ste_dma40.c 74 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966
  1. /*
  2. * Copyright (C) Ericsson AB 2007-2008
  3. * Copyright (C) ST-Ericsson SA 2008-2010
  4. * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  5. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  6. * License terms: GNU General Public License (GPL) version 2
  7. */
  8. #include <linux/dma-mapping.h>
  9. #include <linux/kernel.h>
  10. #include <linux/slab.h>
  11. #include <linux/dmaengine.h>
  12. #include <linux/platform_device.h>
  13. #include <linux/clk.h>
  14. #include <linux/delay.h>
  15. #include <linux/err.h>
  16. #include <plat/ste_dma40.h>
  17. #include "ste_dma40_ll.h"
  18. #define D40_NAME "dma40"
  19. #define D40_PHY_CHAN -1
  20. /* For masking out/in 2 bit channel positions */
  21. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  22. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  23. /* Maximum iterations taken before giving up suspending a channel */
  24. #define D40_SUSPEND_MAX_IT 500
  25. /* Hardware requirement on LCLA alignment */
  26. #define LCLA_ALIGNMENT 0x40000
  27. /* Max number of links per event group */
  28. #define D40_LCLA_LINK_PER_EVENT_GRP 128
  29. #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  30. /* Attempts before giving up to trying to get pages that are aligned */
  31. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  32. /* Bit markings for allocation map */
  33. #define D40_ALLOC_FREE (1 << 31)
  34. #define D40_ALLOC_PHY (1 << 30)
  35. #define D40_ALLOC_LOG_FREE 0
  36. /* Hardware designer of the block */
  37. #define D40_HW_DESIGNER 0x8
  38. /**
  39. * enum 40_command - The different commands and/or statuses.
  40. *
  41. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  42. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  43. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  44. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  45. */
  46. enum d40_command {
  47. D40_DMA_STOP = 0,
  48. D40_DMA_RUN = 1,
  49. D40_DMA_SUSPEND_REQ = 2,
  50. D40_DMA_SUSPENDED = 3
  51. };
  52. /**
  53. * struct d40_lli_pool - Structure for keeping LLIs in memory
  54. *
  55. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  56. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  57. * pre_alloc_lli is used.
  58. * @dma_addr: DMA address, if mapped
  59. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  60. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  61. * one buffer to one buffer.
  62. */
  63. struct d40_lli_pool {
  64. void *base;
  65. int size;
  66. dma_addr_t dma_addr;
  67. /* Space for dst and src, plus an extra for padding */
  68. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  69. };
  70. /**
  71. * struct d40_desc - A descriptor is one DMA job.
  72. *
  73. * @lli_phy: LLI settings for physical channel. Both src and dst=
  74. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  75. * lli_len equals one.
  76. * @lli_log: Same as above but for logical channels.
  77. * @lli_pool: The pool with two entries pre-allocated.
  78. * @lli_len: Number of llis of current descriptor.
  79. * @lli_current: Number of transferred llis.
  80. * @lcla_alloc: Number of LCLA entries allocated.
  81. * @txd: DMA engine struct. Used for among other things for communication
  82. * during a transfer.
  83. * @node: List entry.
  84. * @is_in_client_list: true if the client owns this descriptor.
  85. * the previous one.
  86. *
  87. * This descriptor is used for both logical and physical transfers.
  88. */
  89. struct d40_desc {
  90. /* LLI physical */
  91. struct d40_phy_lli_bidir lli_phy;
  92. /* LLI logical */
  93. struct d40_log_lli_bidir lli_log;
  94. struct d40_lli_pool lli_pool;
  95. int lli_len;
  96. int lli_current;
  97. int lcla_alloc;
  98. struct dma_async_tx_descriptor txd;
  99. struct list_head node;
  100. bool is_in_client_list;
  101. bool cyclic;
  102. };
  103. /**
  104. * struct d40_lcla_pool - LCLA pool settings and data.
  105. *
  106. * @base: The virtual address of LCLA. 18 bit aligned.
  107. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  108. * This pointer is only there for clean-up on error.
  109. * @pages: The number of pages needed for all physical channels.
  110. * Only used later for clean-up on error
  111. * @lock: Lock to protect the content in this struct.
  112. * @alloc_map: big map over which LCLA entry is own by which job.
  113. */
  114. struct d40_lcla_pool {
  115. void *base;
  116. dma_addr_t dma_addr;
  117. void *base_unaligned;
  118. int pages;
  119. spinlock_t lock;
  120. struct d40_desc **alloc_map;
  121. };
  122. /**
  123. * struct d40_phy_res - struct for handling eventlines mapped to physical
  124. * channels.
  125. *
  126. * @lock: A lock protection this entity.
  127. * @num: The physical channel number of this entity.
  128. * @allocated_src: Bit mapped to show which src event line's are mapped to
  129. * this physical channel. Can also be free or physically allocated.
  130. * @allocated_dst: Same as for src but is dst.
  131. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  132. * event line number.
  133. */
  134. struct d40_phy_res {
  135. spinlock_t lock;
  136. int num;
  137. u32 allocated_src;
  138. u32 allocated_dst;
  139. };
  140. struct d40_base;
  141. /**
  142. * struct d40_chan - Struct that describes a channel.
  143. *
  144. * @lock: A spinlock to protect this struct.
  145. * @log_num: The logical number, if any of this channel.
  146. * @completed: Starts with 1, after first interrupt it is set to dma engine's
  147. * current cookie.
  148. * @pending_tx: The number of pending transfers. Used between interrupt handler
  149. * and tasklet.
  150. * @busy: Set to true when transfer is ongoing on this channel.
  151. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  152. * point is NULL, then the channel is not allocated.
  153. * @chan: DMA engine handle.
  154. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  155. * transfer and call client callback.
  156. * @client: Cliented owned descriptor list.
  157. * @active: Active descriptor.
  158. * @queue: Queued jobs.
  159. * @dma_cfg: The client configuration of this dma channel.
  160. * @configured: whether the dma_cfg configuration is valid
  161. * @base: Pointer to the device instance struct.
  162. * @src_def_cfg: Default cfg register setting for src.
  163. * @dst_def_cfg: Default cfg register setting for dst.
  164. * @log_def: Default logical channel settings.
  165. * @lcla: Space for one dst src pair for logical channel transfers.
  166. * @lcpa: Pointer to dst and src lcpa settings.
  167. *
  168. * This struct can either "be" a logical or a physical channel.
  169. */
  170. struct d40_chan {
  171. spinlock_t lock;
  172. int log_num;
  173. /* ID of the most recent completed transfer */
  174. int completed;
  175. int pending_tx;
  176. bool busy;
  177. struct d40_phy_res *phy_chan;
  178. struct dma_chan chan;
  179. struct tasklet_struct tasklet;
  180. struct list_head client;
  181. struct list_head active;
  182. struct list_head queue;
  183. struct stedma40_chan_cfg dma_cfg;
  184. bool configured;
  185. struct d40_base *base;
  186. /* Default register configurations */
  187. u32 src_def_cfg;
  188. u32 dst_def_cfg;
  189. struct d40_def_lcsp log_def;
  190. struct d40_log_lli_full *lcpa;
  191. /* Runtime reconfiguration */
  192. dma_addr_t runtime_addr;
  193. enum dma_data_direction runtime_direction;
  194. };
  195. /**
  196. * struct d40_base - The big global struct, one for each probe'd instance.
  197. *
  198. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  199. * @execmd_lock: Lock for execute command usage since several channels share
  200. * the same physical register.
  201. * @dev: The device structure.
  202. * @virtbase: The virtual base address of the DMA's register.
  203. * @rev: silicon revision detected.
  204. * @clk: Pointer to the DMA clock structure.
  205. * @phy_start: Physical memory start of the DMA registers.
  206. * @phy_size: Size of the DMA register map.
  207. * @irq: The IRQ number.
  208. * @num_phy_chans: The number of physical channels. Read from HW. This
  209. * is the number of available channels for this driver, not counting "Secure
  210. * mode" allocated physical channels.
  211. * @num_log_chans: The number of logical channels. Calculated from
  212. * num_phy_chans.
  213. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  214. * @dma_slave: dma_device channels that can do only do slave transfers.
  215. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  216. * @log_chans: Room for all possible logical channels in system.
  217. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  218. * to log_chans entries.
  219. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  220. * to phy_chans entries.
  221. * @plat_data: Pointer to provided platform_data which is the driver
  222. * configuration.
  223. * @phy_res: Vector containing all physical channels.
  224. * @lcla_pool: lcla pool settings and data.
  225. * @lcpa_base: The virtual mapped address of LCPA.
  226. * @phy_lcpa: The physical address of the LCPA.
  227. * @lcpa_size: The size of the LCPA area.
  228. * @desc_slab: cache for descriptors.
  229. */
  230. struct d40_base {
  231. spinlock_t interrupt_lock;
  232. spinlock_t execmd_lock;
  233. struct device *dev;
  234. void __iomem *virtbase;
  235. u8 rev:4;
  236. struct clk *clk;
  237. phys_addr_t phy_start;
  238. resource_size_t phy_size;
  239. int irq;
  240. int num_phy_chans;
  241. int num_log_chans;
  242. struct dma_device dma_both;
  243. struct dma_device dma_slave;
  244. struct dma_device dma_memcpy;
  245. struct d40_chan *phy_chans;
  246. struct d40_chan *log_chans;
  247. struct d40_chan **lookup_log_chans;
  248. struct d40_chan **lookup_phy_chans;
  249. struct stedma40_platform_data *plat_data;
  250. /* Physical half channels */
  251. struct d40_phy_res *phy_res;
  252. struct d40_lcla_pool lcla_pool;
  253. void *lcpa_base;
  254. dma_addr_t phy_lcpa;
  255. resource_size_t lcpa_size;
  256. struct kmem_cache *desc_slab;
  257. };
  258. /**
  259. * struct d40_interrupt_lookup - lookup table for interrupt handler
  260. *
  261. * @src: Interrupt mask register.
  262. * @clr: Interrupt clear register.
  263. * @is_error: true if this is an error interrupt.
  264. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  265. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  266. */
  267. struct d40_interrupt_lookup {
  268. u32 src;
  269. u32 clr;
  270. bool is_error;
  271. int offset;
  272. };
  273. /**
  274. * struct d40_reg_val - simple lookup struct
  275. *
  276. * @reg: The register.
  277. * @val: The value that belongs to the register in reg.
  278. */
  279. struct d40_reg_val {
  280. unsigned int reg;
  281. unsigned int val;
  282. };
  283. static struct device *chan2dev(struct d40_chan *d40c)
  284. {
  285. return &d40c->chan.dev->device;
  286. }
  287. static bool chan_is_physical(struct d40_chan *chan)
  288. {
  289. return chan->log_num == D40_PHY_CHAN;
  290. }
  291. static bool chan_is_logical(struct d40_chan *chan)
  292. {
  293. return !chan_is_physical(chan);
  294. }
  295. static void __iomem *chan_base(struct d40_chan *chan)
  296. {
  297. return chan->base->virtbase + D40_DREG_PCBASE +
  298. chan->phy_chan->num * D40_DREG_PCDELTA;
  299. }
  300. #define d40_err(dev, format, arg...) \
  301. dev_err(dev, "[%s] " format, __func__, ## arg)
  302. #define chan_err(d40c, format, arg...) \
  303. d40_err(chan2dev(d40c), format, ## arg)
  304. static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
  305. int lli_len)
  306. {
  307. bool is_log = chan_is_logical(d40c);
  308. u32 align;
  309. void *base;
  310. if (is_log)
  311. align = sizeof(struct d40_log_lli);
  312. else
  313. align = sizeof(struct d40_phy_lli);
  314. if (lli_len == 1) {
  315. base = d40d->lli_pool.pre_alloc_lli;
  316. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  317. d40d->lli_pool.base = NULL;
  318. } else {
  319. d40d->lli_pool.size = lli_len * 2 * align;
  320. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  321. d40d->lli_pool.base = base;
  322. if (d40d->lli_pool.base == NULL)
  323. return -ENOMEM;
  324. }
  325. if (is_log) {
  326. d40d->lli_log.src = PTR_ALIGN(base, align);
  327. d40d->lli_log.dst = d40d->lli_log.src + lli_len;
  328. d40d->lli_pool.dma_addr = 0;
  329. } else {
  330. d40d->lli_phy.src = PTR_ALIGN(base, align);
  331. d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
  332. d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
  333. d40d->lli_phy.src,
  334. d40d->lli_pool.size,
  335. DMA_TO_DEVICE);
  336. if (dma_mapping_error(d40c->base->dev,
  337. d40d->lli_pool.dma_addr)) {
  338. kfree(d40d->lli_pool.base);
  339. d40d->lli_pool.base = NULL;
  340. d40d->lli_pool.dma_addr = 0;
  341. return -ENOMEM;
  342. }
  343. }
  344. return 0;
  345. }
  346. static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
  347. {
  348. if (d40d->lli_pool.dma_addr)
  349. dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
  350. d40d->lli_pool.size, DMA_TO_DEVICE);
  351. kfree(d40d->lli_pool.base);
  352. d40d->lli_pool.base = NULL;
  353. d40d->lli_pool.size = 0;
  354. d40d->lli_log.src = NULL;
  355. d40d->lli_log.dst = NULL;
  356. d40d->lli_phy.src = NULL;
  357. d40d->lli_phy.dst = NULL;
  358. }
  359. static int d40_lcla_alloc_one(struct d40_chan *d40c,
  360. struct d40_desc *d40d)
  361. {
  362. unsigned long flags;
  363. int i;
  364. int ret = -EINVAL;
  365. int p;
  366. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  367. p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
  368. /*
  369. * Allocate both src and dst at the same time, therefore the half
  370. * start on 1 since 0 can't be used since zero is used as end marker.
  371. */
  372. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  373. if (!d40c->base->lcla_pool.alloc_map[p + i]) {
  374. d40c->base->lcla_pool.alloc_map[p + i] = d40d;
  375. d40d->lcla_alloc++;
  376. ret = i;
  377. break;
  378. }
  379. }
  380. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  381. return ret;
  382. }
  383. static int d40_lcla_free_all(struct d40_chan *d40c,
  384. struct d40_desc *d40d)
  385. {
  386. unsigned long flags;
  387. int i;
  388. int ret = -EINVAL;
  389. if (chan_is_physical(d40c))
  390. return 0;
  391. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  392. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  393. if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  394. D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
  395. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  396. D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
  397. d40d->lcla_alloc--;
  398. if (d40d->lcla_alloc == 0) {
  399. ret = 0;
  400. break;
  401. }
  402. }
  403. }
  404. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  405. return ret;
  406. }
  407. static void d40_desc_remove(struct d40_desc *d40d)
  408. {
  409. list_del(&d40d->node);
  410. }
  411. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  412. {
  413. struct d40_desc *desc = NULL;
  414. if (!list_empty(&d40c->client)) {
  415. struct d40_desc *d;
  416. struct d40_desc *_d;
  417. list_for_each_entry_safe(d, _d, &d40c->client, node)
  418. if (async_tx_test_ack(&d->txd)) {
  419. d40_pool_lli_free(d40c, d);
  420. d40_desc_remove(d);
  421. desc = d;
  422. memset(desc, 0, sizeof(*desc));
  423. break;
  424. }
  425. }
  426. if (!desc)
  427. desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
  428. if (desc)
  429. INIT_LIST_HEAD(&desc->node);
  430. return desc;
  431. }
  432. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  433. {
  434. d40_pool_lli_free(d40c, d40d);
  435. d40_lcla_free_all(d40c, d40d);
  436. kmem_cache_free(d40c->base->desc_slab, d40d);
  437. }
  438. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  439. {
  440. list_add_tail(&desc->node, &d40c->active);
  441. }
  442. static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
  443. {
  444. struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
  445. struct d40_phy_lli *lli_src = desc->lli_phy.src;
  446. void __iomem *base = chan_base(chan);
  447. writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
  448. writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
  449. writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
  450. writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
  451. writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
  452. writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
  453. writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
  454. writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
  455. }
  456. static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
  457. {
  458. struct d40_lcla_pool *pool = &chan->base->lcla_pool;
  459. struct d40_log_lli_bidir *lli = &desc->lli_log;
  460. int lli_current = desc->lli_current;
  461. int lli_len = desc->lli_len;
  462. bool cyclic = desc->cyclic;
  463. int curr_lcla = -EINVAL;
  464. int first_lcla = 0;
  465. bool linkback;
  466. /*
  467. * We may have partially running cyclic transfers, in case we did't get
  468. * enough LCLA entries.
  469. */
  470. linkback = cyclic && lli_current == 0;
  471. /*
  472. * For linkback, we need one LCLA even with only one link, because we
  473. * can't link back to the one in LCPA space
  474. */
  475. if (linkback || (lli_len - lli_current > 1)) {
  476. curr_lcla = d40_lcla_alloc_one(chan, desc);
  477. first_lcla = curr_lcla;
  478. }
  479. /*
  480. * For linkback, we normally load the LCPA in the loop since we need to
  481. * link it to the second LCLA and not the first. However, if we
  482. * couldn't even get a first LCLA, then we have to run in LCPA and
  483. * reload manually.
  484. */
  485. if (!linkback || curr_lcla == -EINVAL) {
  486. unsigned int flags = 0;
  487. if (curr_lcla == -EINVAL)
  488. flags |= LLI_TERM_INT;
  489. d40_log_lli_lcpa_write(chan->lcpa,
  490. &lli->dst[lli_current],
  491. &lli->src[lli_current],
  492. curr_lcla,
  493. flags);
  494. lli_current++;
  495. }
  496. if (curr_lcla < 0)
  497. goto out;
  498. for (; lli_current < lli_len; lli_current++) {
  499. unsigned int lcla_offset = chan->phy_chan->num * 1024 +
  500. 8 * curr_lcla * 2;
  501. struct d40_log_lli *lcla = pool->base + lcla_offset;
  502. unsigned int flags = 0;
  503. int next_lcla;
  504. if (lli_current + 1 < lli_len)
  505. next_lcla = d40_lcla_alloc_one(chan, desc);
  506. else
  507. next_lcla = linkback ? first_lcla : -EINVAL;
  508. if (cyclic || next_lcla == -EINVAL)
  509. flags |= LLI_TERM_INT;
  510. if (linkback && curr_lcla == first_lcla) {
  511. /* First link goes in both LCPA and LCLA */
  512. d40_log_lli_lcpa_write(chan->lcpa,
  513. &lli->dst[lli_current],
  514. &lli->src[lli_current],
  515. next_lcla, flags);
  516. }
  517. /*
  518. * One unused LCLA in the cyclic case if the very first
  519. * next_lcla fails...
  520. */
  521. d40_log_lli_lcla_write(lcla,
  522. &lli->dst[lli_current],
  523. &lli->src[lli_current],
  524. next_lcla, flags);
  525. dma_sync_single_range_for_device(chan->base->dev,
  526. pool->dma_addr, lcla_offset,
  527. 2 * sizeof(struct d40_log_lli),
  528. DMA_TO_DEVICE);
  529. curr_lcla = next_lcla;
  530. if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
  531. lli_current++;
  532. break;
  533. }
  534. }
  535. out:
  536. desc->lli_current = lli_current;
  537. }
  538. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  539. {
  540. if (chan_is_physical(d40c)) {
  541. d40_phy_lli_load(d40c, d40d);
  542. d40d->lli_current = d40d->lli_len;
  543. } else
  544. d40_log_lli_to_lcxa(d40c, d40d);
  545. }
  546. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  547. {
  548. struct d40_desc *d;
  549. if (list_empty(&d40c->active))
  550. return NULL;
  551. d = list_first_entry(&d40c->active,
  552. struct d40_desc,
  553. node);
  554. return d;
  555. }
  556. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  557. {
  558. list_add_tail(&desc->node, &d40c->queue);
  559. }
  560. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  561. {
  562. struct d40_desc *d;
  563. if (list_empty(&d40c->queue))
  564. return NULL;
  565. d = list_first_entry(&d40c->queue,
  566. struct d40_desc,
  567. node);
  568. return d;
  569. }
  570. static int d40_psize_2_burst_size(bool is_log, int psize)
  571. {
  572. if (is_log) {
  573. if (psize == STEDMA40_PSIZE_LOG_1)
  574. return 1;
  575. } else {
  576. if (psize == STEDMA40_PSIZE_PHY_1)
  577. return 1;
  578. }
  579. return 2 << psize;
  580. }
  581. /*
  582. * The dma only supports transmitting packages up to
  583. * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
  584. * dma elements required to send the entire sg list
  585. */
  586. static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
  587. {
  588. int dmalen;
  589. u32 max_w = max(data_width1, data_width2);
  590. u32 min_w = min(data_width1, data_width2);
  591. u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
  592. if (seg_max > STEDMA40_MAX_SEG_SIZE)
  593. seg_max -= (1 << max_w);
  594. if (!IS_ALIGNED(size, 1 << max_w))
  595. return -EINVAL;
  596. if (size <= seg_max)
  597. dmalen = 1;
  598. else {
  599. dmalen = size / seg_max;
  600. if (dmalen * seg_max < size)
  601. dmalen++;
  602. }
  603. return dmalen;
  604. }
  605. static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
  606. u32 data_width1, u32 data_width2)
  607. {
  608. struct scatterlist *sg;
  609. int i;
  610. int len = 0;
  611. int ret;
  612. for_each_sg(sgl, sg, sg_len, i) {
  613. ret = d40_size_2_dmalen(sg_dma_len(sg),
  614. data_width1, data_width2);
  615. if (ret < 0)
  616. return ret;
  617. len += ret;
  618. }
  619. return len;
  620. }
  621. /* Support functions for logical channels */
  622. static int d40_channel_execute_command(struct d40_chan *d40c,
  623. enum d40_command command)
  624. {
  625. u32 status;
  626. int i;
  627. void __iomem *active_reg;
  628. int ret = 0;
  629. unsigned long flags;
  630. u32 wmask;
  631. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  632. if (d40c->phy_chan->num % 2 == 0)
  633. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  634. else
  635. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  636. if (command == D40_DMA_SUSPEND_REQ) {
  637. status = (readl(active_reg) &
  638. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  639. D40_CHAN_POS(d40c->phy_chan->num);
  640. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  641. goto done;
  642. }
  643. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  644. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  645. active_reg);
  646. if (command == D40_DMA_SUSPEND_REQ) {
  647. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  648. status = (readl(active_reg) &
  649. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  650. D40_CHAN_POS(d40c->phy_chan->num);
  651. cpu_relax();
  652. /*
  653. * Reduce the number of bus accesses while
  654. * waiting for the DMA to suspend.
  655. */
  656. udelay(3);
  657. if (status == D40_DMA_STOP ||
  658. status == D40_DMA_SUSPENDED)
  659. break;
  660. }
  661. if (i == D40_SUSPEND_MAX_IT) {
  662. chan_err(d40c,
  663. "unable to suspend the chl %d (log: %d) status %x\n",
  664. d40c->phy_chan->num, d40c->log_num,
  665. status);
  666. dump_stack();
  667. ret = -EBUSY;
  668. }
  669. }
  670. done:
  671. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  672. return ret;
  673. }
  674. static void d40_term_all(struct d40_chan *d40c)
  675. {
  676. struct d40_desc *d40d;
  677. /* Release active descriptors */
  678. while ((d40d = d40_first_active_get(d40c))) {
  679. d40_desc_remove(d40d);
  680. d40_desc_free(d40c, d40d);
  681. }
  682. /* Release queued descriptors waiting for transfer */
  683. while ((d40d = d40_first_queued(d40c))) {
  684. d40_desc_remove(d40d);
  685. d40_desc_free(d40c, d40d);
  686. }
  687. d40c->pending_tx = 0;
  688. d40c->busy = false;
  689. }
  690. static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
  691. u32 event, int reg)
  692. {
  693. void __iomem *addr = chan_base(d40c) + reg;
  694. int tries;
  695. if (!enable) {
  696. writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  697. | ~D40_EVENTLINE_MASK(event), addr);
  698. return;
  699. }
  700. /*
  701. * The hardware sometimes doesn't register the enable when src and dst
  702. * event lines are active on the same logical channel. Retry to ensure
  703. * it does. Usually only one retry is sufficient.
  704. */
  705. tries = 100;
  706. while (--tries) {
  707. writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  708. | ~D40_EVENTLINE_MASK(event), addr);
  709. if (readl(addr) & D40_EVENTLINE_MASK(event))
  710. break;
  711. }
  712. if (tries != 99)
  713. dev_dbg(chan2dev(d40c),
  714. "[%s] workaround enable S%cLNK (%d tries)\n",
  715. __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
  716. 100 - tries);
  717. WARN_ON(!tries);
  718. }
  719. static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
  720. {
  721. unsigned long flags;
  722. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  723. /* Enable event line connected to device (or memcpy) */
  724. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  725. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
  726. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  727. __d40_config_set_event(d40c, do_enable, event,
  728. D40_CHAN_REG_SSLNK);
  729. }
  730. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
  731. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  732. __d40_config_set_event(d40c, do_enable, event,
  733. D40_CHAN_REG_SDLNK);
  734. }
  735. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  736. }
  737. static u32 d40_chan_has_events(struct d40_chan *d40c)
  738. {
  739. void __iomem *chanbase = chan_base(d40c);
  740. u32 val;
  741. val = readl(chanbase + D40_CHAN_REG_SSLNK);
  742. val |= readl(chanbase + D40_CHAN_REG_SDLNK);
  743. return val;
  744. }
  745. static u32 d40_get_prmo(struct d40_chan *d40c)
  746. {
  747. static const unsigned int phy_map[] = {
  748. [STEDMA40_PCHAN_BASIC_MODE]
  749. = D40_DREG_PRMO_PCHAN_BASIC,
  750. [STEDMA40_PCHAN_MODULO_MODE]
  751. = D40_DREG_PRMO_PCHAN_MODULO,
  752. [STEDMA40_PCHAN_DOUBLE_DST_MODE]
  753. = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
  754. };
  755. static const unsigned int log_map[] = {
  756. [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
  757. = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
  758. [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
  759. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
  760. [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
  761. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
  762. };
  763. if (chan_is_physical(d40c))
  764. return phy_map[d40c->dma_cfg.mode_opt];
  765. else
  766. return log_map[d40c->dma_cfg.mode_opt];
  767. }
  768. static void d40_config_write(struct d40_chan *d40c)
  769. {
  770. u32 addr_base;
  771. u32 var;
  772. /* Odd addresses are even addresses + 4 */
  773. addr_base = (d40c->phy_chan->num % 2) * 4;
  774. /* Setup channel mode to logical or physical */
  775. var = ((u32)(chan_is_logical(d40c)) + 1) <<
  776. D40_CHAN_POS(d40c->phy_chan->num);
  777. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  778. /* Setup operational mode option register */
  779. var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
  780. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  781. if (chan_is_logical(d40c)) {
  782. int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
  783. & D40_SREG_ELEM_LOG_LIDX_MASK;
  784. void __iomem *chanbase = chan_base(d40c);
  785. /* Set default config for CFG reg */
  786. writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
  787. writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
  788. /* Set LIDX for lcla */
  789. writel(lidx, chanbase + D40_CHAN_REG_SSELT);
  790. writel(lidx, chanbase + D40_CHAN_REG_SDELT);
  791. }
  792. }
  793. static u32 d40_residue(struct d40_chan *d40c)
  794. {
  795. u32 num_elt;
  796. if (chan_is_logical(d40c))
  797. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  798. >> D40_MEM_LCSP2_ECNT_POS;
  799. else {
  800. u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
  801. num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
  802. >> D40_SREG_ELEM_PHY_ECNT_POS;
  803. }
  804. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  805. }
  806. static bool d40_tx_is_linked(struct d40_chan *d40c)
  807. {
  808. bool is_link;
  809. if (chan_is_logical(d40c))
  810. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  811. else
  812. is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
  813. & D40_SREG_LNK_PHYS_LNK_MASK;
  814. return is_link;
  815. }
  816. static int d40_pause(struct d40_chan *d40c)
  817. {
  818. int res = 0;
  819. unsigned long flags;
  820. if (!d40c->busy)
  821. return 0;
  822. spin_lock_irqsave(&d40c->lock, flags);
  823. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  824. if (res == 0) {
  825. if (chan_is_logical(d40c)) {
  826. d40_config_set_event(d40c, false);
  827. /* Resume the other logical channels if any */
  828. if (d40_chan_has_events(d40c))
  829. res = d40_channel_execute_command(d40c,
  830. D40_DMA_RUN);
  831. }
  832. }
  833. spin_unlock_irqrestore(&d40c->lock, flags);
  834. return res;
  835. }
  836. static int d40_resume(struct d40_chan *d40c)
  837. {
  838. int res = 0;
  839. unsigned long flags;
  840. if (!d40c->busy)
  841. return 0;
  842. spin_lock_irqsave(&d40c->lock, flags);
  843. if (d40c->base->rev == 0)
  844. if (chan_is_logical(d40c)) {
  845. res = d40_channel_execute_command(d40c,
  846. D40_DMA_SUSPEND_REQ);
  847. goto no_suspend;
  848. }
  849. /* If bytes left to transfer or linked tx resume job */
  850. if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
  851. if (chan_is_logical(d40c))
  852. d40_config_set_event(d40c, true);
  853. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  854. }
  855. no_suspend:
  856. spin_unlock_irqrestore(&d40c->lock, flags);
  857. return res;
  858. }
  859. static int d40_terminate_all(struct d40_chan *chan)
  860. {
  861. unsigned long flags;
  862. int ret = 0;
  863. ret = d40_pause(chan);
  864. if (!ret && chan_is_physical(chan))
  865. ret = d40_channel_execute_command(chan, D40_DMA_STOP);
  866. spin_lock_irqsave(&chan->lock, flags);
  867. d40_term_all(chan);
  868. spin_unlock_irqrestore(&chan->lock, flags);
  869. return ret;
  870. }
  871. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  872. {
  873. struct d40_chan *d40c = container_of(tx->chan,
  874. struct d40_chan,
  875. chan);
  876. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  877. unsigned long flags;
  878. spin_lock_irqsave(&d40c->lock, flags);
  879. d40c->chan.cookie++;
  880. if (d40c->chan.cookie < 0)
  881. d40c->chan.cookie = 1;
  882. d40d->txd.cookie = d40c->chan.cookie;
  883. d40_desc_queue(d40c, d40d);
  884. spin_unlock_irqrestore(&d40c->lock, flags);
  885. return tx->cookie;
  886. }
  887. static int d40_start(struct d40_chan *d40c)
  888. {
  889. if (d40c->base->rev == 0) {
  890. int err;
  891. if (chan_is_logical(d40c)) {
  892. err = d40_channel_execute_command(d40c,
  893. D40_DMA_SUSPEND_REQ);
  894. if (err)
  895. return err;
  896. }
  897. }
  898. if (chan_is_logical(d40c))
  899. d40_config_set_event(d40c, true);
  900. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  901. }
  902. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  903. {
  904. struct d40_desc *d40d;
  905. int err;
  906. /* Start queued jobs, if any */
  907. d40d = d40_first_queued(d40c);
  908. if (d40d != NULL) {
  909. d40c->busy = true;
  910. /* Remove from queue */
  911. d40_desc_remove(d40d);
  912. /* Add to active queue */
  913. d40_desc_submit(d40c, d40d);
  914. /* Initiate DMA job */
  915. d40_desc_load(d40c, d40d);
  916. /* Start dma job */
  917. err = d40_start(d40c);
  918. if (err)
  919. return NULL;
  920. }
  921. return d40d;
  922. }
  923. /* called from interrupt context */
  924. static void dma_tc_handle(struct d40_chan *d40c)
  925. {
  926. struct d40_desc *d40d;
  927. /* Get first active entry from list */
  928. d40d = d40_first_active_get(d40c);
  929. if (d40d == NULL)
  930. return;
  931. if (d40d->cyclic) {
  932. /*
  933. * If this was a paritially loaded list, we need to reloaded
  934. * it, and only when the list is completed. We need to check
  935. * for done because the interrupt will hit for every link, and
  936. * not just the last one.
  937. */
  938. if (d40d->lli_current < d40d->lli_len
  939. && !d40_tx_is_linked(d40c)
  940. && !d40_residue(d40c)) {
  941. d40_lcla_free_all(d40c, d40d);
  942. d40_desc_load(d40c, d40d);
  943. (void) d40_start(d40c);
  944. if (d40d->lli_current == d40d->lli_len)
  945. d40d->lli_current = 0;
  946. }
  947. } else {
  948. d40_lcla_free_all(d40c, d40d);
  949. if (d40d->lli_current < d40d->lli_len) {
  950. d40_desc_load(d40c, d40d);
  951. /* Start dma job */
  952. (void) d40_start(d40c);
  953. return;
  954. }
  955. if (d40_queue_start(d40c) == NULL)
  956. d40c->busy = false;
  957. }
  958. d40c->pending_tx++;
  959. tasklet_schedule(&d40c->tasklet);
  960. }
  961. static void dma_tasklet(unsigned long data)
  962. {
  963. struct d40_chan *d40c = (struct d40_chan *) data;
  964. struct d40_desc *d40d;
  965. unsigned long flags;
  966. dma_async_tx_callback callback;
  967. void *callback_param;
  968. spin_lock_irqsave(&d40c->lock, flags);
  969. /* Get first active entry from list */
  970. d40d = d40_first_active_get(d40c);
  971. if (d40d == NULL)
  972. goto err;
  973. if (!d40d->cyclic)
  974. d40c->completed = d40d->txd.cookie;
  975. /*
  976. * If terminating a channel pending_tx is set to zero.
  977. * This prevents any finished active jobs to return to the client.
  978. */
  979. if (d40c->pending_tx == 0) {
  980. spin_unlock_irqrestore(&d40c->lock, flags);
  981. return;
  982. }
  983. /* Callback to client */
  984. callback = d40d->txd.callback;
  985. callback_param = d40d->txd.callback_param;
  986. if (!d40d->cyclic) {
  987. if (async_tx_test_ack(&d40d->txd)) {
  988. d40_pool_lli_free(d40c, d40d);
  989. d40_desc_remove(d40d);
  990. d40_desc_free(d40c, d40d);
  991. } else {
  992. if (!d40d->is_in_client_list) {
  993. d40_desc_remove(d40d);
  994. d40_lcla_free_all(d40c, d40d);
  995. list_add_tail(&d40d->node, &d40c->client);
  996. d40d->is_in_client_list = true;
  997. }
  998. }
  999. }
  1000. d40c->pending_tx--;
  1001. if (d40c->pending_tx)
  1002. tasklet_schedule(&d40c->tasklet);
  1003. spin_unlock_irqrestore(&d40c->lock, flags);
  1004. if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
  1005. callback(callback_param);
  1006. return;
  1007. err:
  1008. /* Rescue manoeuvre if receiving double interrupts */
  1009. if (d40c->pending_tx > 0)
  1010. d40c->pending_tx--;
  1011. spin_unlock_irqrestore(&d40c->lock, flags);
  1012. }
  1013. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  1014. {
  1015. static const struct d40_interrupt_lookup il[] = {
  1016. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  1017. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  1018. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  1019. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  1020. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  1021. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  1022. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  1023. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  1024. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  1025. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  1026. };
  1027. int i;
  1028. u32 regs[ARRAY_SIZE(il)];
  1029. u32 idx;
  1030. u32 row;
  1031. long chan = -1;
  1032. struct d40_chan *d40c;
  1033. unsigned long flags;
  1034. struct d40_base *base = data;
  1035. spin_lock_irqsave(&base->interrupt_lock, flags);
  1036. /* Read interrupt status of both logical and physical channels */
  1037. for (i = 0; i < ARRAY_SIZE(il); i++)
  1038. regs[i] = readl(base->virtbase + il[i].src);
  1039. for (;;) {
  1040. chan = find_next_bit((unsigned long *)regs,
  1041. BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
  1042. /* No more set bits found? */
  1043. if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
  1044. break;
  1045. row = chan / BITS_PER_LONG;
  1046. idx = chan & (BITS_PER_LONG - 1);
  1047. /* ACK interrupt */
  1048. writel(1 << idx, base->virtbase + il[row].clr);
  1049. if (il[row].offset == D40_PHY_CHAN)
  1050. d40c = base->lookup_phy_chans[idx];
  1051. else
  1052. d40c = base->lookup_log_chans[il[row].offset + idx];
  1053. spin_lock(&d40c->lock);
  1054. if (!il[row].is_error)
  1055. dma_tc_handle(d40c);
  1056. else
  1057. d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
  1058. chan, il[row].offset, idx);
  1059. spin_unlock(&d40c->lock);
  1060. }
  1061. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  1062. return IRQ_HANDLED;
  1063. }
  1064. static int d40_validate_conf(struct d40_chan *d40c,
  1065. struct stedma40_chan_cfg *conf)
  1066. {
  1067. int res = 0;
  1068. u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
  1069. u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
  1070. bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
  1071. if (!conf->dir) {
  1072. chan_err(d40c, "Invalid direction.\n");
  1073. res = -EINVAL;
  1074. }
  1075. if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
  1076. d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
  1077. d40c->runtime_addr == 0) {
  1078. chan_err(d40c, "Invalid TX channel address (%d)\n",
  1079. conf->dst_dev_type);
  1080. res = -EINVAL;
  1081. }
  1082. if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
  1083. d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
  1084. d40c->runtime_addr == 0) {
  1085. chan_err(d40c, "Invalid RX channel address (%d)\n",
  1086. conf->src_dev_type);
  1087. res = -EINVAL;
  1088. }
  1089. if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
  1090. dst_event_group == STEDMA40_DEV_DST_MEMORY) {
  1091. chan_err(d40c, "Invalid dst\n");
  1092. res = -EINVAL;
  1093. }
  1094. if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
  1095. src_event_group == STEDMA40_DEV_SRC_MEMORY) {
  1096. chan_err(d40c, "Invalid src\n");
  1097. res = -EINVAL;
  1098. }
  1099. if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
  1100. dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
  1101. chan_err(d40c, "No event line\n");
  1102. res = -EINVAL;
  1103. }
  1104. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
  1105. (src_event_group != dst_event_group)) {
  1106. chan_err(d40c, "Invalid event group\n");
  1107. res = -EINVAL;
  1108. }
  1109. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  1110. /*
  1111. * DMAC HW supports it. Will be added to this driver,
  1112. * in case any dma client requires it.
  1113. */
  1114. chan_err(d40c, "periph to periph not supported\n");
  1115. res = -EINVAL;
  1116. }
  1117. if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
  1118. (1 << conf->src_info.data_width) !=
  1119. d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
  1120. (1 << conf->dst_info.data_width)) {
  1121. /*
  1122. * The DMAC hardware only supports
  1123. * src (burst x width) == dst (burst x width)
  1124. */
  1125. chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
  1126. res = -EINVAL;
  1127. }
  1128. return res;
  1129. }
  1130. static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
  1131. int log_event_line, bool is_log)
  1132. {
  1133. unsigned long flags;
  1134. spin_lock_irqsave(&phy->lock, flags);
  1135. if (!is_log) {
  1136. /* Physical interrupts are masked per physical full channel */
  1137. if (phy->allocated_src == D40_ALLOC_FREE &&
  1138. phy->allocated_dst == D40_ALLOC_FREE) {
  1139. phy->allocated_dst = D40_ALLOC_PHY;
  1140. phy->allocated_src = D40_ALLOC_PHY;
  1141. goto found;
  1142. } else
  1143. goto not_found;
  1144. }
  1145. /* Logical channel */
  1146. if (is_src) {
  1147. if (phy->allocated_src == D40_ALLOC_PHY)
  1148. goto not_found;
  1149. if (phy->allocated_src == D40_ALLOC_FREE)
  1150. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1151. if (!(phy->allocated_src & (1 << log_event_line))) {
  1152. phy->allocated_src |= 1 << log_event_line;
  1153. goto found;
  1154. } else
  1155. goto not_found;
  1156. } else {
  1157. if (phy->allocated_dst == D40_ALLOC_PHY)
  1158. goto not_found;
  1159. if (phy->allocated_dst == D40_ALLOC_FREE)
  1160. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1161. if (!(phy->allocated_dst & (1 << log_event_line))) {
  1162. phy->allocated_dst |= 1 << log_event_line;
  1163. goto found;
  1164. } else
  1165. goto not_found;
  1166. }
  1167. not_found:
  1168. spin_unlock_irqrestore(&phy->lock, flags);
  1169. return false;
  1170. found:
  1171. spin_unlock_irqrestore(&phy->lock, flags);
  1172. return true;
  1173. }
  1174. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1175. int log_event_line)
  1176. {
  1177. unsigned long flags;
  1178. bool is_free = false;
  1179. spin_lock_irqsave(&phy->lock, flags);
  1180. if (!log_event_line) {
  1181. phy->allocated_dst = D40_ALLOC_FREE;
  1182. phy->allocated_src = D40_ALLOC_FREE;
  1183. is_free = true;
  1184. goto out;
  1185. }
  1186. /* Logical channel */
  1187. if (is_src) {
  1188. phy->allocated_src &= ~(1 << log_event_line);
  1189. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1190. phy->allocated_src = D40_ALLOC_FREE;
  1191. } else {
  1192. phy->allocated_dst &= ~(1 << log_event_line);
  1193. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1194. phy->allocated_dst = D40_ALLOC_FREE;
  1195. }
  1196. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1197. D40_ALLOC_FREE);
  1198. out:
  1199. spin_unlock_irqrestore(&phy->lock, flags);
  1200. return is_free;
  1201. }
  1202. static int d40_allocate_channel(struct d40_chan *d40c)
  1203. {
  1204. int dev_type;
  1205. int event_group;
  1206. int event_line;
  1207. struct d40_phy_res *phys;
  1208. int i;
  1209. int j;
  1210. int log_num;
  1211. bool is_src;
  1212. bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
  1213. phys = d40c->base->phy_res;
  1214. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1215. dev_type = d40c->dma_cfg.src_dev_type;
  1216. log_num = 2 * dev_type;
  1217. is_src = true;
  1218. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1219. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1220. /* dst event lines are used for logical memcpy */
  1221. dev_type = d40c->dma_cfg.dst_dev_type;
  1222. log_num = 2 * dev_type + 1;
  1223. is_src = false;
  1224. } else
  1225. return -EINVAL;
  1226. event_group = D40_TYPE_TO_GROUP(dev_type);
  1227. event_line = D40_TYPE_TO_EVENT(dev_type);
  1228. if (!is_log) {
  1229. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1230. /* Find physical half channel */
  1231. for (i = 0; i < d40c->base->num_phy_chans; i++) {
  1232. if (d40_alloc_mask_set(&phys[i], is_src,
  1233. 0, is_log))
  1234. goto found_phy;
  1235. }
  1236. } else
  1237. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1238. int phy_num = j + event_group * 2;
  1239. for (i = phy_num; i < phy_num + 2; i++) {
  1240. if (d40_alloc_mask_set(&phys[i],
  1241. is_src,
  1242. 0,
  1243. is_log))
  1244. goto found_phy;
  1245. }
  1246. }
  1247. return -EINVAL;
  1248. found_phy:
  1249. d40c->phy_chan = &phys[i];
  1250. d40c->log_num = D40_PHY_CHAN;
  1251. goto out;
  1252. }
  1253. if (dev_type == -1)
  1254. return -EINVAL;
  1255. /* Find logical channel */
  1256. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1257. int phy_num = j + event_group * 2;
  1258. /*
  1259. * Spread logical channels across all available physical rather
  1260. * than pack every logical channel at the first available phy
  1261. * channels.
  1262. */
  1263. if (is_src) {
  1264. for (i = phy_num; i < phy_num + 2; i++) {
  1265. if (d40_alloc_mask_set(&phys[i], is_src,
  1266. event_line, is_log))
  1267. goto found_log;
  1268. }
  1269. } else {
  1270. for (i = phy_num + 1; i >= phy_num; i--) {
  1271. if (d40_alloc_mask_set(&phys[i], is_src,
  1272. event_line, is_log))
  1273. goto found_log;
  1274. }
  1275. }
  1276. }
  1277. return -EINVAL;
  1278. found_log:
  1279. d40c->phy_chan = &phys[i];
  1280. d40c->log_num = log_num;
  1281. out:
  1282. if (is_log)
  1283. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1284. else
  1285. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1286. return 0;
  1287. }
  1288. static int d40_config_memcpy(struct d40_chan *d40c)
  1289. {
  1290. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1291. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1292. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
  1293. d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
  1294. d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
  1295. memcpy[d40c->chan.chan_id];
  1296. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1297. dma_has_cap(DMA_SLAVE, cap)) {
  1298. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
  1299. } else {
  1300. chan_err(d40c, "No memcpy\n");
  1301. return -EINVAL;
  1302. }
  1303. return 0;
  1304. }
  1305. static int d40_free_dma(struct d40_chan *d40c)
  1306. {
  1307. int res = 0;
  1308. u32 event;
  1309. struct d40_phy_res *phy = d40c->phy_chan;
  1310. bool is_src;
  1311. struct d40_desc *d;
  1312. struct d40_desc *_d;
  1313. /* Terminate all queued and active transfers */
  1314. d40_term_all(d40c);
  1315. /* Release client owned descriptors */
  1316. if (!list_empty(&d40c->client))
  1317. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  1318. d40_pool_lli_free(d40c, d);
  1319. d40_desc_remove(d);
  1320. d40_desc_free(d40c, d);
  1321. }
  1322. if (phy == NULL) {
  1323. chan_err(d40c, "phy == null\n");
  1324. return -EINVAL;
  1325. }
  1326. if (phy->allocated_src == D40_ALLOC_FREE &&
  1327. phy->allocated_dst == D40_ALLOC_FREE) {
  1328. chan_err(d40c, "channel already free\n");
  1329. return -EINVAL;
  1330. }
  1331. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1332. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1333. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1334. is_src = false;
  1335. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1336. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1337. is_src = true;
  1338. } else {
  1339. chan_err(d40c, "Unknown direction\n");
  1340. return -EINVAL;
  1341. }
  1342. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1343. if (res) {
  1344. chan_err(d40c, "suspend failed\n");
  1345. return res;
  1346. }
  1347. if (chan_is_logical(d40c)) {
  1348. /* Release logical channel, deactivate the event line */
  1349. d40_config_set_event(d40c, false);
  1350. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1351. /*
  1352. * Check if there are more logical allocation
  1353. * on this phy channel.
  1354. */
  1355. if (!d40_alloc_mask_free(phy, is_src, event)) {
  1356. /* Resume the other logical channels if any */
  1357. if (d40_chan_has_events(d40c)) {
  1358. res = d40_channel_execute_command(d40c,
  1359. D40_DMA_RUN);
  1360. if (res) {
  1361. chan_err(d40c,
  1362. "Executing RUN command\n");
  1363. return res;
  1364. }
  1365. }
  1366. return 0;
  1367. }
  1368. } else {
  1369. (void) d40_alloc_mask_free(phy, is_src, 0);
  1370. }
  1371. /* Release physical channel */
  1372. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1373. if (res) {
  1374. chan_err(d40c, "Failed to stop channel\n");
  1375. return res;
  1376. }
  1377. d40c->phy_chan = NULL;
  1378. d40c->configured = false;
  1379. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1380. return 0;
  1381. }
  1382. static bool d40_is_paused(struct d40_chan *d40c)
  1383. {
  1384. void __iomem *chanbase = chan_base(d40c);
  1385. bool is_paused = false;
  1386. unsigned long flags;
  1387. void __iomem *active_reg;
  1388. u32 status;
  1389. u32 event;
  1390. spin_lock_irqsave(&d40c->lock, flags);
  1391. if (chan_is_physical(d40c)) {
  1392. if (d40c->phy_chan->num % 2 == 0)
  1393. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1394. else
  1395. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1396. status = (readl(active_reg) &
  1397. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1398. D40_CHAN_POS(d40c->phy_chan->num);
  1399. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1400. is_paused = true;
  1401. goto _exit;
  1402. }
  1403. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1404. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1405. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1406. status = readl(chanbase + D40_CHAN_REG_SDLNK);
  1407. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1408. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1409. status = readl(chanbase + D40_CHAN_REG_SSLNK);
  1410. } else {
  1411. chan_err(d40c, "Unknown direction\n");
  1412. goto _exit;
  1413. }
  1414. status = (status & D40_EVENTLINE_MASK(event)) >>
  1415. D40_EVENTLINE_POS(event);
  1416. if (status != D40_DMA_RUN)
  1417. is_paused = true;
  1418. _exit:
  1419. spin_unlock_irqrestore(&d40c->lock, flags);
  1420. return is_paused;
  1421. }
  1422. static u32 stedma40_residue(struct dma_chan *chan)
  1423. {
  1424. struct d40_chan *d40c =
  1425. container_of(chan, struct d40_chan, chan);
  1426. u32 bytes_left;
  1427. unsigned long flags;
  1428. spin_lock_irqsave(&d40c->lock, flags);
  1429. bytes_left = d40_residue(d40c);
  1430. spin_unlock_irqrestore(&d40c->lock, flags);
  1431. return bytes_left;
  1432. }
  1433. static int
  1434. d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
  1435. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1436. unsigned int sg_len, dma_addr_t src_dev_addr,
  1437. dma_addr_t dst_dev_addr)
  1438. {
  1439. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1440. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1441. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1442. int ret;
  1443. ret = d40_log_sg_to_lli(sg_src, sg_len,
  1444. src_dev_addr,
  1445. desc->lli_log.src,
  1446. chan->log_def.lcsp1,
  1447. src_info->data_width,
  1448. dst_info->data_width);
  1449. ret = d40_log_sg_to_lli(sg_dst, sg_len,
  1450. dst_dev_addr,
  1451. desc->lli_log.dst,
  1452. chan->log_def.lcsp3,
  1453. dst_info->data_width,
  1454. src_info->data_width);
  1455. return ret < 0 ? ret : 0;
  1456. }
  1457. static int
  1458. d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
  1459. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1460. unsigned int sg_len, dma_addr_t src_dev_addr,
  1461. dma_addr_t dst_dev_addr)
  1462. {
  1463. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1464. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1465. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1466. unsigned long flags = 0;
  1467. int ret;
  1468. if (desc->cyclic)
  1469. flags |= LLI_CYCLIC | LLI_TERM_INT;
  1470. ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
  1471. desc->lli_phy.src,
  1472. virt_to_phys(desc->lli_phy.src),
  1473. chan->src_def_cfg,
  1474. src_info, dst_info, flags);
  1475. ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
  1476. desc->lli_phy.dst,
  1477. virt_to_phys(desc->lli_phy.dst),
  1478. chan->dst_def_cfg,
  1479. dst_info, src_info, flags);
  1480. dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
  1481. desc->lli_pool.size, DMA_TO_DEVICE);
  1482. return ret < 0 ? ret : 0;
  1483. }
  1484. static struct d40_desc *
  1485. d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
  1486. unsigned int sg_len, unsigned long dma_flags)
  1487. {
  1488. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1489. struct d40_desc *desc;
  1490. int ret;
  1491. desc = d40_desc_get(chan);
  1492. if (!desc)
  1493. return NULL;
  1494. desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
  1495. cfg->dst_info.data_width);
  1496. if (desc->lli_len < 0) {
  1497. chan_err(chan, "Unaligned size\n");
  1498. goto err;
  1499. }
  1500. ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
  1501. if (ret < 0) {
  1502. chan_err(chan, "Could not allocate lli\n");
  1503. goto err;
  1504. }
  1505. desc->lli_current = 0;
  1506. desc->txd.flags = dma_flags;
  1507. desc->txd.tx_submit = d40_tx_submit;
  1508. dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
  1509. return desc;
  1510. err:
  1511. d40_desc_free(chan, desc);
  1512. return NULL;
  1513. }
  1514. static dma_addr_t
  1515. d40_get_dev_addr(struct d40_chan *chan, enum dma_data_direction direction)
  1516. {
  1517. struct stedma40_platform_data *plat = chan->base->plat_data;
  1518. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1519. dma_addr_t addr = 0;
  1520. if (chan->runtime_addr)
  1521. return chan->runtime_addr;
  1522. if (direction == DMA_FROM_DEVICE)
  1523. addr = plat->dev_rx[cfg->src_dev_type];
  1524. else if (direction == DMA_TO_DEVICE)
  1525. addr = plat->dev_tx[cfg->dst_dev_type];
  1526. return addr;
  1527. }
  1528. static struct dma_async_tx_descriptor *
  1529. d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
  1530. struct scatterlist *sg_dst, unsigned int sg_len,
  1531. enum dma_data_direction direction, unsigned long dma_flags)
  1532. {
  1533. struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
  1534. dma_addr_t src_dev_addr = 0;
  1535. dma_addr_t dst_dev_addr = 0;
  1536. struct d40_desc *desc;
  1537. unsigned long flags;
  1538. int ret;
  1539. if (!chan->phy_chan) {
  1540. chan_err(chan, "Cannot prepare unallocated channel\n");
  1541. return NULL;
  1542. }
  1543. spin_lock_irqsave(&chan->lock, flags);
  1544. desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
  1545. if (desc == NULL)
  1546. goto err;
  1547. if (sg_next(&sg_src[sg_len - 1]) == sg_src)
  1548. desc->cyclic = true;
  1549. if (direction != DMA_NONE) {
  1550. dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
  1551. if (direction == DMA_FROM_DEVICE)
  1552. src_dev_addr = dev_addr;
  1553. else if (direction == DMA_TO_DEVICE)
  1554. dst_dev_addr = dev_addr;
  1555. }
  1556. if (chan_is_logical(chan))
  1557. ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
  1558. sg_len, src_dev_addr, dst_dev_addr);
  1559. else
  1560. ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
  1561. sg_len, src_dev_addr, dst_dev_addr);
  1562. if (ret) {
  1563. chan_err(chan, "Failed to prepare %s sg job: %d\n",
  1564. chan_is_logical(chan) ? "log" : "phy", ret);
  1565. goto err;
  1566. }
  1567. spin_unlock_irqrestore(&chan->lock, flags);
  1568. return &desc->txd;
  1569. err:
  1570. if (desc)
  1571. d40_desc_free(chan, desc);
  1572. spin_unlock_irqrestore(&chan->lock, flags);
  1573. return NULL;
  1574. }
  1575. bool stedma40_filter(struct dma_chan *chan, void *data)
  1576. {
  1577. struct stedma40_chan_cfg *info = data;
  1578. struct d40_chan *d40c =
  1579. container_of(chan, struct d40_chan, chan);
  1580. int err;
  1581. if (data) {
  1582. err = d40_validate_conf(d40c, info);
  1583. if (!err)
  1584. d40c->dma_cfg = *info;
  1585. } else
  1586. err = d40_config_memcpy(d40c);
  1587. if (!err)
  1588. d40c->configured = true;
  1589. return err == 0;
  1590. }
  1591. EXPORT_SYMBOL(stedma40_filter);
  1592. static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
  1593. {
  1594. bool realtime = d40c->dma_cfg.realtime;
  1595. bool highprio = d40c->dma_cfg.high_priority;
  1596. u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
  1597. u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
  1598. u32 event = D40_TYPE_TO_EVENT(dev_type);
  1599. u32 group = D40_TYPE_TO_GROUP(dev_type);
  1600. u32 bit = 1 << event;
  1601. /* Destination event lines are stored in the upper halfword */
  1602. if (!src)
  1603. bit <<= 16;
  1604. writel(bit, d40c->base->virtbase + prioreg + group * 4);
  1605. writel(bit, d40c->base->virtbase + rtreg + group * 4);
  1606. }
  1607. static void d40_set_prio_realtime(struct d40_chan *d40c)
  1608. {
  1609. if (d40c->base->rev < 3)
  1610. return;
  1611. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  1612. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1613. __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
  1614. if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
  1615. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1616. __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
  1617. }
  1618. /* DMA ENGINE functions */
  1619. static int d40_alloc_chan_resources(struct dma_chan *chan)
  1620. {
  1621. int err;
  1622. unsigned long flags;
  1623. struct d40_chan *d40c =
  1624. container_of(chan, struct d40_chan, chan);
  1625. bool is_free_phy;
  1626. spin_lock_irqsave(&d40c->lock, flags);
  1627. d40c->completed = chan->cookie = 1;
  1628. /* If no dma configuration is set use default configuration (memcpy) */
  1629. if (!d40c->configured) {
  1630. err = d40_config_memcpy(d40c);
  1631. if (err) {
  1632. chan_err(d40c, "Failed to configure memcpy channel\n");
  1633. goto fail;
  1634. }
  1635. }
  1636. is_free_phy = (d40c->phy_chan == NULL);
  1637. err = d40_allocate_channel(d40c);
  1638. if (err) {
  1639. chan_err(d40c, "Failed to allocate channel\n");
  1640. goto fail;
  1641. }
  1642. /* Fill in basic CFG register values */
  1643. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  1644. &d40c->dst_def_cfg, chan_is_logical(d40c));
  1645. d40_set_prio_realtime(d40c);
  1646. if (chan_is_logical(d40c)) {
  1647. d40_log_cfg(&d40c->dma_cfg,
  1648. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1649. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  1650. d40c->lcpa = d40c->base->lcpa_base +
  1651. d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
  1652. else
  1653. d40c->lcpa = d40c->base->lcpa_base +
  1654. d40c->dma_cfg.dst_dev_type *
  1655. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  1656. }
  1657. /*
  1658. * Only write channel configuration to the DMA if the physical
  1659. * resource is free. In case of multiple logical channels
  1660. * on the same physical resource, only the first write is necessary.
  1661. */
  1662. if (is_free_phy)
  1663. d40_config_write(d40c);
  1664. fail:
  1665. spin_unlock_irqrestore(&d40c->lock, flags);
  1666. return err;
  1667. }
  1668. static void d40_free_chan_resources(struct dma_chan *chan)
  1669. {
  1670. struct d40_chan *d40c =
  1671. container_of(chan, struct d40_chan, chan);
  1672. int err;
  1673. unsigned long flags;
  1674. if (d40c->phy_chan == NULL) {
  1675. chan_err(d40c, "Cannot free unallocated channel\n");
  1676. return;
  1677. }
  1678. spin_lock_irqsave(&d40c->lock, flags);
  1679. err = d40_free_dma(d40c);
  1680. if (err)
  1681. chan_err(d40c, "Failed to free channel\n");
  1682. spin_unlock_irqrestore(&d40c->lock, flags);
  1683. }
  1684. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  1685. dma_addr_t dst,
  1686. dma_addr_t src,
  1687. size_t size,
  1688. unsigned long dma_flags)
  1689. {
  1690. struct scatterlist dst_sg;
  1691. struct scatterlist src_sg;
  1692. sg_init_table(&dst_sg, 1);
  1693. sg_init_table(&src_sg, 1);
  1694. sg_dma_address(&dst_sg) = dst;
  1695. sg_dma_address(&src_sg) = src;
  1696. sg_dma_len(&dst_sg) = size;
  1697. sg_dma_len(&src_sg) = size;
  1698. return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
  1699. }
  1700. static struct dma_async_tx_descriptor *
  1701. d40_prep_memcpy_sg(struct dma_chan *chan,
  1702. struct scatterlist *dst_sg, unsigned int dst_nents,
  1703. struct scatterlist *src_sg, unsigned int src_nents,
  1704. unsigned long dma_flags)
  1705. {
  1706. if (dst_nents != src_nents)
  1707. return NULL;
  1708. return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
  1709. }
  1710. static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
  1711. struct scatterlist *sgl,
  1712. unsigned int sg_len,
  1713. enum dma_data_direction direction,
  1714. unsigned long dma_flags)
  1715. {
  1716. if (direction != DMA_FROM_DEVICE && direction != DMA_TO_DEVICE)
  1717. return NULL;
  1718. return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
  1719. }
  1720. static struct dma_async_tx_descriptor *
  1721. dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
  1722. size_t buf_len, size_t period_len,
  1723. enum dma_data_direction direction)
  1724. {
  1725. unsigned int periods = buf_len / period_len;
  1726. struct dma_async_tx_descriptor *txd;
  1727. struct scatterlist *sg;
  1728. int i;
  1729. sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_KERNEL);
  1730. for (i = 0; i < periods; i++) {
  1731. sg_dma_address(&sg[i]) = dma_addr;
  1732. sg_dma_len(&sg[i]) = period_len;
  1733. dma_addr += period_len;
  1734. }
  1735. sg[periods].offset = 0;
  1736. sg[periods].length = 0;
  1737. sg[periods].page_link =
  1738. ((unsigned long)sg | 0x01) & ~0x02;
  1739. txd = d40_prep_sg(chan, sg, sg, periods, direction,
  1740. DMA_PREP_INTERRUPT);
  1741. kfree(sg);
  1742. return txd;
  1743. }
  1744. static enum dma_status d40_tx_status(struct dma_chan *chan,
  1745. dma_cookie_t cookie,
  1746. struct dma_tx_state *txstate)
  1747. {
  1748. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1749. dma_cookie_t last_used;
  1750. dma_cookie_t last_complete;
  1751. int ret;
  1752. if (d40c->phy_chan == NULL) {
  1753. chan_err(d40c, "Cannot read status of unallocated channel\n");
  1754. return -EINVAL;
  1755. }
  1756. last_complete = d40c->completed;
  1757. last_used = chan->cookie;
  1758. if (d40_is_paused(d40c))
  1759. ret = DMA_PAUSED;
  1760. else
  1761. ret = dma_async_is_complete(cookie, last_complete, last_used);
  1762. dma_set_tx_state(txstate, last_complete, last_used,
  1763. stedma40_residue(chan));
  1764. return ret;
  1765. }
  1766. static void d40_issue_pending(struct dma_chan *chan)
  1767. {
  1768. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1769. unsigned long flags;
  1770. if (d40c->phy_chan == NULL) {
  1771. chan_err(d40c, "Channel is not allocated!\n");
  1772. return;
  1773. }
  1774. spin_lock_irqsave(&d40c->lock, flags);
  1775. /* Busy means that pending jobs are already being processed */
  1776. if (!d40c->busy)
  1777. (void) d40_queue_start(d40c);
  1778. spin_unlock_irqrestore(&d40c->lock, flags);
  1779. }
  1780. /* Runtime reconfiguration extension */
  1781. static void d40_set_runtime_config(struct dma_chan *chan,
  1782. struct dma_slave_config *config)
  1783. {
  1784. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1785. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  1786. enum dma_slave_buswidth config_addr_width;
  1787. dma_addr_t config_addr;
  1788. u32 config_maxburst;
  1789. enum stedma40_periph_data_width addr_width;
  1790. int psize;
  1791. if (config->direction == DMA_FROM_DEVICE) {
  1792. dma_addr_t dev_addr_rx =
  1793. d40c->base->plat_data->dev_rx[cfg->src_dev_type];
  1794. config_addr = config->src_addr;
  1795. if (dev_addr_rx)
  1796. dev_dbg(d40c->base->dev,
  1797. "channel has a pre-wired RX address %08x "
  1798. "overriding with %08x\n",
  1799. dev_addr_rx, config_addr);
  1800. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  1801. dev_dbg(d40c->base->dev,
  1802. "channel was not configured for peripheral "
  1803. "to memory transfer (%d) overriding\n",
  1804. cfg->dir);
  1805. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  1806. config_addr_width = config->src_addr_width;
  1807. config_maxburst = config->src_maxburst;
  1808. } else if (config->direction == DMA_TO_DEVICE) {
  1809. dma_addr_t dev_addr_tx =
  1810. d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
  1811. config_addr = config->dst_addr;
  1812. if (dev_addr_tx)
  1813. dev_dbg(d40c->base->dev,
  1814. "channel has a pre-wired TX address %08x "
  1815. "overriding with %08x\n",
  1816. dev_addr_tx, config_addr);
  1817. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  1818. dev_dbg(d40c->base->dev,
  1819. "channel was not configured for memory "
  1820. "to peripheral transfer (%d) overriding\n",
  1821. cfg->dir);
  1822. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  1823. config_addr_width = config->dst_addr_width;
  1824. config_maxburst = config->dst_maxburst;
  1825. } else {
  1826. dev_err(d40c->base->dev,
  1827. "unrecognized channel direction %d\n",
  1828. config->direction);
  1829. return;
  1830. }
  1831. switch (config_addr_width) {
  1832. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  1833. addr_width = STEDMA40_BYTE_WIDTH;
  1834. break;
  1835. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  1836. addr_width = STEDMA40_HALFWORD_WIDTH;
  1837. break;
  1838. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  1839. addr_width = STEDMA40_WORD_WIDTH;
  1840. break;
  1841. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  1842. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  1843. break;
  1844. default:
  1845. dev_err(d40c->base->dev,
  1846. "illegal peripheral address width "
  1847. "requested (%d)\n",
  1848. config->src_addr_width);
  1849. return;
  1850. }
  1851. if (chan_is_logical(d40c)) {
  1852. if (config_maxburst >= 16)
  1853. psize = STEDMA40_PSIZE_LOG_16;
  1854. else if (config_maxburst >= 8)
  1855. psize = STEDMA40_PSIZE_LOG_8;
  1856. else if (config_maxburst >= 4)
  1857. psize = STEDMA40_PSIZE_LOG_4;
  1858. else
  1859. psize = STEDMA40_PSIZE_LOG_1;
  1860. } else {
  1861. if (config_maxburst >= 16)
  1862. psize = STEDMA40_PSIZE_PHY_16;
  1863. else if (config_maxburst >= 8)
  1864. psize = STEDMA40_PSIZE_PHY_8;
  1865. else if (config_maxburst >= 4)
  1866. psize = STEDMA40_PSIZE_PHY_4;
  1867. else if (config_maxburst >= 2)
  1868. psize = STEDMA40_PSIZE_PHY_2;
  1869. else
  1870. psize = STEDMA40_PSIZE_PHY_1;
  1871. }
  1872. /* Set up all the endpoint configs */
  1873. cfg->src_info.data_width = addr_width;
  1874. cfg->src_info.psize = psize;
  1875. cfg->src_info.big_endian = false;
  1876. cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1877. cfg->dst_info.data_width = addr_width;
  1878. cfg->dst_info.psize = psize;
  1879. cfg->dst_info.big_endian = false;
  1880. cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1881. /* Fill in register values */
  1882. if (chan_is_logical(d40c))
  1883. d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1884. else
  1885. d40_phy_cfg(cfg, &d40c->src_def_cfg,
  1886. &d40c->dst_def_cfg, false);
  1887. /* These settings will take precedence later */
  1888. d40c->runtime_addr = config_addr;
  1889. d40c->runtime_direction = config->direction;
  1890. dev_dbg(d40c->base->dev,
  1891. "configured channel %s for %s, data width %d, "
  1892. "maxburst %d bytes, LE, no flow control\n",
  1893. dma_chan_name(chan),
  1894. (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
  1895. config_addr_width,
  1896. config_maxburst);
  1897. }
  1898. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  1899. unsigned long arg)
  1900. {
  1901. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1902. if (d40c->phy_chan == NULL) {
  1903. chan_err(d40c, "Channel is not allocated!\n");
  1904. return -EINVAL;
  1905. }
  1906. switch (cmd) {
  1907. case DMA_TERMINATE_ALL:
  1908. return d40_terminate_all(d40c);
  1909. case DMA_PAUSE:
  1910. return d40_pause(d40c);
  1911. case DMA_RESUME:
  1912. return d40_resume(d40c);
  1913. case DMA_SLAVE_CONFIG:
  1914. d40_set_runtime_config(chan,
  1915. (struct dma_slave_config *) arg);
  1916. return 0;
  1917. default:
  1918. break;
  1919. }
  1920. /* Other commands are unimplemented */
  1921. return -ENXIO;
  1922. }
  1923. /* Initialization functions */
  1924. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  1925. struct d40_chan *chans, int offset,
  1926. int num_chans)
  1927. {
  1928. int i = 0;
  1929. struct d40_chan *d40c;
  1930. INIT_LIST_HEAD(&dma->channels);
  1931. for (i = offset; i < offset + num_chans; i++) {
  1932. d40c = &chans[i];
  1933. d40c->base = base;
  1934. d40c->chan.device = dma;
  1935. spin_lock_init(&d40c->lock);
  1936. d40c->log_num = D40_PHY_CHAN;
  1937. INIT_LIST_HEAD(&d40c->active);
  1938. INIT_LIST_HEAD(&d40c->queue);
  1939. INIT_LIST_HEAD(&d40c->client);
  1940. tasklet_init(&d40c->tasklet, dma_tasklet,
  1941. (unsigned long) d40c);
  1942. list_add_tail(&d40c->chan.device_node,
  1943. &dma->channels);
  1944. }
  1945. }
  1946. static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
  1947. {
  1948. if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
  1949. dev->device_prep_slave_sg = d40_prep_slave_sg;
  1950. if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
  1951. dev->device_prep_dma_memcpy = d40_prep_memcpy;
  1952. /*
  1953. * This controller can only access address at even
  1954. * 32bit boundaries, i.e. 2^2
  1955. */
  1956. dev->copy_align = 2;
  1957. }
  1958. if (dma_has_cap(DMA_SG, dev->cap_mask))
  1959. dev->device_prep_dma_sg = d40_prep_memcpy_sg;
  1960. if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
  1961. dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
  1962. dev->device_alloc_chan_resources = d40_alloc_chan_resources;
  1963. dev->device_free_chan_resources = d40_free_chan_resources;
  1964. dev->device_issue_pending = d40_issue_pending;
  1965. dev->device_tx_status = d40_tx_status;
  1966. dev->device_control = d40_control;
  1967. dev->dev = base->dev;
  1968. }
  1969. static int __init d40_dmaengine_init(struct d40_base *base,
  1970. int num_reserved_chans)
  1971. {
  1972. int err ;
  1973. d40_chan_init(base, &base->dma_slave, base->log_chans,
  1974. 0, base->num_log_chans);
  1975. dma_cap_zero(base->dma_slave.cap_mask);
  1976. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  1977. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  1978. d40_ops_init(base, &base->dma_slave);
  1979. err = dma_async_device_register(&base->dma_slave);
  1980. if (err) {
  1981. d40_err(base->dev, "Failed to register slave channels\n");
  1982. goto failure1;
  1983. }
  1984. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  1985. base->num_log_chans, base->plat_data->memcpy_len);
  1986. dma_cap_zero(base->dma_memcpy.cap_mask);
  1987. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  1988. dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
  1989. d40_ops_init(base, &base->dma_memcpy);
  1990. err = dma_async_device_register(&base->dma_memcpy);
  1991. if (err) {
  1992. d40_err(base->dev,
  1993. "Failed to regsiter memcpy only channels\n");
  1994. goto failure2;
  1995. }
  1996. d40_chan_init(base, &base->dma_both, base->phy_chans,
  1997. 0, num_reserved_chans);
  1998. dma_cap_zero(base->dma_both.cap_mask);
  1999. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  2000. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  2001. dma_cap_set(DMA_SG, base->dma_both.cap_mask);
  2002. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2003. d40_ops_init(base, &base->dma_both);
  2004. err = dma_async_device_register(&base->dma_both);
  2005. if (err) {
  2006. d40_err(base->dev,
  2007. "Failed to register logical and physical capable channels\n");
  2008. goto failure3;
  2009. }
  2010. return 0;
  2011. failure3:
  2012. dma_async_device_unregister(&base->dma_memcpy);
  2013. failure2:
  2014. dma_async_device_unregister(&base->dma_slave);
  2015. failure1:
  2016. return err;
  2017. }
  2018. /* Initialization functions. */
  2019. static int __init d40_phy_res_init(struct d40_base *base)
  2020. {
  2021. int i;
  2022. int num_phy_chans_avail = 0;
  2023. u32 val[2];
  2024. int odd_even_bit = -2;
  2025. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2026. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2027. for (i = 0; i < base->num_phy_chans; i++) {
  2028. base->phy_res[i].num = i;
  2029. odd_even_bit += 2 * ((i % 2) == 0);
  2030. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2031. /* Mark security only channels as occupied */
  2032. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2033. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2034. } else {
  2035. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2036. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2037. num_phy_chans_avail++;
  2038. }
  2039. spin_lock_init(&base->phy_res[i].lock);
  2040. }
  2041. /* Mark disabled channels as occupied */
  2042. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2043. int chan = base->plat_data->disabled_channels[i];
  2044. base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
  2045. base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
  2046. num_phy_chans_avail--;
  2047. }
  2048. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2049. num_phy_chans_avail, base->num_phy_chans);
  2050. /* Verify settings extended vs standard */
  2051. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2052. for (i = 0; i < base->num_phy_chans; i++) {
  2053. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2054. (val[0] & 0x3) != 1)
  2055. dev_info(base->dev,
  2056. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2057. __func__, i, val[0] & 0x3);
  2058. val[0] = val[0] >> 2;
  2059. }
  2060. return num_phy_chans_avail;
  2061. }
  2062. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2063. {
  2064. static const struct d40_reg_val dma_id_regs[] = {
  2065. /* Peripheral Id */
  2066. { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
  2067. { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
  2068. /*
  2069. * D40_DREG_PERIPHID2 Depends on HW revision:
  2070. * DB8500ed has 0x0008,
  2071. * ? has 0x0018,
  2072. * DB8500v1 has 0x0028
  2073. * DB8500v2 has 0x0038
  2074. */
  2075. { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
  2076. /* PCell Id */
  2077. { .reg = D40_DREG_CELLID0, .val = 0x000d},
  2078. { .reg = D40_DREG_CELLID1, .val = 0x00f0},
  2079. { .reg = D40_DREG_CELLID2, .val = 0x0005},
  2080. { .reg = D40_DREG_CELLID3, .val = 0x00b1}
  2081. };
  2082. struct stedma40_platform_data *plat_data;
  2083. struct clk *clk = NULL;
  2084. void __iomem *virtbase = NULL;
  2085. struct resource *res = NULL;
  2086. struct d40_base *base = NULL;
  2087. int num_log_chans = 0;
  2088. int num_phy_chans;
  2089. int i;
  2090. u32 val;
  2091. u32 rev;
  2092. clk = clk_get(&pdev->dev, NULL);
  2093. if (IS_ERR(clk)) {
  2094. d40_err(&pdev->dev, "No matching clock found\n");
  2095. goto failure;
  2096. }
  2097. clk_enable(clk);
  2098. /* Get IO for DMAC base address */
  2099. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2100. if (!res)
  2101. goto failure;
  2102. if (request_mem_region(res->start, resource_size(res),
  2103. D40_NAME " I/O base") == NULL)
  2104. goto failure;
  2105. virtbase = ioremap(res->start, resource_size(res));
  2106. if (!virtbase)
  2107. goto failure;
  2108. /* HW version check */
  2109. for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
  2110. if (dma_id_regs[i].val !=
  2111. readl(virtbase + dma_id_regs[i].reg)) {
  2112. d40_err(&pdev->dev,
  2113. "Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
  2114. dma_id_regs[i].val,
  2115. dma_id_regs[i].reg,
  2116. readl(virtbase + dma_id_regs[i].reg));
  2117. goto failure;
  2118. }
  2119. }
  2120. /* Get silicon revision and designer */
  2121. val = readl(virtbase + D40_DREG_PERIPHID2);
  2122. if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
  2123. D40_HW_DESIGNER) {
  2124. d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
  2125. val & D40_DREG_PERIPHID2_DESIGNER_MASK,
  2126. D40_HW_DESIGNER);
  2127. goto failure;
  2128. }
  2129. rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
  2130. D40_DREG_PERIPHID2_REV_POS;
  2131. /* The number of physical channels on this HW */
  2132. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2133. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
  2134. rev, res->start);
  2135. plat_data = pdev->dev.platform_data;
  2136. /* Count the number of logical channels in use */
  2137. for (i = 0; i < plat_data->dev_len; i++)
  2138. if (plat_data->dev_rx[i] != 0)
  2139. num_log_chans++;
  2140. for (i = 0; i < plat_data->dev_len; i++)
  2141. if (plat_data->dev_tx[i] != 0)
  2142. num_log_chans++;
  2143. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2144. (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
  2145. sizeof(struct d40_chan), GFP_KERNEL);
  2146. if (base == NULL) {
  2147. d40_err(&pdev->dev, "Out of memory\n");
  2148. goto failure;
  2149. }
  2150. base->rev = rev;
  2151. base->clk = clk;
  2152. base->num_phy_chans = num_phy_chans;
  2153. base->num_log_chans = num_log_chans;
  2154. base->phy_start = res->start;
  2155. base->phy_size = resource_size(res);
  2156. base->virtbase = virtbase;
  2157. base->plat_data = plat_data;
  2158. base->dev = &pdev->dev;
  2159. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2160. base->log_chans = &base->phy_chans[num_phy_chans];
  2161. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2162. GFP_KERNEL);
  2163. if (!base->phy_res)
  2164. goto failure;
  2165. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2166. sizeof(struct d40_chan *),
  2167. GFP_KERNEL);
  2168. if (!base->lookup_phy_chans)
  2169. goto failure;
  2170. if (num_log_chans + plat_data->memcpy_len) {
  2171. /*
  2172. * The max number of logical channels are event lines for all
  2173. * src devices and dst devices
  2174. */
  2175. base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
  2176. sizeof(struct d40_chan *),
  2177. GFP_KERNEL);
  2178. if (!base->lookup_log_chans)
  2179. goto failure;
  2180. }
  2181. base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
  2182. sizeof(struct d40_desc *) *
  2183. D40_LCLA_LINK_PER_EVENT_GRP,
  2184. GFP_KERNEL);
  2185. if (!base->lcla_pool.alloc_map)
  2186. goto failure;
  2187. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2188. 0, SLAB_HWCACHE_ALIGN,
  2189. NULL);
  2190. if (base->desc_slab == NULL)
  2191. goto failure;
  2192. return base;
  2193. failure:
  2194. if (!IS_ERR(clk)) {
  2195. clk_disable(clk);
  2196. clk_put(clk);
  2197. }
  2198. if (virtbase)
  2199. iounmap(virtbase);
  2200. if (res)
  2201. release_mem_region(res->start,
  2202. resource_size(res));
  2203. if (virtbase)
  2204. iounmap(virtbase);
  2205. if (base) {
  2206. kfree(base->lcla_pool.alloc_map);
  2207. kfree(base->lookup_log_chans);
  2208. kfree(base->lookup_phy_chans);
  2209. kfree(base->phy_res);
  2210. kfree(base);
  2211. }
  2212. return NULL;
  2213. }
  2214. static void __init d40_hw_init(struct d40_base *base)
  2215. {
  2216. static const struct d40_reg_val dma_init_reg[] = {
  2217. /* Clock every part of the DMA block from start */
  2218. { .reg = D40_DREG_GCC, .val = 0x0000ff01},
  2219. /* Interrupts on all logical channels */
  2220. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  2221. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  2222. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  2223. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  2224. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  2225. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  2226. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  2227. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  2228. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  2229. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  2230. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  2231. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  2232. };
  2233. int i;
  2234. u32 prmseo[2] = {0, 0};
  2235. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2236. u32 pcmis = 0;
  2237. u32 pcicr = 0;
  2238. for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
  2239. writel(dma_init_reg[i].val,
  2240. base->virtbase + dma_init_reg[i].reg);
  2241. /* Configure all our dma channels to default settings */
  2242. for (i = 0; i < base->num_phy_chans; i++) {
  2243. activeo[i % 2] = activeo[i % 2] << 2;
  2244. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2245. == D40_ALLOC_PHY) {
  2246. activeo[i % 2] |= 3;
  2247. continue;
  2248. }
  2249. /* Enable interrupt # */
  2250. pcmis = (pcmis << 1) | 1;
  2251. /* Clear interrupt # */
  2252. pcicr = (pcicr << 1) | 1;
  2253. /* Set channel to physical mode */
  2254. prmseo[i % 2] = prmseo[i % 2] << 2;
  2255. prmseo[i % 2] |= 1;
  2256. }
  2257. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2258. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2259. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2260. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2261. /* Write which interrupt to enable */
  2262. writel(pcmis, base->virtbase + D40_DREG_PCMIS);
  2263. /* Write which interrupt to clear */
  2264. writel(pcicr, base->virtbase + D40_DREG_PCICR);
  2265. }
  2266. static int __init d40_lcla_allocate(struct d40_base *base)
  2267. {
  2268. struct d40_lcla_pool *pool = &base->lcla_pool;
  2269. unsigned long *page_list;
  2270. int i, j;
  2271. int ret = 0;
  2272. /*
  2273. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2274. * To full fill this hardware requirement without wasting 256 kb
  2275. * we allocate pages until we get an aligned one.
  2276. */
  2277. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2278. GFP_KERNEL);
  2279. if (!page_list) {
  2280. ret = -ENOMEM;
  2281. goto failure;
  2282. }
  2283. /* Calculating how many pages that are required */
  2284. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2285. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2286. page_list[i] = __get_free_pages(GFP_KERNEL,
  2287. base->lcla_pool.pages);
  2288. if (!page_list[i]) {
  2289. d40_err(base->dev, "Failed to allocate %d pages.\n",
  2290. base->lcla_pool.pages);
  2291. for (j = 0; j < i; j++)
  2292. free_pages(page_list[j], base->lcla_pool.pages);
  2293. goto failure;
  2294. }
  2295. if ((virt_to_phys((void *)page_list[i]) &
  2296. (LCLA_ALIGNMENT - 1)) == 0)
  2297. break;
  2298. }
  2299. for (j = 0; j < i; j++)
  2300. free_pages(page_list[j], base->lcla_pool.pages);
  2301. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2302. base->lcla_pool.base = (void *)page_list[i];
  2303. } else {
  2304. /*
  2305. * After many attempts and no succees with finding the correct
  2306. * alignment, try with allocating a big buffer.
  2307. */
  2308. dev_warn(base->dev,
  2309. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2310. __func__, base->lcla_pool.pages);
  2311. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2312. base->num_phy_chans +
  2313. LCLA_ALIGNMENT,
  2314. GFP_KERNEL);
  2315. if (!base->lcla_pool.base_unaligned) {
  2316. ret = -ENOMEM;
  2317. goto failure;
  2318. }
  2319. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2320. LCLA_ALIGNMENT);
  2321. }
  2322. pool->dma_addr = dma_map_single(base->dev, pool->base,
  2323. SZ_1K * base->num_phy_chans,
  2324. DMA_TO_DEVICE);
  2325. if (dma_mapping_error(base->dev, pool->dma_addr)) {
  2326. pool->dma_addr = 0;
  2327. ret = -ENOMEM;
  2328. goto failure;
  2329. }
  2330. writel(virt_to_phys(base->lcla_pool.base),
  2331. base->virtbase + D40_DREG_LCLA);
  2332. failure:
  2333. kfree(page_list);
  2334. return ret;
  2335. }
  2336. static int __init d40_probe(struct platform_device *pdev)
  2337. {
  2338. int err;
  2339. int ret = -ENOENT;
  2340. struct d40_base *base;
  2341. struct resource *res = NULL;
  2342. int num_reserved_chans;
  2343. u32 val;
  2344. base = d40_hw_detect_init(pdev);
  2345. if (!base)
  2346. goto failure;
  2347. num_reserved_chans = d40_phy_res_init(base);
  2348. platform_set_drvdata(pdev, base);
  2349. spin_lock_init(&base->interrupt_lock);
  2350. spin_lock_init(&base->execmd_lock);
  2351. /* Get IO for logical channel parameter address */
  2352. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2353. if (!res) {
  2354. ret = -ENOENT;
  2355. d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
  2356. goto failure;
  2357. }
  2358. base->lcpa_size = resource_size(res);
  2359. base->phy_lcpa = res->start;
  2360. if (request_mem_region(res->start, resource_size(res),
  2361. D40_NAME " I/O lcpa") == NULL) {
  2362. ret = -EBUSY;
  2363. d40_err(&pdev->dev,
  2364. "Failed to request LCPA region 0x%x-0x%x\n",
  2365. res->start, res->end);
  2366. goto failure;
  2367. }
  2368. /* We make use of ESRAM memory for this. */
  2369. val = readl(base->virtbase + D40_DREG_LCPA);
  2370. if (res->start != val && val != 0) {
  2371. dev_warn(&pdev->dev,
  2372. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2373. __func__, val, res->start);
  2374. } else
  2375. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2376. base->lcpa_base = ioremap(res->start, resource_size(res));
  2377. if (!base->lcpa_base) {
  2378. ret = -ENOMEM;
  2379. d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
  2380. goto failure;
  2381. }
  2382. ret = d40_lcla_allocate(base);
  2383. if (ret) {
  2384. d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
  2385. goto failure;
  2386. }
  2387. spin_lock_init(&base->lcla_pool.lock);
  2388. base->irq = platform_get_irq(pdev, 0);
  2389. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2390. if (ret) {
  2391. d40_err(&pdev->dev, "No IRQ defined\n");
  2392. goto failure;
  2393. }
  2394. err = d40_dmaengine_init(base, num_reserved_chans);
  2395. if (err)
  2396. goto failure;
  2397. d40_hw_init(base);
  2398. dev_info(base->dev, "initialized\n");
  2399. return 0;
  2400. failure:
  2401. if (base) {
  2402. if (base->desc_slab)
  2403. kmem_cache_destroy(base->desc_slab);
  2404. if (base->virtbase)
  2405. iounmap(base->virtbase);
  2406. if (base->lcla_pool.dma_addr)
  2407. dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
  2408. SZ_1K * base->num_phy_chans,
  2409. DMA_TO_DEVICE);
  2410. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  2411. free_pages((unsigned long)base->lcla_pool.base,
  2412. base->lcla_pool.pages);
  2413. kfree(base->lcla_pool.base_unaligned);
  2414. if (base->phy_lcpa)
  2415. release_mem_region(base->phy_lcpa,
  2416. base->lcpa_size);
  2417. if (base->phy_start)
  2418. release_mem_region(base->phy_start,
  2419. base->phy_size);
  2420. if (base->clk) {
  2421. clk_disable(base->clk);
  2422. clk_put(base->clk);
  2423. }
  2424. kfree(base->lcla_pool.alloc_map);
  2425. kfree(base->lookup_log_chans);
  2426. kfree(base->lookup_phy_chans);
  2427. kfree(base->phy_res);
  2428. kfree(base);
  2429. }
  2430. d40_err(&pdev->dev, "probe failed\n");
  2431. return ret;
  2432. }
  2433. static struct platform_driver d40_driver = {
  2434. .driver = {
  2435. .owner = THIS_MODULE,
  2436. .name = D40_NAME,
  2437. },
  2438. };
  2439. static int __init stedma40_init(void)
  2440. {
  2441. return platform_driver_probe(&d40_driver, d40_probe);
  2442. }
  2443. subsys_initcall(stedma40_init);