (bdev)
  238. close_bdev_excl(bdev);
  239. }
  240. /*
  241. * Try to write out the superblock using barriers.
  242. */
  243. STATIC int
  244. xfs_barrier_test(
  245. xfs_mount_t *mp)
  246. {
  247. xfs_buf_t *sbp = xfs_getsb(mp, 0);
  248. int error;
  249. XFS_BUF_UNDONE(sbp);
  250. XFS_BUF_UNREAD(sbp);
  251. XFS_BUF_UNDELAYWRITE(sbp);
  252. XFS_BUF_WRITE(sbp);
  253. XFS_BUF_UNASYNC(sbp);
  254. XFS_BUF_ORDERED(sbp);
  255. xfsbdstrat(mp, sbp);
  256. error = xfs_iowait(sbp);
  257. /*
  258. * Clear all the flags we set and possible error state in the
  259. * buffer. We only did the write to try out whether barriers
  260. * worked and shouldn't leave any traces in the superblock
  261. * buffer.
  262. */
  263. XFS_BUF_DONE(sbp);
  264. XFS_BUF_ERROR(sbp, 0);
  265. XFS_BUF_UNORDERED(sbp);
  266. xfs_buf_relse(sbp);
  267. return error;
  268. }
  269. void
  270. xfs_mountfs_check_barriers(xfs_mount_t *mp)
  271. {
  272. int error;
  273. if (mp->m_logdev_targp != mp->m_ddev_targp) {
  274. xfs_fs_cmn_err(CE_NOTE, mp,
  275. "Disabling barriers, not supported with external log device");
  276. mp->m_flags &= ~XFS_MOUNT_BARRIER;
  277. return;
  278. }
  279. if (mp->m_ddev_targp->bt_bdev->bd_disk->queue->ordered ==
  280. QUEUE_ORDERED_NONE) {
  281. xfs_fs_cmn_err(CE_NOTE, mp,
  282. "Disabling barriers, not supported by the underlying device");
  283. mp->m_flags &= ~XFS_MOUNT_BARRIER;
  284. return;
  285. }
  286. error = xfs_barrier_test(mp);
  287. if (error) {
  288. xfs_fs_cmn_err(CE_NOTE, mp,
  289. "Disabling barriers, trial barrier write failed");
  290. mp->m_flags &= ~XFS_MOUNT_BARRIER;
  291. return;
  292. }
  293. }
  294. void
  295. xfs_blkdev_issue_flush(
  296. xfs_buftarg_t *buftarg)
  297. {
  298. blkdev_issue_flush(buftarg->bt_bdev, NULL);
  299. }
  300. STATIC struct inode *
  301. xfs_fs_alloc_inode(
  302. struct super_block *sb)
  303. {
  304. vnode_t *vp;
  305. vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP);
  306. if (unlikely(!vp))
  307. return NULL;
  308. return vn_to_inode(vp);
  309. }
  310. STATIC void
  311. xfs_fs_destroy_inode(
  312. struct inode *inode)
  313. {
  314. kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode));
  315. }
  316. STATIC void
  317. xfs_fs_inode_init_once(
  318. void *vnode,
  319. kmem_zone_t *zonep,
  320. unsigned long flags)
  321. {
  322. if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
  323. SLAB_CTOR_CONSTRUCTOR)
  324. inode_init_once(vn_to_inode((vnode_t *)vnode));
  325. }
  326. STATIC int
  327. xfs_init_zones(void)
  328. {
  329. xfs_vnode_zone = kmem_zone_init_flags(sizeof(vnode_t), "xfs_vnode_t",
  330. KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
  331. KM_ZONE_SPREAD,
  332. xfs_fs_inode_init_once);
  333. if (!xfs_vnode_zone)
  334. goto out;
  335. xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
  336. if (!xfs_ioend_zone)
  337. goto out_destroy_vnode_zone;
  338. xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
  339. xfs_ioend_zone);
  340. if (!xfs_ioend_pool)
  341. goto out_free_ioend_zone;
  342. return 0;
  343. out_free_ioend_zone:
  344. kmem_zone_destroy(xfs_ioend_zone);
  345. out_destroy_vnode_zone:
  346. kmem_zone_destroy(xfs_vnode_zone);
  347. out:
  348. return -ENOMEM;
  349. }
  350. STATIC void
  351. xfs_destroy_zones(void)
  352. {
  353. mempool_destroy(xfs_ioend_pool);
  354. kmem_zone_destroy(xfs_vnode_zone);
  355. kmem_zone_destroy(xfs_ioend_zone);
  356. }
  357. /*
  358. * Attempt to flush the inode, this will actually fail
  359. * if the inode is pinned, but we dirty the inode again
  360. * at the point when it is unpinned after a log write,
  361. * since this is when the inode itself becomes flushable.
  362. */
  363. STATIC int
  364. xfs_fs_write_inode(
  365. struct inode *inode,
  366. int sync)
  367. {
  368. vnode_t *vp = vn_from_inode(inode);
  369. int error = 0, flags = FLUSH_INODE;
  370. if (vp) {
  371. vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
  372. if (sync)
  373. flags |= FLUSH_SYNC;
  374. VOP_IFLUSH(vp, flags, error);
  375. if (error == EAGAIN) {
  376. if (sync)
  377. VOP_IFLUSH(vp, flags | FLUSH_LOG, error);
  378. else
  379. error = 0;
  380. }
  381. }
  382. return -error;
  383. }
  384. STATIC void
  385. xfs_fs_clear_inode(
  386. struct inode *inode)
  387. {
  388. vnode_t *vp = vn_from_inode(inode);
  389. int error, cache;
  390. vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
  391. XFS_STATS_INC(vn_rele);
  392. XFS_STATS_INC(vn_remove);
  393. XFS_STATS_INC(vn_reclaim);
  394. XFS_STATS_DEC(vn_active);
  395. /*
  396. * This can happen because xfs_iget_core calls xfs_idestroy if we
  397. * find an inode with di_mode == 0 but without IGET_CREATE set.
  398. */
  399. if (vp->v_fbhv)
  400. VOP_INACTIVE(vp, NULL, cache);
  401. VN_LOCK(vp);
  402. vp->v_flag &= ~VMODIFIED;
  403. VN_UNLOCK(vp, 0);
  404. if (vp->v_fbhv) {
  405. VOP_RECLAIM(vp, error);
  406. if (error)
  407. panic("vn_purge: cannot reclaim");
  408. }
  409. ASSERT(vp->v_fbhv == NULL);
  410. #ifdef XFS_VNODE_TRACE
  411. ktrace_free(vp->v_trace);
  412. #endif
  413. }
  414. /*
  415. * Enqueue a work item to be picked up by the vfs xfssyncd thread.
  416. * Doing this has two advantages:
  417. * - It saves on stack space, which is tight in certain situations
  418. * - It can be used (with care) as a mechanism to avoid deadlocks.
  419. * Flushing while allocating in a full filesystem requires both.
  420. */
  421. STATIC void
  422. xfs_syncd_queue_work(
  423. struct bhv_vfs *vfs,
  424. void *data,
  425. void (*syncer)(bhv_vfs_t *, void *))
  426. {
  427. struct bhv_vfs_sync_work *work;
  428. work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
  429. INIT_LIST_HEAD(&work->w_list);
  430. work->w_syncer = syncer;
  431. work->w_data = data;
  432. work->w_vfs = vfs;
  433. spin_lock(&vfs->vfs_sync_lock);
  434. list_add_tail(&work->w_list, &vfs->vfs_sync_list);
  435. spin_unlock(&vfs->vfs_sync_lock);
  436. wake_up_process(vfs->vfs_sync_task);
  437. }
  438. /*
  439. * Flush delayed allocate data, attempting to free up reserved space
  440. * from existing allocations. At this point a new allocation attempt
  441. * has failed with ENOSPC and we are in the process of scratching our
  442. * heads, looking about for more room...
  443. */
  444. STATIC void
  445. xfs_flush_inode_work(
  446. bhv_vfs_t *vfs,
  447. void *inode)
  448. {
  449. filemap_flush(((struct inode *)inode)->i_mapping);
  450. iput((struct inode *)inode);
  451. }
  452. void
  453. xfs_flush_inode(
  454. xfs_inode_t *ip)
  455. {
  456. struct inode *inode = vn_to_inode(XFS_ITOV(ip));
  457. struct bhv_vfs *vfs = XFS_MTOVFS(ip->i_mount);
  458. igrab(inode);
  459. xfs_syncd_queue_work(vfs, inode, xfs_flush_inode_work);
  460. delay(msecs_to_jiffies(500));
  461. }
  462. /*
  463. * This is the "bigger hammer" version of xfs_flush_inode_work...
  464. * (IOW, "If at first you don't succeed, use a Bigger Hammer").
  465. */
  466. STATIC void
  467. xfs_flush_device_work(
  468. bhv_vfs_t *vfs,
  469. void *inode)
  470. {
  471. sync_blockdev(vfs->vfs_super->s_bdev);
  472. iput((struct inode *)inode);
  473. }
  474. void
  475. xfs_flush_device(
  476. xfs_inode_t *ip)
  477. {
  478. struct inode *inode = vn_to_inode(XFS_ITOV(ip));
  479. struct bhv_vfs *vfs = XFS_MTOVFS(ip->i_mount);
  480. igrab(inode);
  481. xfs_syncd_queue_work(vfs, inode, xfs_flush_device_work);
  482. delay(msecs_to_jiffies(500));
  483. xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
  484. }
  485. STATIC void
  486. vfs_sync_worker(
  487. bhv_vfs_t *vfsp,
  488. void *unused)
  489. {
  490. int error;
  491. if (!(vfsp->vfs_flag & VFS_RDONLY))
  492. error = bhv_vfs_sync(vfsp, SYNC_FSDATA | SYNC_BDFLUSH | \
  493. SYNC_ATTR | SYNC_REFCACHE, NULL);
  494. vfsp->vfs_sync_seq++;
  495. wmb();
  496. wake_up(&vfsp->vfs_wait_single_sync_task);
  497. }
  498. STATIC int
  499. xfssyncd(
  500. void *arg)
  501. {
  502. long timeleft;
  503. bhv_vfs_t *vfsp = (bhv_vfs_t *) arg;
  504. bhv_vfs_sync_work_t *work, *n;
  505. LIST_HEAD (tmp);
  506. timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
  507. for (;;) {
  508. timeleft = schedule_timeout_interruptible(timeleft);
  509. /* swsusp */
  510. try_to_freeze();
  511. if (kthread_should_stop() && list_empty(&vfsp->vfs_sync_list))
  512. break;
  513. spin_lock(&vfsp->vfs_sync_lock);
  514. /*
  515. * We can get woken by laptop mode, to do a sync -
  516. * that's the (only!) case where the list would be
  517. * empty with time remaining.
  518. */
  519. if (!timeleft || list_empty(&vfsp->vfs_sync_list)) {
  520. if (!timeleft)
  521. timeleft = xfs_syncd_centisecs *
  522. msecs_to_jiffies(10);
  523. INIT_LIST_HEAD(&vfsp->vfs_sync_work.w_list);
  524. list_add_tail(&vfsp->vfs_sync_work.w_list,
  525. &vfsp->vfs_sync_list);
  526. }
  527. list_for_each_entry_safe(work, n, &vfsp->vfs_sync_list, w_list)
  528. list_move(&work->w_list, &tmp);
  529. spin_unlock(&vfsp->vfs_sync_lock);
  530. list_for_each_entry_safe(work, n, &tmp, w_list) {
  531. (*work->w_syncer)(vfsp, work->w_data);
  532. list_del(&work->w_list);
  533. if (work == &vfsp->vfs_sync_work)
  534. continue;
  535. kmem_free(work, sizeof(struct bhv_vfs_sync_work));
  536. }
  537. }
  538. return 0;
  539. }
  540. STATIC int
  541. xfs_fs_start_syncd(
  542. bhv_vfs_t *vfsp)
  543. {
  544. vfsp->vfs_sync_work.w_syncer = vfs_sync_worker;
  545. vfsp->vfs_sync_work.w_vfs = vfsp;
  546. vfsp->vfs_sync_task = kthread_run(xfssyncd, vfsp, "xfssyncd");
  547. if (IS_ERR(vfsp->vfs_sync_task))
  548. return -PTR_ERR(vfsp->vfs_sync_task);
  549. return 0;
  550. }
  551. STATIC void
  552. xfs_fs_stop_syncd(
  553. bhv_vfs_t *vfsp)
  554. {
  555. kthread_stop(vfsp->vfs_sync_task);
  556. }
  557. STATIC void
  558. xfs_fs_put_super(
  559. struct super_block *sb)
  560. {
  561. bhv_vfs_t *vfsp = vfs_from_sb(sb);
  562. int error;
  563. xfs_fs_stop_syncd(vfsp);
  564. bhv_vfs_sync(vfsp, SYNC_ATTR | SYNC_DELWRI, NULL);
  565. error = bhv_vfs_unmount(vfsp, 0, NULL);
  566. if (error) {
  567. printk("XFS: unmount got error=%d\n", error);
  568. printk("%s: vfs=0x%p left dangling!\n", __FUNCTION__, vfsp);
  569. } else {
  570. vfs_deallocate(vfsp);
  571. }
  572. }
  573. STATIC void
  574. xfs_fs_write_super(
  575. struct super_block *sb)
  576. {
  577. if (!(sb->s_flags & MS_RDONLY))
  578. bhv_vfs_sync(vfs_from_sb(sb), SYNC_FSDATA, NULL);
  579. sb->s_dirt = 0;
  580. }
  581. STATIC int
  582. xfs_fs_sync_super(
  583. struct super_block *sb,
  584. int wait)
  585. {
  586. bhv_vfs_t *vfsp = vfs_from_sb(sb);
  587. int error;
  588. int flags;
  589. if (unlikely(sb->s_frozen == SB_FREEZE_WRITE))
  590. flags = SYNC_QUIESCE;
  591. else
  592. flags = SYNC_FSDATA | (wait ? SYNC_WAIT : 0);
  593. error = bhv_vfs_sync(vfsp, flags, NULL);
  594. sb->s_dirt = 0;
  595. if (unlikely(laptop_mode)) {
  596. int prev_sync_seq = vfsp->vfs_sync_seq;
  597. /*
  598. * The disk must be active because we're syncing.
  599. * We schedule xfssyncd now (now that the disk is
  600. * active) instead of later (when it might not be).
  601. */
  602. wake_up_process(vfsp->vfs_sync_task);
  603. /*
  604. * We have to wait for the sync iteration to complete.
  605. * If we don't, the disk activity caused by the sync
  606. * will come after the sync is completed, and that
  607. * triggers another sync from laptop mode.
  608. */
  609. wait_event(vfsp->vfs_wait_single_sync_task,
  610. vfsp->vfs_sync_seq != prev_sync_seq);
  611. }
  612. return -error;
  613. }
  614. STATIC int
  615. xfs_fs_statfs(
  616. struct super_block *sb,
  617. struct kstatfs *statp)
  618. {
  619. return -bhv_vfs_statvfs(vfs_from_sb(sb), statp, NULL);
  620. }
  621. STATIC int
  622. xfs_fs_remount(
  623. struct super_block *sb,
  624. int *flags,
  625. char *options)
  626. {
  627. bhv_vfs_t *vfsp = vfs_from_sb(sb);
  628. struct xfs_mount_args *args = xfs_args_allocate(sb, 0);
  629. int error;
  630. error = bhv_vfs_parseargs(vfsp, options, args, 1);
  631. if (!error)
  632. error = bhv_vfs_mntupdate(vfsp, flags, args);
  633. kmem_free(args, sizeof(*args));
  634. return -error;
  635. }
  636. STATIC void
  637. xfs_fs_lockfs(
  638. struct super_block *sb)
  639. {
  640. bhv_vfs_freeze(vfs_from_sb(sb));
  641. }
  642. STATIC int
  643. xfs_fs_show_options(
  644. struct seq_file *m,
  645. struct vfsmount *mnt)
  646. {
  647. return -bhv_vfs_showargs(vfs_from_sb(mnt->mnt_sb), m);
  648. }
  649. STATIC int
  650. xfs_fs_quotasync(
  651. struct super_block *sb,
  652. int type)
  653. {
  654. return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XQUOTASYNC, 0, NULL);
  655. }
  656. STATIC int
  657. xfs_fs_getxstate(
  658. struct super_block *sb,
  659. struct fs_quota_stat *fqs)
  660. {
  661. return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XGETQSTAT, 0, (caddr_t)fqs);
  662. }
  663. STATIC int
  664. xfs_fs_setxstate(
  665. struct super_block *sb,
  666. unsigned int flags,
  667. int op)
  668. {
  669. return -bhv_vfs_quotactl(vfs_from_sb(sb), op, 0, (caddr_t)&flags);
  670. }
  671. STATIC int
  672. xfs_fs_getxquota(
  673. struct super_block *sb,
  674. int type,
  675. qid_t id,
  676. struct fs_disk_quota *fdq)
  677. {
  678. return -bhv_vfs_quotactl(vfs_from_sb(sb),
  679. (type == USRQUOTA) ? Q_XGETQUOTA :
  680. ((type == GRPQUOTA) ? Q_XGETGQUOTA :
  681. Q_XGETPQUOTA), id, (caddr_t)fdq);
  682. }
  683. STATIC int
  684. xfs_fs_setxquota(
  685. struct super_block *sb,
  686. int type,
  687. qid_t id,
  688. struct fs_disk_quota *fdq)
  689. {
  690. return -bhv_vfs_quotactl(vfs_from_sb(sb),
  691. (type == USRQUOTA) ? Q_XSETQLIM :
  692. ((type == GRPQUOTA) ? Q_XSETGQLIM :
  693. Q_XSETPQLIM), id, (caddr_t)fdq);
  694. }
  695. STATIC int
  696. xfs_fs_fill_super(
  697. struct super_block *sb,
  698. void *data,
  699. int silent)
  700. {
  701. vnode_t *rootvp;
  702. struct bhv_vfs *vfsp = vfs_allocate(sb);
  703. struct xfs_mount_args *args = xfs_args_allocate(sb, silent);
  704. struct kstatfs statvfs;
  705. int error;
  706. bhv_insert_all_vfsops(vfsp);
  707. error = bhv_vfs_parseargs(vfsp, (char *)data, args, 0);
  708. if (error) {
  709. bhv_remove_all_vfsops(vfsp, 1);
  710. goto fail_vfsop;
  711. }
  712. sb_min_blocksize(sb, BBSIZE);
  713. #ifdef CONFIG_XFS_EXPORT
  714. sb->s_export_op = &xfs_export_operations;
  715. #endif
  716. sb->s_qcop = &xfs_quotactl_operations;
  717. sb->s_op = &xfs_super_operations;
  718. error = bhv_vfs_mount(vfsp, args, NULL);
  719. if (error) {
  720. bhv_remove_all_vfsops(vfsp, 1);
  721. goto fail_vfsop;
  722. }
  723. error = bhv_vfs_statvfs(vfsp, &statvfs, NULL);
  724. if (error)
  725. goto fail_unmount;
  726. sb->s_dirt = 1;
  727. sb->s_magic = statvfs.f_type;
  728. sb->s_blocksize = statvfs.f_bsize;
  729. sb->s_blocksize_bits = ffs(statvfs.f_bsize) - 1;
  730. sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
  731. sb->s_time_gran = 1;
  732. set_posix_acl_flag(sb);
  733. error = bhv_vfs_root(vfsp, &rootvp);
  734. if (error)
  735. goto fail_unmount;
  736. sb->s_root = d_alloc_root(vn_to_inode(rootvp));
  737. if (!sb->s_root) {
  738. error = ENOMEM;
  739. goto fail_vnrele;
  740. }
  741. if (is_bad_inode(sb->s_root->d_inode)) {
  742. error = EINVAL;
  743. goto fail_vnrele;
  744. }
  745. if ((error = xfs_fs_start_syncd(vfsp)))
  746. goto fail_vnrele;
  747. vn_trace_exit(rootvp, __FUNCTION__, (inst_t *)__return_address);
  748. kmem_free(args, sizeof(*args));
  749. return 0;
  750. fail_vnrele:
  751. if (sb->s_root) {
  752. dput(sb->s_root);
  753. sb->s_root = NULL;
  754. } else {
  755. VN_RELE(rootvp);
  756. }
  757. fail_unmount:
  758. bhv_vfs_unmount(vfsp, 0, NULL);
  759. fail_vfsop:
  760. vfs_deallocate(vfsp);
  761. kmem_free(args, sizeof(*args));
  762. return -error;
  763. }
  764. STATIC struct super_block *
  765. xfs_fs_get_sb(
  766. struct file_system_type *fs_type,
  767. int flags,
  768. const char *dev_name,
  769. void *data)
  770. {
  771. return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super);
  772. }
  773. STATIC struct super_operations xfs_super_operations = {
  774. .alloc_inode = xfs_fs_alloc_inode,
  775. .destroy_inode = xfs_fs_destroy_inode,
  776. .write_inode = xfs_fs_write_inode,
  777. .clear_inode = xfs_fs_clear_inode,
  778. .put_super = xfs_fs_put_super,
  779. .write_super = xfs_fs_write_super,
  780. .sync_fs = xfs_fs_sync_super,
  781. .write_super_lockfs = xfs_fs_lockfs,
  782. .statfs = xfs_fs_statfs,
  783. .remount_fs = xfs_fs_remount,
  784. .show_options = xfs_fs_show_options,
  785. };
  786. STATIC struct quotactl_ops xfs_quotactl_operations = {
  787. .quota_sync = xfs_fs_quotasync,
  788. .get_xstate = xfs_fs_getxstate,
  789. .set_xstate = xfs_fs_setxstate,
  790. .get_xquota = xfs_fs_getxquota,
  791. .set_xquota = xfs_fs_setxquota,
  792. };
  793. STATIC struct file_system_type xfs_fs_type = {
  794. .owner = THIS_MODULE,
  795. .name = "xfs",
  796. .get_sb = xfs_fs_get_sb,
  797. .kill_sb = kill_block_super,
  798. .fs_flags = FS_REQUIRES_DEV,
  799. };
  800. STATIC int __init
  801. init_xfs_fs( void )
  802. {
  803. int error;
  804. struct sysinfo si;
  805. static char message[] __initdata = KERN_INFO \
  806. XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n";
  807. printk(message);
  808. si_meminfo(&si);
  809. xfs_physmem = si.totalram;
  810. ktrace_init(64);
  811. error = xfs_init_zones();
  812. if (error < 0)
  813. goto undo_zones;
  814. error = xfs_buf_init();
  815. if (error < 0)
  816. goto undo_buffers;
  817. vn_init();
  818. xfs_init();
  819. uuid_init();
  820. vfs_initquota();
  821. error = register_filesystem(&xfs_fs_type);
  822. if (error)
  823. goto undo_register;
  824. return 0;
  825. undo_register:
  826. xfs_buf_terminate();
  827. undo_buffers:
  828. xfs_destroy_zones();
  829. undo_zones:
  830. return error;
  831. }
  832. STATIC void __exit
  833. exit_xfs_fs( void )
  834. {
  835. vfs_exitquota();
  836. unregister_filesystem(&xfs_fs_type);
  837. xfs_cleanup();
  838. xfs_buf_terminate();
  839. xfs_destroy_zones();
  840. ktrace_uninit();
  841. }
  842. module_init(init_xfs_fs);
  843. module_exit(exit_xfs_fs);
  844. MODULE_AUTHOR("Silicon Graphics, Inc.");
  845. MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
  846. MODULE_LICENSE("GPL");