mm.h 56 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/gfp.h>
  6. #include <linux/list.h>
  7. #include <linux/mmzone.h>
  8. #include <linux/rbtree.h>
  9. #include <linux/prio_tree.h>
  10. #include <linux/debug_locks.h>
  11. #include <linux/mm_types.h>
  12. #include <linux/range.h>
  13. #include <linux/pfn.h>
  14. #include <linux/bit_spinlock.h>
  15. struct mempolicy;
  16. struct anon_vma;
  17. struct file_ra_state;
  18. struct user_struct;
  19. struct writeback_control;
  20. #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
  21. extern unsigned long max_mapnr;
  22. #endif
  23. extern unsigned long num_physpages;
  24. extern unsigned long totalram_pages;
  25. extern void * high_memory;
  26. extern int page_cluster;
  27. #ifdef CONFIG_SYSCTL
  28. extern int sysctl_legacy_va_layout;
  29. #else
  30. #define sysctl_legacy_va_layout 0
  31. #endif
  32. #include <asm/page.h>
  33. #include <asm/pgtable.h>
  34. #include <asm/processor.h>
  35. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  36. /* to align the pointer to the (next) page boundary */
  37. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  38. /*
  39. * Linux kernel virtual memory manager primitives.
  40. * The idea being to have a "virtual" mm in the same way
  41. * we have a virtual fs - giving a cleaner interface to the
  42. * mm details, and allowing different kinds of memory mappings
  43. * (from shared memory to executable loading to arbitrary
  44. * mmap() functions).
  45. */
  46. extern struct kmem_cache *vm_area_cachep;
  47. #ifndef CONFIG_MMU
  48. extern struct rb_root nommu_region_tree;
  49. extern struct rw_semaphore nommu_region_sem;
  50. extern unsigned int kobjsize(const void *objp);
  51. #endif
  52. /*
  53. * vm_flags in vm_area_struct, see mm_types.h.
  54. */
  55. #define VM_READ 0x00000001 /* currently active flags */
  56. #define VM_WRITE 0x00000002
  57. #define VM_EXEC 0x00000004
  58. #define VM_SHARED 0x00000008
  59. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  60. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  61. #define VM_MAYWRITE 0x00000020
  62. #define VM_MAYEXEC 0x00000040
  63. #define VM_MAYSHARE 0x00000080
  64. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  65. #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
  66. #define VM_GROWSUP 0x00000200
  67. #else
  68. #define VM_GROWSUP 0x00000000
  69. #define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */
  70. #endif
  71. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  72. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  73. #define VM_EXECUTABLE 0x00001000
  74. #define VM_LOCKED 0x00002000
  75. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  76. /* Used by sys_madvise() */
  77. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  78. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  79. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  80. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  81. #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
  82. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  83. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  84. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  85. #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
  86. #ifndef CONFIG_TRANSPARENT_HUGEPAGE
  87. #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
  88. #else
  89. #define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */
  90. #endif
  91. #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
  92. #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
  93. #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
  94. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  95. #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
  96. #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
  97. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  98. /* Bits set in the VMA until the stack is in its final location */
  99. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  100. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  101. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  102. #endif
  103. #ifdef CONFIG_STACK_GROWSUP
  104. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  105. #else
  106. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  107. #endif
  108. #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
  109. #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
  110. #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
  111. #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
  112. #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
  113. /*
  114. * special vmas that are non-mergable, non-mlock()able
  115. */
  116. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
  117. /*
  118. * mapping from the currently active vm_flags protection bits (the
  119. * low four bits) to a page protection mask..
  120. */
  121. extern pgprot_t protection_map[16];
  122. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  123. #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
  124. #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
  125. #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
  126. #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
  127. /*
  128. * This interface is used by x86 PAT code to identify a pfn mapping that is
  129. * linear over entire vma. This is to optimize PAT code that deals with
  130. * marking the physical region with a particular prot. This is not for generic
  131. * mm use. Note also that this check will not work if the pfn mapping is
  132. * linear for a vma starting at physical address 0. In which case PAT code
  133. * falls back to slow path of reserving physical range page by page.
  134. */
  135. static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
  136. {
  137. return (vma->vm_flags & VM_PFN_AT_MMAP);
  138. }
  139. static inline int is_pfn_mapping(struct vm_area_struct *vma)
  140. {
  141. return (vma->vm_flags & VM_PFNMAP);
  142. }
  143. /*
  144. * vm_fault is filled by the the pagefault handler and passed to the vma's
  145. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  146. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  147. *
  148. * pgoff should be used in favour of virtual_address, if possible. If pgoff
  149. * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
  150. * mapping support.
  151. */
  152. struct vm_fault {
  153. unsigned int flags; /* FAULT_FLAG_xxx flags */
  154. pgoff_t pgoff; /* Logical page offset based on vma */
  155. void __user *virtual_address; /* Faulting virtual address */
  156. struct page *page; /* ->fault handlers should return a
  157. * page here, unless VM_FAULT_NOPAGE
  158. * is set (which is also implied by
  159. * VM_FAULT_ERROR).
  160. */
  161. };
  162. /*
  163. * These are the virtual MM functions - opening of an area, closing and
  164. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  165. * to the functions called when a no-page or a wp-page exception occurs.
  166. */
  167. struct vm_operations_struct {
  168. void (*open)(struct vm_area_struct * area);
  169. void (*close)(struct vm_area_struct * area);
  170. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  171. /* notification that a previously read-only page is about to become
  172. * writable, if an error is returned it will cause a SIGBUS */
  173. int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  174. /* called by access_process_vm when get_user_pages() fails, typically
  175. * for use by special VMAs that can switch between memory and hardware
  176. */
  177. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  178. void *buf, int len, int write);
  179. #ifdef CONFIG_NUMA
  180. /*
  181. * set_policy() op must add a reference to any non-NULL @new mempolicy
  182. * to hold the policy upon return. Caller should pass NULL @new to
  183. * remove a policy and fall back to surrounding context--i.e. do not
  184. * install a MPOL_DEFAULT policy, nor the task or system default
  185. * mempolicy.
  186. */
  187. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  188. /*
  189. * get_policy() op must add reference [mpol_get()] to any policy at
  190. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  191. * in mm/mempolicy.c will do this automatically.
  192. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  193. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  194. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  195. * must return NULL--i.e., do not "fallback" to task or system default
  196. * policy.
  197. */
  198. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  199. unsigned long addr);
  200. int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
  201. const nodemask_t *to, unsigned long flags);
  202. #endif
  203. };
  204. struct mmu_gather;
  205. struct inode;
  206. #define page_private(page) ((page)->private)
  207. #define set_page_private(page, v) ((page)->private = (v))
  208. /*
  209. * FIXME: take this include out, include page-flags.h in
  210. * files which need it (119 of them)
  211. */
  212. #include <linux/page-flags.h>
  213. #include <linux/huge_mm.h>
  214. /*
  215. * Methods to modify the page usage count.
  216. *
  217. * What counts for a page usage:
  218. * - cache mapping (page->mapping)
  219. * - private data (page->private)
  220. * - page mapped in a task's page tables, each mapping
  221. * is counted separately
  222. *
  223. * Also, many kernel routines increase the page count before a critical
  224. * routine so they can be sure the page doesn't go away from under them.
  225. */
  226. /*
  227. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  228. */
  229. static inline int put_page_testzero(struct page *page)
  230. {
  231. VM_BUG_ON(atomic_read(&page->_count) == 0);
  232. return atomic_dec_and_test(&page->_count);
  233. }
  234. /*
  235. * Try to grab a ref unless the page has a refcount of zero, return false if
  236. * that is the case.
  237. */
  238. static inline int get_page_unless_zero(struct page *page)
  239. {
  240. return atomic_inc_not_zero(&page->_count);
  241. }
  242. extern int page_is_ram(unsigned long pfn);
  243. /* Support for virtually mapped pages */
  244. struct page *vmalloc_to_page(const void *addr);
  245. unsigned long vmalloc_to_pfn(const void *addr);
  246. /*
  247. * Determine if an address is within the vmalloc range
  248. *
  249. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  250. * is no special casing required.
  251. */
  252. static inline int is_vmalloc_addr(const void *x)
  253. {
  254. #ifdef CONFIG_MMU
  255. unsigned long addr = (unsigned long)x;
  256. return addr >= VMALLOC_START && addr < VMALLOC_END;
  257. #else
  258. return 0;
  259. #endif
  260. }
  261. #ifdef CONFIG_MMU
  262. extern int is_vmalloc_or_module_addr(const void *x);
  263. #else
  264. static inline int is_vmalloc_or_module_addr(const void *x)
  265. {
  266. return 0;
  267. }
  268. #endif
  269. static inline void compound_lock(struct page *page)
  270. {
  271. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  272. bit_spin_lock(PG_compound_lock, &page->flags);
  273. #endif
  274. }
  275. static inline void compound_unlock(struct page *page)
  276. {
  277. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  278. bit_spin_unlock(PG_compound_lock, &page->flags);
  279. #endif
  280. }
  281. static inline unsigned long compound_lock_irqsave(struct page *page)
  282. {
  283. unsigned long uninitialized_var(flags);
  284. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  285. local_irq_save(flags);
  286. compound_lock(page);
  287. #endif
  288. return flags;
  289. }
  290. static inline void compound_unlock_irqrestore(struct page *page,
  291. unsigned long flags)
  292. {
  293. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  294. compound_unlock(page);
  295. local_irq_restore(flags);
  296. #endif
  297. }
  298. static inline struct page *compound_head(struct page *page)
  299. {
  300. if (unlikely(PageTail(page)))
  301. return page->first_page;
  302. return page;
  303. }
  304. static inline int page_count(struct page *page)
  305. {
  306. return atomic_read(&compound_head(page)->_count);
  307. }
  308. static inline void get_page(struct page *page)
  309. {
  310. /*
  311. * Getting a normal page or the head of a compound page
  312. * requires to already have an elevated page->_count. Only if
  313. * we're getting a tail page, the elevated page->_count is
  314. * required only in the head page, so for tail pages the
  315. * bugcheck only verifies that the page->_count isn't
  316. * negative.
  317. */
  318. VM_BUG_ON(atomic_read(&page->_count) < !PageTail(page));
  319. atomic_inc(&page->_count);
  320. /*
  321. * Getting a tail page will elevate both the head and tail
  322. * page->_count(s).
  323. */
  324. if (unlikely(PageTail(page))) {
  325. /*
  326. * This is safe only because
  327. * __split_huge_page_refcount can't run under
  328. * get_page().
  329. */
  330. VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0);
  331. atomic_inc(&page->first_page->_count);
  332. }
  333. }
  334. static inline struct page *virt_to_head_page(const void *x)
  335. {
  336. struct page *page = virt_to_page(x);
  337. return compound_head(page);
  338. }
  339. /*
  340. * Setup the page count before being freed into the page allocator for
  341. * the first time (boot or memory hotplug)
  342. */
  343. static inline void init_page_count(struct page *page)
  344. {
  345. atomic_set(&page->_count, 1);
  346. }
  347. /*
  348. * PageBuddy() indicate that the page is free and in the buddy system
  349. * (see mm/page_alloc.c).
  350. *
  351. * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
  352. * -2 so that an underflow of the page_mapcount() won't be mistaken
  353. * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
  354. * efficiently by most CPU architectures.
  355. */
  356. #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
  357. static inline int PageBuddy(struct page *page)
  358. {
  359. return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
  360. }
  361. static inline void __SetPageBuddy(struct page *page)
  362. {
  363. VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
  364. atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
  365. }
  366. static inline void __ClearPageBuddy(struct page *page)
  367. {
  368. VM_BUG_ON(!PageBuddy(page));
  369. atomic_set(&page->_mapcount, -1);
  370. }
  371. void put_page(struct page *page);
  372. void put_pages_list(struct list_head *pages);
  373. void split_page(struct page *page, unsigned int order);
  374. int split_free_page(struct page *page);
  375. /*
  376. * Compound pages have a destructor function. Provide a
  377. * prototype for that function and accessor functions.
  378. * These are _only_ valid on the head of a PG_compound page.
  379. */
  380. typedef void compound_page_dtor(struct page *);
  381. static inline void set_compound_page_dtor(struct page *page,
  382. compound_page_dtor *dtor)
  383. {
  384. page[1].lru.next = (void *)dtor;
  385. }
  386. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  387. {
  388. return (compound_page_dtor *)page[1].lru.next;
  389. }
  390. static inline int compound_order(struct page *page)
  391. {
  392. if (!PageHead(page))
  393. return 0;
  394. return (unsigned long)page[1].lru.prev;
  395. }
  396. static inline int compound_trans_order(struct page *page)
  397. {
  398. int order;
  399. unsigned long flags;
  400. if (!PageHead(page))
  401. return 0;
  402. flags = compound_lock_irqsave(page);
  403. order = compound_order(page);
  404. compound_unlock_irqrestore(page, flags);
  405. return order;
  406. }
  407. static inline void set_compound_order(struct page *page, unsigned long order)
  408. {
  409. page[1].lru.prev = (void *)order;
  410. }
  411. #ifdef CONFIG_MMU
  412. /*
  413. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  414. * servicing faults for write access. In the normal case, do always want
  415. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  416. * that do not have writing enabled, when used by access_process_vm.
  417. */
  418. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  419. {
  420. if (likely(vma->vm_flags & VM_WRITE))
  421. pte = pte_mkwrite(pte);
  422. return pte;
  423. }
  424. #endif
  425. /*
  426. * Multiple processes may "see" the same page. E.g. for untouched
  427. * mappings of /dev/null, all processes see the same page full of
  428. * zeroes, and text pages of executables and shared libraries have
  429. * only one copy in memory, at most, normally.
  430. *
  431. * For the non-reserved pages, page_count(page) denotes a reference count.
  432. * page_count() == 0 means the page is free. page->lru is then used for
  433. * freelist management in the buddy allocator.
  434. * page_count() > 0 means the page has been allocated.
  435. *
  436. * Pages are allocated by the slab allocator in order to provide memory
  437. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  438. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  439. * unless a particular usage is carefully commented. (the responsibility of
  440. * freeing the kmalloc memory is the caller's, of course).
  441. *
  442. * A page may be used by anyone else who does a __get_free_page().
  443. * In this case, page_count still tracks the references, and should only
  444. * be used through the normal accessor functions. The top bits of page->flags
  445. * and page->virtual store page management information, but all other fields
  446. * are unused and could be used privately, carefully. The management of this
  447. * page is the responsibility of the one who allocated it, and those who have
  448. * subsequently been given references to it.
  449. *
  450. * The other pages (we may call them "pagecache pages") are completely
  451. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  452. * The following discussion applies only to them.
  453. *
  454. * A pagecache page contains an opaque `private' member, which belongs to the
  455. * page's address_space. Usually, this is the address of a circular list of
  456. * the page's disk buffers. PG_private must be set to tell the VM to call
  457. * into the filesystem to release these pages.
  458. *
  459. * A page may belong to an inode's memory mapping. In this case, page->mapping
  460. * is the pointer to the inode, and page->index is the file offset of the page,
  461. * in units of PAGE_CACHE_SIZE.
  462. *
  463. * If pagecache pages are not associated with an inode, they are said to be
  464. * anonymous pages. These may become associated with the swapcache, and in that
  465. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  466. *
  467. * In either case (swapcache or inode backed), the pagecache itself holds one
  468. * reference to the page. Setting PG_private should also increment the
  469. * refcount. The each user mapping also has a reference to the page.
  470. *
  471. * The pagecache pages are stored in a per-mapping radix tree, which is
  472. * rooted at mapping->page_tree, and indexed by offset.
  473. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  474. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  475. *
  476. * All pagecache pages may be subject to I/O:
  477. * - inode pages may need to be read from disk,
  478. * - inode pages which have been modified and are MAP_SHARED may need
  479. * to be written back to the inode on disk,
  480. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  481. * modified may need to be swapped out to swap space and (later) to be read
  482. * back into memory.
  483. */
  484. /*
  485. * The zone field is never updated after free_area_init_core()
  486. * sets it, so none of the operations on it need to be atomic.
  487. */
  488. /*
  489. * page->flags layout:
  490. *
  491. * There are three possibilities for how page->flags get
  492. * laid out. The first is for the normal case, without
  493. * sparsemem. The second is for sparsemem when there is
  494. * plenty of space for node and section. The last is when
  495. * we have run out of space and have to fall back to an
  496. * alternate (slower) way of determining the node.
  497. *
  498. * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
  499. * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
  500. * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
  501. */
  502. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  503. #define SECTIONS_WIDTH SECTIONS_SHIFT
  504. #else
  505. #define SECTIONS_WIDTH 0
  506. #endif
  507. #define ZONES_WIDTH ZONES_SHIFT
  508. #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
  509. #define NODES_WIDTH NODES_SHIFT
  510. #else
  511. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  512. #error "Vmemmap: No space for nodes field in page flags"
  513. #endif
  514. #define NODES_WIDTH 0
  515. #endif
  516. /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
  517. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  518. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  519. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  520. /*
  521. * We are going to use the flags for the page to node mapping if its in
  522. * there. This includes the case where there is no node, so it is implicit.
  523. */
  524. #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
  525. #define NODE_NOT_IN_PAGE_FLAGS
  526. #endif
  527. #ifndef PFN_SECTION_SHIFT
  528. #define PFN_SECTION_SHIFT 0
  529. #endif
  530. /*
  531. * Define the bit shifts to access each section. For non-existant
  532. * sections we define the shift as 0; that plus a 0 mask ensures
  533. * the compiler will optimise away reference to them.
  534. */
  535. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  536. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  537. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  538. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  539. #ifdef NODE_NOT_IN_PAGE_FLAGS
  540. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  541. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  542. SECTIONS_PGOFF : ZONES_PGOFF)
  543. #else
  544. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  545. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  546. NODES_PGOFF : ZONES_PGOFF)
  547. #endif
  548. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  549. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  550. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  551. #endif
  552. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  553. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  554. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  555. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  556. static inline enum zone_type page_zonenum(struct page *page)
  557. {
  558. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  559. }
  560. /*
  561. * The identification function is only used by the buddy allocator for
  562. * determining if two pages could be buddies. We are not really
  563. * identifying a zone since we could be using a the section number
  564. * id if we have not node id available in page flags.
  565. * We guarantee only that it will return the same value for two
  566. * combinable pages in a zone.
  567. */
  568. static inline int page_zone_id(struct page *page)
  569. {
  570. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  571. }
  572. static inline int zone_to_nid(struct zone *zone)
  573. {
  574. #ifdef CONFIG_NUMA
  575. return zone->node;
  576. #else
  577. return 0;
  578. #endif
  579. }
  580. #ifdef NODE_NOT_IN_PAGE_FLAGS
  581. extern int page_to_nid(struct page *page);
  582. #else
  583. static inline int page_to_nid(struct page *page)
  584. {
  585. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  586. }
  587. #endif
  588. static inline struct zone *page_zone(struct page *page)
  589. {
  590. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  591. }
  592. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  593. static inline unsigned long page_to_section(struct page *page)
  594. {
  595. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  596. }
  597. #endif
  598. static inline void set_page_zone(struct page *page, enum zone_type zone)
  599. {
  600. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  601. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  602. }
  603. static inline void set_page_node(struct page *page, unsigned long node)
  604. {
  605. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  606. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  607. }
  608. static inline void set_page_section(struct page *page, unsigned long section)
  609. {
  610. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  611. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  612. }
  613. static inline void set_page_links(struct page *page, enum zone_type zone,
  614. unsigned long node, unsigned long pfn)
  615. {
  616. set_page_zone(page, zone);
  617. set_page_node(page, node);
  618. set_page_section(page, pfn_to_section_nr(pfn));
  619. }
  620. /*
  621. * Some inline functions in vmstat.h depend on page_zone()
  622. */
  623. #include <linux/vmstat.h>
  624. static __always_inline void *lowmem_page_address(struct page *page)
  625. {
  626. return __va(PFN_PHYS(page_to_pfn(page)));
  627. }
  628. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  629. #define HASHED_PAGE_VIRTUAL
  630. #endif
  631. #if defined(WANT_PAGE_VIRTUAL)
  632. #define page_address(page) ((page)->virtual)
  633. #define set_page_address(page, address) \
  634. do { \
  635. (page)->virtual = (address); \
  636. } while(0)
  637. #define page_address_init() do { } while(0)
  638. #endif
  639. #if defined(HASHED_PAGE_VIRTUAL)
  640. void *page_address(struct page *page);
  641. void set_page_address(struct page *page, void *virtual);
  642. void page_address_init(void);
  643. #endif
  644. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  645. #define page_address(page) lowmem_page_address(page)
  646. #define set_page_address(page, address) do { } while(0)
  647. #define page_address_init() do { } while(0)
  648. #endif
  649. /*
  650. * On an anonymous page mapped into a user virtual memory area,
  651. * page->mapping points to its anon_vma, not to a struct address_space;
  652. * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
  653. *
  654. * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
  655. * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
  656. * and then page->mapping points, not to an anon_vma, but to a private
  657. * structure which KSM associates with that merged page. See ksm.h.
  658. *
  659. * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
  660. *
  661. * Please note that, confusingly, "page_mapping" refers to the inode
  662. * address_space which maps the page from disk; whereas "page_mapped"
  663. * refers to user virtual address space into which the page is mapped.
  664. */
  665. #define PAGE_MAPPING_ANON 1
  666. #define PAGE_MAPPING_KSM 2
  667. #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
  668. extern struct address_space swapper_space;
  669. static inline struct address_space *page_mapping(struct page *page)
  670. {
  671. struct address_space *mapping = page->mapping;
  672. VM_BUG_ON(PageSlab(page));
  673. if (unlikely(PageSwapCache(page)))
  674. mapping = &swapper_space;
  675. else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
  676. mapping = NULL;
  677. return mapping;
  678. }
  679. /* Neutral page->mapping pointer to address_space or anon_vma or other */
  680. static inline void *page_rmapping(struct page *page)
  681. {
  682. return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
  683. }
  684. static inline int PageAnon(struct page *page)
  685. {
  686. return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
  687. }
  688. /*
  689. * Return the pagecache index of the passed page. Regular pagecache pages
  690. * use ->index whereas swapcache pages use ->private
  691. */
  692. static inline pgoff_t page_index(struct page *page)
  693. {
  694. if (unlikely(PageSwapCache(page)))
  695. return page_private(page);
  696. return page->index;
  697. }
  698. /*
  699. * The atomic page->_mapcount, like _count, starts from -1:
  700. * so that transitions both from it and to it can be tracked,
  701. * using atomic_inc_and_test and atomic_add_negative(-1).
  702. */
  703. static inline void reset_page_mapcount(struct page *page)
  704. {
  705. atomic_set(&(page)->_mapcount, -1);
  706. }
  707. static inline int page_mapcount(struct page *page)
  708. {
  709. return atomic_read(&(page)->_mapcount) + 1;
  710. }
  711. /*
  712. * Return true if this page is mapped into pagetables.
  713. */
  714. static inline int page_mapped(struct page *page)
  715. {
  716. return atomic_read(&(page)->_mapcount) >= 0;
  717. }
  718. /*
  719. * Different kinds of faults, as returned by handle_mm_fault().
  720. * Used to decide whether a process gets delivered SIGBUS or
  721. * just gets major/minor fault counters bumped up.
  722. */
  723. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  724. #define VM_FAULT_OOM 0x0001
  725. #define VM_FAULT_SIGBUS 0x0002
  726. #define VM_FAULT_MAJOR 0x0004
  727. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  728. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  729. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  730. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  731. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  732. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  733. #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
  734. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
  735. VM_FAULT_HWPOISON_LARGE)
  736. /* Encode hstate index for a hwpoisoned large page */
  737. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  738. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  739. /*
  740. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  741. */
  742. extern void pagefault_out_of_memory(void);
  743. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  744. /*
  745. * Flags passed to __show_mem() and __show_free_areas() to suppress output in
  746. * various contexts.
  747. */
  748. #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
  749. extern void show_free_areas(void);
  750. extern void __show_free_areas(unsigned int flags);
  751. int shmem_lock(struct file *file, int lock, struct user_struct *user);
  752. struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
  753. int shmem_zero_setup(struct vm_area_struct *);
  754. #ifndef CONFIG_MMU
  755. extern unsigned long shmem_get_unmapped_area(struct file *file,
  756. unsigned long addr,
  757. unsigned long len,
  758. unsigned long pgoff,
  759. unsigned long flags);
  760. #endif
  761. extern int can_do_mlock(void);
  762. extern int user_shm_lock(size_t, struct user_struct *);
  763. extern void user_shm_unlock(size_t, struct user_struct *);
  764. /*
  765. * Parameter block passed down to zap_pte_range in exceptional cases.
  766. */
  767. struct zap_details {
  768. struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
  769. struct address_space *check_mapping; /* Check page->mapping if set */
  770. pgoff_t first_index; /* Lowest page->index to unmap */
  771. pgoff_t last_index; /* Highest page->index to unmap */
  772. spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
  773. unsigned long truncate_count; /* Compare vm_truncate_count */
  774. };
  775. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  776. pte_t pte);
  777. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  778. unsigned long size);
  779. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  780. unsigned long size, struct zap_details *);
  781. unsigned long unmap_vmas(struct mmu_gather **tlb,
  782. struct vm_area_struct *start_vma, unsigned long start_addr,
  783. unsigned long end_addr, unsigned long *nr_accounted,
  784. struct zap_details *);
  785. /**
  786. * mm_walk - callbacks for walk_page_range
  787. * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
  788. * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
  789. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  790. * this handler is required to be able to handle
  791. * pmd_trans_huge() pmds. They may simply choose to
  792. * split_huge_page() instead of handling it explicitly.
  793. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  794. * @pte_hole: if set, called for each hole at all levels
  795. * @hugetlb_entry: if set, called for each hugetlb entry
  796. *
  797. * (see walk_page_range for more details)
  798. */
  799. struct mm_walk {
  800. int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
  801. int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
  802. int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
  803. int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
  804. int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
  805. int (*hugetlb_entry)(pte_t *, unsigned long,
  806. unsigned long, unsigned long, struct mm_walk *);
  807. struct mm_struct *mm;
  808. void *private;
  809. };
  810. int walk_page_range(unsigned long addr, unsigned long end,
  811. struct mm_walk *walk);
  812. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  813. unsigned long end, unsigned long floor, unsigned long ceiling);
  814. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  815. struct vm_area_struct *vma);
  816. void unmap_mapping_range(struct address_space *mapping,
  817. loff_t const holebegin, loff_t const holelen, int even_cows);
  818. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  819. unsigned long *pfn);
  820. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  821. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  822. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  823. void *buf, int len, int write);
  824. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  825. loff_t const holebegin, loff_t const holelen)
  826. {
  827. unmap_mapping_range(mapping, holebegin, holelen, 0);
  828. }
  829. extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
  830. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  831. extern int vmtruncate(struct inode *inode, loff_t offset);
  832. extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
  833. int truncate_inode_page(struct address_space *mapping, struct page *page);
  834. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  835. int invalidate_inode_page(struct page *page);
  836. #ifdef CONFIG_MMU
  837. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  838. unsigned long address, unsigned int flags);
  839. #else
  840. static inline int handle_mm_fault(struct mm_struct *mm,
  841. struct vm_area_struct *vma, unsigned long address,
  842. unsigned int flags)
  843. {
  844. /* should never happen if there's no MMU */
  845. BUG();
  846. return VM_FAULT_SIGBUS;
  847. }
  848. #endif
  849. extern int make_pages_present(unsigned long addr, unsigned long end);
  850. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  851. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  852. void *buf, int len, int write);
  853. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  854. unsigned long start, int len, unsigned int foll_flags,
  855. struct page **pages, struct vm_area_struct **vmas,
  856. int *nonblocking);
  857. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  858. unsigned long start, int nr_pages, int write, int force,
  859. struct page **pages, struct vm_area_struct **vmas);
  860. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  861. struct page **pages);
  862. struct page *get_dump_page(unsigned long addr);
  863. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  864. extern void do_invalidatepage(struct page *page, unsigned long offset);
  865. int __set_page_dirty_nobuffers(struct page *page);
  866. int __set_page_dirty_no_writeback(struct page *page);
  867. int redirty_page_for_writepage(struct writeback_control *wbc,
  868. struct page *page);
  869. void account_page_dirtied(struct page *page, struct address_space *mapping);
  870. void account_page_writeback(struct page *page);
  871. int set_page_dirty(struct page *page);
  872. int set_page_dirty_lock(struct page *page);
  873. int clear_page_dirty_for_io(struct page *page);
  874. /* Is the vma a continuation of the stack vma above it? */
  875. static inline int vma_stack_continue(struct vm_area_struct *vma, unsigned long addr)
  876. {
  877. return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
  878. }
  879. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  880. unsigned long old_addr, struct vm_area_struct *new_vma,
  881. unsigned long new_addr, unsigned long len);
  882. extern unsigned long do_mremap(unsigned long addr,
  883. unsigned long old_len, unsigned long new_len,
  884. unsigned long flags, unsigned long new_addr);
  885. extern int mprotect_fixup(struct vm_area_struct *vma,
  886. struct vm_area_struct **pprev, unsigned long start,
  887. unsigned long end, unsigned long newflags);
  888. /*
  889. * doesn't attempt to fault and will return short.
  890. */
  891. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  892. struct page **pages);
  893. /*
  894. * per-process(per-mm_struct) statistics.
  895. */
  896. #if defined(SPLIT_RSS_COUNTING)
  897. /*
  898. * The mm counters are not protected by its page_table_lock,
  899. * so must be incremented atomically.
  900. */
  901. static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
  902. {
  903. atomic_long_set(&mm->rss_stat.count[member], value);
  904. }
  905. unsigned long get_mm_counter(struct mm_struct *mm, int member);
  906. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  907. {
  908. atomic_long_add(value, &mm->rss_stat.count[member]);
  909. }
  910. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  911. {
  912. atomic_long_inc(&mm->rss_stat.count[member]);
  913. }
  914. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  915. {
  916. atomic_long_dec(&mm->rss_stat.count[member]);
  917. }
  918. #else /* !USE_SPLIT_PTLOCKS */
  919. /*
  920. * The mm counters are protected by its page_table_lock,
  921. * so can be incremented directly.
  922. */
  923. static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
  924. {
  925. mm->rss_stat.count[member] = value;
  926. }
  927. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  928. {
  929. return mm->rss_stat.count[member];
  930. }
  931. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  932. {
  933. mm->rss_stat.count[member] += value;
  934. }
  935. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  936. {
  937. mm->rss_stat.count[member]++;
  938. }
  939. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  940. {
  941. mm->rss_stat.count[member]--;
  942. }
  943. #endif /* !USE_SPLIT_PTLOCKS */
  944. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  945. {
  946. return get_mm_counter(mm, MM_FILEPAGES) +
  947. get_mm_counter(mm, MM_ANONPAGES);
  948. }
  949. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  950. {
  951. return max(mm->hiwater_rss, get_mm_rss(mm));
  952. }
  953. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  954. {
  955. return max(mm->hiwater_vm, mm->total_vm);
  956. }
  957. static inline void update_hiwater_rss(struct mm_struct *mm)
  958. {
  959. unsigned long _rss = get_mm_rss(mm);
  960. if ((mm)->hiwater_rss < _rss)
  961. (mm)->hiwater_rss = _rss;
  962. }
  963. static inline void update_hiwater_vm(struct mm_struct *mm)
  964. {
  965. if (mm->hiwater_vm < mm->total_vm)
  966. mm->hiwater_vm = mm->total_vm;
  967. }
  968. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  969. struct mm_struct *mm)
  970. {
  971. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  972. if (*maxrss < hiwater_rss)
  973. *maxrss = hiwater_rss;
  974. }
  975. #if defined(SPLIT_RSS_COUNTING)
  976. void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
  977. #else
  978. static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
  979. {
  980. }
  981. #endif
  982. /*
  983. * A callback you can register to apply pressure to ageable caches.
  984. *
  985. * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
  986. * look through the least-recently-used 'nr_to_scan' entries and
  987. * attempt to free them up. It should return the number of objects
  988. * which remain in the cache. If it returns -1, it means it cannot do
  989. * any scanning at this time (eg. there is a risk of deadlock).
  990. *
  991. * The 'gfpmask' refers to the allocation we are currently trying to
  992. * fulfil.
  993. *
  994. * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
  995. * querying the cache size, so a fastpath for that case is appropriate.
  996. */
  997. struct shrinker {
  998. int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask);
  999. int seeks; /* seeks to recreate an obj */
  1000. /* These are for internal use */
  1001. struct list_head list;
  1002. long nr; /* objs pending delete */
  1003. };
  1004. #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
  1005. extern void register_shrinker(struct shrinker *);
  1006. extern void unregister_shrinker(struct shrinker *);
  1007. int vma_wants_writenotify(struct vm_area_struct *vma);
  1008. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1009. spinlock_t **ptl);
  1010. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1011. spinlock_t **ptl)
  1012. {
  1013. pte_t *ptep;
  1014. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1015. return ptep;
  1016. }
  1017. #ifdef __PAGETABLE_PUD_FOLDED
  1018. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  1019. unsigned long address)
  1020. {
  1021. return 0;
  1022. }
  1023. #else
  1024. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1025. #endif
  1026. #ifdef __PAGETABLE_PMD_FOLDED
  1027. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1028. unsigned long address)
  1029. {
  1030. return 0;
  1031. }
  1032. #else
  1033. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1034. #endif
  1035. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  1036. pmd_t *pmd, unsigned long address);
  1037. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1038. /*
  1039. * The following ifdef needed to get the 4level-fixup.h header to work.
  1040. * Remove it when 4level-fixup.h has been removed.
  1041. */
  1042. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1043. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  1044. {
  1045. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  1046. NULL: pud_offset(pgd, address);
  1047. }
  1048. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1049. {
  1050. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1051. NULL: pmd_offset(pud, address);
  1052. }
  1053. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1054. #if USE_SPLIT_PTLOCKS
  1055. /*
  1056. * We tuck a spinlock to guard each pagetable page into its struct page,
  1057. * at page->private, with BUILD_BUG_ON to make sure that this will not
  1058. * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
  1059. * When freeing, reset page->mapping so free_pages_check won't complain.
  1060. */
  1061. #define __pte_lockptr(page) &((page)->ptl)
  1062. #define pte_lock_init(_page) do { \
  1063. spin_lock_init(__pte_lockptr(_page)); \
  1064. } while (0)
  1065. #define pte_lock_deinit(page) ((page)->mapping = NULL)
  1066. #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
  1067. #else /* !USE_SPLIT_PTLOCKS */
  1068. /*
  1069. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1070. */
  1071. #define pte_lock_init(page) do {} while (0)
  1072. #define pte_lock_deinit(page) do {} while (0)
  1073. #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
  1074. #endif /* USE_SPLIT_PTLOCKS */
  1075. static inline void pgtable_page_ctor(struct page *page)
  1076. {
  1077. pte_lock_init(page);
  1078. inc_zone_page_state(page, NR_PAGETABLE);
  1079. }
  1080. static inline void pgtable_page_dtor(struct page *page)
  1081. {
  1082. pte_lock_deinit(page);
  1083. dec_zone_page_state(page, NR_PAGETABLE);
  1084. }
  1085. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1086. ({ \
  1087. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1088. pte_t *__pte = pte_offset_map(pmd, address); \
  1089. *(ptlp) = __ptl; \
  1090. spin_lock(__ptl); \
  1091. __pte; \
  1092. })
  1093. #define pte_unmap_unlock(pte, ptl) do { \
  1094. spin_unlock(ptl); \
  1095. pte_unmap(pte); \
  1096. } while (0)
  1097. #define pte_alloc_map(mm, vma, pmd, address) \
  1098. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
  1099. pmd, address))? \
  1100. NULL: pte_offset_map(pmd, address))
  1101. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1102. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
  1103. pmd, address))? \
  1104. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  1105. #define pte_alloc_kernel(pmd, address) \
  1106. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1107. NULL: pte_offset_kernel(pmd, address))
  1108. extern void free_area_init(unsigned long * zones_size);
  1109. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1110. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1111. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  1112. /*
  1113. * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
  1114. * zones, allocate the backing mem_map and account for memory holes in a more
  1115. * architecture independent manner. This is a substitute for creating the
  1116. * zone_sizes[] and zholes_size[] arrays and passing them to
  1117. * free_area_init_node()
  1118. *
  1119. * An architecture is expected to register range of page frames backed by
  1120. * physical memory with add_active_range() before calling
  1121. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1122. * usage, an architecture is expected to do something like
  1123. *
  1124. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1125. * max_highmem_pfn};
  1126. * for_each_valid_physical_page_range()
  1127. * add_active_range(node_id, start_pfn, end_pfn)
  1128. * free_area_init_nodes(max_zone_pfns);
  1129. *
  1130. * If the architecture guarantees that there are no holes in the ranges
  1131. * registered with add_active_range(), free_bootmem_active_regions()
  1132. * will call free_bootmem_node() for each registered physical page range.
  1133. * Similarly sparse_memory_present_with_active_regions() calls
  1134. * memory_present() for each range when SPARSEMEM is enabled.
  1135. *
  1136. * See mm/page_alloc.c for more information on each function exposed by
  1137. * CONFIG_ARCH_POPULATES_NODE_MAP
  1138. */
  1139. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1140. extern void add_active_range(unsigned int nid, unsigned long start_pfn,
  1141. unsigned long end_pfn);
  1142. extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
  1143. unsigned long end_pfn);
  1144. extern void remove_all_active_ranges(void);
  1145. void sort_node_map(void);
  1146. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1147. unsigned long end_pfn);
  1148. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1149. unsigned long end_pfn);
  1150. extern void get_pfn_range_for_nid(unsigned int nid,
  1151. unsigned long *start_pfn, unsigned long *end_pfn);
  1152. extern unsigned long find_min_pfn_with_active_regions(void);
  1153. extern void free_bootmem_with_active_regions(int nid,
  1154. unsigned long max_low_pfn);
  1155. int add_from_early_node_map(struct range *range, int az,
  1156. int nr_range, int nid);
  1157. u64 __init find_memory_core_early(int nid, u64 size, u64 align,
  1158. u64 goal, u64 limit);
  1159. typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
  1160. extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
  1161. extern void sparse_memory_present_with_active_regions(int nid);
  1162. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  1163. #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
  1164. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1165. static inline int __early_pfn_to_nid(unsigned long pfn)
  1166. {
  1167. return 0;
  1168. }
  1169. #else
  1170. /* please see mm/page_alloc.c */
  1171. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1172. #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  1173. /* there is a per-arch backend function. */
  1174. extern int __meminit __early_pfn_to_nid(unsigned long pfn);
  1175. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  1176. #endif
  1177. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1178. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1179. unsigned long, enum memmap_context);
  1180. extern void setup_per_zone_wmarks(void);
  1181. extern void calculate_zone_inactive_ratio(struct zone *zone);
  1182. extern void mem_init(void);
  1183. extern void __init mmap_init(void);
  1184. extern void show_mem(void);
  1185. extern void __show_mem(unsigned int flags);
  1186. extern void si_meminfo(struct sysinfo * val);
  1187. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1188. extern int after_bootmem;
  1189. extern void setup_per_cpu_pageset(void);
  1190. extern void zone_pcp_update(struct zone *zone);
  1191. /* nommu.c */
  1192. extern atomic_long_t mmap_pages_allocated;
  1193. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1194. /* prio_tree.c */
  1195. void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
  1196. void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
  1197. void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
  1198. struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
  1199. struct prio_tree_iter *iter);
  1200. #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
  1201. for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
  1202. (vma = vma_prio_tree_next(vma, iter)); )
  1203. static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
  1204. struct list_head *list)
  1205. {
  1206. vma->shared.vm_set.parent = NULL;
  1207. list_add_tail(&vma->shared.vm_set.list, list);
  1208. }
  1209. /* mmap.c */
  1210. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1211. extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1212. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  1213. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1214. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1215. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1216. struct mempolicy *);
  1217. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1218. extern int split_vma(struct mm_struct *,
  1219. struct vm_area_struct *, unsigned long addr, int new_below);
  1220. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1221. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1222. struct rb_node **, struct rb_node *);
  1223. extern void unlink_file_vma(struct vm_area_struct *);
  1224. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1225. unsigned long addr, unsigned long len, pgoff_t pgoff);
  1226. extern void exit_mmap(struct mm_struct *);
  1227. extern int mm_take_all_locks(struct mm_struct *mm);
  1228. extern void mm_drop_all_locks(struct mm_struct *mm);
  1229. #ifdef CONFIG_PROC_FS
  1230. /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
  1231. extern void added_exe_file_vma(struct mm_struct *mm);
  1232. extern void removed_exe_file_vma(struct mm_struct *mm);
  1233. #else
  1234. static inline void added_exe_file_vma(struct mm_struct *mm)
  1235. {}
  1236. static inline void removed_exe_file_vma(struct mm_struct *mm)
  1237. {}
  1238. #endif /* CONFIG_PROC_FS */
  1239. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  1240. extern int install_special_mapping(struct mm_struct *mm,
  1241. unsigned long addr, unsigned long len,
  1242. unsigned long flags, struct page **pages);
  1243. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1244. extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
  1245. unsigned long len, unsigned long prot,
  1246. unsigned long flag, unsigned long pgoff);
  1247. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1248. unsigned long len, unsigned long flags,
  1249. unsigned int vm_flags, unsigned long pgoff);
  1250. static inline unsigned long do_mmap(struct file *file, unsigned long addr,
  1251. unsigned long len, unsigned long prot,
  1252. unsigned long flag, unsigned long offset)
  1253. {
  1254. unsigned long ret = -EINVAL;
  1255. if ((offset + PAGE_ALIGN(len)) < offset)
  1256. goto out;
  1257. if (!(offset & ~PAGE_MASK))
  1258. ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
  1259. out:
  1260. return ret;
  1261. }
  1262. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  1263. extern unsigned long do_brk(unsigned long, unsigned long);
  1264. /* filemap.c */
  1265. extern unsigned long page_unuse(struct page *);
  1266. extern void truncate_inode_pages(struct address_space *, loff_t);
  1267. extern void truncate_inode_pages_range(struct address_space *,
  1268. loff_t lstart, loff_t lend);
  1269. /* generic vm_area_ops exported for stackable file systems */
  1270. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  1271. /* mm/page-writeback.c */
  1272. int write_one_page(struct page *page, int wait);
  1273. void task_dirty_inc(struct task_struct *tsk);
  1274. /* readahead.c */
  1275. #define VM_MAX_READAHEAD 128 /* kbytes */
  1276. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1277. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1278. pgoff_t offset, unsigned long nr_to_read);
  1279. void page_cache_sync_readahead(struct address_space *mapping,
  1280. struct file_ra_state *ra,
  1281. struct file *filp,
  1282. pgoff_t offset,
  1283. unsigned long size);
  1284. void page_cache_async_readahead(struct address_space *mapping,
  1285. struct file_ra_state *ra,
  1286. struct file *filp,
  1287. struct page *pg,
  1288. pgoff_t offset,
  1289. unsigned long size);
  1290. unsigned long max_sane_readahead(unsigned long nr);
  1291. unsigned long ra_submit(struct file_ra_state *ra,
  1292. struct address_space *mapping,
  1293. struct file *filp);
  1294. /* Do stack extension */
  1295. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1296. #if VM_GROWSUP
  1297. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1298. #else
  1299. #define expand_upwards(vma, address) do { } while (0)
  1300. #endif
  1301. extern int expand_stack_downwards(struct vm_area_struct *vma,
  1302. unsigned long address);
  1303. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1304. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1305. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1306. struct vm_area_struct **pprev);
  1307. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1308. NULL if none. Assume start_addr < end_addr. */
  1309. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1310. {
  1311. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1312. if (vma && end_addr <= vma->vm_start)
  1313. vma = NULL;
  1314. return vma;
  1315. }
  1316. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1317. {
  1318. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1319. }
  1320. #ifdef CONFIG_MMU
  1321. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1322. #else
  1323. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  1324. {
  1325. return __pgprot(0);
  1326. }
  1327. #endif
  1328. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1329. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1330. unsigned long pfn, unsigned long size, pgprot_t);
  1331. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1332. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1333. unsigned long pfn);
  1334. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1335. unsigned long pfn);
  1336. struct page *follow_page(struct vm_area_struct *, unsigned long address,
  1337. unsigned int foll_flags);
  1338. #define FOLL_WRITE 0x01 /* check pte is writable */
  1339. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1340. #define FOLL_GET 0x04 /* do get_page on page */
  1341. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  1342. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  1343. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  1344. * and return without waiting upon it */
  1345. #define FOLL_MLOCK 0x40 /* mark page as mlocked */
  1346. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  1347. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  1348. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1349. void *data);
  1350. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1351. unsigned long size, pte_fn_t fn, void *data);
  1352. #ifdef CONFIG_PROC_FS
  1353. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  1354. #else
  1355. static inline void vm_stat_account(struct mm_struct *mm,
  1356. unsigned long flags, struct file *file, long pages)
  1357. {
  1358. }
  1359. #endif /* CONFIG_PROC_FS */
  1360. #ifdef CONFIG_DEBUG_PAGEALLOC
  1361. extern int debug_pagealloc_enabled;
  1362. extern void kernel_map_pages(struct page *page, int numpages, int enable);
  1363. static inline void enable_debug_pagealloc(void)
  1364. {
  1365. debug_pagealloc_enabled = 1;
  1366. }
  1367. #ifdef CONFIG_HIBERNATION
  1368. extern bool kernel_page_present(struct page *page);
  1369. #endif /* CONFIG_HIBERNATION */
  1370. #else
  1371. static inline void
  1372. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1373. static inline void enable_debug_pagealloc(void)
  1374. {
  1375. }
  1376. #ifdef CONFIG_HIBERNATION
  1377. static inline bool kernel_page_present(struct page *page) { return true; }
  1378. #endif /* CONFIG_HIBERNATION */
  1379. #endif
  1380. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  1381. #ifdef __HAVE_ARCH_GATE_AREA
  1382. int in_gate_area_no_mm(unsigned long addr);
  1383. int in_gate_area(struct mm_struct *mm, unsigned long addr);
  1384. #else
  1385. int in_gate_area_no_mm(unsigned long addr);
  1386. #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
  1387. #endif /* __HAVE_ARCH_GATE_AREA */
  1388. int drop_caches_sysctl_handler(struct ctl_table *, int,
  1389. void __user *, size_t *, loff_t *);
  1390. unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
  1391. unsigned long lru_pages);
  1392. #ifndef CONFIG_MMU
  1393. #define randomize_va_space 0
  1394. #else
  1395. extern int randomize_va_space;
  1396. #endif
  1397. const char * arch_vma_name(struct vm_area_struct *vma);
  1398. void print_vma_addr(char *prefix, unsigned long rip);
  1399. void sparse_mem_maps_populate_node(struct page **map_map,
  1400. unsigned long pnum_begin,
  1401. unsigned long pnum_end,
  1402. unsigned long map_count,
  1403. int nodeid);
  1404. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1405. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1406. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1407. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1408. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1409. void *vmemmap_alloc_block(unsigned long size, int node);
  1410. void *vmemmap_alloc_block_buf(unsigned long size, int node);
  1411. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1412. int vmemmap_populate_basepages(struct page *start_page,
  1413. unsigned long pages, int node);
  1414. int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
  1415. void vmemmap_populate_print_last(void);
  1416. enum mf_flags {
  1417. MF_COUNT_INCREASED = 1 << 0,
  1418. };
  1419. extern void memory_failure(unsigned long pfn, int trapno);
  1420. extern int __memory_failure(unsigned long pfn, int trapno, int flags);
  1421. extern int unpoison_memory(unsigned long pfn);
  1422. extern int sysctl_memory_failure_early_kill;
  1423. extern int sysctl_memory_failure_recovery;
  1424. extern void shake_page(struct page *p, int access);
  1425. extern atomic_long_t mce_bad_pages;
  1426. extern int soft_offline_page(struct page *page, int flags);
  1427. extern void dump_page(struct page *page);
  1428. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  1429. extern void clear_huge_page(struct page *page,
  1430. unsigned long addr,
  1431. unsigned int pages_per_huge_page);
  1432. extern void copy_user_huge_page(struct page *dst, struct page *src,
  1433. unsigned long addr, struct vm_area_struct *vma,
  1434. unsigned int pages_per_huge_page);
  1435. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  1436. #endif /* __KERNEL__ */
  1437. #endif /* _LINUX_MM_H */