util.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568
  1. /*
  2. * Wireless utility functions
  3. *
  4. * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
  5. */
  6. #include <linux/bitops.h>
  7. #include <linux/etherdevice.h>
  8. #include <net/cfg80211.h>
  9. #include <net/ip.h>
  10. #include "core.h"
  11. struct ieee80211_rate *
  12. ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
  13. u32 basic_rates, int bitrate)
  14. {
  15. struct ieee80211_rate *result = &sband->bitrates[0];
  16. int i;
  17. for (i = 0; i < sband->n_bitrates; i++) {
  18. if (!(basic_rates & BIT(i)))
  19. continue;
  20. if (sband->bitrates[i].bitrate > bitrate)
  21. continue;
  22. result = &sband->bitrates[i];
  23. }
  24. return result;
  25. }
  26. EXPORT_SYMBOL(ieee80211_get_response_rate);
  27. int ieee80211_channel_to_frequency(int chan)
  28. {
  29. if (chan < 14)
  30. return 2407 + chan * 5;
  31. if (chan == 14)
  32. return 2484;
  33. /* FIXME: 802.11j 17.3.8.3.2 */
  34. return (chan + 1000) * 5;
  35. }
  36. EXPORT_SYMBOL(ieee80211_channel_to_frequency);
  37. int ieee80211_frequency_to_channel(int freq)
  38. {
  39. if (freq == 2484)
  40. return 14;
  41. if (freq < 2484)
  42. return (freq - 2407) / 5;
  43. /* FIXME: 802.11j 17.3.8.3.2 */
  44. return freq/5 - 1000;
  45. }
  46. EXPORT_SYMBOL(ieee80211_frequency_to_channel);
  47. struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
  48. int freq)
  49. {
  50. enum ieee80211_band band;
  51. struct ieee80211_supported_band *sband;
  52. int i;
  53. for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
  54. sband = wiphy->bands[band];
  55. if (!sband)
  56. continue;
  57. for (i = 0; i < sband->n_channels; i++) {
  58. if (sband->channels[i].center_freq == freq)
  59. return &sband->channels[i];
  60. }
  61. }
  62. return NULL;
  63. }
  64. EXPORT_SYMBOL(__ieee80211_get_channel);
  65. static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
  66. enum ieee80211_band band)
  67. {
  68. int i, want;
  69. switch (band) {
  70. case IEEE80211_BAND_5GHZ:
  71. want = 3;
  72. for (i = 0; i < sband->n_bitrates; i++) {
  73. if (sband->bitrates[i].bitrate == 60 ||
  74. sband->bitrates[i].bitrate == 120 ||
  75. sband->bitrates[i].bitrate == 240) {
  76. sband->bitrates[i].flags |=
  77. IEEE80211_RATE_MANDATORY_A;
  78. want--;
  79. }
  80. }
  81. WARN_ON(want);
  82. break;
  83. case IEEE80211_BAND_2GHZ:
  84. want = 7;
  85. for (i = 0; i < sband->n_bitrates; i++) {
  86. if (sband->bitrates[i].bitrate == 10) {
  87. sband->bitrates[i].flags |=
  88. IEEE80211_RATE_MANDATORY_B |
  89. IEEE80211_RATE_MANDATORY_G;
  90. want--;
  91. }
  92. if (sband->bitrates[i].bitrate == 20 ||
  93. sband->bitrates[i].bitrate == 55 ||
  94. sband->bitrates[i].bitrate == 110 ||
  95. sband->bitrates[i].bitrate == 60 ||
  96. sband->bitrates[i].bitrate == 120 ||
  97. sband->bitrates[i].bitrate == 240) {
  98. sband->bitrates[i].flags |=
  99. IEEE80211_RATE_MANDATORY_G;
  100. want--;
  101. }
  102. if (sband->bitrates[i].bitrate != 10 &&
  103. sband->bitrates[i].bitrate != 20 &&
  104. sband->bitrates[i].bitrate != 55 &&
  105. sband->bitrates[i].bitrate != 110)
  106. sband->bitrates[i].flags |=
  107. IEEE80211_RATE_ERP_G;
  108. }
  109. WARN_ON(want != 0 && want != 3 && want != 6);
  110. break;
  111. case IEEE80211_NUM_BANDS:
  112. WARN_ON(1);
  113. break;
  114. }
  115. }
  116. void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
  117. {
  118. enum ieee80211_band band;
  119. for (band = 0; band < IEEE80211_NUM_BANDS; band++)
  120. if (wiphy->bands[band])
  121. set_mandatory_flags_band(wiphy->bands[band], band);
  122. }
  123. int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
  124. struct key_params *params, int key_idx,
  125. const u8 *mac_addr)
  126. {
  127. int i;
  128. if (key_idx > 5)
  129. return -EINVAL;
  130. /*
  131. * Disallow pairwise keys with non-zero index unless it's WEP
  132. * (because current deployments use pairwise WEP keys with
  133. * non-zero indizes but 802.11i clearly specifies to use zero)
  134. */
  135. if (mac_addr && key_idx &&
  136. params->cipher != WLAN_CIPHER_SUITE_WEP40 &&
  137. params->cipher != WLAN_CIPHER_SUITE_WEP104)
  138. return -EINVAL;
  139. switch (params->cipher) {
  140. case WLAN_CIPHER_SUITE_WEP40:
  141. if (params->key_len != WLAN_KEY_LEN_WEP40)
  142. return -EINVAL;
  143. break;
  144. case WLAN_CIPHER_SUITE_TKIP:
  145. if (params->key_len != WLAN_KEY_LEN_TKIP)
  146. return -EINVAL;
  147. break;
  148. case WLAN_CIPHER_SUITE_CCMP:
  149. if (params->key_len != WLAN_KEY_LEN_CCMP)
  150. return -EINVAL;
  151. break;
  152. case WLAN_CIPHER_SUITE_WEP104:
  153. if (params->key_len != WLAN_KEY_LEN_WEP104)
  154. return -EINVAL;
  155. break;
  156. case WLAN_CIPHER_SUITE_AES_CMAC:
  157. if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
  158. return -EINVAL;
  159. break;
  160. default:
  161. return -EINVAL;
  162. }
  163. if (params->seq) {
  164. switch (params->cipher) {
  165. case WLAN_CIPHER_SUITE_WEP40:
  166. case WLAN_CIPHER_SUITE_WEP104:
  167. /* These ciphers do not use key sequence */
  168. return -EINVAL;
  169. case WLAN_CIPHER_SUITE_TKIP:
  170. case WLAN_CIPHER_SUITE_CCMP:
  171. case WLAN_CIPHER_SUITE_AES_CMAC:
  172. if (params->seq_len != 6)
  173. return -EINVAL;
  174. break;
  175. }
  176. }
  177. for (i = 0; i < rdev->wiphy.n_cipher_suites; i++)
  178. if (params->cipher == rdev->wiphy.cipher_suites[i])
  179. break;
  180. if (i == rdev->wiphy.n_cipher_suites)
  181. return -EINVAL;
  182. return 0;
  183. }
  184. /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
  185. /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
  186. const unsigned char rfc1042_header[] __aligned(2) =
  187. { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
  188. EXPORT_SYMBOL(rfc1042_header);
  189. /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
  190. const unsigned char bridge_tunnel_header[] __aligned(2) =
  191. { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
  192. EXPORT_SYMBOL(bridge_tunnel_header);
  193. unsigned int ieee80211_hdrlen(__le16 fc)
  194. {
  195. unsigned int hdrlen = 24;
  196. if (ieee80211_is_data(fc)) {
  197. if (ieee80211_has_a4(fc))
  198. hdrlen = 30;
  199. if (ieee80211_is_data_qos(fc))
  200. hdrlen += IEEE80211_QOS_CTL_LEN;
  201. goto out;
  202. }
  203. if (ieee80211_is_ctl(fc)) {
  204. /*
  205. * ACK and CTS are 10 bytes, all others 16. To see how
  206. * to get this condition consider
  207. * subtype mask: 0b0000000011110000 (0x00F0)
  208. * ACK subtype: 0b0000000011010000 (0x00D0)
  209. * CTS subtype: 0b0000000011000000 (0x00C0)
  210. * bits that matter: ^^^ (0x00E0)
  211. * value of those: 0b0000000011000000 (0x00C0)
  212. */
  213. if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
  214. hdrlen = 10;
  215. else
  216. hdrlen = 16;
  217. }
  218. out:
  219. return hdrlen;
  220. }
  221. EXPORT_SYMBOL(ieee80211_hdrlen);
  222. unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
  223. {
  224. const struct ieee80211_hdr *hdr =
  225. (const struct ieee80211_hdr *)skb->data;
  226. unsigned int hdrlen;
  227. if (unlikely(skb->len < 10))
  228. return 0;
  229. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  230. if (unlikely(hdrlen > skb->len))
  231. return 0;
  232. return hdrlen;
  233. }
  234. EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
  235. static int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
  236. {
  237. int ae = meshhdr->flags & MESH_FLAGS_AE;
  238. /* 7.1.3.5a.2 */
  239. switch (ae) {
  240. case 0:
  241. return 6;
  242. case 1:
  243. return 12;
  244. case 2:
  245. return 18;
  246. case 3:
  247. return 24;
  248. default:
  249. return 6;
  250. }
  251. }
  252. int ieee80211_data_to_8023(struct sk_buff *skb, u8 *addr,
  253. enum nl80211_iftype iftype)
  254. {
  255. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  256. u16 hdrlen, ethertype;
  257. u8 *payload;
  258. u8 dst[ETH_ALEN];
  259. u8 src[ETH_ALEN] __aligned(2);
  260. if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
  261. return -1;
  262. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  263. /* convert IEEE 802.11 header + possible LLC headers into Ethernet
  264. * header
  265. * IEEE 802.11 address fields:
  266. * ToDS FromDS Addr1 Addr2 Addr3 Addr4
  267. * 0 0 DA SA BSSID n/a
  268. * 0 1 DA BSSID SA n/a
  269. * 1 0 BSSID SA DA n/a
  270. * 1 1 RA TA DA SA
  271. */
  272. memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
  273. memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
  274. switch (hdr->frame_control &
  275. cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
  276. case cpu_to_le16(IEEE80211_FCTL_TODS):
  277. if (unlikely(iftype != NL80211_IFTYPE_AP &&
  278. iftype != NL80211_IFTYPE_AP_VLAN))
  279. return -1;
  280. break;
  281. case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
  282. if (unlikely(iftype != NL80211_IFTYPE_WDS &&
  283. iftype != NL80211_IFTYPE_MESH_POINT))
  284. return -1;
  285. if (iftype == NL80211_IFTYPE_MESH_POINT) {
  286. struct ieee80211s_hdr *meshdr =
  287. (struct ieee80211s_hdr *) (skb->data + hdrlen);
  288. hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
  289. if (meshdr->flags & MESH_FLAGS_AE_A5_A6) {
  290. memcpy(dst, meshdr->eaddr1, ETH_ALEN);
  291. memcpy(src, meshdr->eaddr2, ETH_ALEN);
  292. }
  293. }
  294. break;
  295. case cpu_to_le16(IEEE80211_FCTL_FROMDS):
  296. if (iftype != NL80211_IFTYPE_STATION ||
  297. (is_multicast_ether_addr(dst) &&
  298. !compare_ether_addr(src, addr)))
  299. return -1;
  300. break;
  301. case cpu_to_le16(0):
  302. if (iftype != NL80211_IFTYPE_ADHOC)
  303. return -1;
  304. break;
  305. }
  306. if (unlikely(skb->len - hdrlen < 8))
  307. return -1;
  308. payload = skb->data + hdrlen;
  309. ethertype = (payload[6] << 8) | payload[7];
  310. if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
  311. ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
  312. compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
  313. /* remove RFC1042 or Bridge-Tunnel encapsulation and
  314. * replace EtherType */
  315. skb_pull(skb, hdrlen + 6);
  316. memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
  317. memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
  318. } else {
  319. struct ethhdr *ehdr;
  320. __be16 len;
  321. skb_pull(skb, hdrlen);
  322. len = htons(skb->len);
  323. ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
  324. memcpy(ehdr->h_dest, dst, ETH_ALEN);
  325. memcpy(ehdr->h_source, src, ETH_ALEN);
  326. ehdr->h_proto = len;
  327. }
  328. return 0;
  329. }
  330. EXPORT_SYMBOL(ieee80211_data_to_8023);
  331. int ieee80211_data_from_8023(struct sk_buff *skb, u8 *addr,
  332. enum nl80211_iftype iftype, u8 *bssid, bool qos)
  333. {
  334. struct ieee80211_hdr hdr;
  335. u16 hdrlen, ethertype;
  336. __le16 fc;
  337. const u8 *encaps_data;
  338. int encaps_len, skip_header_bytes;
  339. int nh_pos, h_pos;
  340. int head_need;
  341. if (unlikely(skb->len < ETH_HLEN))
  342. return -EINVAL;
  343. nh_pos = skb_network_header(skb) - skb->data;
  344. h_pos = skb_transport_header(skb) - skb->data;
  345. /* convert Ethernet header to proper 802.11 header (based on
  346. * operation mode) */
  347. ethertype = (skb->data[12] << 8) | skb->data[13];
  348. fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
  349. switch (iftype) {
  350. case NL80211_IFTYPE_AP:
  351. case NL80211_IFTYPE_AP_VLAN:
  352. fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
  353. /* DA BSSID SA */
  354. memcpy(hdr.addr1, skb->data, ETH_ALEN);
  355. memcpy(hdr.addr2, addr, ETH_ALEN);
  356. memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
  357. hdrlen = 24;
  358. break;
  359. case NL80211_IFTYPE_STATION:
  360. fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
  361. /* BSSID SA DA */
  362. memcpy(hdr.addr1, bssid, ETH_ALEN);
  363. memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
  364. memcpy(hdr.addr3, skb->data, ETH_ALEN);
  365. hdrlen = 24;
  366. break;
  367. case NL80211_IFTYPE_ADHOC:
  368. /* DA SA BSSID */
  369. memcpy(hdr.addr1, skb->data, ETH_ALEN);
  370. memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
  371. memcpy(hdr.addr3, bssid, ETH_ALEN);
  372. hdrlen = 24;
  373. break;
  374. default:
  375. return -EOPNOTSUPP;
  376. }
  377. if (qos) {
  378. fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
  379. hdrlen += 2;
  380. }
  381. hdr.frame_control = fc;
  382. hdr.duration_id = 0;
  383. hdr.seq_ctrl = 0;
  384. skip_header_bytes = ETH_HLEN;
  385. if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
  386. encaps_data = bridge_tunnel_header;
  387. encaps_len = sizeof(bridge_tunnel_header);
  388. skip_header_bytes -= 2;
  389. } else if (ethertype > 0x600) {
  390. encaps_data = rfc1042_header;
  391. encaps_len = sizeof(rfc1042_header);
  392. skip_header_bytes -= 2;
  393. } else {
  394. encaps_data = NULL;
  395. encaps_len = 0;
  396. }
  397. skb_pull(skb, skip_header_bytes);
  398. nh_pos -= skip_header_bytes;
  399. h_pos -= skip_header_bytes;
  400. head_need = hdrlen + encaps_len - skb_headroom(skb);
  401. if (head_need > 0 || skb_cloned(skb)) {
  402. head_need = max(head_need, 0);
  403. if (head_need)
  404. skb_orphan(skb);
  405. if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC)) {
  406. printk(KERN_ERR "failed to reallocate Tx buffer\n");
  407. return -ENOMEM;
  408. }
  409. skb->truesize += head_need;
  410. }
  411. if (encaps_data) {
  412. memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
  413. nh_pos += encaps_len;
  414. h_pos += encaps_len;
  415. }
  416. memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
  417. nh_pos += hdrlen;
  418. h_pos += hdrlen;
  419. /* Update skb pointers to various headers since this modified frame
  420. * is going to go through Linux networking code that may potentially
  421. * need things like pointer to IP header. */
  422. skb_set_mac_header(skb, 0);
  423. skb_set_network_header(skb, nh_pos);
  424. skb_set_transport_header(skb, h_pos);
  425. return 0;
  426. }
  427. EXPORT_SYMBOL(ieee80211_data_from_8023);
  428. /* Given a data frame determine the 802.1p/1d tag to use. */
  429. unsigned int cfg80211_classify8021d(struct sk_buff *skb)
  430. {
  431. unsigned int dscp;
  432. /* skb->priority values from 256->263 are magic values to
  433. * directly indicate a specific 802.1d priority. This is used
  434. * to allow 802.1d priority to be passed directly in from VLAN
  435. * tags, etc.
  436. */
  437. if (skb->priority >= 256 && skb->priority <= 263)
  438. return skb->priority - 256;
  439. switch (skb->protocol) {
  440. case htons(ETH_P_IP):
  441. dscp = ip_hdr(skb)->tos & 0xfc;
  442. break;
  443. default:
  444. return 0;
  445. }
  446. return dscp >> 5;
  447. }
  448. EXPORT_SYMBOL(cfg80211_classify8021d);
  449. const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
  450. {
  451. u8 *end, *pos;
  452. pos = bss->information_elements;
  453. if (pos == NULL)
  454. return NULL;
  455. end = pos + bss->len_information_elements;
  456. while (pos + 1 < end) {
  457. if (pos + 2 + pos[1] > end)
  458. break;
  459. if (pos[0] == ie)
  460. return pos;
  461. pos += 2 + pos[1];
  462. }
  463. return NULL;
  464. }
  465. EXPORT_SYMBOL(ieee80211_bss_get_ie);
  466. void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
  467. {
  468. struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy);
  469. struct net_device *dev = wdev->netdev;
  470. int i;
  471. if (!wdev->connect_keys)
  472. return;
  473. for (i = 0; i < 6; i++) {
  474. if (!wdev->connect_keys->params[i].cipher)
  475. continue;
  476. if (rdev->ops->add_key(wdev->wiphy, dev, i, NULL,
  477. &wdev->connect_keys->params[i])) {
  478. printk(KERN_ERR "%s: failed to set key %d\n",
  479. dev->name, i);
  480. continue;
  481. }
  482. if (wdev->connect_keys->def == i)
  483. if (rdev->ops->set_default_key(wdev->wiphy, dev, i)) {
  484. printk(KERN_ERR "%s: failed to set defkey %d\n",
  485. dev->name, i);
  486. continue;
  487. }
  488. if (wdev->connect_keys->defmgmt == i)
  489. if (rdev->ops->set_default_mgmt_key(wdev->wiphy, dev, i))
  490. printk(KERN_ERR "%s: failed to set mgtdef %d\n",
  491. dev->name, i);
  492. }
  493. kfree(wdev->connect_keys);
  494. wdev->connect_keys = NULL;
  495. }