vmscan.c 104 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686
  1. /*
  2. * linux/mm/vmscan.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. *
  6. * Swap reorganised 29.12.95, Stephen Tweedie.
  7. * kswapd added: 7.1.96 sct
  8. * Removed kswapd_ctl limits, and swap out as many pages as needed
  9. * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10. * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11. * Multiqueue VM started 5.8.00, Rik van Riel.
  12. */
  13. #include <linux/mm.h>
  14. #include <linux/module.h>
  15. #include <linux/gfp.h>
  16. #include <linux/kernel_stat.h>
  17. #include <linux/swap.h>
  18. #include <linux/pagemap.h>
  19. #include <linux/init.h>
  20. #include <linux/highmem.h>
  21. #include <linux/vmpressure.h>
  22. #include <linux/vmstat.h>
  23. #include <linux/file.h>
  24. #include <linux/writeback.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/buffer_head.h> /* for try_to_release_page(),
  27. buffer_heads_over_limit */
  28. #include <linux/mm_inline.h>
  29. #include <linux/backing-dev.h>
  30. #include <linux/rmap.h>
  31. #include <linux/topology.h>
  32. #include <linux/cpu.h>
  33. #include <linux/cpuset.h>
  34. #include <linux/compaction.h>
  35. #include <linux/notifier.h>
  36. #include <linux/rwsem.h>
  37. #include <linux/delay.h>
  38. #include <linux/kthread.h>
  39. #include <linux/freezer.h>
  40. #include <linux/memcontrol.h>
  41. #include <linux/delayacct.h>
  42. #include <linux/sysctl.h>
  43. #include <linux/oom.h>
  44. #include <linux/prefetch.h>
  45. #include <asm/tlbflush.h>
  46. #include <asm/div64.h>
  47. #include <linux/swapops.h>
  48. #include "internal.h"
  49. #define CREATE_TRACE_POINTS
  50. #include <trace/events/vmscan.h>
  51. struct scan_control {
  52. /* Incremented by the number of inactive pages that were scanned */
  53. unsigned long nr_scanned;
  54. /* Number of pages freed so far during a call to shrink_zones() */
  55. unsigned long nr_reclaimed;
  56. /* How many pages shrink_list() should reclaim */
  57. unsigned long nr_to_reclaim;
  58. unsigned long hibernation_mode;
  59. /* This context's GFP mask */
  60. gfp_t gfp_mask;
  61. int may_writepage;
  62. /* Can mapped pages be reclaimed? */
  63. int may_unmap;
  64. /* Can pages be swapped as part of reclaim? */
  65. int may_swap;
  66. int order;
  67. /* Scan (total_size >> priority) pages at once */
  68. int priority;
  69. /*
  70. * The memory cgroup that hit its limit and as a result is the
  71. * primary target of this reclaim invocation.
  72. */
  73. struct mem_cgroup *target_mem_cgroup;
  74. /*
  75. * Nodemask of nodes allowed by the caller. If NULL, all nodes
  76. * are scanned.
  77. */
  78. nodemask_t *nodemask;
  79. };
  80. #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
  81. #ifdef ARCH_HAS_PREFETCH
  82. #define prefetch_prev_lru_page(_page, _base, _field) \
  83. do { \
  84. if ((_page)->lru.prev != _base) { \
  85. struct page *prev; \
  86. \
  87. prev = lru_to_page(&(_page->lru)); \
  88. prefetch(&prev->_field); \
  89. } \
  90. } while (0)
  91. #else
  92. #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
  93. #endif
  94. #ifdef ARCH_HAS_PREFETCHW
  95. #define prefetchw_prev_lru_page(_page, _base, _field) \
  96. do { \
  97. if ((_page)->lru.prev != _base) { \
  98. struct page *prev; \
  99. \
  100. prev = lru_to_page(&(_page->lru)); \
  101. prefetchw(&prev->_field); \
  102. } \
  103. } while (0)
  104. #else
  105. #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
  106. #endif
  107. /*
  108. * From 0 .. 100. Higher means more swappy.
  109. */
  110. int vm_swappiness = 60;
  111. unsigned long vm_total_pages; /* The total number of pages which the VM controls */
  112. static LIST_HEAD(shrinker_list);
  113. static DECLARE_RWSEM(shrinker_rwsem);
  114. #ifdef CONFIG_MEMCG
  115. static bool global_reclaim(struct scan_control *sc)
  116. {
  117. return !sc->target_mem_cgroup;
  118. }
  119. #else
  120. static bool global_reclaim(struct scan_control *sc)
  121. {
  122. return true;
  123. }
  124. #endif
  125. static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
  126. {
  127. if (!mem_cgroup_disabled())
  128. return mem_cgroup_get_lru_size(lruvec, lru);
  129. return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
  130. }
  131. /*
  132. * Add a shrinker callback to be called from the vm
  133. */
  134. void register_shrinker(struct shrinker *shrinker)
  135. {
  136. atomic_long_set(&shrinker->nr_in_batch, 0);
  137. down_write(&shrinker_rwsem);
  138. list_add_tail(&shrinker->list, &shrinker_list);
  139. up_write(&shrinker_rwsem);
  140. }
  141. EXPORT_SYMBOL(register_shrinker);
  142. /*
  143. * Remove one
  144. */
  145. void unregister_shrinker(struct shrinker *shrinker)
  146. {
  147. down_write(&shrinker_rwsem);
  148. list_del(&shrinker->list);
  149. up_write(&shrinker_rwsem);
  150. }
  151. EXPORT_SYMBOL(unregister_shrinker);
  152. static inline int do_shrinker_shrink(struct shrinker *shrinker,
  153. struct shrink_control *sc,
  154. unsigned long nr_to_scan)
  155. {
  156. sc->nr_to_scan = nr_to_scan;
  157. return (*shrinker->shrink)(shrinker, sc);
  158. }
  159. #define SHRINK_BATCH 128
  160. /*
  161. * Call the shrink functions to age shrinkable caches
  162. *
  163. * Here we assume it costs one seek to replace a lru page and that it also
  164. * takes a seek to recreate a cache object. With this in mind we age equal
  165. * percentages of the lru and ageable caches. This should balance the seeks
  166. * generated by these structures.
  167. *
  168. * If the vm encountered mapped pages on the LRU it increase the pressure on
  169. * slab to avoid swapping.
  170. *
  171. * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
  172. *
  173. * `lru_pages' represents the number of on-LRU pages in all the zones which
  174. * are eligible for the caller's allocation attempt. It is used for balancing
  175. * slab reclaim versus page reclaim.
  176. *
  177. * Returns the number of slab objects which we shrunk.
  178. */
  179. unsigned long shrink_slab(struct shrink_control *shrink,
  180. unsigned long nr_pages_scanned,
  181. unsigned long lru_pages)
  182. {
  183. struct shrinker *shrinker;
  184. unsigned long ret = 0;
  185. if (nr_pages_scanned == 0)
  186. nr_pages_scanned = SWAP_CLUSTER_MAX;
  187. if (!down_read_trylock(&shrinker_rwsem)) {
  188. /* Assume we'll be able to shrink next time */
  189. ret = 1;
  190. goto out;
  191. }
  192. list_for_each_entry(shrinker, &shrinker_list, list) {
  193. unsigned long long delta;
  194. long total_scan;
  195. long max_pass;
  196. int shrink_ret = 0;
  197. long nr;
  198. long new_nr;
  199. long batch_size = shrinker->batch ? shrinker->batch
  200. : SHRINK_BATCH;
  201. max_pass = do_shrinker_shrink(shrinker, shrink, 0);
  202. if (max_pass <= 0)
  203. continue;
  204. /*
  205. * copy the current shrinker scan count into a local variable
  206. * and zero it so that other concurrent shrinker invocations
  207. * don't also do this scanning work.
  208. */
  209. nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
  210. total_scan = nr;
  211. delta = (4 * nr_pages_scanned) / shrinker->seeks;
  212. delta *= max_pass;
  213. do_div(delta, lru_pages + 1);
  214. total_scan += delta;
  215. if (total_scan < 0) {
  216. printk(KERN_ERR "shrink_slab: %pF negative objects to "
  217. "delete nr=%ld\n",
  218. shrinker->shrink, total_scan);
  219. total_scan = max_pass;
  220. }
  221. /*
  222. * We need to avoid excessive windup on filesystem shrinkers
  223. * due to large numbers of GFP_NOFS allocations causing the
  224. * shrinkers to return -1 all the time. This results in a large
  225. * nr being built up so when a shrink that can do some work
  226. * comes along it empties the entire cache due to nr >>>
  227. * max_pass. This is bad for sustaining a working set in
  228. * memory.
  229. *
  230. * Hence only allow the shrinker to scan the entire cache when
  231. * a large delta change is calculated directly.
  232. */
  233. if (delta < max_pass / 4)
  234. total_scan = min(total_scan, max_pass / 2);
  235. /*
  236. * Avoid risking looping forever due to too large nr value:
  237. * never try to free more than twice the estimate number of
  238. * freeable entries.
  239. */
  240. if (total_scan > max_pass * 2)
  241. total_scan = max_pass * 2;
  242. trace_mm_shrink_slab_start(shrinker, shrink, nr,
  243. nr_pages_scanned, lru_pages,
  244. max_pass, delta, total_scan);
  245. while (total_scan >= batch_size) {
  246. int nr_before;
  247. nr_before = do_shrinker_shrink(shrinker, shrink, 0);
  248. shrink_ret = do_shrinker_shrink(shrinker, shrink,
  249. batch_size);
  250. if (shrink_ret == -1)
  251. break;
  252. if (shrink_ret < nr_before)
  253. ret += nr_before - shrink_ret;
  254. count_vm_events(SLABS_SCANNED, batch_size);
  255. total_scan -= batch_size;
  256. cond_resched();
  257. }
  258. /*
  259. * move the unused scan count back into the shrinker in a
  260. * manner that handles concurrent updates. If we exhausted the
  261. * scan, there is no need to do an update.
  262. */
  263. if (total_scan > 0)
  264. new_nr = atomic_long_add_return(total_scan,
  265. &shrinker->nr_in_batch);
  266. else
  267. new_nr = atomic_long_read(&shrinker->nr_in_batch);
  268. trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
  269. }
  270. up_read(&shrinker_rwsem);
  271. out:
  272. cond_resched();
  273. return ret;
  274. }
  275. static inline int is_page_cache_freeable(struct page *page)
  276. {
  277. /*
  278. * A freeable page cache page is referenced only by the caller
  279. * that isolated the page, the page cache radix tree and
  280. * optional buffer heads at page->private.
  281. */
  282. return page_count(page) - page_has_private(page) == 2;
  283. }
  284. static int may_write_to_queue(struct backing_dev_info *bdi,
  285. struct scan_control *sc)
  286. {
  287. if (current->flags & PF_SWAPWRITE)
  288. return 1;
  289. if (!bdi_write_congested(bdi))
  290. return 1;
  291. if (bdi == current->backing_dev_info)
  292. return 1;
  293. return 0;
  294. }
  295. /*
  296. * We detected a synchronous write error writing a page out. Probably
  297. * -ENOSPC. We need to propagate that into the address_space for a subsequent
  298. * fsync(), msync() or close().
  299. *
  300. * The tricky part is that after writepage we cannot touch the mapping: nothing
  301. * prevents it from being freed up. But we have a ref on the page and once
  302. * that page is locked, the mapping is pinned.
  303. *
  304. * We're allowed to run sleeping lock_page() here because we know the caller has
  305. * __GFP_FS.
  306. */
  307. static void handle_write_error(struct address_space *mapping,
  308. struct page *page, int error)
  309. {
  310. lock_page(page);
  311. if (page_mapping(page) == mapping)
  312. mapping_set_error(mapping, error);
  313. unlock_page(page);
  314. }
  315. /* possible outcome of pageout() */
  316. typedef enum {
  317. /* failed to write page out, page is locked */
  318. PAGE_KEEP,
  319. /* move page to the active list, page is locked */
  320. PAGE_ACTIVATE,
  321. /* page has been sent to the disk successfully, page is unlocked */
  322. PAGE_SUCCESS,
  323. /* page is clean and locked */
  324. PAGE_CLEAN,
  325. } pageout_t;
  326. /*
  327. * pageout is called by shrink_page_list() for each dirty page.
  328. * Calls ->writepage().
  329. */
  330. static pageout_t pageout(struct page *page, struct address_space *mapping,
  331. struct scan_control *sc)
  332. {
  333. /*
  334. * If the page is dirty, only perform writeback if that write
  335. * will be non-blocking. To prevent this allocation from being
  336. * stalled by pagecache activity. But note that there may be
  337. * stalls if we need to run get_block(). We could test
  338. * PagePrivate for that.
  339. *
  340. * If this process is currently in __generic_file_aio_write() against
  341. * this page's queue, we can perform writeback even if that
  342. * will block.
  343. *
  344. * If the page is swapcache, write it back even if that would
  345. * block, for some throttling. This happens by accident, because
  346. * swap_backing_dev_info is bust: it doesn't reflect the
  347. * congestion state of the swapdevs. Easy to fix, if needed.
  348. */
  349. if (!is_page_cache_freeable(page))
  350. return PAGE_KEEP;
  351. if (!mapping) {
  352. /*
  353. * Some data journaling orphaned pages can have
  354. * page->mapping == NULL while being dirty with clean buffers.
  355. */
  356. if (page_has_private(page)) {
  357. if (try_to_free_buffers(page)) {
  358. ClearPageDirty(page);
  359. printk("%s: orphaned page\n", __func__);
  360. return PAGE_CLEAN;
  361. }
  362. }
  363. return PAGE_KEEP;
  364. }
  365. if (mapping->a_ops->writepage == NULL)
  366. return PAGE_ACTIVATE;
  367. if (!may_write_to_queue(mapping->backing_dev_info, sc))
  368. return PAGE_KEEP;
  369. if (clear_page_dirty_for_io(page)) {
  370. int res;
  371. struct writeback_control wbc = {
  372. .sync_mode = WB_SYNC_NONE,
  373. .nr_to_write = SWAP_CLUSTER_MAX,
  374. .range_start = 0,
  375. .range_end = LLONG_MAX,
  376. .for_reclaim = 1,
  377. };
  378. SetPageReclaim(page);
  379. res = mapping->a_ops->writepage(page, &wbc);
  380. if (res < 0)
  381. handle_write_error(mapping, page, res);
  382. if (res == AOP_WRITEPAGE_ACTIVATE) {
  383. ClearPageReclaim(page);
  384. return PAGE_ACTIVATE;
  385. }
  386. if (!PageWriteback(page)) {
  387. /* synchronous write or broken a_ops? */
  388. ClearPageReclaim(page);
  389. }
  390. trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
  391. inc_zone_page_state(page, NR_VMSCAN_WRITE);
  392. return PAGE_SUCCESS;
  393. }
  394. return PAGE_CLEAN;
  395. }
  396. /*
  397. * Same as remove_mapping, but if the page is removed from the mapping, it
  398. * gets returned with a refcount of 0.
  399. */
  400. static int __remove_mapping(struct address_space *mapping, struct page *page)
  401. {
  402. BUG_ON(!PageLocked(page));
  403. BUG_ON(mapping != page_mapping(page));
  404. spin_lock_irq(&mapping->tree_lock);
  405. /*
  406. * The non racy check for a busy page.
  407. *
  408. * Must be careful with the order of the tests. When someone has
  409. * a ref to the page, it may be possible that they dirty it then
  410. * drop the reference. So if PageDirty is tested before page_count
  411. * here, then the following race may occur:
  412. *
  413. * get_user_pages(&page);
  414. * [user mapping goes away]
  415. * write_to(page);
  416. * !PageDirty(page) [good]
  417. * SetPageDirty(page);
  418. * put_page(page);
  419. * !page_count(page) [good, discard it]
  420. *
  421. * [oops, our write_to data is lost]
  422. *
  423. * Reversing the order of the tests ensures such a situation cannot
  424. * escape unnoticed. The smp_rmb is needed to ensure the page->flags
  425. * load is not satisfied before that of page->_count.
  426. *
  427. * Note that if SetPageDirty is always performed via set_page_dirty,
  428. * and thus under tree_lock, then this ordering is not required.
  429. */
  430. if (!page_freeze_refs(page, 2))
  431. goto cannot_free;
  432. /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
  433. if (unlikely(PageDirty(page))) {
  434. page_unfreeze_refs(page, 2);
  435. goto cannot_free;
  436. }
  437. if (PageSwapCache(page)) {
  438. swp_entry_t swap = { .val = page_private(page) };
  439. __delete_from_swap_cache(page);
  440. spin_unlock_irq(&mapping->tree_lock);
  441. swapcache_free(swap, page);
  442. } else {
  443. void (*freepage)(struct page *);
  444. freepage = mapping->a_ops->freepage;
  445. __delete_from_page_cache(page);
  446. spin_unlock_irq(&mapping->tree_lock);
  447. mem_cgroup_uncharge_cache_page(page);
  448. if (freepage != NULL)
  449. freepage(page);
  450. }
  451. return 1;
  452. cannot_free:
  453. spin_unlock_irq(&mapping->tree_lock);
  454. return 0;
  455. }
  456. /*
  457. * Attempt to detach a locked page from its ->mapping. If it is dirty or if
  458. * someone else has a ref on the page, abort and return 0. If it was
  459. * successfully detached, return 1. Assumes the caller has a single ref on
  460. * this page.
  461. */
  462. int remove_mapping(struct address_space *mapping, struct page *page)
  463. {
  464. if (__remove_mapping(mapping, page)) {
  465. /*
  466. * Unfreezing the refcount with 1 rather than 2 effectively
  467. * drops the pagecache ref for us without requiring another
  468. * atomic operation.
  469. */
  470. page_unfreeze_refs(page, 1);
  471. return 1;
  472. }
  473. return 0;
  474. }
  475. /**
  476. * putback_lru_page - put previously isolated page onto appropriate LRU list
  477. * @page: page to be put back to appropriate lru list
  478. *
  479. * Add previously isolated @page to appropriate LRU list.
  480. * Page may still be unevictable for other reasons.
  481. *
  482. * lru_lock must not be held, interrupts must be enabled.
  483. */
  484. void putback_lru_page(struct page *page)
  485. {
  486. int lru;
  487. int active = !!TestClearPageActive(page);
  488. int was_unevictable = PageUnevictable(page);
  489. VM_BUG_ON(PageLRU(page));
  490. redo:
  491. ClearPageUnevictable(page);
  492. if (page_evictable(page)) {
  493. /*
  494. * For evictable pages, we can use the cache.
  495. * In event of a race, worst case is we end up with an
  496. * unevictable page on [in]active list.
  497. * We know how to handle that.
  498. */
  499. lru = active + page_lru_base_type(page);
  500. lru_cache_add_lru(page, lru);
  501. } else {
  502. /*
  503. * Put unevictable pages directly on zone's unevictable
  504. * list.
  505. */
  506. lru = LRU_UNEVICTABLE;
  507. add_page_to_unevictable_list(page);
  508. /*
  509. * When racing with an mlock or AS_UNEVICTABLE clearing
  510. * (page is unlocked) make sure that if the other thread
  511. * does not observe our setting of PG_lru and fails
  512. * isolation/check_move_unevictable_pages,
  513. * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
  514. * the page back to the evictable list.
  515. *
  516. * The other side is TestClearPageMlocked() or shmem_lock().
  517. */
  518. smp_mb();
  519. }
  520. /*
  521. * page's status can change while we move it among lru. If an evictable
  522. * page is on unevictable list, it never be freed. To avoid that,
  523. * check after we added it to the list, again.
  524. */
  525. if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
  526. if (!isolate_lru_page(page)) {
  527. put_page(page);
  528. goto redo;
  529. }
  530. /* This means someone else dropped this page from LRU
  531. * So, it will be freed or putback to LRU again. There is
  532. * nothing to do here.
  533. */
  534. }
  535. if (was_unevictable && lru != LRU_UNEVICTABLE)
  536. count_vm_event(UNEVICTABLE_PGRESCUED);
  537. else if (!was_unevictable && lru == LRU_UNEVICTABLE)
  538. count_vm_event(UNEVICTABLE_PGCULLED);
  539. put_page(page); /* drop ref from isolate */
  540. }
  541. enum page_references {
  542. PAGEREF_RECLAIM,
  543. PAGEREF_RECLAIM_CLEAN,
  544. PAGEREF_KEEP,
  545. PAGEREF_ACTIVATE,
  546. };
  547. static enum page_references page_check_references(struct page *page,
  548. struct scan_control *sc)
  549. {
  550. int referenced_ptes, referenced_page;
  551. unsigned long vm_flags;
  552. referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
  553. &vm_flags);
  554. referenced_page = TestClearPageReferenced(page);
  555. /*
  556. * Mlock lost the isolation race with us. Let try_to_unmap()
  557. * move the page to the unevictable list.
  558. */
  559. if (vm_flags & VM_LOCKED)
  560. return PAGEREF_RECLAIM;
  561. if (referenced_ptes) {
  562. if (PageSwapBacked(page))
  563. return PAGEREF_ACTIVATE;
  564. /*
  565. * All mapped pages start out with page table
  566. * references from the instantiating fault, so we need
  567. * to look twice if a mapped file page is used more
  568. * than once.
  569. *
  570. * Mark it and spare it for another trip around the
  571. * inactive list. Another page table reference will
  572. * lead to its activation.
  573. *
  574. * Note: the mark is set for activated pages as well
  575. * so that recently deactivated but used pages are
  576. * quickly recovered.
  577. */
  578. SetPageReferenced(page);
  579. if (referenced_page || referenced_ptes > 1)
  580. return PAGEREF_ACTIVATE;
  581. /*
  582. * Activate file-backed executable pages after first usage.
  583. */
  584. if (vm_flags & VM_EXEC)
  585. return PAGEREF_ACTIVATE;
  586. return PAGEREF_KEEP;
  587. }
  588. /* Reclaim if clean, defer dirty pages to writeback */
  589. if (referenced_page && !PageSwapBacked(page))
  590. return PAGEREF_RECLAIM_CLEAN;
  591. return PAGEREF_RECLAIM;
  592. }
  593. /*
  594. * shrink_page_list() returns the number of reclaimed pages
  595. */
  596. static unsigned long shrink_page_list(struct list_head *page_list,
  597. struct zone *zone,
  598. struct scan_control *sc,
  599. enum ttu_flags ttu_flags,
  600. unsigned long *ret_nr_unqueued_dirty,
  601. unsigned long *ret_nr_writeback,
  602. bool force_reclaim)
  603. {
  604. LIST_HEAD(ret_pages);
  605. LIST_HEAD(free_pages);
  606. int pgactivate = 0;
  607. unsigned long nr_unqueued_dirty = 0;
  608. unsigned long nr_dirty = 0;
  609. unsigned long nr_congested = 0;
  610. unsigned long nr_reclaimed = 0;
  611. unsigned long nr_writeback = 0;
  612. cond_resched();
  613. mem_cgroup_uncharge_start();
  614. while (!list_empty(page_list)) {
  615. struct address_space *mapping;
  616. struct page *page;
  617. int may_enter_fs;
  618. enum page_references references = PAGEREF_RECLAIM_CLEAN;
  619. cond_resched();
  620. page = lru_to_page(page_list);
  621. list_del(&page->lru);
  622. if (!trylock_page(page))
  623. goto keep;
  624. VM_BUG_ON(PageActive(page));
  625. VM_BUG_ON(page_zone(page) != zone);
  626. sc->nr_scanned++;
  627. if (unlikely(!page_evictable(page)))
  628. goto cull_mlocked;
  629. if (!sc->may_unmap && page_mapped(page))
  630. goto keep_locked;
  631. /* Double the slab pressure for mapped and swapcache pages */
  632. if (page_mapped(page) || PageSwapCache(page))
  633. sc->nr_scanned++;
  634. may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
  635. (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
  636. /*
  637. * If a page at the tail of the LRU is under writeback, there
  638. * are three cases to consider.
  639. *
  640. * 1) If reclaim is encountering an excessive number of pages
  641. * under writeback and this page is both under writeback and
  642. * PageReclaim then it indicates that pages are being queued
  643. * for IO but are being recycled through the LRU before the
  644. * IO can complete. Waiting on the page itself risks an
  645. * indefinite stall if it is impossible to writeback the
  646. * page due to IO error or disconnected storage so instead
  647. * block for HZ/10 or until some IO completes then clear the
  648. * ZONE_WRITEBACK flag to recheck if the condition exists.
  649. *
  650. * 2) Global reclaim encounters a page, memcg encounters a
  651. * page that is not marked for immediate reclaim or
  652. * the caller does not have __GFP_IO. In this case mark
  653. * the page for immediate reclaim and continue scanning.
  654. *
  655. * __GFP_IO is checked because a loop driver thread might
  656. * enter reclaim, and deadlock if it waits on a page for
  657. * which it is needed to do the write (loop masks off
  658. * __GFP_IO|__GFP_FS for this reason); but more thought
  659. * would probably show more reasons.
  660. *
  661. * Don't require __GFP_FS, since we're not going into the
  662. * FS, just waiting on its writeback completion. Worryingly,
  663. * ext4 gfs2 and xfs allocate pages with
  664. * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
  665. * may_enter_fs here is liable to OOM on them.
  666. *
  667. * 3) memcg encounters a page that is not already marked
  668. * PageReclaim. memcg does not have any dirty pages
  669. * throttling so we could easily OOM just because too many
  670. * pages are in writeback and there is nothing else to
  671. * reclaim. Wait for the writeback to complete.
  672. */
  673. if (PageWriteback(page)) {
  674. /* Case 1 above */
  675. if (current_is_kswapd() &&
  676. PageReclaim(page) &&
  677. zone_is_reclaim_writeback(zone)) {
  678. unlock_page(page);
  679. congestion_wait(BLK_RW_ASYNC, HZ/10);
  680. zone_clear_flag(zone, ZONE_WRITEBACK);
  681. goto keep;
  682. /* Case 2 above */
  683. } else if (global_reclaim(sc) ||
  684. !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
  685. /*
  686. * This is slightly racy - end_page_writeback()
  687. * might have just cleared PageReclaim, then
  688. * setting PageReclaim here end up interpreted
  689. * as PageReadahead - but that does not matter
  690. * enough to care. What we do want is for this
  691. * page to have PageReclaim set next time memcg
  692. * reclaim reaches the tests above, so it will
  693. * then wait_on_page_writeback() to avoid OOM;
  694. * and it's also appropriate in global reclaim.
  695. */
  696. SetPageReclaim(page);
  697. nr_writeback++;
  698. goto keep_locked;
  699. /* Case 3 above */
  700. } else {
  701. wait_on_page_writeback(page);
  702. }
  703. }
  704. if (!force_reclaim)
  705. references = page_check_references(page, sc);
  706. switch (references) {
  707. case PAGEREF_ACTIVATE:
  708. goto activate_locked;
  709. case PAGEREF_KEEP:
  710. goto keep_locked;
  711. case PAGEREF_RECLAIM:
  712. case PAGEREF_RECLAIM_CLEAN:
  713. ; /* try to reclaim the page below */
  714. }
  715. /*
  716. * Anonymous process memory has backing store?
  717. * Try to allocate it some swap space here.
  718. */
  719. if (PageAnon(page) && !PageSwapCache(page)) {
  720. if (!(sc->gfp_mask & __GFP_IO))
  721. goto keep_locked;
  722. if (!add_to_swap(page, page_list))
  723. goto activate_locked;
  724. may_enter_fs = 1;
  725. }
  726. mapping = page_mapping(page);
  727. /*
  728. * The page is mapped into the page tables of one or more
  729. * processes. Try to unmap it here.
  730. */
  731. if (page_mapped(page) && mapping) {
  732. switch (try_to_unmap(page, ttu_flags)) {
  733. case SWAP_FAIL:
  734. goto activate_locked;
  735. case SWAP_AGAIN:
  736. goto keep_locked;
  737. case SWAP_MLOCK:
  738. goto cull_mlocked;
  739. case SWAP_SUCCESS:
  740. ; /* try to free the page below */
  741. }
  742. }
  743. if (PageDirty(page)) {
  744. nr_dirty++;
  745. if (!PageWriteback(page))
  746. nr_unqueued_dirty++;
  747. /*
  748. * Only kswapd can writeback filesystem pages to
  749. * avoid risk of stack overflow but only writeback
  750. * if many dirty pages have been encountered.
  751. */
  752. if (page_is_file_cache(page) &&
  753. (!current_is_kswapd() ||
  754. !zone_is_reclaim_dirty(zone))) {
  755. /*
  756. * Immediately reclaim when written back.
  757. * Similar in principal to deactivate_page()
  758. * except we already have the page isolated
  759. * and know it's dirty
  760. */
  761. inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
  762. SetPageReclaim(page);
  763. goto keep_locked;
  764. }
  765. if (references == PAGEREF_RECLAIM_CLEAN)
  766. goto keep_locked;
  767. if (!may_enter_fs)
  768. goto keep_locked;
  769. if (!sc->may_writepage)
  770. goto keep_locked;
  771. /* Page is dirty, try to write it out here */
  772. switch (pageout(page, mapping, sc)) {
  773. case PAGE_KEEP:
  774. nr_congested++;
  775. goto keep_locked;
  776. case PAGE_ACTIVATE:
  777. goto activate_locked;
  778. case PAGE_SUCCESS:
  779. if (PageWriteback(page))
  780. goto keep;
  781. if (PageDirty(page))
  782. goto keep;
  783. /*
  784. * A synchronous write - probably a ramdisk. Go
  785. * ahead and try to reclaim the page.
  786. */
  787. if (!trylock_page(page))
  788. goto keep;
  789. if (PageDirty(page) || PageWriteback(page))
  790. goto keep_locked;
  791. mapping = page_mapping(page);
  792. case PAGE_CLEAN:
  793. ; /* try to free the page below */
  794. }
  795. }
  796. /*
  797. * If the page has buffers, try to free the buffer mappings
  798. * associated with this page. If we succeed we try to free
  799. * the page as well.
  800. *
  801. * We do this even if the page is PageDirty().
  802. * try_to_release_page() does not perform I/O, but it is
  803. * possible for a page to have PageDirty set, but it is actually
  804. * clean (all its buffers are clean). This happens if the
  805. * buffers were written out directly, with submit_bh(). ext3
  806. * will do this, as well as the blockdev mapping.
  807. * try_to_release_page() will discover that cleanness and will
  808. * drop the buffers and mark the page clean - it can be freed.
  809. *
  810. * Rarely, pages can have buffers and no ->mapping. These are
  811. * the pages which were not successfully invalidated in
  812. * truncate_complete_page(). We try to drop those buffers here
  813. * and if that worked, and the page is no longer mapped into
  814. * process address space (page_count == 1) it can be freed.
  815. * Otherwise, leave the page on the LRU so it is swappable.
  816. */
  817. if (page_has_private(page)) {
  818. if (!try_to_release_page(page, sc->gfp_mask))
  819. goto activate_locked;
  820. if (!mapping && page_count(page) == 1) {
  821. unlock_page(page);
  822. if (put_page_testzero(page))
  823. goto free_it;
  824. else {
  825. /*
  826. * rare race with speculative reference.
  827. * the speculative reference will free
  828. * this page shortly, so we may
  829. * increment nr_reclaimed here (and
  830. * leave it off the LRU).
  831. */
  832. nr_reclaimed++;
  833. continue;
  834. }
  835. }
  836. }
  837. if (!mapping || !__remove_mapping(mapping, page))
  838. goto keep_locked;
  839. /*
  840. * At this point, we have no other references and there is
  841. * no way to pick any more up (removed from LRU, removed
  842. * from pagecache). Can use non-atomic bitops now (and
  843. * we obviously don't have to worry about waking up a process
  844. * waiting on the page lock, because there are no references.
  845. */
  846. __clear_page_locked(page);
  847. free_it:
  848. nr_reclaimed++;
  849. /*
  850. * Is there need to periodically free_page_list? It would
  851. * appear not as the counts should be low
  852. */
  853. list_add(&page->lru, &free_pages);
  854. continue;
  855. cull_mlocked:
  856. if (PageSwapCache(page))
  857. try_to_free_swap(page);
  858. unlock_page(page);
  859. putback_lru_page(page);
  860. continue;
  861. activate_locked:
  862. /* Not a candidate for swapping, so reclaim swap space. */
  863. if (PageSwapCache(page) && vm_swap_full())
  864. try_to_free_swap(page);
  865. VM_BUG_ON(PageActive(page));
  866. SetPageActive(page);
  867. pgactivate++;
  868. keep_locked:
  869. unlock_page(page);
  870. keep:
  871. list_add(&page->lru, &ret_pages);
  872. VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
  873. }
  874. /*
  875. * Tag a zone as congested if all the dirty pages encountered were
  876. * backed by a congested BDI. In this case, reclaimers should just
  877. * back off and wait for congestion to clear because further reclaim
  878. * will encounter the same problem
  879. */
  880. if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
  881. zone_set_flag(zone, ZONE_CONGESTED);
  882. free_hot_cold_page_list(&free_pages, 1);
  883. list_splice(&ret_pages, page_list);
  884. count_vm_events(PGACTIVATE, pgactivate);
  885. mem_cgroup_uncharge_end();
  886. *ret_nr_unqueued_dirty += nr_unqueued_dirty;
  887. *ret_nr_writeback += nr_writeback;
  888. return nr_reclaimed;
  889. }
  890. unsigned long reclaim_clean_pages_from_list(struct zone *zone,
  891. struct list_head *page_list)
  892. {
  893. struct scan_control sc = {
  894. .gfp_mask = GFP_KERNEL,
  895. .priority = DEF_PRIORITY,
  896. .may_unmap = 1,
  897. };
  898. unsigned long ret, dummy1, dummy2;
  899. struct page *page, *next;
  900. LIST_HEAD(clean_pages);
  901. list_for_each_entry_safe(page, next, page_list, lru) {
  902. if (page_is_file_cache(page) && !PageDirty(page)) {
  903. ClearPageActive(page);
  904. list_move(&page->lru, &clean_pages);
  905. }
  906. }
  907. ret = shrink_page_list(&clean_pages, zone, &sc,
  908. TTU_UNMAP|TTU_IGNORE_ACCESS,
  909. &dummy1, &dummy2, true);
  910. list_splice(&clean_pages, page_list);
  911. __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
  912. return ret;
  913. }
  914. /*
  915. * Attempt to remove the specified page from its LRU. Only take this page
  916. * if it is of the appropriate PageActive status. Pages which are being
  917. * freed elsewhere are also ignored.
  918. *
  919. * page: page to consider
  920. * mode: one of the LRU isolation modes defined above
  921. *
  922. * returns 0 on success, -ve errno on failure.
  923. */
  924. int __isolate_lru_page(struct page *page, isolate_mode_t mode)
  925. {
  926. int ret = -EINVAL;
  927. /* Only take pages on the LRU. */
  928. if (!PageLRU(page))
  929. return ret;
  930. /* Compaction should not handle unevictable pages but CMA can do so */
  931. if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
  932. return ret;
  933. ret = -EBUSY;
  934. /*
  935. * To minimise LRU disruption, the caller can indicate that it only
  936. * wants to isolate pages it will be able to operate on without
  937. * blocking - clean pages for the most part.
  938. *
  939. * ISOLATE_CLEAN means that only clean pages should be isolated. This
  940. * is used by reclaim when it is cannot write to backing storage
  941. *
  942. * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
  943. * that it is possible to migrate without blocking
  944. */
  945. if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
  946. /* All the caller can do on PageWriteback is block */
  947. if (PageWriteback(page))
  948. return ret;
  949. if (PageDirty(page)) {
  950. struct address_space *mapping;
  951. /* ISOLATE_CLEAN means only clean pages */
  952. if (mode & ISOLATE_CLEAN)
  953. return ret;
  954. /*
  955. * Only pages without mappings or that have a
  956. * ->migratepage callback are possible to migrate
  957. * without blocking
  958. */
  959. mapping = page_mapping(page);
  960. if (mapping && !mapping->a_ops->migratepage)
  961. return ret;
  962. }
  963. }
  964. if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
  965. return ret;
  966. if (likely(get_page_unless_zero(page))) {
  967. /*
  968. * Be careful not to clear PageLRU until after we're
  969. * sure the page is not being freed elsewhere -- the
  970. * page release code relies on it.
  971. */
  972. ClearPageLRU(page);
  973. ret = 0;
  974. }
  975. return ret;
  976. }
  977. /*
  978. * zone->lru_lock is heavily contended. Some of the functions that
  979. * shrink the lists perform better by taking out a batch of pages
  980. * and working on them outside the LRU lock.
  981. *
  982. * For pagecache intensive workloads, this function is the hottest
  983. * spot in the kernel (apart from copy_*_user functions).
  984. *
  985. * Appropriate locks must be held before calling this function.
  986. *
  987. * @nr_to_scan: The number of pages to look through on the list.
  988. * @lruvec: The LRU vector to pull pages from.
  989. * @dst: The temp list to put pages on to.
  990. * @nr_scanned: The number of pages that were scanned.
  991. * @sc: The scan_control struct for this reclaim session
  992. * @mode: One of the LRU isolation modes
  993. * @lru: LRU list id for isolating
  994. *
  995. * returns how many pages were moved onto *@dst.
  996. */
  997. static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
  998. struct lruvec *lruvec, struct list_head *dst,
  999. unsigned long *nr_scanned, struct scan_control *sc,
  1000. isolate_mode_t mode, enum lru_list lru)
  1001. {
  1002. struct list_head *src = &lruvec->lists[lru];
  1003. unsigned long nr_taken = 0;
  1004. unsigned long scan;
  1005. for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
  1006. struct page *page;
  1007. int nr_pages;
  1008. page = lru_to_page(src);
  1009. prefetchw_prev_lru_page(page, src, flags);
  1010. VM_BUG_ON(!PageLRU(page));
  1011. switch (__isolate_lru_page(page, mode)) {
  1012. case 0:
  1013. nr_pages = hpage_nr_pages(page);
  1014. mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
  1015. list_move(&page->lru, dst);
  1016. nr_taken += nr_pages;
  1017. break;
  1018. case -EBUSY:
  1019. /* else it is being freed elsewhere */
  1020. list_move(&page->lru, src);
  1021. continue;
  1022. default:
  1023. BUG();
  1024. }
  1025. }
  1026. *nr_scanned = scan;
  1027. trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
  1028. nr_taken, mode, is_file_lru(lru));
  1029. return nr_taken;
  1030. }
  1031. /**
  1032. * isolate_lru_page - tries to isolate a page from its LRU list
  1033. * @page: page to isolate from its LRU list
  1034. *
  1035. * Isolates a @page from an LRU list, clears PageLRU and adjusts the
  1036. * vmstat statistic corresponding to whatever LRU list the page was on.
  1037. *
  1038. * Returns 0 if the page was removed from an LRU list.
  1039. * Returns -EBUSY if the page was not on an LRU list.
  1040. *
  1041. * The returned page will have PageLRU() cleared. If it was found on
  1042. * the active list, it will have PageActive set. If it was found on
  1043. * the unevictable list, it will have the PageUnevictable bit set. That flag
  1044. * may need to be cleared by the caller before letting the page go.
  1045. *
  1046. * The vmstat statistic corresponding to the list on which the page was
  1047. * found will be decremented.
  1048. *
  1049. * Restrictions:
  1050. * (1) Must be called with an elevated refcount on the page. This is a
  1051. * fundamentnal difference from isolate_lru_pages (which is called
  1052. * without a stable reference).
  1053. * (2) the lru_lock must not be held.
  1054. * (3) interrupts must be enabled.
  1055. */
  1056. int isolate_lru_page(struct page *page)
  1057. {
  1058. int ret = -EBUSY;
  1059. VM_BUG_ON(!page_count(page));
  1060. if (PageLRU(page)) {
  1061. struct zone *zone = page_zone(page);
  1062. struct lruvec *lruvec;
  1063. spin_lock_irq(&zone->lru_lock);
  1064. lruvec = mem_cgroup_page_lruvec(page, zone);
  1065. if (PageLRU(page)) {
  1066. int lru = page_lru(page);
  1067. get_page(page);
  1068. ClearPageLRU(page);
  1069. del_page_from_lru_list(page, lruvec, lru);
  1070. ret = 0;
  1071. }
  1072. spin_unlock_irq(&zone->lru_lock);
  1073. }
  1074. return ret;
  1075. }
  1076. /*
  1077. * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
  1078. * then get resheduled. When there are massive number of tasks doing page
  1079. * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
  1080. * the LRU list will go small and be scanned faster than necessary, leading to
  1081. * unnecessary swapping, thrashing and OOM.
  1082. */
  1083. static int too_many_isolated(struct zone *zone, int file,
  1084. struct scan_control *sc)
  1085. {
  1086. unsigned long inactive, isolated;
  1087. if (current_is_kswapd())
  1088. return 0;
  1089. if (!global_reclaim(sc))
  1090. return 0;
  1091. if (file) {
  1092. inactive = zone_page_state(zone, NR_INACTIVE_FILE);
  1093. isolated = zone_page_state(zone, NR_ISOLATED_FILE);
  1094. } else {
  1095. inactive = zone_page_state(zone, NR_INACTIVE_ANON);
  1096. isolated = zone_page_state(zone, NR_ISOLATED_ANON);
  1097. }
  1098. /*
  1099. * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
  1100. * won't get blocked by normal direct-reclaimers, forming a circular
  1101. * deadlock.
  1102. */
  1103. if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
  1104. inactive >>= 3;
  1105. return isolated > inactive;
  1106. }
  1107. static noinline_for_stack void
  1108. putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
  1109. {
  1110. struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
  1111. struct zone *zone = lruvec_zone(lruvec);
  1112. LIST_HEAD(pages_to_free);
  1113. /*
  1114. * Put back any unfreeable pages.
  1115. */
  1116. while (!list_empty(page_list)) {
  1117. struct page *page = lru_to_page(page_list);
  1118. int lru;
  1119. VM_BUG_ON(PageLRU(page));
  1120. list_del(&page->lru);
  1121. if (unlikely(!page_evictable(page))) {
  1122. spin_unlock_irq(&zone->lru_lock);
  1123. putback_lru_page(page);
  1124. spin_lock_irq(&zone->lru_lock);
  1125. continue;
  1126. }
  1127. lruvec = mem_cgroup_page_lruvec(page, zone);
  1128. SetPageLRU(page);
  1129. lru = page_lru(page);
  1130. add_page_to_lru_list(page, lruvec, lru);
  1131. if (is_active_lru(lru)) {
  1132. int file = is_file_lru(lru);
  1133. int numpages = hpage_nr_pages(page);
  1134. reclaim_stat->recent_rotated[file] += numpages;
  1135. }
  1136. if (put_page_testzero(page)) {
  1137. __ClearPageLRU(page);
  1138. __ClearPageActive(page);
  1139. del_page_from_lru_list(page, lruvec, lru);
  1140. if (unlikely(PageCompound(page))) {
  1141. spin_unlock_irq(&zone->lru_lock);
  1142. (*get_compound_page_dtor(page))(page);
  1143. spin_lock_irq(&zone->lru_lock);
  1144. } else
  1145. list_add(&page->lru, &pages_to_free);
  1146. }
  1147. }
  1148. /*
  1149. * To save our caller's stack, now use input list for pages to free.
  1150. */
  1151. list_splice(&pages_to_free, page_list);
  1152. }
  1153. /*
  1154. * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
  1155. * of reclaimed pages
  1156. */
  1157. static noinline_for_stack unsigned long
  1158. shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
  1159. struct scan_control *sc, enum lru_list lru)
  1160. {
  1161. LIST_HEAD(page_list);
  1162. unsigned long nr_scanned;
  1163. unsigned long nr_reclaimed = 0;
  1164. unsigned long nr_taken;
  1165. unsigned long nr_dirty = 0;
  1166. unsigned long nr_writeback = 0;
  1167. isolate_mode_t isolate_mode = 0;
  1168. int file = is_file_lru(lru);
  1169. struct zone *zone = lruvec_zone(lruvec);
  1170. struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
  1171. while (unlikely(too_many_isolated(zone, file, sc))) {
  1172. congestion_wait(BLK_RW_ASYNC, HZ/10);
  1173. /* We are about to die and free our memory. Return now. */
  1174. if (fatal_signal_pending(current))
  1175. return SWAP_CLUSTER_MAX;
  1176. }
  1177. lru_add_drain();
  1178. if (!sc->may_unmap)
  1179. isolate_mode |= ISOLATE_UNMAPPED;
  1180. if (!sc->may_writepage)
  1181. isolate_mode |= ISOLATE_CLEAN;
  1182. spin_lock_irq(&zone->lru_lock);
  1183. nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
  1184. &nr_scanned, sc, isolate_mode, lru);
  1185. __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
  1186. __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
  1187. if (global_reclaim(sc)) {
  1188. zone->pages_scanned += nr_scanned;
  1189. if (current_is_kswapd())
  1190. __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
  1191. else
  1192. __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
  1193. }
  1194. spin_unlock_irq(&zone->lru_lock);
  1195. if (nr_taken == 0)
  1196. return 0;
  1197. nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
  1198. &nr_dirty, &nr_writeback, false);
  1199. spin_lock_irq(&zone->lru_lock);
  1200. reclaim_stat->recent_scanned[file] += nr_taken;
  1201. if (global_reclaim(sc)) {
  1202. if (current_is_kswapd())
  1203. __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
  1204. nr_reclaimed);
  1205. else
  1206. __count_zone_vm_events(PGSTEAL_DIRECT, zone,
  1207. nr_reclaimed);
  1208. }
  1209. putback_inactive_pages(lruvec, &page_list);
  1210. __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
  1211. spin_unlock_irq(&zone->lru_lock);
  1212. free_hot_cold_page_list(&page_list, 1);
  1213. /*
  1214. * If reclaim is isolating dirty pages under writeback, it implies
  1215. * that the long-lived page allocation rate is exceeding the page
  1216. * laundering rate. Either the global limits are not being effective
  1217. * at throttling processes due to the page distribution throughout
  1218. * zones or there is heavy usage of a slow backing device. The
  1219. * only option is to throttle from reclaim context which is not ideal
  1220. * as there is no guarantee the dirtying process is throttled in the
  1221. * same way balance_dirty_pages() manages.
  1222. *
  1223. * This scales the number of dirty pages that must be under writeback
  1224. * before throttling depending on priority. It is a simple backoff
  1225. * function that has the most effect in the range DEF_PRIORITY to
  1226. * DEF_PRIORITY-2 which is the priority reclaim is considered to be
  1227. * in trouble and reclaim is considered to be in trouble.
  1228. *
  1229. * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
  1230. * DEF_PRIORITY-1 50% must be PageWriteback
  1231. * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
  1232. * ...
  1233. * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
  1234. * isolated page is PageWriteback
  1235. */
  1236. if (nr_writeback && nr_writeback >=
  1237. (nr_taken >> (DEF_PRIORITY - sc->priority))) {
  1238. wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
  1239. zone_set_flag(zone, ZONE_WRITEBACK);
  1240. }
  1241. /*
  1242. * Similarly, if many dirty pages are encountered that are not
  1243. * currently being written then flag that kswapd should start
  1244. * writing back pages.
  1245. */
  1246. if (global_reclaim(sc) && nr_dirty &&
  1247. nr_dirty >= (nr_taken >> (DEF_PRIORITY - sc->priority)))
  1248. zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
  1249. trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
  1250. zone_idx(zone),
  1251. nr_scanned, nr_reclaimed,
  1252. sc->priority,
  1253. trace_shrink_flags(file));
  1254. return nr_reclaimed;
  1255. }
  1256. /*
  1257. * This moves pages from the active list to the inactive list.
  1258. *
  1259. * We move them the other way if the page is referenced by one or more
  1260. * processes, from rmap.
  1261. *
  1262. * If the pages are mostly unmapped, the processing is fast and it is
  1263. * appropriate to hold zone->lru_lock across the whole operation. But if
  1264. * the pages are mapped, the processing is slow (page_referenced()) so we
  1265. * should drop zone->lru_lock around each page. It's impossible to balance
  1266. * this, so instead we remove the pages from the LRU while processing them.
  1267. * It is safe to rely on PG_active against the non-LRU pages in here because
  1268. * nobody will play with that bit on a non-LRU page.
  1269. *
  1270. * The downside is that we have to touch page->_count against each page.
  1271. * But we had to alter page->flags anyway.
  1272. */
  1273. static void move_active_pages_to_lru(struct lruvec *lruvec,
  1274. struct list_head *list,
  1275. struct list_head *pages_to_free,
  1276. enum lru_list lru)
  1277. {
  1278. struct zone *zone = lruvec_zone(lruvec);
  1279. unsigned long pgmoved = 0;
  1280. struct page *page;
  1281. int nr_pages;
  1282. while (!list_empty(list)) {
  1283. page = lru_to_page(list);
  1284. lruvec = mem_cgroup_page_lruvec(page, zone);
  1285. VM_BUG_ON(PageLRU(page));
  1286. SetPageLRU(page);
  1287. nr_pages = hpage_nr_pages(page);
  1288. mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
  1289. list_move(&page->lru, &lruvec->lists[lru]);
  1290. pgmoved += nr_pages;
  1291. if (put_page_testzero(page)) {
  1292. __ClearPageLRU(page);
  1293. __ClearPageActive(page);
  1294. del_page_from_lru_list(page, lruvec, lru);
  1295. if (unlikely(PageCompound(page))) {
  1296. spin_unlock_irq(&zone->lru_lock);
  1297. (*get_compound_page_dtor(page))(page);
  1298. spin_lock_irq(&zone->lru_lock);
  1299. } else
  1300. list_add(&page->lru, pages_to_free);
  1301. }
  1302. }
  1303. __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
  1304. if (!is_active_lru(lru))
  1305. __count_vm_events(PGDEACTIVATE, pgmoved);
  1306. }
  1307. static void shrink_active_list(unsigned long nr_to_scan,
  1308. struct lruvec *lruvec,
  1309. struct scan_control *sc,
  1310. enum lru_list lru)
  1311. {
  1312. unsigned long nr_taken;
  1313. unsigned long nr_scanned;
  1314. unsigned long vm_flags;
  1315. LIST_HEAD(l_hold); /* The pages which were snipped off */
  1316. LIST_HEAD(l_active);
  1317. LIST_HEAD(l_inactive);
  1318. struct page *page;
  1319. struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
  1320. unsigned long nr_rotated = 0;
  1321. isolate_mode_t isolate_mode = 0;
  1322. int file = is_file_lru(lru);
  1323. struct zone *zone = lruvec_zone(lruvec);
  1324. lru_add_drain();
  1325. if (!sc->may_unmap)
  1326. isolate_mode |= ISOLATE_UNMAPPED;
  1327. if (!sc->may_writepage)
  1328. isolate_mode |= ISOLATE_CLEAN;
  1329. spin_lock_irq(&zone->lru_lock);
  1330. nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
  1331. &nr_scanned, sc, isolate_mode, lru);
  1332. if (global_reclaim(sc))
  1333. zone->pages_scanned += nr_scanned;
  1334. reclaim_stat->recent_scanned[file] += nr_taken;
  1335. __count_zone_vm_events(PGREFILL, zone, nr_scanned);
  1336. __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
  1337. __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
  1338. spin_unlock_irq(&zone->lru_lock);
  1339. while (!list_empty(&l_hold)) {
  1340. cond_resched();
  1341. page = lru_to_page(&l_hold);
  1342. list_del(&page->lru);
  1343. if (unlikely(!page_evictable(page))) {
  1344. putback_lru_page(page);
  1345. continue;
  1346. }
  1347. if (unlikely(buffer_heads_over_limit)) {
  1348. if (page_has_private(page) && trylock_page(page)) {
  1349. if (page_has_private(page))
  1350. try_to_release_page(page, 0);
  1351. unlock_page(page);
  1352. }
  1353. }
  1354. if (page_referenced(page, 0, sc->target_mem_cgroup,
  1355. &vm_flags)) {
  1356. nr_rotated += hpage_nr_pages(page);
  1357. /*
  1358. * Identify referenced, file-backed active pages and
  1359. * give them one more trip around the active list. So
  1360. * that executable code get better chances to stay in
  1361. * memory under moderate memory pressure. Anon pages
  1362. * are not likely to be evicted by use-once streaming
  1363. * IO, plus JVM can create lots of anon VM_EXEC pages,
  1364. * so we ignore them here.
  1365. */
  1366. if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
  1367. list_add(&page->lru, &l_active);
  1368. continue;
  1369. }
  1370. }
  1371. ClearPageActive(page); /* we are de-activating */
  1372. list_add(&page->lru, &l_inactive);
  1373. }
  1374. /*
  1375. * Move pages back to the lru list.
  1376. */
  1377. spin_lock_irq(&zone->lru_lock);
  1378. /*
  1379. * Count referenced pages from currently used mappings as rotated,
  1380. * even though only some of them are actually re-activated. This
  1381. * helps balance scan pressure between file and anonymous pages in
  1382. * get_scan_ratio.
  1383. */
  1384. reclaim_stat->recent_rotated[file] += nr_rotated;
  1385. move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
  1386. move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
  1387. __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
  1388. spin_unlock_irq(&zone->lru_lock);
  1389. free_hot_cold_page_list(&l_hold, 1);
  1390. }
  1391. #ifdef CONFIG_SWAP
  1392. static int inactive_anon_is_low_global(struct zone *zone)
  1393. {
  1394. unsigned long active, inactive;
  1395. active = zone_page_state(zone, NR_ACTIVE_ANON);
  1396. inactive = zone_page_state(zone, NR_INACTIVE_ANON);
  1397. if (inactive * zone->inactive_ratio < active)
  1398. return 1;
  1399. return 0;
  1400. }
  1401. /**
  1402. * inactive_anon_is_low - check if anonymous pages need to be deactivated
  1403. * @lruvec: LRU vector to check
  1404. *
  1405. * Returns true if the zone does not have enough inactive anon pages,
  1406. * meaning some active anon pages need to be deactivated.
  1407. */
  1408. static int inactive_anon_is_low(struct lruvec *lruvec)
  1409. {
  1410. /*
  1411. * If we don't have swap space, anonymous page deactivation
  1412. * is pointless.
  1413. */
  1414. if (!total_swap_pages)
  1415. return 0;
  1416. if (!mem_cgroup_disabled())
  1417. return mem_cgroup_inactive_anon_is_low(lruvec);
  1418. return inactive_anon_is_low_global(lruvec_zone(lruvec));
  1419. }
  1420. #else
  1421. static inline int inactive_anon_is_low(struct lruvec *lruvec)
  1422. {
  1423. return 0;
  1424. }
  1425. #endif
  1426. /**
  1427. * inactive_file_is_low - check if file pages need to be deactivated
  1428. * @lruvec: LRU vector to check
  1429. *
  1430. * When the system is doing streaming IO, memory pressure here
  1431. * ensures that active file pages get deactivated, until more
  1432. * than half of the file pages are on the inactive list.
  1433. *
  1434. * Once we get to that situation, protect the system's working
  1435. * set from being evicted by disabling active file page aging.
  1436. *
  1437. * This uses a different ratio than the anonymous pages, because
  1438. * the page cache uses a use-once replacement algorithm.
  1439. */
  1440. static int inactive_file_is_low(struct lruvec *lruvec)
  1441. {
  1442. unsigned long inactive;
  1443. unsigned long active;
  1444. inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
  1445. active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
  1446. return active > inactive;
  1447. }
  1448. static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
  1449. {
  1450. if (is_file_lru(lru))
  1451. return inactive_file_is_low(lruvec);
  1452. else
  1453. return inactive_anon_is_low(lruvec);
  1454. }
  1455. static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
  1456. struct lruvec *lruvec, struct scan_control *sc)
  1457. {
  1458. if (is_active_lru(lru)) {
  1459. if (inactive_list_is_low(lruvec, lru))
  1460. shrink_active_list(nr_to_scan, lruvec, sc, lru);
  1461. return 0;
  1462. }
  1463. return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
  1464. }
  1465. static int vmscan_swappiness(struct scan_control *sc)
  1466. {
  1467. if (global_reclaim(sc))
  1468. return vm_swappiness;
  1469. return mem_cgroup_swappiness(sc->target_mem_cgroup);
  1470. }
  1471. enum scan_balance {
  1472. SCAN_EQUAL,
  1473. SCAN_FRACT,
  1474. SCAN_ANON,
  1475. SCAN_FILE,
  1476. };
  1477. /*
  1478. * Determine how aggressively the anon and file LRU lists should be
  1479. * scanned. The relative value of each set of LRU lists is determined
  1480. * by looking at the fraction of the pages scanned we did rotate back
  1481. * onto the active list instead of evict.
  1482. *
  1483. * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
  1484. * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
  1485. */
  1486. static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
  1487. unsigned long *nr)
  1488. {
  1489. struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
  1490. u64 fraction[2];
  1491. u64 denominator = 0; /* gcc */
  1492. struct zone *zone = lruvec_zone(lruvec);
  1493. unsigned long anon_prio, file_prio;
  1494. enum scan_balance scan_balance;
  1495. unsigned long anon, file, free;
  1496. bool force_scan = false;
  1497. unsigned long ap, fp;
  1498. enum lru_list lru;
  1499. /*
  1500. * If the zone or memcg is small, nr[l] can be 0. This
  1501. * results in no scanning on this priority and a potential
  1502. * priority drop. Global direct reclaim can go to the next
  1503. * zone and tends to have no problems. Global kswapd is for
  1504. * zone balancing and it needs to scan a minimum amount. When
  1505. * reclaiming for a memcg, a priority drop can cause high
  1506. * latencies, so it's better to scan a minimum amount there as
  1507. * well.
  1508. */
  1509. if (current_is_kswapd() && zone->all_unreclaimable)
  1510. force_scan = true;
  1511. if (!global_reclaim(sc))
  1512. force_scan = true;
  1513. /* If we have no swap space, do not bother scanning anon pages. */
  1514. if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
  1515. scan_balance = SCAN_FILE;
  1516. goto out;
  1517. }
  1518. /*
  1519. * Global reclaim will swap to prevent OOM even with no
  1520. * swappiness, but memcg users want to use this knob to
  1521. * disable swapping for individual groups completely when
  1522. * using the memory controller's swap limit feature would be
  1523. * too expensive.
  1524. */
  1525. if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
  1526. scan_balance = SCAN_FILE;
  1527. goto out;
  1528. }
  1529. /*
  1530. * Do not apply any pressure balancing cleverness when the
  1531. * system is close to OOM, scan both anon and file equally
  1532. * (unless the swappiness setting disagrees with swapping).
  1533. */
  1534. if (!sc->priority && vmscan_swappiness(sc)) {
  1535. scan_balance = SCAN_EQUAL;
  1536. goto out;
  1537. }
  1538. anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
  1539. get_lru_size(lruvec, LRU_INACTIVE_ANON);
  1540. file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
  1541. get_lru_size(lruvec, LRU_INACTIVE_FILE);
  1542. /*
  1543. * If it's foreseeable that reclaiming the file cache won't be
  1544. * enough to get the zone back into a desirable shape, we have
  1545. * to swap. Better start now and leave the - probably heavily
  1546. * thrashing - remaining file pages alone.
  1547. */
  1548. if (global_reclaim(sc)) {
  1549. free = zone_page_state(zone, NR_FREE_PAGES);
  1550. if (unlikely(file + free <= high_wmark_pages(zone))) {
  1551. scan_balance = SCAN_ANON;
  1552. goto out;
  1553. }
  1554. }
  1555. /*
  1556. * There is enough inactive page cache, do not reclaim
  1557. * anything from the anonymous working set right now.
  1558. */
  1559. if (!inactive_file_is_low(lruvec)) {
  1560. scan_balance = SCAN_FILE;
  1561. goto out;
  1562. }
  1563. scan_balance = SCAN_FRACT;
  1564. /*
  1565. * With swappiness at 100, anonymous and file have the same priority.
  1566. * This scanning priority is essentially the inverse of IO cost.
  1567. */
  1568. anon_prio = vmscan_swappiness(sc);
  1569. file_prio = 200 - anon_prio;
  1570. /*
  1571. * OK, so we have swap space and a fair amount of page cache
  1572. * pages. We use the recently rotated / recently scanned
  1573. * ratios to determine how valuable each cache is.
  1574. *
  1575. * Because workloads change over time (and to avoid overflow)
  1576. * we keep these statistics as a floating average, which ends
  1577. * up weighing recent references more than old ones.
  1578. *
  1579. * anon in [0], file in [1]
  1580. */
  1581. spin_lock_irq(&zone->lru_lock);
  1582. if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
  1583. reclaim_stat->recent_scanned[0] /= 2;
  1584. reclaim_stat->recent_rotated[0] /= 2;
  1585. }
  1586. if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
  1587. reclaim_stat->recent_scanned[1] /= 2;
  1588. reclaim_stat->recent_rotated[1] /= 2;
  1589. }
  1590. /*
  1591. * The amount of pressure on anon vs file pages is inversely
  1592. * proportional to the fraction of recently scanned pages on
  1593. * each list that were recently referenced and in active use.
  1594. */
  1595. ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
  1596. ap /= reclaim_stat->recent_rotated[0] + 1;
  1597. fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
  1598. fp /= reclaim_stat->recent_rotated[1] + 1;
  1599. spin_unlock_irq(&zone->lru_lock);
  1600. fraction[0] = ap;
  1601. fraction[1] = fp;
  1602. denominator = ap + fp + 1;
  1603. out:
  1604. for_each_evictable_lru(lru) {
  1605. int file = is_file_lru(lru);
  1606. unsigned long size;
  1607. unsigned long scan;
  1608. size = get_lru_size(lruvec, lru);
  1609. scan = size >> sc->priority;
  1610. if (!scan && force_scan)
  1611. scan = min(size, SWAP_CLUSTER_MAX);
  1612. switch (scan_balance) {
  1613. case SCAN_EQUAL:
  1614. /* Scan lists relative to size */
  1615. break;
  1616. case SCAN_FRACT:
  1617. /*
  1618. * Scan types proportional to swappiness and
  1619. * their relative recent reclaim efficiency.
  1620. */
  1621. scan = div64_u64(scan * fraction[file], denominator);
  1622. break;
  1623. case SCAN_FILE:
  1624. case SCAN_ANON:
  1625. /* Scan one type exclusively */
  1626. if ((scan_balance == SCAN_FILE) != file)
  1627. scan = 0;
  1628. break;
  1629. default:
  1630. /* Look ma, no brain */
  1631. BUG();
  1632. }
  1633. nr[lru] = scan;
  1634. }
  1635. }
  1636. /*
  1637. * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
  1638. */
  1639. static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
  1640. {
  1641. unsigned long nr[NR_LRU_LISTS];
  1642. unsigned long targets[NR_LRU_LISTS];
  1643. unsigned long nr_to_scan;
  1644. enum lru_list lru;
  1645. unsigned long nr_reclaimed = 0;
  1646. unsigned long nr_to_reclaim = sc->nr_to_reclaim;
  1647. struct blk_plug plug;
  1648. bool scan_adjusted = false;
  1649. get_scan_count(lruvec, sc, nr);
  1650. /* Record the original scan target for proportional adjustments later */
  1651. memcpy(targets, nr, sizeof(nr));
  1652. blk_start_plug(&plug);
  1653. while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
  1654. nr[LRU_INACTIVE_FILE]) {
  1655. unsigned long nr_anon, nr_file, percentage;
  1656. unsigned long nr_scanned;
  1657. for_each_evictable_lru(lru) {
  1658. if (nr[lru]) {
  1659. nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
  1660. nr[lru] -= nr_to_scan;
  1661. nr_reclaimed += shrink_list(lru, nr_to_scan,
  1662. lruvec, sc);
  1663. }
  1664. }
  1665. if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
  1666. continue;
  1667. /*
  1668. * For global direct reclaim, reclaim only the number of pages
  1669. * requested. Less care is taken to scan proportionally as it
  1670. * is more important to minimise direct reclaim stall latency
  1671. * than it is to properly age the LRU lists.
  1672. */
  1673. if (global_reclaim(sc) && !current_is_kswapd())
  1674. break;
  1675. /*
  1676. * For kswapd and memcg, reclaim at least the number of pages
  1677. * requested. Ensure that the anon and file LRUs shrink
  1678. * proportionally what was requested by get_scan_count(). We
  1679. * stop reclaiming one LRU and reduce the amount scanning
  1680. * proportional to the original scan target.
  1681. */
  1682. nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
  1683. nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
  1684. if (nr_file > nr_anon) {
  1685. unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
  1686. targets[LRU_ACTIVE_ANON] + 1;
  1687. lru = LRU_BASE;
  1688. percentage = nr_anon * 100 / scan_target;
  1689. } else {
  1690. unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
  1691. targets[LRU_ACTIVE_FILE] + 1;
  1692. lru = LRU_FILE;
  1693. percentage = nr_file * 100 / scan_target;
  1694. }
  1695. /* Stop scanning the smaller of the LRU */
  1696. nr[lru] = 0;
  1697. nr[lru + LRU_ACTIVE] = 0;
  1698. /*
  1699. * Recalculate the other LRU scan count based on its original
  1700. * scan target and the percentage scanning already complete
  1701. */
  1702. lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
  1703. nr_scanned = targets[lru] - nr[lru];
  1704. nr[lru] = targets[lru] * (100 - percentage) / 100;
  1705. nr[lru] -= min(nr[lru], nr_scanned);
  1706. lru += LRU_ACTIVE;
  1707. nr_scanned = targets[lru] - nr[lru];
  1708. nr[lru] = targets[lru] * (100 - percentage) / 100;
  1709. nr[lru] -= min(nr[lru], nr_scanned);
  1710. scan_adjusted = true;
  1711. }
  1712. blk_finish_plug(&plug);
  1713. sc->nr_reclaimed += nr_reclaimed;
  1714. /*
  1715. * Even if we did not try to evict anon pages at all, we want to
  1716. * rebalance the anon lru active/inactive ratio.
  1717. */
  1718. if (inactive_anon_is_low(lruvec))
  1719. shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
  1720. sc, LRU_ACTIVE_ANON);
  1721. throttle_vm_writeout(sc->gfp_mask);
  1722. }
  1723. /* Use reclaim/compaction for costly allocs or under memory pressure */
  1724. static bool in_reclaim_compaction(struct scan_control *sc)
  1725. {
  1726. if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
  1727. (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
  1728. sc->priority < DEF_PRIORITY - 2))
  1729. return true;
  1730. return false;
  1731. }
  1732. /*
  1733. * Reclaim/compaction is used for high-order allocation requests. It reclaims
  1734. * order-0 pages before compacting the zone. should_continue_reclaim() returns
  1735. * true if more pages should be reclaimed such that when the page allocator
  1736. * calls try_to_compact_zone() that it will have enough free pages to succeed.
  1737. * It will give up earlier than that if there is difficulty reclaiming pages.
  1738. */
  1739. static inline bool should_continue_reclaim(struct zone *zone,
  1740. unsigned long nr_reclaimed,
  1741. unsigned long nr_scanned,
  1742. struct scan_control *sc)
  1743. {
  1744. unsigned long pages_for_compaction;
  1745. unsigned long inactive_lru_pages;
  1746. /* If not in reclaim/compaction mode, stop */
  1747. if (!in_reclaim_compaction(sc))
  1748. return false;
  1749. /* Consider stopping depending on scan and reclaim activity */
  1750. if (sc->gfp_mask & __GFP_REPEAT) {
  1751. /*
  1752. * For __GFP_REPEAT allocations, stop reclaiming if the
  1753. * full LRU list has been scanned and we are still failing
  1754. * to reclaim pages. This full LRU scan is potentially
  1755. * expensive but a __GFP_REPEAT caller really wants to succeed
  1756. */
  1757. if (!nr_reclaimed && !nr_scanned)
  1758. return false;
  1759. } else {
  1760. /*
  1761. * For non-__GFP_REPEAT allocations which can presumably
  1762. * fail without consequence, stop if we failed to reclaim
  1763. * any pages from the last SWAP_CLUSTER_MAX number of
  1764. * pages that were scanned. This will return to the
  1765. * caller faster at the risk reclaim/compaction and
  1766. * the resulting allocation attempt fails
  1767. */
  1768. if (!nr_reclaimed)
  1769. return false;
  1770. }
  1771. /*
  1772. * If we have not reclaimed enough pages for compaction and the
  1773. * inactive lists are large enough, continue reclaiming
  1774. */
  1775. pages_for_compaction = (2UL << sc->order);
  1776. inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
  1777. if (get_nr_swap_pages() > 0)
  1778. inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
  1779. if (sc->nr_reclaimed < pages_for_compaction &&
  1780. inactive_lru_pages > pages_for_compaction)
  1781. return true;
  1782. /* If compaction would go ahead or the allocation would succeed, stop */
  1783. switch (compaction_suitable(zone, sc->order)) {
  1784. case COMPACT_PARTIAL:
  1785. case COMPACT_CONTINUE:
  1786. return false;
  1787. default:
  1788. return true;
  1789. }
  1790. }
  1791. static void shrink_zone(struct zone *zone, struct scan_control *sc)
  1792. {
  1793. unsigned long nr_reclaimed, nr_scanned;
  1794. do {
  1795. struct mem_cgroup *root = sc->target_mem_cgroup;
  1796. struct mem_cgroup_reclaim_cookie reclaim = {
  1797. .zone = zone,
  1798. .priority = sc->priority,
  1799. };
  1800. struct mem_cgroup *memcg;
  1801. nr_reclaimed = sc->nr_reclaimed;
  1802. nr_scanned = sc->nr_scanned;
  1803. memcg = mem_cgroup_iter(root, NULL, &reclaim);
  1804. do {
  1805. struct lruvec *lruvec;
  1806. lruvec = mem_cgroup_zone_lruvec(zone, memcg);
  1807. shrink_lruvec(lruvec, sc);
  1808. /*
  1809. * Direct reclaim and kswapd have to scan all memory
  1810. * cgroups to fulfill the overall scan target for the
  1811. * zone.
  1812. *
  1813. * Limit reclaim, on the other hand, only cares about
  1814. * nr_to_reclaim pages to be reclaimed and it will
  1815. * retry with decreasing priority if one round over the
  1816. * whole hierarchy is not sufficient.
  1817. */
  1818. if (!global_reclaim(sc) &&
  1819. sc->nr_reclaimed >= sc->nr_to_reclaim) {
  1820. mem_cgroup_iter_break(root, memcg);
  1821. break;
  1822. }
  1823. memcg = mem_cgroup_iter(root, memcg, &reclaim);
  1824. } while (memcg);
  1825. vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
  1826. sc->nr_scanned - nr_scanned,
  1827. sc->nr_reclaimed - nr_reclaimed);
  1828. } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
  1829. sc->nr_scanned - nr_scanned, sc));
  1830. }
  1831. /* Returns true if compaction should go ahead for a high-order request */
  1832. static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
  1833. {
  1834. unsigned long balance_gap, watermark;
  1835. bool watermark_ok;
  1836. /* Do not consider compaction for orders reclaim is meant to satisfy */
  1837. if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
  1838. return false;
  1839. /*
  1840. * Compaction takes time to run and there are potentially other
  1841. * callers using the pages just freed. Continue reclaiming until
  1842. * there is a buffer of free pages available to give compaction
  1843. * a reasonable chance of completing and allocating the page
  1844. */
  1845. balance_gap = min(low_wmark_pages(zone),
  1846. (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
  1847. KSWAPD_ZONE_BALANCE_GAP_RATIO);
  1848. watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
  1849. watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
  1850. /*
  1851. * If compaction is deferred, reclaim up to a point where
  1852. * compaction will have a chance of success when re-enabled
  1853. */
  1854. if (compaction_deferred(zone, sc->order))
  1855. return watermark_ok;
  1856. /* If compaction is not ready to start, keep reclaiming */
  1857. if (!compaction_suitable(zone, sc->order))
  1858. return false;
  1859. return watermark_ok;
  1860. }
  1861. /*
  1862. * This is the direct reclaim path, for page-allocating processes. We only
  1863. * try to reclaim pages from zones which will satisfy the caller's allocation
  1864. * request.
  1865. *
  1866. * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
  1867. * Because:
  1868. * a) The caller may be trying to free *extra* pages to satisfy a higher-order
  1869. * allocation or
  1870. * b) The target zone may be at high_wmark_pages(zone) but the lower zones
  1871. * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
  1872. * zone defense algorithm.
  1873. *
  1874. * If a zone is deemed to be full of pinned pages then just give it a light
  1875. * scan then give up on it.
  1876. *
  1877. * This function returns true if a zone is being reclaimed for a costly
  1878. * high-order allocation and compaction is ready to begin. This indicates to
  1879. * the caller that it should consider retrying the allocation instead of
  1880. * further reclaim.
  1881. */
  1882. static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
  1883. {
  1884. struct zoneref *z;
  1885. struct zone *zone;
  1886. unsigned long nr_soft_reclaimed;
  1887. unsigned long nr_soft_scanned;
  1888. bool aborted_reclaim = false;
  1889. /*
  1890. * If the number of buffer_heads in the machine exceeds the maximum
  1891. * allowed level, force direct reclaim to scan the highmem zone as
  1892. * highmem pages could be pinning lowmem pages storing buffer_heads
  1893. */
  1894. if (buffer_heads_over_limit)
  1895. sc->gfp_mask |= __GFP_HIGHMEM;
  1896. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1897. gfp_zone(sc->gfp_mask), sc->nodemask) {
  1898. if (!populated_zone(zone))
  1899. continue;
  1900. /*
  1901. * Take care memory controller reclaiming has small influence
  1902. * to global LRU.
  1903. */
  1904. if (global_reclaim(sc)) {
  1905. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  1906. continue;
  1907. if (zone->all_unreclaimable &&
  1908. sc->priority != DEF_PRIORITY)
  1909. continue; /* Let kswapd poll it */
  1910. if (IS_ENABLED(CONFIG_COMPACTION)) {
  1911. /*
  1912. * If we already have plenty of memory free for
  1913. * compaction in this zone, don't free any more.
  1914. * Even though compaction is invoked for any
  1915. * non-zero order, only frequent costly order
  1916. * reclamation is disruptive enough to become a
  1917. * noticeable problem, like transparent huge
  1918. * page allocations.
  1919. */
  1920. if (compaction_ready(zone, sc)) {
  1921. aborted_reclaim = true;
  1922. continue;
  1923. }
  1924. }
  1925. /*
  1926. * This steals pages from memory cgroups over softlimit
  1927. * and returns the number of reclaimed pages and
  1928. * scanned pages. This works for global memory pressure
  1929. * and balancing, not for a memcg's limit.
  1930. */
  1931. nr_soft_scanned = 0;
  1932. nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
  1933. sc->order, sc->gfp_mask,
  1934. &nr_soft_scanned);
  1935. sc->nr_reclaimed += nr_soft_reclaimed;
  1936. sc->nr_scanned += nr_soft_scanned;
  1937. /* need some check for avoid more shrink_zone() */
  1938. }
  1939. shrink_zone(zone, sc);
  1940. }
  1941. return aborted_reclaim;
  1942. }
  1943. static bool zone_reclaimable(struct zone *zone)
  1944. {
  1945. return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
  1946. }
  1947. /* All zones in zonelist are unreclaimable? */
  1948. static bool all_unreclaimable(struct zonelist *zonelist,
  1949. struct scan_control *sc)
  1950. {
  1951. struct zoneref *z;
  1952. struct zone *zone;
  1953. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1954. gfp_zone(sc->gfp_mask), sc->nodemask) {
  1955. if (!populated_zone(zone))
  1956. continue;
  1957. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  1958. continue;
  1959. if (!zone->all_unreclaimable)
  1960. return false;
  1961. }
  1962. return true;
  1963. }
  1964. /*
  1965. * This is the main entry point to direct page reclaim.
  1966. *
  1967. * If a full scan of the inactive list fails to free enough memory then we
  1968. * are "out of memory" and something needs to be killed.
  1969. *
  1970. * If the caller is !__GFP_FS then the probability of a failure is reasonably
  1971. * high - the zone may be full of dirty or under-writeback pages, which this
  1972. * caller can't do much about. We kick the writeback threads and take explicit
  1973. * naps in the hope that some of these pages can be written. But if the
  1974. * allocating task holds filesystem locks which prevent writeout this might not
  1975. * work, and the allocation attempt will fail.
  1976. *
  1977. * returns: 0, if no pages reclaimed
  1978. * else, the number of pages reclaimed
  1979. */
  1980. static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
  1981. struct scan_control *sc,
  1982. struct shrink_control *shrink)
  1983. {
  1984. unsigned long total_scanned = 0;
  1985. struct reclaim_state *reclaim_state = current->reclaim_state;
  1986. struct zoneref *z;
  1987. struct zone *zone;
  1988. unsigned long writeback_threshold;
  1989. bool aborted_reclaim;
  1990. delayacct_freepages_start();
  1991. if (global_reclaim(sc))
  1992. count_vm_event(ALLOCSTALL);
  1993. do {
  1994. vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
  1995. sc->priority);
  1996. sc->nr_scanned = 0;
  1997. aborted_reclaim = shrink_zones(zonelist, sc);
  1998. /*
  1999. * Don't shrink slabs when reclaiming memory from
  2000. * over limit cgroups
  2001. */
  2002. if (global_reclaim(sc)) {
  2003. unsigned long lru_pages = 0;
  2004. for_each_zone_zonelist(zone, z, zonelist,
  2005. gfp_zone(sc->gfp_mask)) {
  2006. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  2007. continue;
  2008. lru_pages += zone_reclaimable_pages(zone);
  2009. }
  2010. shrink_slab(shrink, sc->nr_scanned, lru_pages);
  2011. if (reclaim_state) {
  2012. sc->nr_reclaimed += reclaim_state->reclaimed_slab;
  2013. reclaim_state->reclaimed_slab = 0;
  2014. }
  2015. }
  2016. total_scanned += sc->nr_scanned;
  2017. if (sc->nr_reclaimed >= sc->nr_to_reclaim)
  2018. goto out;
  2019. /*
  2020. * If we're getting trouble reclaiming, start doing
  2021. * writepage even in laptop mode.
  2022. */
  2023. if (sc->priority < DEF_PRIORITY - 2)
  2024. sc->may_writepage = 1;
  2025. /*
  2026. * Try to write back as many pages as we just scanned. This
  2027. * tends to cause slow streaming writers to write data to the
  2028. * disk smoothly, at the dirtying rate, which is nice. But
  2029. * that's undesirable in laptop mode, where we *want* lumpy
  2030. * writeout. So in laptop mode, write out the whole world.
  2031. */
  2032. writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
  2033. if (total_scanned > writeback_threshold) {
  2034. wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
  2035. WB_REASON_TRY_TO_FREE_PAGES);
  2036. sc->may_writepage = 1;
  2037. }
  2038. /* Take a nap, wait for some writeback to complete */
  2039. if (!sc->hibernation_mode && sc->nr_scanned &&
  2040. sc->priority < DEF_PRIORITY - 2) {
  2041. struct zone *preferred_zone;
  2042. first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
  2043. &cpuset_current_mems_allowed,
  2044. &preferred_zone);
  2045. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
  2046. }
  2047. } while (--sc->priority >= 0);
  2048. out:
  2049. delayacct_freepages_end();
  2050. if (sc->nr_reclaimed)
  2051. return sc->nr_reclaimed;
  2052. /*
  2053. * As hibernation is going on, kswapd is freezed so that it can't mark
  2054. * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
  2055. * check.
  2056. */
  2057. if (oom_killer_disabled)
  2058. return 0;
  2059. /* Aborted reclaim to try compaction? don't OOM, then */
  2060. if (aborted_reclaim)
  2061. return 1;
  2062. /* top priority shrink_zones still had more to do? don't OOM, then */
  2063. if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
  2064. return 1;
  2065. return 0;
  2066. }
  2067. static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
  2068. {
  2069. struct zone *zone;
  2070. unsigned long pfmemalloc_reserve = 0;
  2071. unsigned long free_pages = 0;
  2072. int i;
  2073. bool wmark_ok;
  2074. for (i = 0; i <= ZONE_NORMAL; i++) {
  2075. zone = &pgdat->node_zones[i];
  2076. pfmemalloc_reserve += min_wmark_pages(zone);
  2077. free_pages += zone_page_state(zone, NR_FREE_PAGES);
  2078. }
  2079. wmark_ok = free_pages > pfmemalloc_reserve / 2;
  2080. /* kswapd must be awake if processes are being throttled */
  2081. if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
  2082. pgdat->classzone_idx = min(pgdat->classzone_idx,
  2083. (enum zone_type)ZONE_NORMAL);
  2084. wake_up_interruptible(&pgdat->kswapd_wait);
  2085. }
  2086. return wmark_ok;
  2087. }
  2088. /*
  2089. * Throttle direct reclaimers if backing storage is backed by the network
  2090. * and the PFMEMALLOC reserve for the preferred node is getting dangerously
  2091. * depleted. kswapd will continue to make progress and wake the processes
  2092. * when the low watermark is reached.
  2093. *
  2094. * Returns true if a fatal signal was delivered during throttling. If this
  2095. * happens, the page allocator should not consider triggering the OOM killer.
  2096. */
  2097. static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
  2098. nodemask_t *nodemask)
  2099. {
  2100. struct zone *zone;
  2101. int high_zoneidx = gfp_zone(gfp_mask);
  2102. pg_data_t *pgdat;
  2103. /*
  2104. * Kernel threads should not be throttled as they may be indirectly
  2105. * responsible for cleaning pages necessary for reclaim to make forward
  2106. * progress. kjournald for example may enter direct reclaim while
  2107. * committing a transaction where throttling it could forcing other
  2108. * processes to block on log_wait_commit().
  2109. */
  2110. if (current->flags & PF_KTHREAD)
  2111. goto out;
  2112. /*
  2113. * If a fatal signal is pending, this process should not throttle.
  2114. * It should return quickly so it can exit and free its memory
  2115. */
  2116. if (fatal_signal_pending(current))
  2117. goto out;
  2118. /* Check if the pfmemalloc reserves are ok */
  2119. first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
  2120. pgdat = zone->zone_pgdat;
  2121. if (pfmemalloc_watermark_ok(pgdat))
  2122. goto out;
  2123. /* Account for the throttling */
  2124. count_vm_event(PGSCAN_DIRECT_THROTTLE);
  2125. /*
  2126. * If the caller cannot enter the filesystem, it's possible that it
  2127. * is due to the caller holding an FS lock or performing a journal
  2128. * transaction in the case of a filesystem like ext[3|4]. In this case,
  2129. * it is not safe to block on pfmemalloc_wait as kswapd could be
  2130. * blocked waiting on the same lock. Instead, throttle for up to a
  2131. * second before continuing.
  2132. */
  2133. if (!(gfp_mask & __GFP_FS)) {
  2134. wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
  2135. pfmemalloc_watermark_ok(pgdat), HZ);
  2136. goto check_pending;
  2137. }
  2138. /* Throttle until kswapd wakes the process */
  2139. wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
  2140. pfmemalloc_watermark_ok(pgdat));
  2141. check_pending:
  2142. if (fatal_signal_pending(current))
  2143. return true;
  2144. out:
  2145. return false;
  2146. }
  2147. unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
  2148. gfp_t gfp_mask, nodemask_t *nodemask)
  2149. {
  2150. unsigned long nr_reclaimed;
  2151. struct scan_control sc = {
  2152. .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
  2153. .may_writepage = !laptop_mode,
  2154. .nr_to_reclaim = SWAP_CLUSTER_MAX,
  2155. .may_unmap = 1,
  2156. .may_swap = 1,
  2157. .order = order,
  2158. .priority = DEF_PRIORITY,
  2159. .target_mem_cgroup = NULL,
  2160. .nodemask = nodemask,
  2161. };
  2162. struct shrink_control shrink = {
  2163. .gfp_mask = sc.gfp_mask,
  2164. };
  2165. /*
  2166. * Do not enter reclaim if fatal signal was delivered while throttled.
  2167. * 1 is returned so that the page allocator does not OOM kill at this
  2168. * point.
  2169. */
  2170. if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
  2171. return 1;
  2172. trace_mm_vmscan_direct_reclaim_begin(order,
  2173. sc.may_writepage,
  2174. gfp_mask);
  2175. nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
  2176. trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
  2177. return nr_reclaimed;
  2178. }
  2179. #ifdef CONFIG_MEMCG
  2180. unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
  2181. gfp_t gfp_mask, bool noswap,
  2182. struct zone *zone,
  2183. unsigned long *nr_scanned)
  2184. {
  2185. struct scan_control sc = {
  2186. .nr_scanned = 0,
  2187. .nr_to_reclaim = SWAP_CLUSTER_MAX,
  2188. .may_writepage = !laptop_mode,
  2189. .may_unmap = 1,
  2190. .may_swap = !noswap,
  2191. .order = 0,
  2192. .priority = 0,
  2193. .target_mem_cgroup = memcg,
  2194. };
  2195. struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
  2196. sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
  2197. (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
  2198. trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
  2199. sc.may_writepage,
  2200. sc.gfp_mask);
  2201. /*
  2202. * NOTE: Although we can get the priority field, using it
  2203. * here is not a good idea, since it limits the pages we can scan.
  2204. * if we don't reclaim here, the shrink_zone from balance_pgdat
  2205. * will pick up pages from other mem cgroup's as well. We hack
  2206. * the priority and make it zero.
  2207. */
  2208. shrink_lruvec(lruvec, &sc);
  2209. trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
  2210. *nr_scanned = sc.nr_scanned;
  2211. return sc.nr_reclaimed;
  2212. }
  2213. unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
  2214. gfp_t gfp_mask,
  2215. bool noswap)
  2216. {
  2217. struct zonelist *zonelist;
  2218. unsigned long nr_reclaimed;
  2219. int nid;
  2220. struct scan_control sc = {
  2221. .may_writepage = !laptop_mode,
  2222. .may_unmap = 1,
  2223. .may_swap = !noswap,
  2224. .nr_to_reclaim = SWAP_CLUSTER_MAX,
  2225. .order = 0,
  2226. .priority = DEF_PRIORITY,
  2227. .target_mem_cgroup = memcg,
  2228. .nodemask = NULL, /* we don't care the placement */
  2229. .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
  2230. (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
  2231. };
  2232. struct shrink_control shrink = {
  2233. .gfp_mask = sc.gfp_mask,
  2234. };
  2235. /*
  2236. * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
  2237. * take care of from where we get pages. So the node where we start the
  2238. * scan does not need to be the current node.
  2239. */
  2240. nid = mem_cgroup_select_victim_node(memcg);
  2241. zonelist = NODE_DATA(nid)->node_zonelists;
  2242. trace_mm_vmscan_memcg_reclaim_begin(0,
  2243. sc.may_writepage,
  2244. sc.gfp_mask);
  2245. nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
  2246. trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
  2247. return nr_reclaimed;
  2248. }
  2249. #endif
  2250. static void age_active_anon(struct zone *zone, struct scan_control *sc)
  2251. {
  2252. struct mem_cgroup *memcg;
  2253. if (!total_swap_pages)
  2254. return;
  2255. memcg = mem_cgroup_iter(NULL, NULL, NULL);
  2256. do {
  2257. struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
  2258. if (inactive_anon_is_low(lruvec))
  2259. shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
  2260. sc, LRU_ACTIVE_ANON);
  2261. memcg = mem_cgroup_iter(NULL, memcg, NULL);
  2262. } while (memcg);
  2263. }
  2264. static bool zone_balanced(struct zone *zone, int order,
  2265. unsigned long balance_gap, int classzone_idx)
  2266. {
  2267. if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
  2268. balance_gap, classzone_idx, 0))
  2269. return false;
  2270. if (IS_ENABLED(CONFIG_COMPACTION) && order &&
  2271. !compaction_suitable(zone, order))
  2272. return false;
  2273. return true;
  2274. }
  2275. /*
  2276. * pgdat_balanced() is used when checking if a node is balanced.
  2277. *
  2278. * For order-0, all zones must be balanced!
  2279. *
  2280. * For high-order allocations only zones that meet watermarks and are in a
  2281. * zone allowed by the callers classzone_idx are added to balanced_pages. The
  2282. * total of balanced pages must be at least 25% of the zones allowed by
  2283. * classzone_idx for the node to be considered balanced. Forcing all zones to
  2284. * be balanced for high orders can cause excessive reclaim when there are
  2285. * imbalanced zones.
  2286. * The choice of 25% is due to
  2287. * o a 16M DMA zone that is balanced will not balance a zone on any
  2288. * reasonable sized machine
  2289. * o On all other machines, the top zone must be at least a reasonable
  2290. * percentage of the middle zones. For example, on 32-bit x86, highmem
  2291. * would need to be at least 256M for it to be balance a whole node.
  2292. * Similarly, on x86-64 the Normal zone would need to be at least 1G
  2293. * to balance a node on its own. These seemed like reasonable ratios.
  2294. */
  2295. static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
  2296. {
  2297. unsigned long managed_pages = 0;
  2298. unsigned long balanced_pages = 0;
  2299. int i;
  2300. /* Check the watermark levels */
  2301. for (i = 0; i <= classzone_idx; i++) {
  2302. struct zone *zone = pgdat->node_zones + i;
  2303. if (!populated_zone(zone))
  2304. continue;
  2305. managed_pages += zone->managed_pages;
  2306. /*
  2307. * A special case here:
  2308. *
  2309. * balance_pgdat() skips over all_unreclaimable after
  2310. * DEF_PRIORITY. Effectively, it considers them balanced so
  2311. * they must be considered balanced here as well!
  2312. */
  2313. if (zone->all_unreclaimable) {
  2314. balanced_pages += zone->managed_pages;
  2315. continue;
  2316. }
  2317. if (zone_balanced(zone, order, 0, i))
  2318. balanced_pages += zone->managed_pages;
  2319. else if (!order)
  2320. return false;
  2321. }
  2322. if (order)
  2323. return balanced_pages >= (managed_pages >> 2);
  2324. else
  2325. return true;
  2326. }
  2327. /*
  2328. * Prepare kswapd for sleeping. This verifies that there are no processes
  2329. * waiting in throttle_direct_reclaim() and that watermarks have been met.
  2330. *
  2331. * Returns true if kswapd is ready to sleep
  2332. */
  2333. static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
  2334. int classzone_idx)
  2335. {
  2336. /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
  2337. if (remaining)
  2338. return false;
  2339. /*
  2340. * There is a potential race between when kswapd checks its watermarks
  2341. * and a process gets throttled. There is also a potential race if
  2342. * processes get throttled, kswapd wakes, a large process exits therby
  2343. * balancing the zones that causes kswapd to miss a wakeup. If kswapd
  2344. * is going to sleep, no process should be sleeping on pfmemalloc_wait
  2345. * so wake them now if necessary. If necessary, processes will wake
  2346. * kswapd and get throttled again
  2347. */
  2348. if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
  2349. wake_up(&pgdat->pfmemalloc_wait);
  2350. return false;
  2351. }
  2352. return pgdat_balanced(pgdat, order, classzone_idx);
  2353. }
  2354. /*
  2355. * kswapd shrinks the zone by the number of pages required to reach
  2356. * the high watermark.
  2357. *
  2358. * Returns true if kswapd scanned at least the requested number of pages to
  2359. * reclaim or if the lack of progress was due to pages under writeback.
  2360. * This is used to determine if the scanning priority needs to be raised.
  2361. */
  2362. static bool kswapd_shrink_zone(struct zone *zone,
  2363. struct scan_control *sc,
  2364. unsigned long lru_pages,
  2365. unsigned long *nr_attempted)
  2366. {
  2367. unsigned long nr_slab;
  2368. struct reclaim_state *reclaim_state = current->reclaim_state;
  2369. struct shrink_control shrink = {
  2370. .gfp_mask = sc->gfp_mask,
  2371. };
  2372. /* Reclaim above the high watermark. */
  2373. sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
  2374. shrink_zone(zone, sc);
  2375. reclaim_state->reclaimed_slab = 0;
  2376. nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
  2377. sc->nr_reclaimed += reclaim_state->reclaimed_slab;
  2378. /* Account for the number of pages attempted to reclaim */
  2379. *nr_attempted += sc->nr_to_reclaim;
  2380. if (nr_slab == 0 && !zone_reclaimable(zone))
  2381. zone->all_unreclaimable = 1;
  2382. zone_clear_flag(zone, ZONE_WRITEBACK);
  2383. return sc->nr_scanned >= sc->nr_to_reclaim;
  2384. }
  2385. /*
  2386. * For kswapd, balance_pgdat() will work across all this node's zones until
  2387. * they are all at high_wmark_pages(zone).
  2388. *
  2389. * Returns the final order kswapd was reclaiming at
  2390. *
  2391. * There is special handling here for zones which are full of pinned pages.
  2392. * This can happen if the pages are all mlocked, or if they are all used by
  2393. * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
  2394. * What we do is to detect the case where all pages in the zone have been
  2395. * scanned twice and there has been zero successful reclaim. Mark the zone as
  2396. * dead and from now on, only perform a short scan. Basically we're polling
  2397. * the zone for when the problem goes away.
  2398. *
  2399. * kswapd scans the zones in the highmem->normal->dma direction. It skips
  2400. * zones which have free_pages > high_wmark_pages(zone), but once a zone is
  2401. * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
  2402. * lower zones regardless of the number of free pages in the lower zones. This
  2403. * interoperates with the page allocator fallback scheme to ensure that aging
  2404. * of pages is balanced across the zones.
  2405. */
  2406. static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
  2407. int *classzone_idx)
  2408. {
  2409. int i;
  2410. int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
  2411. unsigned long nr_soft_reclaimed;
  2412. unsigned long nr_soft_scanned;
  2413. struct scan_control sc = {
  2414. .gfp_mask = GFP_KERNEL,
  2415. .priority = DEF_PRIORITY,
  2416. .may_unmap = 1,
  2417. .may_swap = 1,
  2418. .may_writepage = !laptop_mode,
  2419. .order = order,
  2420. .target_mem_cgroup = NULL,
  2421. };
  2422. count_vm_event(PAGEOUTRUN);
  2423. do {
  2424. unsigned long lru_pages = 0;
  2425. unsigned long nr_attempted = 0;
  2426. bool raise_priority = true;
  2427. bool pgdat_needs_compaction = (order > 0);
  2428. sc.nr_reclaimed = 0;
  2429. /*
  2430. * Scan in the highmem->dma direction for the highest
  2431. * zone which needs scanning
  2432. */
  2433. for (i = pgdat->nr_zones - 1; i >= 0; i--) {
  2434. struct zone *zone = pgdat->node_zones + i;
  2435. if (!populated_zone(zone))
  2436. continue;
  2437. if (zone->all_unreclaimable &&
  2438. sc.priority != DEF_PRIORITY)
  2439. continue;
  2440. /*
  2441. * Do some background aging of the anon list, to give
  2442. * pages a chance to be referenced before reclaiming.
  2443. */
  2444. age_active_anon(zone, &sc);
  2445. /*
  2446. * If the number of buffer_heads in the machine
  2447. * exceeds the maximum allowed level and this node
  2448. * has a highmem zone, force kswapd to reclaim from
  2449. * it to relieve lowmem pressure.
  2450. */
  2451. if (buffer_heads_over_limit && is_highmem_idx(i)) {
  2452. end_zone = i;
  2453. break;
  2454. }
  2455. if (!zone_balanced(zone, order, 0, 0)) {
  2456. end_zone = i;
  2457. break;
  2458. } else {
  2459. /*
  2460. * If balanced, clear the dirty and congested
  2461. * flags
  2462. */
  2463. zone_clear_flag(zone, ZONE_CONGESTED);
  2464. zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
  2465. }
  2466. }
  2467. if (i < 0)
  2468. goto out;
  2469. for (i = 0; i <= end_zone; i++) {
  2470. struct zone *zone = pgdat->node_zones + i;
  2471. if (!populated_zone(zone))
  2472. continue;
  2473. lru_pages += zone_reclaimable_pages(zone);
  2474. /*
  2475. * If any zone is currently balanced then kswapd will
  2476. * not call compaction as it is expected that the
  2477. * necessary pages are already available.
  2478. */
  2479. if (pgdat_needs_compaction &&
  2480. zone_watermark_ok(zone, order,
  2481. low_wmark_pages(zone),
  2482. *classzone_idx, 0))
  2483. pgdat_needs_compaction = false;
  2484. }
  2485. /*
  2486. * If we're getting trouble reclaiming, start doing writepage
  2487. * even in laptop mode.
  2488. */
  2489. if (sc.priority < DEF_PRIORITY - 2)
  2490. sc.may_writepage = 1;
  2491. /*
  2492. * Now scan the zone in the dma->highmem direction, stopping
  2493. * at the last zone which needs scanning.
  2494. *
  2495. * We do this because the page allocator works in the opposite
  2496. * direction. This prevents the page allocator from allocating
  2497. * pages behind kswapd's direction of progress, which would
  2498. * cause too much scanning of the lower zones.
  2499. */
  2500. for (i = 0; i <= end_zone; i++) {
  2501. struct zone *zone = pgdat->node_zones + i;
  2502. int testorder;
  2503. unsigned long balance_gap;
  2504. if (!populated_zone(zone))
  2505. continue;
  2506. if (zone->all_unreclaimable &&
  2507. sc.priority != DEF_PRIORITY)
  2508. continue;
  2509. sc.nr_scanned = 0;
  2510. nr_soft_scanned = 0;
  2511. /*
  2512. * Call soft limit reclaim before calling shrink_zone.
  2513. */
  2514. nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
  2515. order, sc.gfp_mask,
  2516. &nr_soft_scanned);
  2517. sc.nr_reclaimed += nr_soft_reclaimed;
  2518. /*
  2519. * We put equal pressure on every zone, unless
  2520. * one zone has way too many pages free
  2521. * already. The "too many pages" is defined
  2522. * as the high wmark plus a "gap" where the
  2523. * gap is either the low watermark or 1%
  2524. * of the zone, whichever is smaller.
  2525. */
  2526. balance_gap = min(low_wmark_pages(zone),
  2527. (zone->managed_pages +
  2528. KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
  2529. KSWAPD_ZONE_BALANCE_GAP_RATIO);
  2530. /*
  2531. * Kswapd reclaims only single pages with compaction
  2532. * enabled. Trying too hard to reclaim until contiguous
  2533. * free pages have become available can hurt performance
  2534. * by evicting too much useful data from memory.
  2535. * Do not reclaim more than needed for compaction.
  2536. */
  2537. testorder = order;
  2538. if (IS_ENABLED(CONFIG_COMPACTION) && order &&
  2539. compaction_suitable(zone, order) !=
  2540. COMPACT_SKIPPED)
  2541. testorder = 0;
  2542. if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
  2543. !zone_balanced(zone, testorder,
  2544. balance_gap, end_zone)) {
  2545. /*
  2546. * There should be no need to raise the
  2547. * scanning priority if enough pages are
  2548. * already being scanned that high
  2549. * watermark would be met at 100% efficiency.
  2550. */
  2551. if (kswapd_shrink_zone(zone, &sc, lru_pages,
  2552. &nr_attempted))
  2553. raise_priority = false;
  2554. }
  2555. if (zone->all_unreclaimable) {
  2556. if (end_zone && end_zone == i)
  2557. end_zone--;
  2558. continue;
  2559. }
  2560. if (zone_balanced(zone, testorder, 0, end_zone))
  2561. /*
  2562. * If a zone reaches its high watermark,
  2563. * consider it to be no longer congested. It's
  2564. * possible there are dirty pages backed by
  2565. * congested BDIs but as pressure is relieved,
  2566. * speculatively avoid congestion waits
  2567. * or writing pages from kswapd context.
  2568. */
  2569. zone_clear_flag(zone, ZONE_CONGESTED);
  2570. zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
  2571. }
  2572. /*
  2573. * If the low watermark is met there is no need for processes
  2574. * to be throttled on pfmemalloc_wait as they should not be
  2575. * able to safely make forward progress. Wake them
  2576. */
  2577. if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
  2578. pfmemalloc_watermark_ok(pgdat))
  2579. wake_up(&pgdat->pfmemalloc_wait);
  2580. /*
  2581. * Fragmentation may mean that the system cannot be rebalanced
  2582. * for high-order allocations in all zones. If twice the
  2583. * allocation size has been reclaimed and the zones are still
  2584. * not balanced then recheck the watermarks at order-0 to
  2585. * prevent kswapd reclaiming excessively. Assume that a
  2586. * process requested a high-order can direct reclaim/compact.
  2587. */
  2588. if (order && sc.nr_reclaimed >= 2UL << order)
  2589. order = sc.order = 0;
  2590. /* Check if kswapd should be suspending */
  2591. if (try_to_freeze() || kthread_should_stop())
  2592. break;
  2593. /*
  2594. * Compact if necessary and kswapd is reclaiming at least the
  2595. * high watermark number of pages as requsted
  2596. */
  2597. if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
  2598. compact_pgdat(pgdat, order);
  2599. /*
  2600. * Raise priority if scanning rate is too low or there was no
  2601. * progress in reclaiming pages
  2602. */
  2603. if (raise_priority || !sc.nr_reclaimed)
  2604. sc.priority--;
  2605. } while (sc.priority >= 1 &&
  2606. !pgdat_balanced(pgdat, order, *classzone_idx));
  2607. out:
  2608. /*
  2609. * Return the order we were reclaiming at so prepare_kswapd_sleep()
  2610. * makes a decision on the order we were last reclaiming at. However,
  2611. * if another caller entered the allocator slow path while kswapd
  2612. * was awake, order will remain at the higher level
  2613. */
  2614. *classzone_idx = end_zone;
  2615. return order;
  2616. }
  2617. static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
  2618. {
  2619. long remaining = 0;
  2620. DEFINE_WAIT(wait);
  2621. if (freezing(current) || kthread_should_stop())
  2622. return;
  2623. prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
  2624. /* Try to sleep for a short interval */
  2625. if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
  2626. remaining = schedule_timeout(HZ/10);
  2627. finish_wait(&pgdat->kswapd_wait, &wait);
  2628. prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
  2629. }
  2630. /*
  2631. * After a short sleep, check if it was a premature sleep. If not, then
  2632. * go fully to sleep until explicitly woken up.
  2633. */
  2634. if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
  2635. trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
  2636. /*
  2637. * vmstat counters are not perfectly accurate and the estimated
  2638. * value for counters such as NR_FREE_PAGES can deviate from the
  2639. * true value by nr_online_cpus * threshold. To avoid the zone
  2640. * watermarks being breached while under pressure, we reduce the
  2641. * per-cpu vmstat threshold while kswapd is awake and restore
  2642. * them before going back to sleep.
  2643. */
  2644. set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
  2645. /*
  2646. * Compaction records what page blocks it recently failed to
  2647. * isolate pages from and skips them in the future scanning.
  2648. * When kswapd is going to sleep, it is reasonable to assume
  2649. * that pages and compaction may succeed so reset the cache.
  2650. */
  2651. reset_isolation_suitable(pgdat);
  2652. if (!kthread_should_stop())
  2653. schedule();
  2654. set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
  2655. } else {
  2656. if (remaining)
  2657. count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
  2658. else
  2659. count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
  2660. }
  2661. finish_wait(&pgdat->kswapd_wait, &wait);
  2662. }
  2663. /*
  2664. * The background pageout daemon, started as a kernel thread
  2665. * from the init process.
  2666. *
  2667. * This basically trickles out pages so that we have _some_
  2668. * free memory available even if there is no other activity
  2669. * that frees anything up. This is needed for things like routing
  2670. * etc, where we otherwise might have all activity going on in
  2671. * asynchronous contexts that cannot page things out.
  2672. *
  2673. * If there are applications that are active memory-allocators
  2674. * (most normal use), this basically shouldn't matter.
  2675. */
  2676. static int kswapd(void *p)
  2677. {
  2678. unsigned long order, new_order;
  2679. unsigned balanced_order;
  2680. int classzone_idx, new_classzone_idx;
  2681. int balanced_classzone_idx;
  2682. pg_data_t *pgdat = (pg_data_t*)p;
  2683. struct task_struct *tsk = current;
  2684. struct reclaim_state reclaim_state = {
  2685. .reclaimed_slab = 0,
  2686. };
  2687. const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
  2688. lockdep_set_current_reclaim_state(GFP_KERNEL);
  2689. if (!cpumask_empty(cpumask))
  2690. set_cpus_allowed_ptr(tsk, cpumask);
  2691. current->reclaim_state = &reclaim_state;
  2692. /*
  2693. * Tell the memory management that we're a "memory allocator",
  2694. * and that if we need more memory we should get access to it
  2695. * regardless (see "__alloc_pages()"). "kswapd" should
  2696. * never get caught in the normal page freeing logic.
  2697. *
  2698. * (Kswapd normally doesn't need memory anyway, but sometimes
  2699. * you need a small amount of memory in order to be able to
  2700. * page out something else, and this flag essentially protects
  2701. * us from recursively trying to free more memory as we're
  2702. * trying to free the first piece of memory in the first place).
  2703. */
  2704. tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
  2705. set_freezable();
  2706. order = new_order = 0;
  2707. balanced_order = 0;
  2708. classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
  2709. balanced_classzone_idx = classzone_idx;
  2710. for ( ; ; ) {
  2711. bool ret;
  2712. /*
  2713. * If the last balance_pgdat was unsuccessful it's unlikely a
  2714. * new request of a similar or harder type will succeed soon
  2715. * so consider going to sleep on the basis we reclaimed at
  2716. */
  2717. if (balanced_classzone_idx >= new_classzone_idx &&
  2718. balanced_order == new_order) {
  2719. new_order = pgdat->kswapd_max_order;
  2720. new_classzone_idx = pgdat->classzone_idx;
  2721. pgdat->kswapd_max_order = 0;
  2722. pgdat->classzone_idx = pgdat->nr_zones - 1;
  2723. }
  2724. if (order < new_order || classzone_idx > new_classzone_idx) {
  2725. /*
  2726. * Don't sleep if someone wants a larger 'order'
  2727. * allocation or has tigher zone constraints
  2728. */
  2729. order = new_order;
  2730. classzone_idx = new_classzone_idx;
  2731. } else {
  2732. kswapd_try_to_sleep(pgdat, balanced_order,
  2733. balanced_classzone_idx);
  2734. order = pgdat->kswapd_max_order;
  2735. classzone_idx = pgdat->classzone_idx;
  2736. new_order = order;
  2737. new_classzone_idx = classzone_idx;
  2738. pgdat->kswapd_max_order = 0;
  2739. pgdat->classzone_idx = pgdat->nr_zones - 1;
  2740. }
  2741. ret = try_to_freeze();
  2742. if (kthread_should_stop())
  2743. break;
  2744. /*
  2745. * We can speed up thawing tasks if we don't call balance_pgdat
  2746. * after returning from the refrigerator
  2747. */
  2748. if (!ret) {
  2749. trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
  2750. balanced_classzone_idx = classzone_idx;
  2751. balanced_order = balance_pgdat(pgdat, order,
  2752. &balanced_classzone_idx);
  2753. }
  2754. }
  2755. current->reclaim_state = NULL;
  2756. return 0;
  2757. }
  2758. /*
  2759. * A zone is low on free memory, so wake its kswapd task to service it.
  2760. */
  2761. void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
  2762. {
  2763. pg_data_t *pgdat;
  2764. if (!populated_zone(zone))
  2765. return;
  2766. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  2767. return;
  2768. pgdat = zone->zone_pgdat;
  2769. if (pgdat->kswapd_max_order < order) {
  2770. pgdat->kswapd_max_order = order;
  2771. pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
  2772. }
  2773. if (!waitqueue_active(&pgdat->kswapd_wait))
  2774. return;
  2775. if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
  2776. return;
  2777. trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
  2778. wake_up_interruptible(&pgdat->kswapd_wait);
  2779. }
  2780. /*
  2781. * The reclaimable count would be mostly accurate.
  2782. * The less reclaimable pages may be
  2783. * - mlocked pages, which will be moved to unevictable list when encountered
  2784. * - mapped pages, which may require several travels to be reclaimed
  2785. * - dirty pages, which is not "instantly" reclaimable
  2786. */
  2787. unsigned long global_reclaimable_pages(void)
  2788. {
  2789. int nr;
  2790. nr = global_page_state(NR_ACTIVE_FILE) +
  2791. global_page_state(NR_INACTIVE_FILE);
  2792. if (get_nr_swap_pages() > 0)
  2793. nr += global_page_state(NR_ACTIVE_ANON) +
  2794. global_page_state(NR_INACTIVE_ANON);
  2795. return nr;
  2796. }
  2797. unsigned long zone_reclaimable_pages(struct zone *zone)
  2798. {
  2799. int nr;
  2800. nr = zone_page_state(zone, NR_ACTIVE_FILE) +
  2801. zone_page_state(zone, NR_INACTIVE_FILE);
  2802. if (get_nr_swap_pages() > 0)
  2803. nr += zone_page_state(zone, NR_ACTIVE_ANON) +
  2804. zone_page_state(zone, NR_INACTIVE_ANON);
  2805. return nr;
  2806. }
  2807. #ifdef CONFIG_HIBERNATION
  2808. /*
  2809. * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
  2810. * freed pages.
  2811. *
  2812. * Rather than trying to age LRUs the aim is to preserve the overall
  2813. * LRU order by reclaiming preferentially
  2814. * inactive > active > active referenced > active mapped
  2815. */
  2816. unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
  2817. {
  2818. struct reclaim_state reclaim_state;
  2819. struct scan_control sc = {
  2820. .gfp_mask = GFP_HIGHUSER_MOVABLE,
  2821. .may_swap = 1,
  2822. .may_unmap = 1,
  2823. .may_writepage = 1,
  2824. .nr_to_reclaim = nr_to_reclaim,
  2825. .hibernation_mode = 1,
  2826. .order = 0,
  2827. .priority = DEF_PRIORITY,
  2828. };
  2829. struct shrink_control shrink = {
  2830. .gfp_mask = sc.gfp_mask,
  2831. };
  2832. struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
  2833. struct task_struct *p = current;
  2834. unsigned long nr_reclaimed;
  2835. p->flags |= PF_MEMALLOC;
  2836. lockdep_set_current_reclaim_state(sc.gfp_mask);
  2837. reclaim_state.reclaimed_slab = 0;
  2838. p->reclaim_state = &reclaim_state;
  2839. nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
  2840. p->reclaim_state = NULL;
  2841. lockdep_clear_current_reclaim_state();
  2842. p->flags &= ~PF_MEMALLOC;
  2843. return nr_reclaimed;
  2844. }
  2845. #endif /* CONFIG_HIBERNATION */
  2846. /* It's optimal to keep kswapds on the same CPUs as their memory, but
  2847. not required for correctness. So if the last cpu in a node goes
  2848. away, we get changed to run anywhere: as the first one comes back,
  2849. restore their cpu bindings. */
  2850. static int cpu_callback(struct notifier_block *nfb, unsigned long action,
  2851. void *hcpu)
  2852. {
  2853. int nid;
  2854. if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
  2855. for_each_node_state(nid, N_MEMORY) {
  2856. pg_data_t *pgdat = NODE_DATA(nid);
  2857. const struct cpumask *mask;
  2858. mask = cpumask_of_node(pgdat->node_id);
  2859. if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
  2860. /* One of our CPUs online: restore mask */
  2861. set_cpus_allowed_ptr(pgdat->kswapd, mask);
  2862. }
  2863. }
  2864. return NOTIFY_OK;
  2865. }
  2866. /*
  2867. * This kswapd start function will be called by init and node-hot-add.
  2868. * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
  2869. */
  2870. int kswapd_run(int nid)
  2871. {
  2872. pg_data_t *pgdat = NODE_DATA(nid);
  2873. int ret = 0;
  2874. if (pgdat->kswapd)
  2875. return 0;
  2876. pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
  2877. if (IS_ERR(pgdat->kswapd)) {
  2878. /* failure at boot is fatal */
  2879. BUG_ON(system_state == SYSTEM_BOOTING);
  2880. pr_err("Failed to start kswapd on node %d\n", nid);
  2881. ret = PTR_ERR(pgdat->kswapd);
  2882. pgdat->kswapd = NULL;
  2883. }
  2884. return ret;
  2885. }
  2886. /*
  2887. * Called by memory hotplug when all memory in a node is offlined. Caller must
  2888. * hold lock_memory_hotplug().
  2889. */
  2890. void kswapd_stop(int nid)
  2891. {
  2892. struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
  2893. if (kswapd) {
  2894. kthread_stop(kswapd);
  2895. NODE_DATA(nid)->kswapd = NULL;
  2896. }
  2897. }
  2898. static int __init kswapd_init(void)
  2899. {
  2900. int nid;
  2901. swap_setup();
  2902. for_each_node_state(nid, N_MEMORY)
  2903. kswapd_run(nid);
  2904. hotcpu_notifier(cpu_callback, 0);
  2905. return 0;
  2906. }
  2907. module_init(kswapd_init)
  2908. #ifdef CONFIG_NUMA
  2909. /*
  2910. * Zone reclaim mode
  2911. *
  2912. * If non-zero call zone_reclaim when the number of free pages falls below
  2913. * the watermarks.
  2914. */
  2915. int zone_reclaim_mode __read_mostly;
  2916. #define RECLAIM_OFF 0
  2917. #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
  2918. #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
  2919. #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
  2920. /*
  2921. * Priority for ZONE_RECLAIM. This determines the fraction of pages
  2922. * of a node considered for each zone_reclaim. 4 scans 1/16th of
  2923. * a zone.
  2924. */
  2925. #define ZONE_RECLAIM_PRIORITY 4
  2926. /*
  2927. * Percentage of pages in a zone that must be unmapped for zone_reclaim to
  2928. * occur.
  2929. */
  2930. int sysctl_min_unmapped_ratio = 1;
  2931. /*
  2932. * If the number of slab pages in a zone grows beyond this percentage then
  2933. * slab reclaim needs to occur.
  2934. */
  2935. int sysctl_min_slab_ratio = 5;
  2936. static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
  2937. {
  2938. unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
  2939. unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
  2940. zone_page_state(zone, NR_ACTIVE_FILE);
  2941. /*
  2942. * It's possible for there to be more file mapped pages than
  2943. * accounted for by the pages on the file LRU lists because
  2944. * tmpfs pages accounted for as ANON can also be FILE_MAPPED
  2945. */
  2946. return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
  2947. }
  2948. /* Work out how many page cache pages we can reclaim in this reclaim_mode */
  2949. static long zone_pagecache_reclaimable(struct zone *zone)
  2950. {
  2951. long nr_pagecache_reclaimable;
  2952. long delta = 0;
  2953. /*
  2954. * If RECLAIM_SWAP is set, then all file pages are considered
  2955. * potentially reclaimable. Otherwise, we have to worry about
  2956. * pages like swapcache and zone_unmapped_file_pages() provides
  2957. * a better estimate
  2958. */
  2959. if (zone_reclaim_mode & RECLAIM_SWAP)
  2960. nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
  2961. else
  2962. nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
  2963. /* If we can't clean pages, remove dirty pages from consideration */
  2964. if (!(zone_reclaim_mode & RECLAIM_WRITE))
  2965. delta += zone_page_state(zone, NR_FILE_DIRTY);
  2966. /* Watch for any possible underflows due to delta */
  2967. if (unlikely(delta > nr_pagecache_reclaimable))
  2968. delta = nr_pagecache_reclaimable;
  2969. return nr_pagecache_reclaimable - delta;
  2970. }
  2971. /*
  2972. * Try to free up some pages from this zone through reclaim.
  2973. */
  2974. static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
  2975. {
  2976. /* Minimum pages needed in order to stay on node */
  2977. const unsigned long nr_pages = 1 << order;
  2978. struct task_struct *p = current;
  2979. struct reclaim_state reclaim_state;
  2980. struct scan_control sc = {
  2981. .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
  2982. .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
  2983. .may_swap = 1,
  2984. .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
  2985. .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
  2986. .order = order,
  2987. .priority = ZONE_RECLAIM_PRIORITY,
  2988. };
  2989. struct shrink_control shrink = {
  2990. .gfp_mask = sc.gfp_mask,
  2991. };
  2992. unsigned long nr_slab_pages0, nr_slab_pages1;
  2993. cond_resched();
  2994. /*
  2995. * We need to be able to allocate from the reserves for RECLAIM_SWAP
  2996. * and we also need to be able to write out pages for RECLAIM_WRITE
  2997. * and RECLAIM_SWAP.
  2998. */
  2999. p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
  3000. lockdep_set_current_reclaim_state(gfp_mask);
  3001. reclaim_state.reclaimed_slab = 0;
  3002. p->reclaim_state = &reclaim_state;
  3003. if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
  3004. /*
  3005. * Free memory by calling shrink zone with increasing
  3006. * priorities until we have enough memory freed.
  3007. */
  3008. do {
  3009. shrink_zone(zone, &sc);
  3010. } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
  3011. }
  3012. nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
  3013. if (nr_slab_pages0 > zone->min_slab_pages) {
  3014. /*
  3015. * shrink_slab() does not currently allow us to determine how
  3016. * many pages were freed in this zone. So we take the current
  3017. * number of slab pages and shake the slab until it is reduced
  3018. * by the same nr_pages that we used for reclaiming unmapped
  3019. * pages.
  3020. *
  3021. * Note that shrink_slab will free memory on all zones and may
  3022. * take a long time.
  3023. */
  3024. for (;;) {
  3025. unsigned long lru_pages = zone_reclaimable_pages(zone);
  3026. /* No reclaimable slab or very low memory pressure */
  3027. if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
  3028. break;
  3029. /* Freed enough memory */
  3030. nr_slab_pages1 = zone_page_state(zone,
  3031. NR_SLAB_RECLAIMABLE);
  3032. if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
  3033. break;
  3034. }
  3035. /*
  3036. * Update nr_reclaimed by the number of slab pages we
  3037. * reclaimed from this zone.
  3038. */
  3039. nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
  3040. if (nr_slab_pages1 < nr_slab_pages0)
  3041. sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
  3042. }
  3043. p->reclaim_state = NULL;
  3044. current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
  3045. lockdep_clear_current_reclaim_state();
  3046. return sc.nr_reclaimed >= nr_pages;
  3047. }
  3048. int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
  3049. {
  3050. int node_id;
  3051. int ret;
  3052. /*
  3053. * Zone reclaim reclaims unmapped file backed pages and
  3054. * slab pages if we are over the defined limits.
  3055. *
  3056. * A small portion of unmapped file backed pages is needed for
  3057. * file I/O otherwise pages read by file I/O will be immediately
  3058. * thrown out if the zone is overallocated. So we do not reclaim
  3059. * if less than a specified percentage of the zone is used by
  3060. * unmapped file backed pages.
  3061. */
  3062. if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
  3063. zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
  3064. return ZONE_RECLAIM_FULL;
  3065. if (zone->all_unreclaimable)
  3066. return ZONE_RECLAIM_FULL;
  3067. /*
  3068. * Do not scan if the allocation should not be delayed.
  3069. */
  3070. if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
  3071. return ZONE_RECLAIM_NOSCAN;
  3072. /*
  3073. * Only run zone reclaim on the local zone or on zones that do not
  3074. * have associated processors. This will favor the local processor
  3075. * over remote processors and spread off node memory allocations
  3076. * as wide as possible.
  3077. */
  3078. node_id = zone_to_nid(zone);
  3079. if (node_state(node_id, N_CPU) && node_id != numa_node_id())
  3080. return ZONE_RECLAIM_NOSCAN;
  3081. if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
  3082. return ZONE_RECLAIM_NOSCAN;
  3083. ret = __zone_reclaim(zone, gfp_mask, order);
  3084. zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
  3085. if (!ret)
  3086. count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
  3087. return ret;
  3088. }
  3089. #endif
  3090. /*
  3091. * page_evictable - test whether a page is evictable
  3092. * @page: the page to test
  3093. *
  3094. * Test whether page is evictable--i.e., should be placed on active/inactive
  3095. * lists vs unevictable list.
  3096. *
  3097. * Reasons page might not be evictable:
  3098. * (1) page's mapping marked unevictable
  3099. * (2) page is part of an mlocked VMA
  3100. *
  3101. */
  3102. int page_evictable(struct page *page)
  3103. {
  3104. return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
  3105. }
  3106. #ifdef CONFIG_SHMEM
  3107. /**
  3108. * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
  3109. * @pages: array of pages to check
  3110. * @nr_pages: number of pages to check
  3111. *
  3112. * Checks pages for evictability and moves them to the appropriate lru list.
  3113. *
  3114. * This function is only used for SysV IPC SHM_UNLOCK.
  3115. */
  3116. void check_move_unevictable_pages(struct page **pages, int nr_pages)
  3117. {
  3118. struct lruvec *lruvec;
  3119. struct zone *zone = NULL;
  3120. int pgscanned = 0;
  3121. int pgrescued = 0;
  3122. int i;
  3123. for (i = 0; i < nr_pages; i++) {
  3124. struct page *page = pages[i];
  3125. struct zone *pagezone;
  3126. pgscanned++;
  3127. pagezone = page_zone(page);
  3128. if (pagezone != zone) {
  3129. if (zone)
  3130. spin_unlock_irq(&zone->lru_lock);
  3131. zone = pagezone;
  3132. spin_lock_irq(&zone->lru_lock);
  3133. }
  3134. lruvec = mem_cgroup_page_lruvec(page, zone);
  3135. if (!PageLRU(page) || !PageUnevictable(page))
  3136. continue;
  3137. if (page_evictable(page)) {
  3138. enum lru_list lru = page_lru_base_type(page);
  3139. VM_BUG_ON(PageActive(page));
  3140. ClearPageUnevictable(page);
  3141. del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
  3142. add_page_to_lru_list(page, lruvec, lru);
  3143. pgrescued++;
  3144. }
  3145. }
  3146. if (zone) {
  3147. __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
  3148. __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
  3149. spin_unlock_irq(&zone->lru_lock);
  3150. }
  3151. }
  3152. #endif /* CONFIG_SHMEM */
  3153. static void warn_scan_unevictable_pages(void)
  3154. {
  3155. printk_once(KERN_WARNING
  3156. "%s: The scan_unevictable_pages sysctl/node-interface has been "
  3157. "disabled for lack of a legitimate use case. If you have "
  3158. "one, please send an email to linux-mm@kvack.org.\n",
  3159. current->comm);
  3160. }
  3161. /*
  3162. * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
  3163. * all nodes' unevictable lists for evictable pages
  3164. */
  3165. unsigned long scan_unevictable_pages;
  3166. int scan_unevictable_handler(struct ctl_table *table, int write,
  3167. void __user *buffer,
  3168. size_t *length, loff_t *ppos)
  3169. {
  3170. warn_scan_unevictable_pages();
  3171. proc_doulongvec_minmax(table, write, buffer, length, ppos);
  3172. scan_unevictable_pages = 0;
  3173. return 0;
  3174. }
  3175. #ifdef CONFIG_NUMA
  3176. /*
  3177. * per node 'scan_unevictable_pages' attribute. On demand re-scan of
  3178. * a specified node's per zone unevictable lists for evictable pages.
  3179. */
  3180. static ssize_t read_scan_unevictable_node(struct device *dev,
  3181. struct device_attribute *attr,
  3182. char *buf)
  3183. {
  3184. warn_scan_unevictable_pages();
  3185. return sprintf(buf, "0\n"); /* always zero; should fit... */
  3186. }
  3187. static ssize_t write_scan_unevictable_node(struct device *dev,
  3188. struct device_attribute *attr,
  3189. const char *buf, size_t count)
  3190. {
  3191. warn_scan_unevictable_pages();
  3192. return 1;
  3193. }
  3194. static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
  3195. read_scan_unevictable_node,
  3196. write_scan_unevictable_node);
  3197. int scan_unevictable_register_node(struct node *node)
  3198. {
  3199. return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
  3200. }
  3201. void scan_unevictable_unregister_node(struct node *node)
  3202. {
  3203. device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
  3204. }
  3205. #endif