rt2500pci.c 61 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979
  1. /*
  2. Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2500pci
  19. Abstract: rt2500pci device specific routines.
  20. Supported chipsets: RT2560.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/pci.h>
  28. #include <linux/eeprom_93cx6.h>
  29. #include "rt2x00.h"
  30. #include "rt2x00pci.h"
  31. #include "rt2500pci.h"
  32. /*
  33. * Register access.
  34. * All access to the CSR registers will go through the methods
  35. * rt2x00pci_register_read and rt2x00pci_register_write.
  36. * BBP and RF register require indirect register access,
  37. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  38. * These indirect registers work with busy bits,
  39. * and we will try maximal REGISTER_BUSY_COUNT times to access
  40. * the register while taking a REGISTER_BUSY_DELAY us delay
  41. * between each attampt. When the busy bit is still set at that time,
  42. * the access attempt is considered to have failed,
  43. * and we will print an error.
  44. */
  45. #define WAIT_FOR_BBP(__dev, __reg) \
  46. rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
  47. #define WAIT_FOR_RF(__dev, __reg) \
  48. rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
  49. static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  50. const unsigned int word, const u8 value)
  51. {
  52. u32 reg;
  53. mutex_lock(&rt2x00dev->csr_mutex);
  54. /*
  55. * Wait until the BBP becomes available, afterwards we
  56. * can safely write the new data into the register.
  57. */
  58. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  59. reg = 0;
  60. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  61. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  62. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  63. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  64. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  65. }
  66. mutex_unlock(&rt2x00dev->csr_mutex);
  67. }
  68. static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  69. const unsigned int word, u8 *value)
  70. {
  71. u32 reg;
  72. mutex_lock(&rt2x00dev->csr_mutex);
  73. /*
  74. * Wait until the BBP becomes available, afterwards we
  75. * can safely write the read request into the register.
  76. * After the data has been written, we wait until hardware
  77. * returns the correct value, if at any time the register
  78. * doesn't become available in time, reg will be 0xffffffff
  79. * which means we return 0xff to the caller.
  80. */
  81. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  82. reg = 0;
  83. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  84. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  85. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  86. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  87. WAIT_FOR_BBP(rt2x00dev, &reg);
  88. }
  89. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  90. mutex_unlock(&rt2x00dev->csr_mutex);
  91. }
  92. static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
  93. const unsigned int word, const u32 value)
  94. {
  95. u32 reg;
  96. mutex_lock(&rt2x00dev->csr_mutex);
  97. /*
  98. * Wait until the RF becomes available, afterwards we
  99. * can safely write the new data into the register.
  100. */
  101. if (WAIT_FOR_RF(rt2x00dev, &reg)) {
  102. reg = 0;
  103. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  104. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  105. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  106. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  107. rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
  108. rt2x00_rf_write(rt2x00dev, word, value);
  109. }
  110. mutex_unlock(&rt2x00dev->csr_mutex);
  111. }
  112. static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  113. {
  114. struct rt2x00_dev *rt2x00dev = eeprom->data;
  115. u32 reg;
  116. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  117. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  118. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  119. eeprom->reg_data_clock =
  120. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  121. eeprom->reg_chip_select =
  122. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  123. }
  124. static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  125. {
  126. struct rt2x00_dev *rt2x00dev = eeprom->data;
  127. u32 reg = 0;
  128. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  129. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  130. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  131. !!eeprom->reg_data_clock);
  132. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  133. !!eeprom->reg_chip_select);
  134. rt2x00pci_register_write(rt2x00dev, CSR21, reg);
  135. }
  136. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  137. static const struct rt2x00debug rt2500pci_rt2x00debug = {
  138. .owner = THIS_MODULE,
  139. .csr = {
  140. .read = rt2x00pci_register_read,
  141. .write = rt2x00pci_register_write,
  142. .flags = RT2X00DEBUGFS_OFFSET,
  143. .word_base = CSR_REG_BASE,
  144. .word_size = sizeof(u32),
  145. .word_count = CSR_REG_SIZE / sizeof(u32),
  146. },
  147. .eeprom = {
  148. .read = rt2x00_eeprom_read,
  149. .write = rt2x00_eeprom_write,
  150. .word_base = EEPROM_BASE,
  151. .word_size = sizeof(u16),
  152. .word_count = EEPROM_SIZE / sizeof(u16),
  153. },
  154. .bbp = {
  155. .read = rt2500pci_bbp_read,
  156. .write = rt2500pci_bbp_write,
  157. .word_base = BBP_BASE,
  158. .word_size = sizeof(u8),
  159. .word_count = BBP_SIZE / sizeof(u8),
  160. },
  161. .rf = {
  162. .read = rt2x00_rf_read,
  163. .write = rt2500pci_rf_write,
  164. .word_base = RF_BASE,
  165. .word_size = sizeof(u32),
  166. .word_count = RF_SIZE / sizeof(u32),
  167. },
  168. };
  169. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  170. static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  171. {
  172. u32 reg;
  173. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  174. return rt2x00_get_field32(reg, GPIOCSR_BIT0);
  175. }
  176. #ifdef CONFIG_RT2X00_LIB_LEDS
  177. static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
  178. enum led_brightness brightness)
  179. {
  180. struct rt2x00_led *led =
  181. container_of(led_cdev, struct rt2x00_led, led_dev);
  182. unsigned int enabled = brightness != LED_OFF;
  183. u32 reg;
  184. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  185. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  186. rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
  187. else if (led->type == LED_TYPE_ACTIVITY)
  188. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
  189. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  190. }
  191. static int rt2500pci_blink_set(struct led_classdev *led_cdev,
  192. unsigned long *delay_on,
  193. unsigned long *delay_off)
  194. {
  195. struct rt2x00_led *led =
  196. container_of(led_cdev, struct rt2x00_led, led_dev);
  197. u32 reg;
  198. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  199. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
  200. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
  201. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  202. return 0;
  203. }
  204. static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
  205. struct rt2x00_led *led,
  206. enum led_type type)
  207. {
  208. led->rt2x00dev = rt2x00dev;
  209. led->type = type;
  210. led->led_dev.brightness_set = rt2500pci_brightness_set;
  211. led->led_dev.blink_set = rt2500pci_blink_set;
  212. led->flags = LED_INITIALIZED;
  213. }
  214. #endif /* CONFIG_RT2X00_LIB_LEDS */
  215. /*
  216. * Configuration handlers.
  217. */
  218. static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
  219. const unsigned int filter_flags)
  220. {
  221. u32 reg;
  222. /*
  223. * Start configuration steps.
  224. * Note that the version error will always be dropped
  225. * and broadcast frames will always be accepted since
  226. * there is no filter for it at this time.
  227. */
  228. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  229. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  230. !(filter_flags & FIF_FCSFAIL));
  231. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  232. !(filter_flags & FIF_PLCPFAIL));
  233. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  234. !(filter_flags & FIF_CONTROL));
  235. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  236. !(filter_flags & FIF_PROMISC_IN_BSS));
  237. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  238. !(filter_flags & FIF_PROMISC_IN_BSS) &&
  239. !rt2x00dev->intf_ap_count);
  240. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  241. rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
  242. !(filter_flags & FIF_ALLMULTI));
  243. rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
  244. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  245. }
  246. static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
  247. struct rt2x00_intf *intf,
  248. struct rt2x00intf_conf *conf,
  249. const unsigned int flags)
  250. {
  251. struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, QID_BEACON);
  252. unsigned int bcn_preload;
  253. u32 reg;
  254. if (flags & CONFIG_UPDATE_TYPE) {
  255. /*
  256. * Enable beacon config
  257. */
  258. bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
  259. rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
  260. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
  261. rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
  262. rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
  263. /*
  264. * Enable synchronisation.
  265. */
  266. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  267. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  268. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
  269. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  270. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  271. }
  272. if (flags & CONFIG_UPDATE_MAC)
  273. rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
  274. conf->mac, sizeof(conf->mac));
  275. if (flags & CONFIG_UPDATE_BSSID)
  276. rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
  277. conf->bssid, sizeof(conf->bssid));
  278. }
  279. static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
  280. struct rt2x00lib_erp *erp)
  281. {
  282. int preamble_mask;
  283. u32 reg;
  284. /*
  285. * When short preamble is enabled, we should set bit 0x08
  286. */
  287. preamble_mask = erp->short_preamble << 3;
  288. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  289. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, erp->ack_timeout);
  290. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
  291. erp->ack_consume_time);
  292. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  293. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  294. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  295. rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
  296. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
  297. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  298. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
  299. rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
  300. rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
  301. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  302. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  303. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
  304. rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
  305. rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
  306. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  307. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  308. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
  309. rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
  310. rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
  311. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  312. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  313. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
  314. rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
  315. rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
  316. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  317. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
  318. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  319. rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
  320. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, erp->beacon_int * 16);
  321. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, erp->beacon_int * 16);
  322. rt2x00pci_register_write(rt2x00dev, CSR12, reg);
  323. rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
  324. rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
  325. rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
  326. rt2x00pci_register_write(rt2x00dev, CSR18, reg);
  327. rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
  328. rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
  329. rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
  330. rt2x00pci_register_write(rt2x00dev, CSR19, reg);
  331. }
  332. static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
  333. struct antenna_setup *ant)
  334. {
  335. u32 reg;
  336. u8 r14;
  337. u8 r2;
  338. /*
  339. * We should never come here because rt2x00lib is supposed
  340. * to catch this and send us the correct antenna explicitely.
  341. */
  342. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  343. ant->tx == ANTENNA_SW_DIVERSITY);
  344. rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
  345. rt2500pci_bbp_read(rt2x00dev, 14, &r14);
  346. rt2500pci_bbp_read(rt2x00dev, 2, &r2);
  347. /*
  348. * Configure the TX antenna.
  349. */
  350. switch (ant->tx) {
  351. case ANTENNA_A:
  352. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
  353. rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
  354. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
  355. break;
  356. case ANTENNA_B:
  357. default:
  358. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  359. rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
  360. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
  361. break;
  362. }
  363. /*
  364. * Configure the RX antenna.
  365. */
  366. switch (ant->rx) {
  367. case ANTENNA_A:
  368. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
  369. break;
  370. case ANTENNA_B:
  371. default:
  372. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  373. break;
  374. }
  375. /*
  376. * RT2525E and RT5222 need to flip TX I/Q
  377. */
  378. if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
  379. rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  380. rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
  381. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
  382. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
  383. /*
  384. * RT2525E does not need RX I/Q Flip.
  385. */
  386. if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
  387. rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
  388. } else {
  389. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
  390. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
  391. }
  392. rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
  393. rt2500pci_bbp_write(rt2x00dev, 14, r14);
  394. rt2500pci_bbp_write(rt2x00dev, 2, r2);
  395. }
  396. static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
  397. struct rf_channel *rf, const int txpower)
  398. {
  399. u8 r70;
  400. /*
  401. * Set TXpower.
  402. */
  403. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  404. /*
  405. * Switch on tuning bits.
  406. * For RT2523 devices we do not need to update the R1 register.
  407. */
  408. if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
  409. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  410. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  411. /*
  412. * For RT2525 we should first set the channel to half band higher.
  413. */
  414. if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  415. static const u32 vals[] = {
  416. 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
  417. 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
  418. 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
  419. 0x00080d2e, 0x00080d3a
  420. };
  421. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  422. rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
  423. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  424. if (rf->rf4)
  425. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  426. }
  427. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  428. rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
  429. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  430. if (rf->rf4)
  431. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  432. /*
  433. * Channel 14 requires the Japan filter bit to be set.
  434. */
  435. r70 = 0x46;
  436. rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
  437. rt2500pci_bbp_write(rt2x00dev, 70, r70);
  438. msleep(1);
  439. /*
  440. * Switch off tuning bits.
  441. * For RT2523 devices we do not need to update the R1 register.
  442. */
  443. if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  444. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  445. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  446. }
  447. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  448. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  449. /*
  450. * Clear false CRC during channel switch.
  451. */
  452. rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
  453. }
  454. static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
  455. const int txpower)
  456. {
  457. u32 rf3;
  458. rt2x00_rf_read(rt2x00dev, 3, &rf3);
  459. rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  460. rt2500pci_rf_write(rt2x00dev, 3, rf3);
  461. }
  462. static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
  463. struct rt2x00lib_conf *libconf)
  464. {
  465. u32 reg;
  466. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  467. rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
  468. libconf->conf->long_frame_max_tx_count);
  469. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
  470. libconf->conf->short_frame_max_tx_count);
  471. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  472. }
  473. static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
  474. struct rt2x00lib_conf *libconf)
  475. {
  476. enum dev_state state =
  477. (libconf->conf->flags & IEEE80211_CONF_PS) ?
  478. STATE_SLEEP : STATE_AWAKE;
  479. u32 reg;
  480. if (state == STATE_SLEEP) {
  481. rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
  482. rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
  483. (rt2x00dev->beacon_int - 20) * 16);
  484. rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
  485. libconf->conf->listen_interval - 1);
  486. /* We must first disable autowake before it can be enabled */
  487. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
  488. rt2x00pci_register_write(rt2x00dev, CSR20, reg);
  489. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
  490. rt2x00pci_register_write(rt2x00dev, CSR20, reg);
  491. }
  492. rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
  493. }
  494. static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
  495. struct rt2x00lib_conf *libconf,
  496. const unsigned int flags)
  497. {
  498. if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
  499. rt2500pci_config_channel(rt2x00dev, &libconf->rf,
  500. libconf->conf->power_level);
  501. if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
  502. !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
  503. rt2500pci_config_txpower(rt2x00dev,
  504. libconf->conf->power_level);
  505. if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
  506. rt2500pci_config_retry_limit(rt2x00dev, libconf);
  507. if (flags & IEEE80211_CONF_CHANGE_PS)
  508. rt2500pci_config_ps(rt2x00dev, libconf);
  509. }
  510. /*
  511. * Link tuning
  512. */
  513. static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
  514. struct link_qual *qual)
  515. {
  516. u32 reg;
  517. /*
  518. * Update FCS error count from register.
  519. */
  520. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  521. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  522. /*
  523. * Update False CCA count from register.
  524. */
  525. rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
  526. qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
  527. }
  528. static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
  529. struct link_qual *qual, u8 vgc_level)
  530. {
  531. if (qual->vgc_level_reg != vgc_level) {
  532. rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
  533. qual->vgc_level_reg = vgc_level;
  534. }
  535. }
  536. static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
  537. struct link_qual *qual)
  538. {
  539. rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
  540. }
  541. static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
  542. struct link_qual *qual, const u32 count)
  543. {
  544. /*
  545. * To prevent collisions with MAC ASIC on chipsets
  546. * up to version C the link tuning should halt after 20
  547. * seconds while being associated.
  548. */
  549. if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
  550. rt2x00dev->intf_associated && count > 20)
  551. return;
  552. /*
  553. * Chipset versions C and lower should directly continue
  554. * to the dynamic CCA tuning. Chipset version D and higher
  555. * should go straight to dynamic CCA tuning when they
  556. * are not associated.
  557. */
  558. if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D ||
  559. !rt2x00dev->intf_associated)
  560. goto dynamic_cca_tune;
  561. /*
  562. * A too low RSSI will cause too much false CCA which will
  563. * then corrupt the R17 tuning. To remidy this the tuning should
  564. * be stopped (While making sure the R17 value will not exceed limits)
  565. */
  566. if (qual->rssi < -80 && count > 20) {
  567. if (qual->vgc_level_reg >= 0x41)
  568. rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
  569. return;
  570. }
  571. /*
  572. * Special big-R17 for short distance
  573. */
  574. if (qual->rssi >= -58) {
  575. rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
  576. return;
  577. }
  578. /*
  579. * Special mid-R17 for middle distance
  580. */
  581. if (qual->rssi >= -74) {
  582. rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
  583. return;
  584. }
  585. /*
  586. * Leave short or middle distance condition, restore r17
  587. * to the dynamic tuning range.
  588. */
  589. if (qual->vgc_level_reg >= 0x41) {
  590. rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
  591. return;
  592. }
  593. dynamic_cca_tune:
  594. /*
  595. * R17 is inside the dynamic tuning range,
  596. * start tuning the link based on the false cca counter.
  597. */
  598. if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40) {
  599. rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
  600. qual->vgc_level = qual->vgc_level_reg;
  601. } else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32) {
  602. rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
  603. qual->vgc_level = qual->vgc_level_reg;
  604. }
  605. }
  606. /*
  607. * Initialization functions.
  608. */
  609. static bool rt2500pci_get_entry_state(struct queue_entry *entry)
  610. {
  611. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  612. u32 word;
  613. if (entry->queue->qid == QID_RX) {
  614. rt2x00_desc_read(entry_priv->desc, 0, &word);
  615. return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
  616. } else {
  617. rt2x00_desc_read(entry_priv->desc, 0, &word);
  618. return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  619. rt2x00_get_field32(word, TXD_W0_VALID));
  620. }
  621. }
  622. static void rt2500pci_clear_entry(struct queue_entry *entry)
  623. {
  624. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  625. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  626. u32 word;
  627. if (entry->queue->qid == QID_RX) {
  628. rt2x00_desc_read(entry_priv->desc, 1, &word);
  629. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  630. rt2x00_desc_write(entry_priv->desc, 1, word);
  631. rt2x00_desc_read(entry_priv->desc, 0, &word);
  632. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  633. rt2x00_desc_write(entry_priv->desc, 0, word);
  634. } else {
  635. rt2x00_desc_read(entry_priv->desc, 0, &word);
  636. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  637. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  638. rt2x00_desc_write(entry_priv->desc, 0, word);
  639. }
  640. }
  641. static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
  642. {
  643. struct queue_entry_priv_pci *entry_priv;
  644. u32 reg;
  645. /*
  646. * Initialize registers.
  647. */
  648. rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
  649. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
  650. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
  651. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
  652. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
  653. rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
  654. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  655. rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
  656. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  657. entry_priv->desc_dma);
  658. rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
  659. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  660. rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
  661. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  662. entry_priv->desc_dma);
  663. rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
  664. entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
  665. rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
  666. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  667. entry_priv->desc_dma);
  668. rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
  669. entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
  670. rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
  671. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  672. entry_priv->desc_dma);
  673. rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
  674. rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
  675. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  676. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
  677. rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
  678. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  679. rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
  680. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
  681. entry_priv->desc_dma);
  682. rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
  683. return 0;
  684. }
  685. static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
  686. {
  687. u32 reg;
  688. rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
  689. rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
  690. rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
  691. rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
  692. rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
  693. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  694. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  695. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  696. rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
  697. rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
  698. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  699. rt2x00dev->rx->data_size / 128);
  700. rt2x00pci_register_write(rt2x00dev, CSR9, reg);
  701. /*
  702. * Always use CWmin and CWmax set in descriptor.
  703. */
  704. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  705. rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
  706. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  707. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  708. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  709. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
  710. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  711. rt2x00_set_field32(&reg, CSR14_TCFP, 0);
  712. rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
  713. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  714. rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
  715. rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
  716. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  717. rt2x00pci_register_write(rt2x00dev, CNT3, 0);
  718. rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
  719. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
  720. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
  721. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
  722. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
  723. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
  724. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
  725. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
  726. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
  727. rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
  728. rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
  729. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
  730. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
  731. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
  732. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
  733. rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
  734. rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
  735. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
  736. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
  737. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
  738. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
  739. rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
  740. rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
  741. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
  742. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
  743. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
  744. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
  745. rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
  746. rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
  747. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
  748. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  749. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
  750. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  751. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
  752. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  753. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
  754. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
  755. rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
  756. rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
  757. rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
  758. rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
  759. rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
  760. rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
  761. rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
  762. rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
  763. rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
  764. rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
  765. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  766. rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
  767. rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
  768. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  769. return -EBUSY;
  770. rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
  771. rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
  772. rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
  773. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  774. rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
  775. rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
  776. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  777. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
  778. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
  779. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  780. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
  781. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
  782. rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
  783. rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
  784. rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
  785. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  786. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  787. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  788. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  789. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  790. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  791. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  792. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  793. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  794. /*
  795. * We must clear the FCS and FIFO error count.
  796. * These registers are cleared on read,
  797. * so we may pass a useless variable to store the value.
  798. */
  799. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  800. rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
  801. return 0;
  802. }
  803. static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  804. {
  805. unsigned int i;
  806. u8 value;
  807. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  808. rt2500pci_bbp_read(rt2x00dev, 0, &value);
  809. if ((value != 0xff) && (value != 0x00))
  810. return 0;
  811. udelay(REGISTER_BUSY_DELAY);
  812. }
  813. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  814. return -EACCES;
  815. }
  816. static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  817. {
  818. unsigned int i;
  819. u16 eeprom;
  820. u8 reg_id;
  821. u8 value;
  822. if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
  823. return -EACCES;
  824. rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
  825. rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
  826. rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
  827. rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
  828. rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
  829. rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
  830. rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
  831. rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
  832. rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
  833. rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
  834. rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
  835. rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
  836. rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
  837. rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
  838. rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
  839. rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
  840. rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
  841. rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
  842. rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
  843. rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
  844. rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
  845. rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
  846. rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
  847. rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
  848. rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
  849. rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
  850. rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
  851. rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
  852. rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
  853. rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
  854. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  855. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  856. if (eeprom != 0xffff && eeprom != 0x0000) {
  857. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  858. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  859. rt2500pci_bbp_write(rt2x00dev, reg_id, value);
  860. }
  861. }
  862. return 0;
  863. }
  864. /*
  865. * Device state switch handlers.
  866. */
  867. static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  868. enum dev_state state)
  869. {
  870. u32 reg;
  871. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  872. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
  873. (state == STATE_RADIO_RX_OFF) ||
  874. (state == STATE_RADIO_RX_OFF_LINK));
  875. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  876. }
  877. static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  878. enum dev_state state)
  879. {
  880. int mask = (state == STATE_RADIO_IRQ_OFF);
  881. u32 reg;
  882. /*
  883. * When interrupts are being enabled, the interrupt registers
  884. * should clear the register to assure a clean state.
  885. */
  886. if (state == STATE_RADIO_IRQ_ON) {
  887. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  888. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  889. }
  890. /*
  891. * Only toggle the interrupts bits we are going to use.
  892. * Non-checked interrupt bits are disabled by default.
  893. */
  894. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  895. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  896. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  897. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  898. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  899. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  900. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  901. }
  902. static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  903. {
  904. /*
  905. * Initialize all registers.
  906. */
  907. if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
  908. rt2500pci_init_registers(rt2x00dev) ||
  909. rt2500pci_init_bbp(rt2x00dev)))
  910. return -EIO;
  911. return 0;
  912. }
  913. static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  914. {
  915. /*
  916. * Disable power
  917. */
  918. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
  919. }
  920. static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
  921. enum dev_state state)
  922. {
  923. u32 reg;
  924. unsigned int i;
  925. char put_to_sleep;
  926. char bbp_state;
  927. char rf_state;
  928. put_to_sleep = (state != STATE_AWAKE);
  929. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  930. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  931. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  932. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  933. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  934. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  935. /*
  936. * Device is not guaranteed to be in the requested state yet.
  937. * We must wait until the register indicates that the
  938. * device has entered the correct state.
  939. */
  940. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  941. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  942. bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
  943. rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
  944. if (bbp_state == state && rf_state == state)
  945. return 0;
  946. msleep(10);
  947. }
  948. return -EBUSY;
  949. }
  950. static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  951. enum dev_state state)
  952. {
  953. int retval = 0;
  954. switch (state) {
  955. case STATE_RADIO_ON:
  956. retval = rt2500pci_enable_radio(rt2x00dev);
  957. break;
  958. case STATE_RADIO_OFF:
  959. rt2500pci_disable_radio(rt2x00dev);
  960. break;
  961. case STATE_RADIO_RX_ON:
  962. case STATE_RADIO_RX_ON_LINK:
  963. case STATE_RADIO_RX_OFF:
  964. case STATE_RADIO_RX_OFF_LINK:
  965. rt2500pci_toggle_rx(rt2x00dev, state);
  966. break;
  967. case STATE_RADIO_IRQ_ON:
  968. case STATE_RADIO_IRQ_OFF:
  969. rt2500pci_toggle_irq(rt2x00dev, state);
  970. break;
  971. case STATE_DEEP_SLEEP:
  972. case STATE_SLEEP:
  973. case STATE_STANDBY:
  974. case STATE_AWAKE:
  975. retval = rt2500pci_set_state(rt2x00dev, state);
  976. break;
  977. default:
  978. retval = -ENOTSUPP;
  979. break;
  980. }
  981. if (unlikely(retval))
  982. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  983. state, retval);
  984. return retval;
  985. }
  986. /*
  987. * TX descriptor initialization
  988. */
  989. static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  990. struct sk_buff *skb,
  991. struct txentry_desc *txdesc)
  992. {
  993. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  994. struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
  995. __le32 *txd = skbdesc->desc;
  996. u32 word;
  997. /*
  998. * Start writing the descriptor words.
  999. */
  1000. rt2x00_desc_read(entry_priv->desc, 1, &word);
  1001. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  1002. rt2x00_desc_write(entry_priv->desc, 1, word);
  1003. rt2x00_desc_read(txd, 2, &word);
  1004. rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
  1005. rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
  1006. rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
  1007. rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
  1008. rt2x00_desc_write(txd, 2, word);
  1009. rt2x00_desc_read(txd, 3, &word);
  1010. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
  1011. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
  1012. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
  1013. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
  1014. rt2x00_desc_write(txd, 3, word);
  1015. rt2x00_desc_read(txd, 10, &word);
  1016. rt2x00_set_field32(&word, TXD_W10_RTS,
  1017. test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
  1018. rt2x00_desc_write(txd, 10, word);
  1019. rt2x00_desc_read(txd, 0, &word);
  1020. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  1021. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  1022. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  1023. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  1024. rt2x00_set_field32(&word, TXD_W0_ACK,
  1025. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  1026. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  1027. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  1028. rt2x00_set_field32(&word, TXD_W0_OFDM,
  1029. (txdesc->rate_mode == RATE_MODE_OFDM));
  1030. rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
  1031. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  1032. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  1033. test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
  1034. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
  1035. rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
  1036. rt2x00_desc_write(txd, 0, word);
  1037. }
  1038. /*
  1039. * TX data initialization
  1040. */
  1041. static void rt2500pci_write_beacon(struct queue_entry *entry)
  1042. {
  1043. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  1044. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  1045. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  1046. u32 word;
  1047. u32 reg;
  1048. /*
  1049. * Disable beaconing while we are reloading the beacon data,
  1050. * otherwise we might be sending out invalid data.
  1051. */
  1052. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  1053. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  1054. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  1055. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  1056. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  1057. /*
  1058. * Replace rt2x00lib allocated descriptor with the
  1059. * pointer to the _real_ hardware descriptor.
  1060. * After that, map the beacon to DMA and update the
  1061. * descriptor.
  1062. */
  1063. memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
  1064. skbdesc->desc = entry_priv->desc;
  1065. rt2x00queue_map_txskb(rt2x00dev, entry->skb);
  1066. rt2x00_desc_read(entry_priv->desc, 1, &word);
  1067. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  1068. rt2x00_desc_write(entry_priv->desc, 1, word);
  1069. }
  1070. static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  1071. const enum data_queue_qid queue)
  1072. {
  1073. u32 reg;
  1074. if (queue == QID_BEACON) {
  1075. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  1076. if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
  1077. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  1078. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  1079. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  1080. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  1081. }
  1082. return;
  1083. }
  1084. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  1085. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
  1086. rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
  1087. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
  1088. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  1089. }
  1090. static void rt2500pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
  1091. const enum data_queue_qid qid)
  1092. {
  1093. u32 reg;
  1094. if (qid == QID_BEACON) {
  1095. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  1096. } else {
  1097. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  1098. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  1099. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  1100. }
  1101. }
  1102. /*
  1103. * RX control handlers
  1104. */
  1105. static void rt2500pci_fill_rxdone(struct queue_entry *entry,
  1106. struct rxdone_entry_desc *rxdesc)
  1107. {
  1108. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  1109. u32 word0;
  1110. u32 word2;
  1111. rt2x00_desc_read(entry_priv->desc, 0, &word0);
  1112. rt2x00_desc_read(entry_priv->desc, 2, &word2);
  1113. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1114. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1115. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  1116. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  1117. /*
  1118. * Obtain the status about this packet.
  1119. * When frame was received with an OFDM bitrate,
  1120. * the signal is the PLCP value. If it was received with
  1121. * a CCK bitrate the signal is the rate in 100kbit/s.
  1122. */
  1123. rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
  1124. rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
  1125. entry->queue->rt2x00dev->rssi_offset;
  1126. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1127. if (rt2x00_get_field32(word0, RXD_W0_OFDM))
  1128. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1129. else
  1130. rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
  1131. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1132. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1133. }
  1134. /*
  1135. * Interrupt functions.
  1136. */
  1137. static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
  1138. const enum data_queue_qid queue_idx)
  1139. {
  1140. struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  1141. struct queue_entry_priv_pci *entry_priv;
  1142. struct queue_entry *entry;
  1143. struct txdone_entry_desc txdesc;
  1144. u32 word;
  1145. while (!rt2x00queue_empty(queue)) {
  1146. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1147. entry_priv = entry->priv_data;
  1148. rt2x00_desc_read(entry_priv->desc, 0, &word);
  1149. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1150. !rt2x00_get_field32(word, TXD_W0_VALID))
  1151. break;
  1152. /*
  1153. * Obtain the status about this packet.
  1154. */
  1155. txdesc.flags = 0;
  1156. switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
  1157. case 0: /* Success */
  1158. case 1: /* Success with retry */
  1159. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  1160. break;
  1161. case 2: /* Failure, excessive retries */
  1162. __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
  1163. /* Don't break, this is a failed frame! */
  1164. default: /* Failure */
  1165. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  1166. }
  1167. txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  1168. rt2x00lib_txdone(entry, &txdesc);
  1169. }
  1170. }
  1171. static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
  1172. {
  1173. struct rt2x00_dev *rt2x00dev = dev_instance;
  1174. u32 reg;
  1175. /*
  1176. * Get the interrupt sources & saved to local variable.
  1177. * Write register value back to clear pending interrupts.
  1178. */
  1179. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  1180. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  1181. if (!reg)
  1182. return IRQ_NONE;
  1183. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1184. return IRQ_HANDLED;
  1185. /*
  1186. * Handle interrupts, walk through all bits
  1187. * and run the tasks, the bits are checked in order of
  1188. * priority.
  1189. */
  1190. /*
  1191. * 1 - Beacon timer expired interrupt.
  1192. */
  1193. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1194. rt2x00lib_beacondone(rt2x00dev);
  1195. /*
  1196. * 2 - Rx ring done interrupt.
  1197. */
  1198. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1199. rt2x00pci_rxdone(rt2x00dev);
  1200. /*
  1201. * 3 - Atim ring transmit done interrupt.
  1202. */
  1203. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
  1204. rt2500pci_txdone(rt2x00dev, QID_ATIM);
  1205. /*
  1206. * 4 - Priority ring transmit done interrupt.
  1207. */
  1208. if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
  1209. rt2500pci_txdone(rt2x00dev, QID_AC_BE);
  1210. /*
  1211. * 5 - Tx ring transmit done interrupt.
  1212. */
  1213. if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
  1214. rt2500pci_txdone(rt2x00dev, QID_AC_BK);
  1215. return IRQ_HANDLED;
  1216. }
  1217. /*
  1218. * Device probe functions.
  1219. */
  1220. static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1221. {
  1222. struct eeprom_93cx6 eeprom;
  1223. u32 reg;
  1224. u16 word;
  1225. u8 *mac;
  1226. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  1227. eeprom.data = rt2x00dev;
  1228. eeprom.register_read = rt2500pci_eepromregister_read;
  1229. eeprom.register_write = rt2500pci_eepromregister_write;
  1230. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1231. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1232. eeprom.reg_data_in = 0;
  1233. eeprom.reg_data_out = 0;
  1234. eeprom.reg_data_clock = 0;
  1235. eeprom.reg_chip_select = 0;
  1236. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1237. EEPROM_SIZE / sizeof(u16));
  1238. /*
  1239. * Start validation of the data that has been read.
  1240. */
  1241. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1242. if (!is_valid_ether_addr(mac)) {
  1243. random_ether_addr(mac);
  1244. EEPROM(rt2x00dev, "MAC: %pM\n", mac);
  1245. }
  1246. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1247. if (word == 0xffff) {
  1248. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1249. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1250. ANTENNA_SW_DIVERSITY);
  1251. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1252. ANTENNA_SW_DIVERSITY);
  1253. rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
  1254. LED_MODE_DEFAULT);
  1255. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1256. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1257. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
  1258. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1259. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1260. }
  1261. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1262. if (word == 0xffff) {
  1263. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1264. rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
  1265. rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
  1266. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1267. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1268. }
  1269. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
  1270. if (word == 0xffff) {
  1271. rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
  1272. DEFAULT_RSSI_OFFSET);
  1273. rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
  1274. EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
  1275. }
  1276. return 0;
  1277. }
  1278. static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1279. {
  1280. u32 reg;
  1281. u16 value;
  1282. u16 eeprom;
  1283. /*
  1284. * Read EEPROM word for configuration.
  1285. */
  1286. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1287. /*
  1288. * Identify RF chipset.
  1289. */
  1290. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1291. rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
  1292. rt2x00_set_chip_rf(rt2x00dev, value, reg);
  1293. if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
  1294. !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
  1295. !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
  1296. !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
  1297. !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
  1298. !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1299. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1300. return -ENODEV;
  1301. }
  1302. /*
  1303. * Identify default antenna configuration.
  1304. */
  1305. rt2x00dev->default_ant.tx =
  1306. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1307. rt2x00dev->default_ant.rx =
  1308. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1309. /*
  1310. * Store led mode, for correct led behaviour.
  1311. */
  1312. #ifdef CONFIG_RT2X00_LIB_LEDS
  1313. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1314. rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  1315. if (value == LED_MODE_TXRX_ACTIVITY ||
  1316. value == LED_MODE_DEFAULT ||
  1317. value == LED_MODE_ASUS)
  1318. rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
  1319. LED_TYPE_ACTIVITY);
  1320. #endif /* CONFIG_RT2X00_LIB_LEDS */
  1321. /*
  1322. * Detect if this device has an hardware controlled radio.
  1323. */
  1324. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1325. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1326. /*
  1327. * Check if the BBP tuning should be enabled.
  1328. */
  1329. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1330. if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
  1331. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1332. /*
  1333. * Read the RSSI <-> dBm offset information.
  1334. */
  1335. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
  1336. rt2x00dev->rssi_offset =
  1337. rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
  1338. return 0;
  1339. }
  1340. /*
  1341. * RF value list for RF2522
  1342. * Supports: 2.4 GHz
  1343. */
  1344. static const struct rf_channel rf_vals_bg_2522[] = {
  1345. { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
  1346. { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
  1347. { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
  1348. { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
  1349. { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
  1350. { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
  1351. { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
  1352. { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
  1353. { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
  1354. { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
  1355. { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
  1356. { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
  1357. { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
  1358. { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
  1359. };
  1360. /*
  1361. * RF value list for RF2523
  1362. * Supports: 2.4 GHz
  1363. */
  1364. static const struct rf_channel rf_vals_bg_2523[] = {
  1365. { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
  1366. { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
  1367. { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
  1368. { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
  1369. { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
  1370. { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
  1371. { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
  1372. { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
  1373. { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
  1374. { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
  1375. { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
  1376. { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
  1377. { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
  1378. { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
  1379. };
  1380. /*
  1381. * RF value list for RF2524
  1382. * Supports: 2.4 GHz
  1383. */
  1384. static const struct rf_channel rf_vals_bg_2524[] = {
  1385. { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
  1386. { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
  1387. { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
  1388. { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
  1389. { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
  1390. { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
  1391. { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
  1392. { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
  1393. { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
  1394. { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
  1395. { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
  1396. { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
  1397. { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
  1398. { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
  1399. };
  1400. /*
  1401. * RF value list for RF2525
  1402. * Supports: 2.4 GHz
  1403. */
  1404. static const struct rf_channel rf_vals_bg_2525[] = {
  1405. { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
  1406. { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
  1407. { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
  1408. { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
  1409. { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
  1410. { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
  1411. { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
  1412. { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
  1413. { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
  1414. { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
  1415. { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
  1416. { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
  1417. { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
  1418. { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
  1419. };
  1420. /*
  1421. * RF value list for RF2525e
  1422. * Supports: 2.4 GHz
  1423. */
  1424. static const struct rf_channel rf_vals_bg_2525e[] = {
  1425. { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
  1426. { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
  1427. { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
  1428. { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
  1429. { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
  1430. { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
  1431. { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
  1432. { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
  1433. { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
  1434. { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
  1435. { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
  1436. { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
  1437. { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
  1438. { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
  1439. };
  1440. /*
  1441. * RF value list for RF5222
  1442. * Supports: 2.4 GHz & 5.2 GHz
  1443. */
  1444. static const struct rf_channel rf_vals_5222[] = {
  1445. { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
  1446. { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
  1447. { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
  1448. { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
  1449. { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
  1450. { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
  1451. { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
  1452. { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
  1453. { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
  1454. { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
  1455. { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
  1456. { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
  1457. { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
  1458. { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
  1459. /* 802.11 UNI / HyperLan 2 */
  1460. { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
  1461. { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
  1462. { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
  1463. { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
  1464. { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
  1465. { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
  1466. { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
  1467. { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
  1468. /* 802.11 HyperLan 2 */
  1469. { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
  1470. { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
  1471. { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
  1472. { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
  1473. { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
  1474. { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
  1475. { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
  1476. { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
  1477. { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
  1478. { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
  1479. /* 802.11 UNII */
  1480. { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
  1481. { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
  1482. { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
  1483. { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
  1484. { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
  1485. };
  1486. static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1487. {
  1488. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1489. struct channel_info *info;
  1490. char *tx_power;
  1491. unsigned int i;
  1492. /*
  1493. * Initialize all hw fields.
  1494. */
  1495. rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1496. IEEE80211_HW_SIGNAL_DBM |
  1497. IEEE80211_HW_SUPPORTS_PS |
  1498. IEEE80211_HW_PS_NULLFUNC_STACK;
  1499. rt2x00dev->hw->extra_tx_headroom = 0;
  1500. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1501. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1502. rt2x00_eeprom_addr(rt2x00dev,
  1503. EEPROM_MAC_ADDR_0));
  1504. /*
  1505. * Initialize hw_mode information.
  1506. */
  1507. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1508. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  1509. if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
  1510. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
  1511. spec->channels = rf_vals_bg_2522;
  1512. } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  1513. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
  1514. spec->channels = rf_vals_bg_2523;
  1515. } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
  1516. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
  1517. spec->channels = rf_vals_bg_2524;
  1518. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  1519. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
  1520. spec->channels = rf_vals_bg_2525;
  1521. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
  1522. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
  1523. spec->channels = rf_vals_bg_2525e;
  1524. } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1525. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  1526. spec->num_channels = ARRAY_SIZE(rf_vals_5222);
  1527. spec->channels = rf_vals_5222;
  1528. }
  1529. /*
  1530. * Create channel information array
  1531. */
  1532. info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
  1533. if (!info)
  1534. return -ENOMEM;
  1535. spec->channels_info = info;
  1536. tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1537. for (i = 0; i < 14; i++)
  1538. info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
  1539. if (spec->num_channels > 14) {
  1540. for (i = 14; i < spec->num_channels; i++)
  1541. info[i].tx_power1 = DEFAULT_TXPOWER;
  1542. }
  1543. return 0;
  1544. }
  1545. static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1546. {
  1547. int retval;
  1548. /*
  1549. * Allocate eeprom data.
  1550. */
  1551. retval = rt2500pci_validate_eeprom(rt2x00dev);
  1552. if (retval)
  1553. return retval;
  1554. retval = rt2500pci_init_eeprom(rt2x00dev);
  1555. if (retval)
  1556. return retval;
  1557. /*
  1558. * Initialize hw specifications.
  1559. */
  1560. retval = rt2500pci_probe_hw_mode(rt2x00dev);
  1561. if (retval)
  1562. return retval;
  1563. /*
  1564. * This device requires the atim queue and DMA-mapped skbs.
  1565. */
  1566. __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  1567. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  1568. /*
  1569. * Set the rssi offset.
  1570. */
  1571. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1572. return 0;
  1573. }
  1574. /*
  1575. * IEEE80211 stack callback functions.
  1576. */
  1577. static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
  1578. {
  1579. struct rt2x00_dev *rt2x00dev = hw->priv;
  1580. u64 tsf;
  1581. u32 reg;
  1582. rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
  1583. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1584. rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
  1585. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1586. return tsf;
  1587. }
  1588. static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
  1589. {
  1590. struct rt2x00_dev *rt2x00dev = hw->priv;
  1591. u32 reg;
  1592. rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
  1593. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1594. }
  1595. static const struct ieee80211_ops rt2500pci_mac80211_ops = {
  1596. .tx = rt2x00mac_tx,
  1597. .start = rt2x00mac_start,
  1598. .stop = rt2x00mac_stop,
  1599. .add_interface = rt2x00mac_add_interface,
  1600. .remove_interface = rt2x00mac_remove_interface,
  1601. .config = rt2x00mac_config,
  1602. .configure_filter = rt2x00mac_configure_filter,
  1603. .set_tim = rt2x00mac_set_tim,
  1604. .get_stats = rt2x00mac_get_stats,
  1605. .bss_info_changed = rt2x00mac_bss_info_changed,
  1606. .conf_tx = rt2x00mac_conf_tx,
  1607. .get_tx_stats = rt2x00mac_get_tx_stats,
  1608. .get_tsf = rt2500pci_get_tsf,
  1609. .tx_last_beacon = rt2500pci_tx_last_beacon,
  1610. .rfkill_poll = rt2x00mac_rfkill_poll,
  1611. };
  1612. static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
  1613. .irq_handler = rt2500pci_interrupt,
  1614. .probe_hw = rt2500pci_probe_hw,
  1615. .initialize = rt2x00pci_initialize,
  1616. .uninitialize = rt2x00pci_uninitialize,
  1617. .get_entry_state = rt2500pci_get_entry_state,
  1618. .clear_entry = rt2500pci_clear_entry,
  1619. .set_device_state = rt2500pci_set_device_state,
  1620. .rfkill_poll = rt2500pci_rfkill_poll,
  1621. .link_stats = rt2500pci_link_stats,
  1622. .reset_tuner = rt2500pci_reset_tuner,
  1623. .link_tuner = rt2500pci_link_tuner,
  1624. .write_tx_desc = rt2500pci_write_tx_desc,
  1625. .write_tx_data = rt2x00pci_write_tx_data,
  1626. .write_beacon = rt2500pci_write_beacon,
  1627. .kick_tx_queue = rt2500pci_kick_tx_queue,
  1628. .kill_tx_queue = rt2500pci_kill_tx_queue,
  1629. .fill_rxdone = rt2500pci_fill_rxdone,
  1630. .config_filter = rt2500pci_config_filter,
  1631. .config_intf = rt2500pci_config_intf,
  1632. .config_erp = rt2500pci_config_erp,
  1633. .config_ant = rt2500pci_config_ant,
  1634. .config = rt2500pci_config,
  1635. };
  1636. static const struct data_queue_desc rt2500pci_queue_rx = {
  1637. .entry_num = RX_ENTRIES,
  1638. .data_size = DATA_FRAME_SIZE,
  1639. .desc_size = RXD_DESC_SIZE,
  1640. .priv_size = sizeof(struct queue_entry_priv_pci),
  1641. };
  1642. static const struct data_queue_desc rt2500pci_queue_tx = {
  1643. .entry_num = TX_ENTRIES,
  1644. .data_size = DATA_FRAME_SIZE,
  1645. .desc_size = TXD_DESC_SIZE,
  1646. .priv_size = sizeof(struct queue_entry_priv_pci),
  1647. };
  1648. static const struct data_queue_desc rt2500pci_queue_bcn = {
  1649. .entry_num = BEACON_ENTRIES,
  1650. .data_size = MGMT_FRAME_SIZE,
  1651. .desc_size = TXD_DESC_SIZE,
  1652. .priv_size = sizeof(struct queue_entry_priv_pci),
  1653. };
  1654. static const struct data_queue_desc rt2500pci_queue_atim = {
  1655. .entry_num = ATIM_ENTRIES,
  1656. .data_size = DATA_FRAME_SIZE,
  1657. .desc_size = TXD_DESC_SIZE,
  1658. .priv_size = sizeof(struct queue_entry_priv_pci),
  1659. };
  1660. static const struct rt2x00_ops rt2500pci_ops = {
  1661. .name = KBUILD_MODNAME,
  1662. .max_sta_intf = 1,
  1663. .max_ap_intf = 1,
  1664. .eeprom_size = EEPROM_SIZE,
  1665. .rf_size = RF_SIZE,
  1666. .tx_queues = NUM_TX_QUEUES,
  1667. .rx = &rt2500pci_queue_rx,
  1668. .tx = &rt2500pci_queue_tx,
  1669. .bcn = &rt2500pci_queue_bcn,
  1670. .atim = &rt2500pci_queue_atim,
  1671. .lib = &rt2500pci_rt2x00_ops,
  1672. .hw = &rt2500pci_mac80211_ops,
  1673. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1674. .debugfs = &rt2500pci_rt2x00debug,
  1675. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1676. };
  1677. /*
  1678. * RT2500pci module information.
  1679. */
  1680. static struct pci_device_id rt2500pci_device_table[] = {
  1681. { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
  1682. { 0, }
  1683. };
  1684. MODULE_AUTHOR(DRV_PROJECT);
  1685. MODULE_VERSION(DRV_VERSION);
  1686. MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
  1687. MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
  1688. MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
  1689. MODULE_LICENSE("GPL");
  1690. static struct pci_driver rt2500pci_driver = {
  1691. .name = KBUILD_MODNAME,
  1692. .id_table = rt2500pci_device_table,
  1693. .probe = rt2x00pci_probe,
  1694. .remove = __devexit_p(rt2x00pci_remove),
  1695. .suspend = rt2x00pci_suspend,
  1696. .resume = rt2x00pci_resume,
  1697. };
  1698. static int __init rt2500pci_init(void)
  1699. {
  1700. return pci_register_driver(&rt2500pci_driver);
  1701. }
  1702. static void __exit rt2500pci_exit(void)
  1703. {
  1704. pci_unregister_driver(&rt2500pci_driver);
  1705. }
  1706. module_init(rt2500pci_init);
  1707. module_exit(rt2500pci_exit);