hw.c 106 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <asm/unaligned.h>
  18. #include "ath9k.h"
  19. #include "initvals.h"
  20. static int btcoex_enable;
  21. module_param(btcoex_enable, bool, 0);
  22. MODULE_PARM_DESC(btcoex_enable, "Enable Bluetooth coexistence support");
  23. #define ATH9K_CLOCK_RATE_CCK 22
  24. #define ATH9K_CLOCK_RATE_5GHZ_OFDM 40
  25. #define ATH9K_CLOCK_RATE_2GHZ_OFDM 44
  26. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  27. static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
  28. enum ath9k_ht_macmode macmode);
  29. static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
  30. struct ar5416_eeprom_def *pEepData,
  31. u32 reg, u32 value);
  32. static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
  33. static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
  34. /********************/
  35. /* Helper Functions */
  36. /********************/
  37. static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks)
  38. {
  39. struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
  40. if (!ah->curchan) /* should really check for CCK instead */
  41. return clks / ATH9K_CLOCK_RATE_CCK;
  42. if (conf->channel->band == IEEE80211_BAND_2GHZ)
  43. return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
  44. return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
  45. }
  46. static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks)
  47. {
  48. struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
  49. if (conf_is_ht40(conf))
  50. return ath9k_hw_mac_usec(ah, clks) / 2;
  51. else
  52. return ath9k_hw_mac_usec(ah, clks);
  53. }
  54. static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
  55. {
  56. struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
  57. if (!ah->curchan) /* should really check for CCK instead */
  58. return usecs *ATH9K_CLOCK_RATE_CCK;
  59. if (conf->channel->band == IEEE80211_BAND_2GHZ)
  60. return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
  61. return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
  62. }
  63. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  64. {
  65. struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
  66. if (conf_is_ht40(conf))
  67. return ath9k_hw_mac_clks(ah, usecs) * 2;
  68. else
  69. return ath9k_hw_mac_clks(ah, usecs);
  70. }
  71. /*
  72. * Read and write, they both share the same lock. We do this to serialize
  73. * reads and writes on Atheros 802.11n PCI devices only. This is required
  74. * as the FIFO on these devices can only accept sanely 2 requests. After
  75. * that the device goes bananas. Serializing the reads/writes prevents this
  76. * from happening.
  77. */
  78. void ath9k_iowrite32(struct ath_hw *ah, u32 reg_offset, u32 val)
  79. {
  80. if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
  81. unsigned long flags;
  82. spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags);
  83. iowrite32(val, ah->ah_sc->mem + reg_offset);
  84. spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags);
  85. } else
  86. iowrite32(val, ah->ah_sc->mem + reg_offset);
  87. }
  88. unsigned int ath9k_ioread32(struct ath_hw *ah, u32 reg_offset)
  89. {
  90. u32 val;
  91. if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
  92. unsigned long flags;
  93. spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags);
  94. val = ioread32(ah->ah_sc->mem + reg_offset);
  95. spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags);
  96. } else
  97. val = ioread32(ah->ah_sc->mem + reg_offset);
  98. return val;
  99. }
  100. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  101. {
  102. int i;
  103. BUG_ON(timeout < AH_TIME_QUANTUM);
  104. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  105. if ((REG_READ(ah, reg) & mask) == val)
  106. return true;
  107. udelay(AH_TIME_QUANTUM);
  108. }
  109. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  110. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  111. timeout, reg, REG_READ(ah, reg), mask, val);
  112. return false;
  113. }
  114. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  115. {
  116. u32 retval;
  117. int i;
  118. for (i = 0, retval = 0; i < n; i++) {
  119. retval = (retval << 1) | (val & 1);
  120. val >>= 1;
  121. }
  122. return retval;
  123. }
  124. bool ath9k_get_channel_edges(struct ath_hw *ah,
  125. u16 flags, u16 *low,
  126. u16 *high)
  127. {
  128. struct ath9k_hw_capabilities *pCap = &ah->caps;
  129. if (flags & CHANNEL_5GHZ) {
  130. *low = pCap->low_5ghz_chan;
  131. *high = pCap->high_5ghz_chan;
  132. return true;
  133. }
  134. if ((flags & CHANNEL_2GHZ)) {
  135. *low = pCap->low_2ghz_chan;
  136. *high = pCap->high_2ghz_chan;
  137. return true;
  138. }
  139. return false;
  140. }
  141. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  142. const struct ath_rate_table *rates,
  143. u32 frameLen, u16 rateix,
  144. bool shortPreamble)
  145. {
  146. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  147. u32 kbps;
  148. kbps = rates->info[rateix].ratekbps;
  149. if (kbps == 0)
  150. return 0;
  151. switch (rates->info[rateix].phy) {
  152. case WLAN_RC_PHY_CCK:
  153. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  154. if (shortPreamble && rates->info[rateix].short_preamble)
  155. phyTime >>= 1;
  156. numBits = frameLen << 3;
  157. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  158. break;
  159. case WLAN_RC_PHY_OFDM:
  160. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  161. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  162. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  163. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  164. txTime = OFDM_SIFS_TIME_QUARTER
  165. + OFDM_PREAMBLE_TIME_QUARTER
  166. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  167. } else if (ah->curchan &&
  168. IS_CHAN_HALF_RATE(ah->curchan)) {
  169. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  170. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  171. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  172. txTime = OFDM_SIFS_TIME_HALF +
  173. OFDM_PREAMBLE_TIME_HALF
  174. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  175. } else {
  176. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  177. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  178. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  179. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  180. + (numSymbols * OFDM_SYMBOL_TIME);
  181. }
  182. break;
  183. default:
  184. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  185. "Unknown phy %u (rate ix %u)\n",
  186. rates->info[rateix].phy, rateix);
  187. txTime = 0;
  188. break;
  189. }
  190. return txTime;
  191. }
  192. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  193. struct ath9k_channel *chan,
  194. struct chan_centers *centers)
  195. {
  196. int8_t extoff;
  197. if (!IS_CHAN_HT40(chan)) {
  198. centers->ctl_center = centers->ext_center =
  199. centers->synth_center = chan->channel;
  200. return;
  201. }
  202. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  203. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  204. centers->synth_center =
  205. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  206. extoff = 1;
  207. } else {
  208. centers->synth_center =
  209. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  210. extoff = -1;
  211. }
  212. centers->ctl_center =
  213. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  214. centers->ext_center =
  215. centers->synth_center + (extoff *
  216. ((ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_20) ?
  217. HT40_CHANNEL_CENTER_SHIFT : 15));
  218. }
  219. /******************/
  220. /* Chip Revisions */
  221. /******************/
  222. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  223. {
  224. u32 val;
  225. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  226. if (val == 0xFF) {
  227. val = REG_READ(ah, AR_SREV);
  228. ah->hw_version.macVersion =
  229. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  230. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  231. ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  232. } else {
  233. if (!AR_SREV_9100(ah))
  234. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  235. ah->hw_version.macRev = val & AR_SREV_REVISION;
  236. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  237. ah->is_pciexpress = true;
  238. }
  239. }
  240. static int ath9k_hw_get_radiorev(struct ath_hw *ah)
  241. {
  242. u32 val;
  243. int i;
  244. REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
  245. for (i = 0; i < 8; i++)
  246. REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
  247. val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
  248. val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
  249. return ath9k_hw_reverse_bits(val, 8);
  250. }
  251. /************************************/
  252. /* HW Attach, Detach, Init Routines */
  253. /************************************/
  254. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  255. {
  256. if (AR_SREV_9100(ah))
  257. return;
  258. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  259. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  260. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  261. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  262. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  263. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  264. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  265. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  266. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  267. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  268. }
  269. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  270. {
  271. u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
  272. u32 regHold[2];
  273. u32 patternData[4] = { 0x55555555,
  274. 0xaaaaaaaa,
  275. 0x66666666,
  276. 0x99999999 };
  277. int i, j;
  278. for (i = 0; i < 2; i++) {
  279. u32 addr = regAddr[i];
  280. u32 wrData, rdData;
  281. regHold[i] = REG_READ(ah, addr);
  282. for (j = 0; j < 0x100; j++) {
  283. wrData = (j << 16) | j;
  284. REG_WRITE(ah, addr, wrData);
  285. rdData = REG_READ(ah, addr);
  286. if (rdData != wrData) {
  287. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  288. "address test failed "
  289. "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  290. addr, wrData, rdData);
  291. return false;
  292. }
  293. }
  294. for (j = 0; j < 4; j++) {
  295. wrData = patternData[j];
  296. REG_WRITE(ah, addr, wrData);
  297. rdData = REG_READ(ah, addr);
  298. if (wrData != rdData) {
  299. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  300. "address test failed "
  301. "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  302. addr, wrData, rdData);
  303. return false;
  304. }
  305. }
  306. REG_WRITE(ah, regAddr[i], regHold[i]);
  307. }
  308. udelay(100);
  309. return true;
  310. }
  311. static const char *ath9k_hw_devname(u16 devid)
  312. {
  313. switch (devid) {
  314. case AR5416_DEVID_PCI:
  315. return "Atheros 5416";
  316. case AR5416_DEVID_PCIE:
  317. return "Atheros 5418";
  318. case AR9160_DEVID_PCI:
  319. return "Atheros 9160";
  320. case AR5416_AR9100_DEVID:
  321. return "Atheros 9100";
  322. case AR9280_DEVID_PCI:
  323. case AR9280_DEVID_PCIE:
  324. return "Atheros 9280";
  325. case AR9285_DEVID_PCIE:
  326. return "Atheros 9285";
  327. case AR5416_DEVID_AR9287_PCI:
  328. case AR5416_DEVID_AR9287_PCIE:
  329. return "Atheros 9287";
  330. }
  331. return NULL;
  332. }
  333. static void ath9k_hw_set_defaults(struct ath_hw *ah)
  334. {
  335. int i;
  336. ah->config.dma_beacon_response_time = 2;
  337. ah->config.sw_beacon_response_time = 10;
  338. ah->config.additional_swba_backoff = 0;
  339. ah->config.ack_6mb = 0x0;
  340. ah->config.cwm_ignore_extcca = 0;
  341. ah->config.pcie_powersave_enable = 0;
  342. ah->config.pcie_clock_req = 0;
  343. ah->config.pcie_waen = 0;
  344. ah->config.analog_shiftreg = 1;
  345. ah->config.ht_enable = 1;
  346. ah->config.ofdm_trig_low = 200;
  347. ah->config.ofdm_trig_high = 500;
  348. ah->config.cck_trig_high = 200;
  349. ah->config.cck_trig_low = 100;
  350. ah->config.enable_ani = 1;
  351. ah->config.diversity_control = 0;
  352. ah->config.antenna_switch_swap = 0;
  353. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  354. ah->config.spurchans[i][0] = AR_NO_SPUR;
  355. ah->config.spurchans[i][1] = AR_NO_SPUR;
  356. }
  357. ah->config.intr_mitigation = true;
  358. /*
  359. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  360. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  361. * This means we use it for all AR5416 devices, and the few
  362. * minor PCI AR9280 devices out there.
  363. *
  364. * Serialization is required because these devices do not handle
  365. * well the case of two concurrent reads/writes due to the latency
  366. * involved. During one read/write another read/write can be issued
  367. * on another CPU while the previous read/write may still be working
  368. * on our hardware, if we hit this case the hardware poops in a loop.
  369. * We prevent this by serializing reads and writes.
  370. *
  371. * This issue is not present on PCI-Express devices or pre-AR5416
  372. * devices (legacy, 802.11abg).
  373. */
  374. if (num_possible_cpus() > 1)
  375. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  376. }
  377. static struct ath_hw *ath9k_hw_newstate(u16 devid, struct ath_softc *sc,
  378. int *status)
  379. {
  380. struct ath_hw *ah;
  381. ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
  382. if (ah == NULL) {
  383. DPRINTF(sc, ATH_DBG_FATAL,
  384. "Cannot allocate memory for state block\n");
  385. *status = -ENOMEM;
  386. return NULL;
  387. }
  388. ah->ah_sc = sc;
  389. ah->hw_version.magic = AR5416_MAGIC;
  390. ah->regulatory.country_code = CTRY_DEFAULT;
  391. ah->hw_version.devid = devid;
  392. ah->hw_version.subvendorid = 0;
  393. ah->ah_flags = 0;
  394. if ((devid == AR5416_AR9100_DEVID))
  395. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  396. if (!AR_SREV_9100(ah))
  397. ah->ah_flags = AH_USE_EEPROM;
  398. ah->regulatory.power_limit = MAX_RATE_POWER;
  399. ah->regulatory.tp_scale = ATH9K_TP_SCALE_MAX;
  400. ah->atim_window = 0;
  401. ah->diversity_control = ah->config.diversity_control;
  402. ah->antenna_switch_swap =
  403. ah->config.antenna_switch_swap;
  404. ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
  405. ah->beacon_interval = 100;
  406. ah->enable_32kHz_clock = DONT_USE_32KHZ;
  407. ah->slottime = (u32) -1;
  408. ah->acktimeout = (u32) -1;
  409. ah->ctstimeout = (u32) -1;
  410. ah->globaltxtimeout = (u32) -1;
  411. ah->gbeacon_rate = 0;
  412. ah->power_mode = ATH9K_PM_UNDEFINED;
  413. return ah;
  414. }
  415. static int ath9k_hw_rfattach(struct ath_hw *ah)
  416. {
  417. bool rfStatus = false;
  418. int ecode = 0;
  419. rfStatus = ath9k_hw_init_rf(ah, &ecode);
  420. if (!rfStatus) {
  421. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  422. "RF setup failed, status: %u\n", ecode);
  423. return ecode;
  424. }
  425. return 0;
  426. }
  427. static int ath9k_hw_rf_claim(struct ath_hw *ah)
  428. {
  429. u32 val;
  430. REG_WRITE(ah, AR_PHY(0), 0x00000007);
  431. val = ath9k_hw_get_radiorev(ah);
  432. switch (val & AR_RADIO_SREV_MAJOR) {
  433. case 0:
  434. val = AR_RAD5133_SREV_MAJOR;
  435. break;
  436. case AR_RAD5133_SREV_MAJOR:
  437. case AR_RAD5122_SREV_MAJOR:
  438. case AR_RAD2133_SREV_MAJOR:
  439. case AR_RAD2122_SREV_MAJOR:
  440. break;
  441. default:
  442. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  443. "Radio Chip Rev 0x%02X not supported\n",
  444. val & AR_RADIO_SREV_MAJOR);
  445. return -EOPNOTSUPP;
  446. }
  447. ah->hw_version.analog5GhzRev = val;
  448. return 0;
  449. }
  450. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  451. {
  452. u32 sum;
  453. int i;
  454. u16 eeval;
  455. sum = 0;
  456. for (i = 0; i < 3; i++) {
  457. eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
  458. sum += eeval;
  459. ah->macaddr[2 * i] = eeval >> 8;
  460. ah->macaddr[2 * i + 1] = eeval & 0xff;
  461. }
  462. if (sum == 0 || sum == 0xffff * 3)
  463. return -EADDRNOTAVAIL;
  464. return 0;
  465. }
  466. static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
  467. {
  468. u32 rxgain_type;
  469. if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
  470. rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
  471. if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
  472. INIT_INI_ARRAY(&ah->iniModesRxGain,
  473. ar9280Modes_backoff_13db_rxgain_9280_2,
  474. ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
  475. else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
  476. INIT_INI_ARRAY(&ah->iniModesRxGain,
  477. ar9280Modes_backoff_23db_rxgain_9280_2,
  478. ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
  479. else
  480. INIT_INI_ARRAY(&ah->iniModesRxGain,
  481. ar9280Modes_original_rxgain_9280_2,
  482. ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
  483. } else {
  484. INIT_INI_ARRAY(&ah->iniModesRxGain,
  485. ar9280Modes_original_rxgain_9280_2,
  486. ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
  487. }
  488. }
  489. static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
  490. {
  491. u32 txgain_type;
  492. if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
  493. txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
  494. if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
  495. INIT_INI_ARRAY(&ah->iniModesTxGain,
  496. ar9280Modes_high_power_tx_gain_9280_2,
  497. ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
  498. else
  499. INIT_INI_ARRAY(&ah->iniModesTxGain,
  500. ar9280Modes_original_tx_gain_9280_2,
  501. ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
  502. } else {
  503. INIT_INI_ARRAY(&ah->iniModesTxGain,
  504. ar9280Modes_original_tx_gain_9280_2,
  505. ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
  506. }
  507. }
  508. static int ath9k_hw_post_attach(struct ath_hw *ah)
  509. {
  510. int ecode;
  511. if (!ath9k_hw_chip_test(ah))
  512. return -ENODEV;
  513. ecode = ath9k_hw_rf_claim(ah);
  514. if (ecode != 0)
  515. return ecode;
  516. ecode = ath9k_hw_eeprom_attach(ah);
  517. if (ecode != 0)
  518. return ecode;
  519. DPRINTF(ah->ah_sc, ATH_DBG_CONFIG, "Eeprom VER: %d, REV: %d\n",
  520. ah->eep_ops->get_eeprom_ver(ah), ah->eep_ops->get_eeprom_rev(ah));
  521. ecode = ath9k_hw_rfattach(ah);
  522. if (ecode != 0)
  523. return ecode;
  524. if (!AR_SREV_9100(ah)) {
  525. ath9k_hw_ani_setup(ah);
  526. ath9k_hw_ani_attach(ah);
  527. }
  528. return 0;
  529. }
  530. static struct ath_hw *ath9k_hw_do_attach(u16 devid, struct ath_softc *sc,
  531. int *status)
  532. {
  533. struct ath_hw *ah;
  534. int ecode;
  535. u32 i, j;
  536. ah = ath9k_hw_newstate(devid, sc, status);
  537. if (ah == NULL)
  538. return NULL;
  539. ath9k_hw_set_defaults(ah);
  540. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  541. DPRINTF(sc, ATH_DBG_FATAL, "Couldn't reset chip\n");
  542. ecode = -EIO;
  543. goto bad;
  544. }
  545. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  546. DPRINTF(sc, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
  547. ecode = -EIO;
  548. goto bad;
  549. }
  550. if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  551. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  552. (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
  553. ah->config.serialize_regmode =
  554. SER_REG_MODE_ON;
  555. } else {
  556. ah->config.serialize_regmode =
  557. SER_REG_MODE_OFF;
  558. }
  559. }
  560. DPRINTF(sc, ATH_DBG_RESET, "serialize_regmode is %d\n",
  561. ah->config.serialize_regmode);
  562. if ((ah->hw_version.macVersion != AR_SREV_VERSION_5416_PCI) &&
  563. (ah->hw_version.macVersion != AR_SREV_VERSION_5416_PCIE) &&
  564. (ah->hw_version.macVersion != AR_SREV_VERSION_9160) &&
  565. (!AR_SREV_9100(ah)) && (!AR_SREV_9280(ah)) &&
  566. (!AR_SREV_9285(ah)) && (!AR_SREV_9287(ah))) {
  567. DPRINTF(sc, ATH_DBG_FATAL,
  568. "Mac Chip Rev 0x%02x.%x is not supported by "
  569. "this driver\n", ah->hw_version.macVersion,
  570. ah->hw_version.macRev);
  571. ecode = -EOPNOTSUPP;
  572. goto bad;
  573. }
  574. if (AR_SREV_9100(ah)) {
  575. ah->iq_caldata.calData = &iq_cal_multi_sample;
  576. ah->supp_cals = IQ_MISMATCH_CAL;
  577. ah->is_pciexpress = false;
  578. }
  579. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  580. if (AR_SREV_9160_10_OR_LATER(ah)) {
  581. if (AR_SREV_9280_10_OR_LATER(ah)) {
  582. ah->iq_caldata.calData = &iq_cal_single_sample;
  583. ah->adcgain_caldata.calData =
  584. &adc_gain_cal_single_sample;
  585. ah->adcdc_caldata.calData =
  586. &adc_dc_cal_single_sample;
  587. ah->adcdc_calinitdata.calData =
  588. &adc_init_dc_cal;
  589. } else {
  590. ah->iq_caldata.calData = &iq_cal_multi_sample;
  591. ah->adcgain_caldata.calData =
  592. &adc_gain_cal_multi_sample;
  593. ah->adcdc_caldata.calData =
  594. &adc_dc_cal_multi_sample;
  595. ah->adcdc_calinitdata.calData =
  596. &adc_init_dc_cal;
  597. }
  598. ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
  599. }
  600. ah->ani_function = ATH9K_ANI_ALL;
  601. if (AR_SREV_9280_10_OR_LATER(ah))
  602. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  603. if (AR_SREV_9287_11_OR_LATER(ah)) {
  604. INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
  605. ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
  606. INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
  607. ARRAY_SIZE(ar9287Common_9287_1_1), 2);
  608. if (ah->config.pcie_clock_req)
  609. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  610. ar9287PciePhy_clkreq_off_L1_9287_1_1,
  611. ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
  612. else
  613. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  614. ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
  615. ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
  616. 2);
  617. } else if (AR_SREV_9287_10_OR_LATER(ah)) {
  618. INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
  619. ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
  620. INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
  621. ARRAY_SIZE(ar9287Common_9287_1_0), 2);
  622. if (ah->config.pcie_clock_req)
  623. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  624. ar9287PciePhy_clkreq_off_L1_9287_1_0,
  625. ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
  626. else
  627. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  628. ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
  629. ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
  630. 2);
  631. } else if (AR_SREV_9285_12_OR_LATER(ah)) {
  632. INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
  633. ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
  634. INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
  635. ARRAY_SIZE(ar9285Common_9285_1_2), 2);
  636. if (ah->config.pcie_clock_req) {
  637. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  638. ar9285PciePhy_clkreq_off_L1_9285_1_2,
  639. ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
  640. } else {
  641. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  642. ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
  643. ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
  644. 2);
  645. }
  646. } else if (AR_SREV_9285_10_OR_LATER(ah)) {
  647. INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
  648. ARRAY_SIZE(ar9285Modes_9285), 6);
  649. INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
  650. ARRAY_SIZE(ar9285Common_9285), 2);
  651. if (ah->config.pcie_clock_req) {
  652. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  653. ar9285PciePhy_clkreq_off_L1_9285,
  654. ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
  655. } else {
  656. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  657. ar9285PciePhy_clkreq_always_on_L1_9285,
  658. ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
  659. }
  660. } else if (AR_SREV_9280_20_OR_LATER(ah)) {
  661. INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
  662. ARRAY_SIZE(ar9280Modes_9280_2), 6);
  663. INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
  664. ARRAY_SIZE(ar9280Common_9280_2), 2);
  665. if (ah->config.pcie_clock_req) {
  666. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  667. ar9280PciePhy_clkreq_off_L1_9280,
  668. ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
  669. } else {
  670. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  671. ar9280PciePhy_clkreq_always_on_L1_9280,
  672. ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
  673. }
  674. INIT_INI_ARRAY(&ah->iniModesAdditional,
  675. ar9280Modes_fast_clock_9280_2,
  676. ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
  677. } else if (AR_SREV_9280_10_OR_LATER(ah)) {
  678. INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
  679. ARRAY_SIZE(ar9280Modes_9280), 6);
  680. INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
  681. ARRAY_SIZE(ar9280Common_9280), 2);
  682. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  683. INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
  684. ARRAY_SIZE(ar5416Modes_9160), 6);
  685. INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
  686. ARRAY_SIZE(ar5416Common_9160), 2);
  687. INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
  688. ARRAY_SIZE(ar5416Bank0_9160), 2);
  689. INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
  690. ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
  691. INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
  692. ARRAY_SIZE(ar5416Bank1_9160), 2);
  693. INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
  694. ARRAY_SIZE(ar5416Bank2_9160), 2);
  695. INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
  696. ARRAY_SIZE(ar5416Bank3_9160), 3);
  697. INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
  698. ARRAY_SIZE(ar5416Bank6_9160), 3);
  699. INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
  700. ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
  701. INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
  702. ARRAY_SIZE(ar5416Bank7_9160), 2);
  703. if (AR_SREV_9160_11(ah)) {
  704. INIT_INI_ARRAY(&ah->iniAddac,
  705. ar5416Addac_91601_1,
  706. ARRAY_SIZE(ar5416Addac_91601_1), 2);
  707. } else {
  708. INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
  709. ARRAY_SIZE(ar5416Addac_9160), 2);
  710. }
  711. } else if (AR_SREV_9100_OR_LATER(ah)) {
  712. INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
  713. ARRAY_SIZE(ar5416Modes_9100), 6);
  714. INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
  715. ARRAY_SIZE(ar5416Common_9100), 2);
  716. INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
  717. ARRAY_SIZE(ar5416Bank0_9100), 2);
  718. INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
  719. ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
  720. INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
  721. ARRAY_SIZE(ar5416Bank1_9100), 2);
  722. INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
  723. ARRAY_SIZE(ar5416Bank2_9100), 2);
  724. INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
  725. ARRAY_SIZE(ar5416Bank3_9100), 3);
  726. INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
  727. ARRAY_SIZE(ar5416Bank6_9100), 3);
  728. INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
  729. ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
  730. INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
  731. ARRAY_SIZE(ar5416Bank7_9100), 2);
  732. INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
  733. ARRAY_SIZE(ar5416Addac_9100), 2);
  734. } else {
  735. INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
  736. ARRAY_SIZE(ar5416Modes), 6);
  737. INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
  738. ARRAY_SIZE(ar5416Common), 2);
  739. INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
  740. ARRAY_SIZE(ar5416Bank0), 2);
  741. INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
  742. ARRAY_SIZE(ar5416BB_RfGain), 3);
  743. INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
  744. ARRAY_SIZE(ar5416Bank1), 2);
  745. INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
  746. ARRAY_SIZE(ar5416Bank2), 2);
  747. INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
  748. ARRAY_SIZE(ar5416Bank3), 3);
  749. INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
  750. ARRAY_SIZE(ar5416Bank6), 3);
  751. INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
  752. ARRAY_SIZE(ar5416Bank6TPC), 3);
  753. INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
  754. ARRAY_SIZE(ar5416Bank7), 2);
  755. INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
  756. ARRAY_SIZE(ar5416Addac), 2);
  757. }
  758. if (ah->is_pciexpress)
  759. ath9k_hw_configpcipowersave(ah, 0);
  760. else
  761. ath9k_hw_disablepcie(ah);
  762. ecode = ath9k_hw_post_attach(ah);
  763. if (ecode != 0)
  764. goto bad;
  765. if (AR_SREV_9287_11(ah))
  766. INIT_INI_ARRAY(&ah->iniModesRxGain,
  767. ar9287Modes_rx_gain_9287_1_1,
  768. ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
  769. else if (AR_SREV_9287_10(ah))
  770. INIT_INI_ARRAY(&ah->iniModesRxGain,
  771. ar9287Modes_rx_gain_9287_1_0,
  772. ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
  773. else if (AR_SREV_9280_20(ah))
  774. ath9k_hw_init_rxgain_ini(ah);
  775. if (AR_SREV_9287_11(ah)) {
  776. INIT_INI_ARRAY(&ah->iniModesTxGain,
  777. ar9287Modes_tx_gain_9287_1_1,
  778. ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
  779. } else if (AR_SREV_9287_10(ah)) {
  780. INIT_INI_ARRAY(&ah->iniModesTxGain,
  781. ar9287Modes_tx_gain_9287_1_0,
  782. ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
  783. } else if (AR_SREV_9280_20(ah)) {
  784. ath9k_hw_init_txgain_ini(ah);
  785. } else if (AR_SREV_9285_12_OR_LATER(ah)) {
  786. u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
  787. /* txgain table */
  788. if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
  789. INIT_INI_ARRAY(&ah->iniModesTxGain,
  790. ar9285Modes_high_power_tx_gain_9285_1_2,
  791. ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
  792. } else {
  793. INIT_INI_ARRAY(&ah->iniModesTxGain,
  794. ar9285Modes_original_tx_gain_9285_1_2,
  795. ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
  796. }
  797. }
  798. ath9k_hw_fill_cap_info(ah);
  799. if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
  800. test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) {
  801. /* EEPROM Fixup */
  802. for (i = 0; i < ah->iniModes.ia_rows; i++) {
  803. u32 reg = INI_RA(&ah->iniModes, i, 0);
  804. for (j = 1; j < ah->iniModes.ia_columns; j++) {
  805. u32 val = INI_RA(&ah->iniModes, i, j);
  806. INI_RA(&ah->iniModes, i, j) =
  807. ath9k_hw_ini_fixup(ah,
  808. &ah->eeprom.def,
  809. reg, val);
  810. }
  811. }
  812. }
  813. ecode = ath9k_hw_init_macaddr(ah);
  814. if (ecode != 0) {
  815. DPRINTF(sc, ATH_DBG_FATAL,
  816. "Failed to initialize MAC address\n");
  817. goto bad;
  818. }
  819. if (AR_SREV_9285(ah))
  820. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  821. else
  822. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  823. ath9k_init_nfcal_hist_buffer(ah);
  824. return ah;
  825. bad:
  826. if (ah)
  827. ath9k_hw_detach(ah);
  828. if (status)
  829. *status = ecode;
  830. return NULL;
  831. }
  832. static void ath9k_hw_init_bb(struct ath_hw *ah,
  833. struct ath9k_channel *chan)
  834. {
  835. u32 synthDelay;
  836. synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  837. if (IS_CHAN_B(chan))
  838. synthDelay = (4 * synthDelay) / 22;
  839. else
  840. synthDelay /= 10;
  841. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
  842. udelay(synthDelay + BASE_ACTIVATE_DELAY);
  843. }
  844. static void ath9k_hw_init_qos(struct ath_hw *ah)
  845. {
  846. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  847. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  848. REG_WRITE(ah, AR_QOS_NO_ACK,
  849. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  850. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  851. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  852. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  853. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  854. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  855. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  856. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  857. }
  858. static void ath9k_hw_init_pll(struct ath_hw *ah,
  859. struct ath9k_channel *chan)
  860. {
  861. u32 pll;
  862. if (AR_SREV_9100(ah)) {
  863. if (chan && IS_CHAN_5GHZ(chan))
  864. pll = 0x1450;
  865. else
  866. pll = 0x1458;
  867. } else {
  868. if (AR_SREV_9280_10_OR_LATER(ah)) {
  869. pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
  870. if (chan && IS_CHAN_HALF_RATE(chan))
  871. pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
  872. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  873. pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
  874. if (chan && IS_CHAN_5GHZ(chan)) {
  875. pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
  876. if (AR_SREV_9280_20(ah)) {
  877. if (((chan->channel % 20) == 0)
  878. || ((chan->channel % 10) == 0))
  879. pll = 0x2850;
  880. else
  881. pll = 0x142c;
  882. }
  883. } else {
  884. pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
  885. }
  886. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  887. pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
  888. if (chan && IS_CHAN_HALF_RATE(chan))
  889. pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
  890. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  891. pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
  892. if (chan && IS_CHAN_5GHZ(chan))
  893. pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
  894. else
  895. pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
  896. } else {
  897. pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
  898. if (chan && IS_CHAN_HALF_RATE(chan))
  899. pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
  900. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  901. pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
  902. if (chan && IS_CHAN_5GHZ(chan))
  903. pll |= SM(0xa, AR_RTC_PLL_DIV);
  904. else
  905. pll |= SM(0xb, AR_RTC_PLL_DIV);
  906. }
  907. }
  908. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  909. udelay(RTC_PLL_SETTLE_DELAY);
  910. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  911. }
  912. static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
  913. {
  914. int rx_chainmask, tx_chainmask;
  915. rx_chainmask = ah->rxchainmask;
  916. tx_chainmask = ah->txchainmask;
  917. switch (rx_chainmask) {
  918. case 0x5:
  919. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  920. AR_PHY_SWAP_ALT_CHAIN);
  921. case 0x3:
  922. if (((ah)->hw_version.macVersion <= AR_SREV_VERSION_9160)) {
  923. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
  924. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
  925. break;
  926. }
  927. case 0x1:
  928. case 0x2:
  929. case 0x7:
  930. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
  931. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
  932. break;
  933. default:
  934. break;
  935. }
  936. REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
  937. if (tx_chainmask == 0x5) {
  938. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  939. AR_PHY_SWAP_ALT_CHAIN);
  940. }
  941. if (AR_SREV_9100(ah))
  942. REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
  943. REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
  944. }
  945. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  946. enum nl80211_iftype opmode)
  947. {
  948. ah->mask_reg = AR_IMR_TXERR |
  949. AR_IMR_TXURN |
  950. AR_IMR_RXERR |
  951. AR_IMR_RXORN |
  952. AR_IMR_BCNMISC;
  953. if (ah->config.intr_mitigation)
  954. ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  955. else
  956. ah->mask_reg |= AR_IMR_RXOK;
  957. ah->mask_reg |= AR_IMR_TXOK;
  958. if (opmode == NL80211_IFTYPE_AP)
  959. ah->mask_reg |= AR_IMR_MIB;
  960. REG_WRITE(ah, AR_IMR, ah->mask_reg);
  961. REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
  962. if (!AR_SREV_9100(ah)) {
  963. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  964. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
  965. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  966. }
  967. }
  968. static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  969. {
  970. if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
  971. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad ack timeout %u\n", us);
  972. ah->acktimeout = (u32) -1;
  973. return false;
  974. } else {
  975. REG_RMW_FIELD(ah, AR_TIME_OUT,
  976. AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
  977. ah->acktimeout = us;
  978. return true;
  979. }
  980. }
  981. static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  982. {
  983. if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
  984. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad cts timeout %u\n", us);
  985. ah->ctstimeout = (u32) -1;
  986. return false;
  987. } else {
  988. REG_RMW_FIELD(ah, AR_TIME_OUT,
  989. AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
  990. ah->ctstimeout = us;
  991. return true;
  992. }
  993. }
  994. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  995. {
  996. if (tu > 0xFFFF) {
  997. DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
  998. "bad global tx timeout %u\n", tu);
  999. ah->globaltxtimeout = (u32) -1;
  1000. return false;
  1001. } else {
  1002. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  1003. ah->globaltxtimeout = tu;
  1004. return true;
  1005. }
  1006. }
  1007. static void ath9k_hw_init_user_settings(struct ath_hw *ah)
  1008. {
  1009. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
  1010. ah->misc_mode);
  1011. if (ah->misc_mode != 0)
  1012. REG_WRITE(ah, AR_PCU_MISC,
  1013. REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
  1014. if (ah->slottime != (u32) -1)
  1015. ath9k_hw_setslottime(ah, ah->slottime);
  1016. if (ah->acktimeout != (u32) -1)
  1017. ath9k_hw_set_ack_timeout(ah, ah->acktimeout);
  1018. if (ah->ctstimeout != (u32) -1)
  1019. ath9k_hw_set_cts_timeout(ah, ah->ctstimeout);
  1020. if (ah->globaltxtimeout != (u32) -1)
  1021. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  1022. }
  1023. const char *ath9k_hw_probe(u16 vendorid, u16 devid)
  1024. {
  1025. return vendorid == ATHEROS_VENDOR_ID ?
  1026. ath9k_hw_devname(devid) : NULL;
  1027. }
  1028. void ath9k_hw_detach(struct ath_hw *ah)
  1029. {
  1030. if (!AR_SREV_9100(ah))
  1031. ath9k_hw_ani_detach(ah);
  1032. ath9k_hw_rfdetach(ah);
  1033. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  1034. kfree(ah);
  1035. }
  1036. struct ath_hw *ath9k_hw_attach(u16 devid, struct ath_softc *sc, int *error)
  1037. {
  1038. struct ath_hw *ah = NULL;
  1039. switch (devid) {
  1040. case AR5416_DEVID_PCI:
  1041. case AR5416_DEVID_PCIE:
  1042. case AR5416_AR9100_DEVID:
  1043. case AR9160_DEVID_PCI:
  1044. case AR9280_DEVID_PCI:
  1045. case AR9280_DEVID_PCIE:
  1046. case AR9285_DEVID_PCIE:
  1047. case AR5416_DEVID_AR9287_PCI:
  1048. case AR5416_DEVID_AR9287_PCIE:
  1049. ah = ath9k_hw_do_attach(devid, sc, error);
  1050. break;
  1051. default:
  1052. *error = -ENXIO;
  1053. break;
  1054. }
  1055. return ah;
  1056. }
  1057. /*******/
  1058. /* INI */
  1059. /*******/
  1060. static void ath9k_hw_override_ini(struct ath_hw *ah,
  1061. struct ath9k_channel *chan)
  1062. {
  1063. /*
  1064. * Set the RX_ABORT and RX_DIS and clear if off only after
  1065. * RXE is set for MAC. This prevents frames with corrupted
  1066. * descriptor status.
  1067. */
  1068. REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
  1069. if (!AR_SREV_5416_20_OR_LATER(ah) ||
  1070. AR_SREV_9280_10_OR_LATER(ah))
  1071. return;
  1072. REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
  1073. }
  1074. static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
  1075. struct ar5416_eeprom_def *pEepData,
  1076. u32 reg, u32 value)
  1077. {
  1078. struct base_eep_header *pBase = &(pEepData->baseEepHeader);
  1079. switch (ah->hw_version.devid) {
  1080. case AR9280_DEVID_PCI:
  1081. if (reg == 0x7894) {
  1082. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1083. "ini VAL: %x EEPROM: %x\n", value,
  1084. (pBase->version & 0xff));
  1085. if ((pBase->version & 0xff) > 0x0a) {
  1086. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1087. "PWDCLKIND: %d\n",
  1088. pBase->pwdclkind);
  1089. value &= ~AR_AN_TOP2_PWDCLKIND;
  1090. value |= AR_AN_TOP2_PWDCLKIND &
  1091. (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
  1092. } else {
  1093. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1094. "PWDCLKIND Earlier Rev\n");
  1095. }
  1096. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1097. "final ini VAL: %x\n", value);
  1098. }
  1099. break;
  1100. }
  1101. return value;
  1102. }
  1103. static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
  1104. struct ar5416_eeprom_def *pEepData,
  1105. u32 reg, u32 value)
  1106. {
  1107. if (ah->eep_map == EEP_MAP_4KBITS)
  1108. return value;
  1109. else
  1110. return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
  1111. }
  1112. static void ath9k_olc_init(struct ath_hw *ah)
  1113. {
  1114. u32 i;
  1115. for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
  1116. ah->originalGain[i] =
  1117. MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
  1118. AR_PHY_TX_GAIN);
  1119. ah->PDADCdelta = 0;
  1120. }
  1121. static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
  1122. struct ath9k_channel *chan)
  1123. {
  1124. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  1125. if (IS_CHAN_B(chan))
  1126. ctl |= CTL_11B;
  1127. else if (IS_CHAN_G(chan))
  1128. ctl |= CTL_11G;
  1129. else
  1130. ctl |= CTL_11A;
  1131. return ctl;
  1132. }
  1133. static int ath9k_hw_process_ini(struct ath_hw *ah,
  1134. struct ath9k_channel *chan,
  1135. enum ath9k_ht_macmode macmode)
  1136. {
  1137. int i, regWrites = 0;
  1138. struct ieee80211_channel *channel = chan->chan;
  1139. u32 modesIndex, freqIndex;
  1140. switch (chan->chanmode) {
  1141. case CHANNEL_A:
  1142. case CHANNEL_A_HT20:
  1143. modesIndex = 1;
  1144. freqIndex = 1;
  1145. break;
  1146. case CHANNEL_A_HT40PLUS:
  1147. case CHANNEL_A_HT40MINUS:
  1148. modesIndex = 2;
  1149. freqIndex = 1;
  1150. break;
  1151. case CHANNEL_G:
  1152. case CHANNEL_G_HT20:
  1153. case CHANNEL_B:
  1154. modesIndex = 4;
  1155. freqIndex = 2;
  1156. break;
  1157. case CHANNEL_G_HT40PLUS:
  1158. case CHANNEL_G_HT40MINUS:
  1159. modesIndex = 3;
  1160. freqIndex = 2;
  1161. break;
  1162. default:
  1163. return -EINVAL;
  1164. }
  1165. REG_WRITE(ah, AR_PHY(0), 0x00000007);
  1166. REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
  1167. ah->eep_ops->set_addac(ah, chan);
  1168. if (AR_SREV_5416_22_OR_LATER(ah)) {
  1169. REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
  1170. } else {
  1171. struct ar5416IniArray temp;
  1172. u32 addacSize =
  1173. sizeof(u32) * ah->iniAddac.ia_rows *
  1174. ah->iniAddac.ia_columns;
  1175. memcpy(ah->addac5416_21,
  1176. ah->iniAddac.ia_array, addacSize);
  1177. (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
  1178. temp.ia_array = ah->addac5416_21;
  1179. temp.ia_columns = ah->iniAddac.ia_columns;
  1180. temp.ia_rows = ah->iniAddac.ia_rows;
  1181. REG_WRITE_ARRAY(&temp, 1, regWrites);
  1182. }
  1183. REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
  1184. for (i = 0; i < ah->iniModes.ia_rows; i++) {
  1185. u32 reg = INI_RA(&ah->iniModes, i, 0);
  1186. u32 val = INI_RA(&ah->iniModes, i, modesIndex);
  1187. REG_WRITE(ah, reg, val);
  1188. if (reg >= 0x7800 && reg < 0x78a0
  1189. && ah->config.analog_shiftreg) {
  1190. udelay(100);
  1191. }
  1192. DO_DELAY(regWrites);
  1193. }
  1194. if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
  1195. REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
  1196. if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
  1197. AR_SREV_9287_10_OR_LATER(ah))
  1198. REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
  1199. for (i = 0; i < ah->iniCommon.ia_rows; i++) {
  1200. u32 reg = INI_RA(&ah->iniCommon, i, 0);
  1201. u32 val = INI_RA(&ah->iniCommon, i, 1);
  1202. REG_WRITE(ah, reg, val);
  1203. if (reg >= 0x7800 && reg < 0x78a0
  1204. && ah->config.analog_shiftreg) {
  1205. udelay(100);
  1206. }
  1207. DO_DELAY(regWrites);
  1208. }
  1209. ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
  1210. if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
  1211. REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
  1212. regWrites);
  1213. }
  1214. ath9k_hw_override_ini(ah, chan);
  1215. ath9k_hw_set_regs(ah, chan, macmode);
  1216. ath9k_hw_init_chain_masks(ah);
  1217. if (OLC_FOR_AR9280_20_LATER)
  1218. ath9k_olc_init(ah);
  1219. ah->eep_ops->set_txpower(ah, chan,
  1220. ath9k_regd_get_ctl(&ah->regulatory, chan),
  1221. channel->max_antenna_gain * 2,
  1222. channel->max_power * 2,
  1223. min((u32) MAX_RATE_POWER,
  1224. (u32) ah->regulatory.power_limit));
  1225. if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
  1226. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  1227. "ar5416SetRfRegs failed\n");
  1228. return -EIO;
  1229. }
  1230. return 0;
  1231. }
  1232. /****************************************/
  1233. /* Reset and Channel Switching Routines */
  1234. /****************************************/
  1235. static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
  1236. {
  1237. u32 rfMode = 0;
  1238. if (chan == NULL)
  1239. return;
  1240. rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
  1241. ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
  1242. if (!AR_SREV_9280_10_OR_LATER(ah))
  1243. rfMode |= (IS_CHAN_5GHZ(chan)) ?
  1244. AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
  1245. if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
  1246. rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
  1247. REG_WRITE(ah, AR_PHY_MODE, rfMode);
  1248. }
  1249. static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
  1250. {
  1251. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
  1252. }
  1253. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  1254. {
  1255. u32 regval;
  1256. regval = REG_READ(ah, AR_AHB_MODE);
  1257. REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
  1258. regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
  1259. REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
  1260. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  1261. regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
  1262. REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
  1263. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  1264. if (AR_SREV_9285(ah)) {
  1265. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  1266. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  1267. } else {
  1268. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  1269. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  1270. }
  1271. }
  1272. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  1273. {
  1274. u32 val;
  1275. val = REG_READ(ah, AR_STA_ID1);
  1276. val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
  1277. switch (opmode) {
  1278. case NL80211_IFTYPE_AP:
  1279. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
  1280. | AR_STA_ID1_KSRCH_MODE);
  1281. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1282. break;
  1283. case NL80211_IFTYPE_ADHOC:
  1284. case NL80211_IFTYPE_MESH_POINT:
  1285. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
  1286. | AR_STA_ID1_KSRCH_MODE);
  1287. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1288. break;
  1289. case NL80211_IFTYPE_STATION:
  1290. case NL80211_IFTYPE_MONITOR:
  1291. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
  1292. break;
  1293. }
  1294. }
  1295. static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
  1296. u32 coef_scaled,
  1297. u32 *coef_mantissa,
  1298. u32 *coef_exponent)
  1299. {
  1300. u32 coef_exp, coef_man;
  1301. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  1302. if ((coef_scaled >> coef_exp) & 0x1)
  1303. break;
  1304. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  1305. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  1306. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  1307. *coef_exponent = coef_exp - 16;
  1308. }
  1309. static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
  1310. struct ath9k_channel *chan)
  1311. {
  1312. u32 coef_scaled, ds_coef_exp, ds_coef_man;
  1313. u32 clockMhzScaled = 0x64000000;
  1314. struct chan_centers centers;
  1315. if (IS_CHAN_HALF_RATE(chan))
  1316. clockMhzScaled = clockMhzScaled >> 1;
  1317. else if (IS_CHAN_QUARTER_RATE(chan))
  1318. clockMhzScaled = clockMhzScaled >> 2;
  1319. ath9k_hw_get_channel_centers(ah, chan, &centers);
  1320. coef_scaled = clockMhzScaled / centers.synth_center;
  1321. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  1322. &ds_coef_exp);
  1323. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  1324. AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
  1325. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  1326. AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
  1327. coef_scaled = (9 * coef_scaled) / 10;
  1328. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  1329. &ds_coef_exp);
  1330. REG_RMW_FIELD(ah, AR_PHY_HALFGI,
  1331. AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
  1332. REG_RMW_FIELD(ah, AR_PHY_HALFGI,
  1333. AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
  1334. }
  1335. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  1336. {
  1337. u32 rst_flags;
  1338. u32 tmpReg;
  1339. if (AR_SREV_9100(ah)) {
  1340. u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
  1341. val &= ~AR_RTC_DERIVED_CLK_PERIOD;
  1342. val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
  1343. REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
  1344. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  1345. }
  1346. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1347. AR_RTC_FORCE_WAKE_ON_INT);
  1348. if (AR_SREV_9100(ah)) {
  1349. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  1350. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  1351. } else {
  1352. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  1353. if (tmpReg &
  1354. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  1355. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  1356. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  1357. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1358. } else {
  1359. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1360. }
  1361. rst_flags = AR_RTC_RC_MAC_WARM;
  1362. if (type == ATH9K_RESET_COLD)
  1363. rst_flags |= AR_RTC_RC_MAC_COLD;
  1364. }
  1365. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  1366. udelay(50);
  1367. REG_WRITE(ah, AR_RTC_RC, 0);
  1368. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  1369. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  1370. "RTC stuck in MAC reset\n");
  1371. return false;
  1372. }
  1373. if (!AR_SREV_9100(ah))
  1374. REG_WRITE(ah, AR_RC, 0);
  1375. ath9k_hw_init_pll(ah, NULL);
  1376. if (AR_SREV_9100(ah))
  1377. udelay(50);
  1378. return true;
  1379. }
  1380. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  1381. {
  1382. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1383. AR_RTC_FORCE_WAKE_ON_INT);
  1384. REG_WRITE(ah, AR_RTC_RESET, 0);
  1385. udelay(2);
  1386. REG_WRITE(ah, AR_RTC_RESET, 1);
  1387. if (!ath9k_hw_wait(ah,
  1388. AR_RTC_STATUS,
  1389. AR_RTC_STATUS_M,
  1390. AR_RTC_STATUS_ON,
  1391. AH_WAIT_TIMEOUT)) {
  1392. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "RTC not waking up\n");
  1393. return false;
  1394. }
  1395. ath9k_hw_read_revisions(ah);
  1396. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  1397. }
  1398. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  1399. {
  1400. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1401. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  1402. switch (type) {
  1403. case ATH9K_RESET_POWER_ON:
  1404. return ath9k_hw_set_reset_power_on(ah);
  1405. case ATH9K_RESET_WARM:
  1406. case ATH9K_RESET_COLD:
  1407. return ath9k_hw_set_reset(ah, type);
  1408. default:
  1409. return false;
  1410. }
  1411. }
  1412. static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
  1413. enum ath9k_ht_macmode macmode)
  1414. {
  1415. u32 phymode;
  1416. u32 enableDacFifo = 0;
  1417. if (AR_SREV_9285_10_OR_LATER(ah))
  1418. enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
  1419. AR_PHY_FC_ENABLE_DAC_FIFO);
  1420. phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
  1421. | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
  1422. if (IS_CHAN_HT40(chan)) {
  1423. phymode |= AR_PHY_FC_DYN2040_EN;
  1424. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  1425. (chan->chanmode == CHANNEL_G_HT40PLUS))
  1426. phymode |= AR_PHY_FC_DYN2040_PRI_CH;
  1427. if (ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_25)
  1428. phymode |= AR_PHY_FC_DYN2040_EXT_CH;
  1429. }
  1430. REG_WRITE(ah, AR_PHY_TURBO, phymode);
  1431. ath9k_hw_set11nmac2040(ah, macmode);
  1432. REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
  1433. REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
  1434. }
  1435. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  1436. struct ath9k_channel *chan)
  1437. {
  1438. if (OLC_FOR_AR9280_20_LATER) {
  1439. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
  1440. return false;
  1441. } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  1442. return false;
  1443. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1444. return false;
  1445. ah->chip_fullsleep = false;
  1446. ath9k_hw_init_pll(ah, chan);
  1447. ath9k_hw_set_rfmode(ah, chan);
  1448. return true;
  1449. }
  1450. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  1451. struct ath9k_channel *chan,
  1452. enum ath9k_ht_macmode macmode)
  1453. {
  1454. struct ieee80211_channel *channel = chan->chan;
  1455. u32 synthDelay, qnum;
  1456. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  1457. if (ath9k_hw_numtxpending(ah, qnum)) {
  1458. DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
  1459. "Transmit frames pending on queue %d\n", qnum);
  1460. return false;
  1461. }
  1462. }
  1463. REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
  1464. if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
  1465. AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
  1466. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  1467. "Could not kill baseband RX\n");
  1468. return false;
  1469. }
  1470. ath9k_hw_set_regs(ah, chan, macmode);
  1471. if (AR_SREV_9280_10_OR_LATER(ah)) {
  1472. ath9k_hw_ar9280_set_channel(ah, chan);
  1473. } else {
  1474. if (!(ath9k_hw_set_channel(ah, chan))) {
  1475. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  1476. "Failed to set channel\n");
  1477. return false;
  1478. }
  1479. }
  1480. ah->eep_ops->set_txpower(ah, chan,
  1481. ath9k_regd_get_ctl(&ah->regulatory, chan),
  1482. channel->max_antenna_gain * 2,
  1483. channel->max_power * 2,
  1484. min((u32) MAX_RATE_POWER,
  1485. (u32) ah->regulatory.power_limit));
  1486. synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  1487. if (IS_CHAN_B(chan))
  1488. synthDelay = (4 * synthDelay) / 22;
  1489. else
  1490. synthDelay /= 10;
  1491. udelay(synthDelay + BASE_ACTIVATE_DELAY);
  1492. REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
  1493. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1494. ath9k_hw_set_delta_slope(ah, chan);
  1495. if (AR_SREV_9280_10_OR_LATER(ah))
  1496. ath9k_hw_9280_spur_mitigate(ah, chan);
  1497. else
  1498. ath9k_hw_spur_mitigate(ah, chan);
  1499. if (!chan->oneTimeCalsDone)
  1500. chan->oneTimeCalsDone = true;
  1501. return true;
  1502. }
  1503. static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
  1504. {
  1505. int bb_spur = AR_NO_SPUR;
  1506. int freq;
  1507. int bin, cur_bin;
  1508. int bb_spur_off, spur_subchannel_sd;
  1509. int spur_freq_sd;
  1510. int spur_delta_phase;
  1511. int denominator;
  1512. int upper, lower, cur_vit_mask;
  1513. int tmp, newVal;
  1514. int i;
  1515. int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
  1516. AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
  1517. };
  1518. int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
  1519. AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
  1520. };
  1521. int inc[4] = { 0, 100, 0, 0 };
  1522. struct chan_centers centers;
  1523. int8_t mask_m[123];
  1524. int8_t mask_p[123];
  1525. int8_t mask_amt;
  1526. int tmp_mask;
  1527. int cur_bb_spur;
  1528. bool is2GHz = IS_CHAN_2GHZ(chan);
  1529. memset(&mask_m, 0, sizeof(int8_t) * 123);
  1530. memset(&mask_p, 0, sizeof(int8_t) * 123);
  1531. ath9k_hw_get_channel_centers(ah, chan, &centers);
  1532. freq = centers.synth_center;
  1533. ah->config.spurmode = SPUR_ENABLE_EEPROM;
  1534. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  1535. cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
  1536. if (is2GHz)
  1537. cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
  1538. else
  1539. cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
  1540. if (AR_NO_SPUR == cur_bb_spur)
  1541. break;
  1542. cur_bb_spur = cur_bb_spur - freq;
  1543. if (IS_CHAN_HT40(chan)) {
  1544. if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
  1545. (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
  1546. bb_spur = cur_bb_spur;
  1547. break;
  1548. }
  1549. } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
  1550. (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
  1551. bb_spur = cur_bb_spur;
  1552. break;
  1553. }
  1554. }
  1555. if (AR_NO_SPUR == bb_spur) {
  1556. REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
  1557. AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
  1558. return;
  1559. } else {
  1560. REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
  1561. AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
  1562. }
  1563. bin = bb_spur * 320;
  1564. tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
  1565. newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
  1566. AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
  1567. AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
  1568. AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
  1569. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
  1570. newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
  1571. AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
  1572. AR_PHY_SPUR_REG_MASK_RATE_SELECT |
  1573. AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
  1574. SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
  1575. REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
  1576. if (IS_CHAN_HT40(chan)) {
  1577. if (bb_spur < 0) {
  1578. spur_subchannel_sd = 1;
  1579. bb_spur_off = bb_spur + 10;
  1580. } else {
  1581. spur_subchannel_sd = 0;
  1582. bb_spur_off = bb_spur - 10;
  1583. }
  1584. } else {
  1585. spur_subchannel_sd = 0;
  1586. bb_spur_off = bb_spur;
  1587. }
  1588. if (IS_CHAN_HT40(chan))
  1589. spur_delta_phase =
  1590. ((bb_spur * 262144) /
  1591. 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
  1592. else
  1593. spur_delta_phase =
  1594. ((bb_spur * 524288) /
  1595. 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
  1596. denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
  1597. spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
  1598. newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
  1599. SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
  1600. SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
  1601. REG_WRITE(ah, AR_PHY_TIMING11, newVal);
  1602. newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
  1603. REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
  1604. cur_bin = -6000;
  1605. upper = bin + 100;
  1606. lower = bin - 100;
  1607. for (i = 0; i < 4; i++) {
  1608. int pilot_mask = 0;
  1609. int chan_mask = 0;
  1610. int bp = 0;
  1611. for (bp = 0; bp < 30; bp++) {
  1612. if ((cur_bin > lower) && (cur_bin < upper)) {
  1613. pilot_mask = pilot_mask | 0x1 << bp;
  1614. chan_mask = chan_mask | 0x1 << bp;
  1615. }
  1616. cur_bin += 100;
  1617. }
  1618. cur_bin += inc[i];
  1619. REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
  1620. REG_WRITE(ah, chan_mask_reg[i], chan_mask);
  1621. }
  1622. cur_vit_mask = 6100;
  1623. upper = bin + 120;
  1624. lower = bin - 120;
  1625. for (i = 0; i < 123; i++) {
  1626. if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
  1627. /* workaround for gcc bug #37014 */
  1628. volatile int tmp_v = abs(cur_vit_mask - bin);
  1629. if (tmp_v < 75)
  1630. mask_amt = 1;
  1631. else
  1632. mask_amt = 0;
  1633. if (cur_vit_mask < 0)
  1634. mask_m[abs(cur_vit_mask / 100)] = mask_amt;
  1635. else
  1636. mask_p[cur_vit_mask / 100] = mask_amt;
  1637. }
  1638. cur_vit_mask -= 100;
  1639. }
  1640. tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
  1641. | (mask_m[48] << 26) | (mask_m[49] << 24)
  1642. | (mask_m[50] << 22) | (mask_m[51] << 20)
  1643. | (mask_m[52] << 18) | (mask_m[53] << 16)
  1644. | (mask_m[54] << 14) | (mask_m[55] << 12)
  1645. | (mask_m[56] << 10) | (mask_m[57] << 8)
  1646. | (mask_m[58] << 6) | (mask_m[59] << 4)
  1647. | (mask_m[60] << 2) | (mask_m[61] << 0);
  1648. REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
  1649. REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
  1650. tmp_mask = (mask_m[31] << 28)
  1651. | (mask_m[32] << 26) | (mask_m[33] << 24)
  1652. | (mask_m[34] << 22) | (mask_m[35] << 20)
  1653. | (mask_m[36] << 18) | (mask_m[37] << 16)
  1654. | (mask_m[48] << 14) | (mask_m[39] << 12)
  1655. | (mask_m[40] << 10) | (mask_m[41] << 8)
  1656. | (mask_m[42] << 6) | (mask_m[43] << 4)
  1657. | (mask_m[44] << 2) | (mask_m[45] << 0);
  1658. REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
  1659. REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
  1660. tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
  1661. | (mask_m[18] << 26) | (mask_m[18] << 24)
  1662. | (mask_m[20] << 22) | (mask_m[20] << 20)
  1663. | (mask_m[22] << 18) | (mask_m[22] << 16)
  1664. | (mask_m[24] << 14) | (mask_m[24] << 12)
  1665. | (mask_m[25] << 10) | (mask_m[26] << 8)
  1666. | (mask_m[27] << 6) | (mask_m[28] << 4)
  1667. | (mask_m[29] << 2) | (mask_m[30] << 0);
  1668. REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
  1669. REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
  1670. tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
  1671. | (mask_m[2] << 26) | (mask_m[3] << 24)
  1672. | (mask_m[4] << 22) | (mask_m[5] << 20)
  1673. | (mask_m[6] << 18) | (mask_m[7] << 16)
  1674. | (mask_m[8] << 14) | (mask_m[9] << 12)
  1675. | (mask_m[10] << 10) | (mask_m[11] << 8)
  1676. | (mask_m[12] << 6) | (mask_m[13] << 4)
  1677. | (mask_m[14] << 2) | (mask_m[15] << 0);
  1678. REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
  1679. REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
  1680. tmp_mask = (mask_p[15] << 28)
  1681. | (mask_p[14] << 26) | (mask_p[13] << 24)
  1682. | (mask_p[12] << 22) | (mask_p[11] << 20)
  1683. | (mask_p[10] << 18) | (mask_p[9] << 16)
  1684. | (mask_p[8] << 14) | (mask_p[7] << 12)
  1685. | (mask_p[6] << 10) | (mask_p[5] << 8)
  1686. | (mask_p[4] << 6) | (mask_p[3] << 4)
  1687. | (mask_p[2] << 2) | (mask_p[1] << 0);
  1688. REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
  1689. REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
  1690. tmp_mask = (mask_p[30] << 28)
  1691. | (mask_p[29] << 26) | (mask_p[28] << 24)
  1692. | (mask_p[27] << 22) | (mask_p[26] << 20)
  1693. | (mask_p[25] << 18) | (mask_p[24] << 16)
  1694. | (mask_p[23] << 14) | (mask_p[22] << 12)
  1695. | (mask_p[21] << 10) | (mask_p[20] << 8)
  1696. | (mask_p[19] << 6) | (mask_p[18] << 4)
  1697. | (mask_p[17] << 2) | (mask_p[16] << 0);
  1698. REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
  1699. REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
  1700. tmp_mask = (mask_p[45] << 28)
  1701. | (mask_p[44] << 26) | (mask_p[43] << 24)
  1702. | (mask_p[42] << 22) | (mask_p[41] << 20)
  1703. | (mask_p[40] << 18) | (mask_p[39] << 16)
  1704. | (mask_p[38] << 14) | (mask_p[37] << 12)
  1705. | (mask_p[36] << 10) | (mask_p[35] << 8)
  1706. | (mask_p[34] << 6) | (mask_p[33] << 4)
  1707. | (mask_p[32] << 2) | (mask_p[31] << 0);
  1708. REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
  1709. REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
  1710. tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
  1711. | (mask_p[59] << 26) | (mask_p[58] << 24)
  1712. | (mask_p[57] << 22) | (mask_p[56] << 20)
  1713. | (mask_p[55] << 18) | (mask_p[54] << 16)
  1714. | (mask_p[53] << 14) | (mask_p[52] << 12)
  1715. | (mask_p[51] << 10) | (mask_p[50] << 8)
  1716. | (mask_p[49] << 6) | (mask_p[48] << 4)
  1717. | (mask_p[47] << 2) | (mask_p[46] << 0);
  1718. REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
  1719. REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
  1720. }
  1721. static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
  1722. {
  1723. int bb_spur = AR_NO_SPUR;
  1724. int bin, cur_bin;
  1725. int spur_freq_sd;
  1726. int spur_delta_phase;
  1727. int denominator;
  1728. int upper, lower, cur_vit_mask;
  1729. int tmp, new;
  1730. int i;
  1731. int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
  1732. AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
  1733. };
  1734. int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
  1735. AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
  1736. };
  1737. int inc[4] = { 0, 100, 0, 0 };
  1738. int8_t mask_m[123];
  1739. int8_t mask_p[123];
  1740. int8_t mask_amt;
  1741. int tmp_mask;
  1742. int cur_bb_spur;
  1743. bool is2GHz = IS_CHAN_2GHZ(chan);
  1744. memset(&mask_m, 0, sizeof(int8_t) * 123);
  1745. memset(&mask_p, 0, sizeof(int8_t) * 123);
  1746. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  1747. cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
  1748. if (AR_NO_SPUR == cur_bb_spur)
  1749. break;
  1750. cur_bb_spur = cur_bb_spur - (chan->channel * 10);
  1751. if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
  1752. bb_spur = cur_bb_spur;
  1753. break;
  1754. }
  1755. }
  1756. if (AR_NO_SPUR == bb_spur)
  1757. return;
  1758. bin = bb_spur * 32;
  1759. tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
  1760. new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
  1761. AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
  1762. AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
  1763. AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
  1764. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
  1765. new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
  1766. AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
  1767. AR_PHY_SPUR_REG_MASK_RATE_SELECT |
  1768. AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
  1769. SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
  1770. REG_WRITE(ah, AR_PHY_SPUR_REG, new);
  1771. spur_delta_phase = ((bb_spur * 524288) / 100) &
  1772. AR_PHY_TIMING11_SPUR_DELTA_PHASE;
  1773. denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
  1774. spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
  1775. new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
  1776. SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
  1777. SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
  1778. REG_WRITE(ah, AR_PHY_TIMING11, new);
  1779. cur_bin = -6000;
  1780. upper = bin + 100;
  1781. lower = bin - 100;
  1782. for (i = 0; i < 4; i++) {
  1783. int pilot_mask = 0;
  1784. int chan_mask = 0;
  1785. int bp = 0;
  1786. for (bp = 0; bp < 30; bp++) {
  1787. if ((cur_bin > lower) && (cur_bin < upper)) {
  1788. pilot_mask = pilot_mask | 0x1 << bp;
  1789. chan_mask = chan_mask | 0x1 << bp;
  1790. }
  1791. cur_bin += 100;
  1792. }
  1793. cur_bin += inc[i];
  1794. REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
  1795. REG_WRITE(ah, chan_mask_reg[i], chan_mask);
  1796. }
  1797. cur_vit_mask = 6100;
  1798. upper = bin + 120;
  1799. lower = bin - 120;
  1800. for (i = 0; i < 123; i++) {
  1801. if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
  1802. /* workaround for gcc bug #37014 */
  1803. volatile int tmp_v = abs(cur_vit_mask - bin);
  1804. if (tmp_v < 75)
  1805. mask_amt = 1;
  1806. else
  1807. mask_amt = 0;
  1808. if (cur_vit_mask < 0)
  1809. mask_m[abs(cur_vit_mask / 100)] = mask_amt;
  1810. else
  1811. mask_p[cur_vit_mask / 100] = mask_amt;
  1812. }
  1813. cur_vit_mask -= 100;
  1814. }
  1815. tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
  1816. | (mask_m[48] << 26) | (mask_m[49] << 24)
  1817. | (mask_m[50] << 22) | (mask_m[51] << 20)
  1818. | (mask_m[52] << 18) | (mask_m[53] << 16)
  1819. | (mask_m[54] << 14) | (mask_m[55] << 12)
  1820. | (mask_m[56] << 10) | (mask_m[57] << 8)
  1821. | (mask_m[58] << 6) | (mask_m[59] << 4)
  1822. | (mask_m[60] << 2) | (mask_m[61] << 0);
  1823. REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
  1824. REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
  1825. tmp_mask = (mask_m[31] << 28)
  1826. | (mask_m[32] << 26) | (mask_m[33] << 24)
  1827. | (mask_m[34] << 22) | (mask_m[35] << 20)
  1828. | (mask_m[36] << 18) | (mask_m[37] << 16)
  1829. | (mask_m[48] << 14) | (mask_m[39] << 12)
  1830. | (mask_m[40] << 10) | (mask_m[41] << 8)
  1831. | (mask_m[42] << 6) | (mask_m[43] << 4)
  1832. | (mask_m[44] << 2) | (mask_m[45] << 0);
  1833. REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
  1834. REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
  1835. tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
  1836. | (mask_m[18] << 26) | (mask_m[18] << 24)
  1837. | (mask_m[20] << 22) | (mask_m[20] << 20)
  1838. | (mask_m[22] << 18) | (mask_m[22] << 16)
  1839. | (mask_m[24] << 14) | (mask_m[24] << 12)
  1840. | (mask_m[25] << 10) | (mask_m[26] << 8)
  1841. | (mask_m[27] << 6) | (mask_m[28] << 4)
  1842. | (mask_m[29] << 2) | (mask_m[30] << 0);
  1843. REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
  1844. REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
  1845. tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
  1846. | (mask_m[2] << 26) | (mask_m[3] << 24)
  1847. | (mask_m[4] << 22) | (mask_m[5] << 20)
  1848. | (mask_m[6] << 18) | (mask_m[7] << 16)
  1849. | (mask_m[8] << 14) | (mask_m[9] << 12)
  1850. | (mask_m[10] << 10) | (mask_m[11] << 8)
  1851. | (mask_m[12] << 6) | (mask_m[13] << 4)
  1852. | (mask_m[14] << 2) | (mask_m[15] << 0);
  1853. REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
  1854. REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
  1855. tmp_mask = (mask_p[15] << 28)
  1856. | (mask_p[14] << 26) | (mask_p[13] << 24)
  1857. | (mask_p[12] << 22) | (mask_p[11] << 20)
  1858. | (mask_p[10] << 18) | (mask_p[9] << 16)
  1859. | (mask_p[8] << 14) | (mask_p[7] << 12)
  1860. | (mask_p[6] << 10) | (mask_p[5] << 8)
  1861. | (mask_p[4] << 6) | (mask_p[3] << 4)
  1862. | (mask_p[2] << 2) | (mask_p[1] << 0);
  1863. REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
  1864. REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
  1865. tmp_mask = (mask_p[30] << 28)
  1866. | (mask_p[29] << 26) | (mask_p[28] << 24)
  1867. | (mask_p[27] << 22) | (mask_p[26] << 20)
  1868. | (mask_p[25] << 18) | (mask_p[24] << 16)
  1869. | (mask_p[23] << 14) | (mask_p[22] << 12)
  1870. | (mask_p[21] << 10) | (mask_p[20] << 8)
  1871. | (mask_p[19] << 6) | (mask_p[18] << 4)
  1872. | (mask_p[17] << 2) | (mask_p[16] << 0);
  1873. REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
  1874. REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
  1875. tmp_mask = (mask_p[45] << 28)
  1876. | (mask_p[44] << 26) | (mask_p[43] << 24)
  1877. | (mask_p[42] << 22) | (mask_p[41] << 20)
  1878. | (mask_p[40] << 18) | (mask_p[39] << 16)
  1879. | (mask_p[38] << 14) | (mask_p[37] << 12)
  1880. | (mask_p[36] << 10) | (mask_p[35] << 8)
  1881. | (mask_p[34] << 6) | (mask_p[33] << 4)
  1882. | (mask_p[32] << 2) | (mask_p[31] << 0);
  1883. REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
  1884. REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
  1885. tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
  1886. | (mask_p[59] << 26) | (mask_p[58] << 24)
  1887. | (mask_p[57] << 22) | (mask_p[56] << 20)
  1888. | (mask_p[55] << 18) | (mask_p[54] << 16)
  1889. | (mask_p[53] << 14) | (mask_p[52] << 12)
  1890. | (mask_p[51] << 10) | (mask_p[50] << 8)
  1891. | (mask_p[49] << 6) | (mask_p[48] << 4)
  1892. | (mask_p[47] << 2) | (mask_p[46] << 0);
  1893. REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
  1894. REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
  1895. }
  1896. static void ath9k_enable_rfkill(struct ath_hw *ah)
  1897. {
  1898. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
  1899. AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
  1900. REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
  1901. AR_GPIO_INPUT_MUX2_RFSILENT);
  1902. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  1903. REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
  1904. }
  1905. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  1906. bool bChannelChange)
  1907. {
  1908. u32 saveLedState;
  1909. struct ath_softc *sc = ah->ah_sc;
  1910. struct ath9k_channel *curchan = ah->curchan;
  1911. u32 saveDefAntenna;
  1912. u32 macStaId1;
  1913. int i, rx_chainmask, r;
  1914. ah->extprotspacing = sc->ht_extprotspacing;
  1915. ah->txchainmask = sc->tx_chainmask;
  1916. ah->rxchainmask = sc->rx_chainmask;
  1917. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1918. return -EIO;
  1919. if (curchan)
  1920. ath9k_hw_getnf(ah, curchan);
  1921. if (bChannelChange &&
  1922. (ah->chip_fullsleep != true) &&
  1923. (ah->curchan != NULL) &&
  1924. (chan->channel != ah->curchan->channel) &&
  1925. ((chan->channelFlags & CHANNEL_ALL) ==
  1926. (ah->curchan->channelFlags & CHANNEL_ALL)) &&
  1927. (!AR_SREV_9280(ah) || (!IS_CHAN_A_5MHZ_SPACED(chan) &&
  1928. !IS_CHAN_A_5MHZ_SPACED(ah->curchan)))) {
  1929. if (ath9k_hw_channel_change(ah, chan, sc->tx_chan_width)) {
  1930. ath9k_hw_loadnf(ah, ah->curchan);
  1931. ath9k_hw_start_nfcal(ah);
  1932. return 0;
  1933. }
  1934. }
  1935. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1936. if (saveDefAntenna == 0)
  1937. saveDefAntenna = 1;
  1938. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1939. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1940. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1941. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1942. ath9k_hw_mark_phy_inactive(ah);
  1943. if (!ath9k_hw_chip_reset(ah, chan)) {
  1944. DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Chip reset failed\n");
  1945. return -EINVAL;
  1946. }
  1947. if (AR_SREV_9280_10_OR_LATER(ah))
  1948. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1949. if (AR_SREV_9287_10_OR_LATER(ah)) {
  1950. /* Enable ASYNC FIFO */
  1951. REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
  1952. AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
  1953. REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
  1954. REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
  1955. AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
  1956. REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
  1957. AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
  1958. }
  1959. r = ath9k_hw_process_ini(ah, chan, sc->tx_chan_width);
  1960. if (r)
  1961. return r;
  1962. /* Setup MFP options for CCMP */
  1963. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1964. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1965. * frames when constructing CCMP AAD. */
  1966. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1967. 0xc7ff);
  1968. ah->sw_mgmt_crypto = false;
  1969. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1970. /* Disable hardware crypto for management frames */
  1971. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1972. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1973. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1974. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1975. ah->sw_mgmt_crypto = true;
  1976. } else
  1977. ah->sw_mgmt_crypto = true;
  1978. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1979. ath9k_hw_set_delta_slope(ah, chan);
  1980. if (AR_SREV_9280_10_OR_LATER(ah))
  1981. ath9k_hw_9280_spur_mitigate(ah, chan);
  1982. else
  1983. ath9k_hw_spur_mitigate(ah, chan);
  1984. ah->eep_ops->set_board_values(ah, chan);
  1985. ath9k_hw_decrease_chain_power(ah, chan);
  1986. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(ah->macaddr));
  1987. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(ah->macaddr + 4)
  1988. | macStaId1
  1989. | AR_STA_ID1_RTS_USE_DEF
  1990. | (ah->config.
  1991. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1992. | ah->sta_id1_defaults);
  1993. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1994. REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
  1995. REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
  1996. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1997. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
  1998. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
  1999. ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  2000. REG_WRITE(ah, AR_ISR, ~0);
  2001. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  2002. if (AR_SREV_9280_10_OR_LATER(ah))
  2003. ath9k_hw_ar9280_set_channel(ah, chan);
  2004. else
  2005. if (!(ath9k_hw_set_channel(ah, chan)))
  2006. return -EIO;
  2007. for (i = 0; i < AR_NUM_DCU; i++)
  2008. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  2009. ah->intr_txqs = 0;
  2010. for (i = 0; i < ah->caps.total_queues; i++)
  2011. ath9k_hw_resettxqueue(ah, i);
  2012. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  2013. ath9k_hw_init_qos(ah);
  2014. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  2015. ath9k_enable_rfkill(ah);
  2016. ath9k_hw_init_user_settings(ah);
  2017. if (AR_SREV_9287_10_OR_LATER(ah)) {
  2018. REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
  2019. AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
  2020. REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
  2021. AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
  2022. REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
  2023. AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
  2024. REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
  2025. REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
  2026. REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
  2027. AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
  2028. REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
  2029. AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
  2030. }
  2031. if (AR_SREV_9287_10_OR_LATER(ah)) {
  2032. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  2033. AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
  2034. }
  2035. REG_WRITE(ah, AR_STA_ID1,
  2036. REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
  2037. ath9k_hw_set_dma(ah);
  2038. REG_WRITE(ah, AR_OBS, 8);
  2039. if (ah->config.intr_mitigation) {
  2040. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  2041. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  2042. }
  2043. ath9k_hw_init_bb(ah, chan);
  2044. if (!ath9k_hw_init_cal(ah, chan))
  2045. return -EIO;
  2046. rx_chainmask = ah->rxchainmask;
  2047. if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
  2048. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
  2049. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
  2050. }
  2051. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  2052. if (AR_SREV_9100(ah)) {
  2053. u32 mask;
  2054. mask = REG_READ(ah, AR_CFG);
  2055. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  2056. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  2057. "CFG Byte Swap Set 0x%x\n", mask);
  2058. } else {
  2059. mask =
  2060. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  2061. REG_WRITE(ah, AR_CFG, mask);
  2062. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  2063. "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
  2064. }
  2065. } else {
  2066. #ifdef __BIG_ENDIAN
  2067. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  2068. #endif
  2069. }
  2070. return 0;
  2071. }
  2072. /************************/
  2073. /* Key Cache Management */
  2074. /************************/
  2075. bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
  2076. {
  2077. u32 keyType;
  2078. if (entry >= ah->caps.keycache_size) {
  2079. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  2080. "keychache entry %u out of range\n", entry);
  2081. return false;
  2082. }
  2083. keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
  2084. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
  2085. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
  2086. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
  2087. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
  2088. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
  2089. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
  2090. REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
  2091. REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
  2092. if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
  2093. u16 micentry = entry + 64;
  2094. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
  2095. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
  2096. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
  2097. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
  2098. }
  2099. if (ah->curchan == NULL)
  2100. return true;
  2101. return true;
  2102. }
  2103. bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
  2104. {
  2105. u32 macHi, macLo;
  2106. if (entry >= ah->caps.keycache_size) {
  2107. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  2108. "keychache entry %u out of range\n", entry);
  2109. return false;
  2110. }
  2111. if (mac != NULL) {
  2112. macHi = (mac[5] << 8) | mac[4];
  2113. macLo = (mac[3] << 24) |
  2114. (mac[2] << 16) |
  2115. (mac[1] << 8) |
  2116. mac[0];
  2117. macLo >>= 1;
  2118. macLo |= (macHi & 1) << 31;
  2119. macHi >>= 1;
  2120. } else {
  2121. macLo = macHi = 0;
  2122. }
  2123. REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
  2124. REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
  2125. return true;
  2126. }
  2127. bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
  2128. const struct ath9k_keyval *k,
  2129. const u8 *mac)
  2130. {
  2131. const struct ath9k_hw_capabilities *pCap = &ah->caps;
  2132. u32 key0, key1, key2, key3, key4;
  2133. u32 keyType;
  2134. if (entry >= pCap->keycache_size) {
  2135. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  2136. "keycache entry %u out of range\n", entry);
  2137. return false;
  2138. }
  2139. switch (k->kv_type) {
  2140. case ATH9K_CIPHER_AES_OCB:
  2141. keyType = AR_KEYTABLE_TYPE_AES;
  2142. break;
  2143. case ATH9K_CIPHER_AES_CCM:
  2144. if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
  2145. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  2146. "AES-CCM not supported by mac rev 0x%x\n",
  2147. ah->hw_version.macRev);
  2148. return false;
  2149. }
  2150. keyType = AR_KEYTABLE_TYPE_CCM;
  2151. break;
  2152. case ATH9K_CIPHER_TKIP:
  2153. keyType = AR_KEYTABLE_TYPE_TKIP;
  2154. if (ATH9K_IS_MIC_ENABLED(ah)
  2155. && entry + 64 >= pCap->keycache_size) {
  2156. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  2157. "entry %u inappropriate for TKIP\n", entry);
  2158. return false;
  2159. }
  2160. break;
  2161. case ATH9K_CIPHER_WEP:
  2162. if (k->kv_len < WLAN_KEY_LEN_WEP40) {
  2163. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  2164. "WEP key length %u too small\n", k->kv_len);
  2165. return false;
  2166. }
  2167. if (k->kv_len <= WLAN_KEY_LEN_WEP40)
  2168. keyType = AR_KEYTABLE_TYPE_40;
  2169. else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
  2170. keyType = AR_KEYTABLE_TYPE_104;
  2171. else
  2172. keyType = AR_KEYTABLE_TYPE_128;
  2173. break;
  2174. case ATH9K_CIPHER_CLR:
  2175. keyType = AR_KEYTABLE_TYPE_CLR;
  2176. break;
  2177. default:
  2178. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  2179. "cipher %u not supported\n", k->kv_type);
  2180. return false;
  2181. }
  2182. key0 = get_unaligned_le32(k->kv_val + 0);
  2183. key1 = get_unaligned_le16(k->kv_val + 4);
  2184. key2 = get_unaligned_le32(k->kv_val + 6);
  2185. key3 = get_unaligned_le16(k->kv_val + 10);
  2186. key4 = get_unaligned_le32(k->kv_val + 12);
  2187. if (k->kv_len <= WLAN_KEY_LEN_WEP104)
  2188. key4 &= 0xff;
  2189. /*
  2190. * Note: Key cache registers access special memory area that requires
  2191. * two 32-bit writes to actually update the values in the internal
  2192. * memory. Consequently, the exact order and pairs used here must be
  2193. * maintained.
  2194. */
  2195. if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
  2196. u16 micentry = entry + 64;
  2197. /*
  2198. * Write inverted key[47:0] first to avoid Michael MIC errors
  2199. * on frames that could be sent or received at the same time.
  2200. * The correct key will be written in the end once everything
  2201. * else is ready.
  2202. */
  2203. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
  2204. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
  2205. /* Write key[95:48] */
  2206. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
  2207. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
  2208. /* Write key[127:96] and key type */
  2209. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
  2210. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
  2211. /* Write MAC address for the entry */
  2212. (void) ath9k_hw_keysetmac(ah, entry, mac);
  2213. if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
  2214. /*
  2215. * TKIP uses two key cache entries:
  2216. * Michael MIC TX/RX keys in the same key cache entry
  2217. * (idx = main index + 64):
  2218. * key0 [31:0] = RX key [31:0]
  2219. * key1 [15:0] = TX key [31:16]
  2220. * key1 [31:16] = reserved
  2221. * key2 [31:0] = RX key [63:32]
  2222. * key3 [15:0] = TX key [15:0]
  2223. * key3 [31:16] = reserved
  2224. * key4 [31:0] = TX key [63:32]
  2225. */
  2226. u32 mic0, mic1, mic2, mic3, mic4;
  2227. mic0 = get_unaligned_le32(k->kv_mic + 0);
  2228. mic2 = get_unaligned_le32(k->kv_mic + 4);
  2229. mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
  2230. mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
  2231. mic4 = get_unaligned_le32(k->kv_txmic + 4);
  2232. /* Write RX[31:0] and TX[31:16] */
  2233. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
  2234. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
  2235. /* Write RX[63:32] and TX[15:0] */
  2236. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
  2237. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
  2238. /* Write TX[63:32] and keyType(reserved) */
  2239. REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
  2240. REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
  2241. AR_KEYTABLE_TYPE_CLR);
  2242. } else {
  2243. /*
  2244. * TKIP uses four key cache entries (two for group
  2245. * keys):
  2246. * Michael MIC TX/RX keys are in different key cache
  2247. * entries (idx = main index + 64 for TX and
  2248. * main index + 32 + 96 for RX):
  2249. * key0 [31:0] = TX/RX MIC key [31:0]
  2250. * key1 [31:0] = reserved
  2251. * key2 [31:0] = TX/RX MIC key [63:32]
  2252. * key3 [31:0] = reserved
  2253. * key4 [31:0] = reserved
  2254. *
  2255. * Upper layer code will call this function separately
  2256. * for TX and RX keys when these registers offsets are
  2257. * used.
  2258. */
  2259. u32 mic0, mic2;
  2260. mic0 = get_unaligned_le32(k->kv_mic + 0);
  2261. mic2 = get_unaligned_le32(k->kv_mic + 4);
  2262. /* Write MIC key[31:0] */
  2263. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
  2264. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
  2265. /* Write MIC key[63:32] */
  2266. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
  2267. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
  2268. /* Write TX[63:32] and keyType(reserved) */
  2269. REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
  2270. REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
  2271. AR_KEYTABLE_TYPE_CLR);
  2272. }
  2273. /* MAC address registers are reserved for the MIC entry */
  2274. REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
  2275. REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
  2276. /*
  2277. * Write the correct (un-inverted) key[47:0] last to enable
  2278. * TKIP now that all other registers are set with correct
  2279. * values.
  2280. */
  2281. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
  2282. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
  2283. } else {
  2284. /* Write key[47:0] */
  2285. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
  2286. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
  2287. /* Write key[95:48] */
  2288. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
  2289. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
  2290. /* Write key[127:96] and key type */
  2291. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
  2292. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
  2293. /* Write MAC address for the entry */
  2294. (void) ath9k_hw_keysetmac(ah, entry, mac);
  2295. }
  2296. return true;
  2297. }
  2298. bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
  2299. {
  2300. if (entry < ah->caps.keycache_size) {
  2301. u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
  2302. if (val & AR_KEYTABLE_VALID)
  2303. return true;
  2304. }
  2305. return false;
  2306. }
  2307. /******************************/
  2308. /* Power Management (Chipset) */
  2309. /******************************/
  2310. static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
  2311. {
  2312. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  2313. if (setChip) {
  2314. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  2315. AR_RTC_FORCE_WAKE_EN);
  2316. if (!AR_SREV_9100(ah))
  2317. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  2318. REG_CLR_BIT(ah, (AR_RTC_RESET),
  2319. AR_RTC_RESET_EN);
  2320. }
  2321. }
  2322. static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
  2323. {
  2324. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  2325. if (setChip) {
  2326. struct ath9k_hw_capabilities *pCap = &ah->caps;
  2327. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  2328. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  2329. AR_RTC_FORCE_WAKE_ON_INT);
  2330. } else {
  2331. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  2332. AR_RTC_FORCE_WAKE_EN);
  2333. }
  2334. }
  2335. }
  2336. static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
  2337. {
  2338. u32 val;
  2339. int i;
  2340. if (setChip) {
  2341. if ((REG_READ(ah, AR_RTC_STATUS) &
  2342. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  2343. if (ath9k_hw_set_reset_reg(ah,
  2344. ATH9K_RESET_POWER_ON) != true) {
  2345. return false;
  2346. }
  2347. }
  2348. if (AR_SREV_9100(ah))
  2349. REG_SET_BIT(ah, AR_RTC_RESET,
  2350. AR_RTC_RESET_EN);
  2351. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  2352. AR_RTC_FORCE_WAKE_EN);
  2353. udelay(50);
  2354. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  2355. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  2356. if (val == AR_RTC_STATUS_ON)
  2357. break;
  2358. udelay(50);
  2359. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  2360. AR_RTC_FORCE_WAKE_EN);
  2361. }
  2362. if (i == 0) {
  2363. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  2364. "Failed to wakeup in %uus\n", POWER_UP_TIME / 20);
  2365. return false;
  2366. }
  2367. }
  2368. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  2369. return true;
  2370. }
  2371. static bool ath9k_hw_setpower_nolock(struct ath_hw *ah,
  2372. enum ath9k_power_mode mode)
  2373. {
  2374. int status = true, setChip = true;
  2375. static const char *modes[] = {
  2376. "AWAKE",
  2377. "FULL-SLEEP",
  2378. "NETWORK SLEEP",
  2379. "UNDEFINED"
  2380. };
  2381. if (ah->power_mode == mode)
  2382. return status;
  2383. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s -> %s\n",
  2384. modes[ah->power_mode], modes[mode]);
  2385. switch (mode) {
  2386. case ATH9K_PM_AWAKE:
  2387. status = ath9k_hw_set_power_awake(ah, setChip);
  2388. break;
  2389. case ATH9K_PM_FULL_SLEEP:
  2390. ath9k_set_power_sleep(ah, setChip);
  2391. ah->chip_fullsleep = true;
  2392. break;
  2393. case ATH9K_PM_NETWORK_SLEEP:
  2394. ath9k_set_power_network_sleep(ah, setChip);
  2395. break;
  2396. default:
  2397. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  2398. "Unknown power mode %u\n", mode);
  2399. return false;
  2400. }
  2401. ah->power_mode = mode;
  2402. return status;
  2403. }
  2404. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  2405. {
  2406. unsigned long flags;
  2407. bool ret;
  2408. spin_lock_irqsave(&ah->ah_sc->sc_pm_lock, flags);
  2409. ret = ath9k_hw_setpower_nolock(ah, mode);
  2410. spin_unlock_irqrestore(&ah->ah_sc->sc_pm_lock, flags);
  2411. return ret;
  2412. }
  2413. void ath9k_ps_wakeup(struct ath_softc *sc)
  2414. {
  2415. unsigned long flags;
  2416. spin_lock_irqsave(&sc->sc_pm_lock, flags);
  2417. if (++sc->ps_usecount != 1)
  2418. goto unlock;
  2419. ath9k_hw_setpower_nolock(sc->sc_ah, ATH9K_PM_AWAKE);
  2420. unlock:
  2421. spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
  2422. }
  2423. void ath9k_ps_restore(struct ath_softc *sc)
  2424. {
  2425. unsigned long flags;
  2426. spin_lock_irqsave(&sc->sc_pm_lock, flags);
  2427. if (--sc->ps_usecount != 0)
  2428. goto unlock;
  2429. if (sc->ps_enabled &&
  2430. !(sc->sc_flags & (SC_OP_WAIT_FOR_BEACON |
  2431. SC_OP_WAIT_FOR_CAB |
  2432. SC_OP_WAIT_FOR_PSPOLL_DATA |
  2433. SC_OP_WAIT_FOR_TX_ACK)))
  2434. ath9k_hw_setpower_nolock(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
  2435. unlock:
  2436. spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
  2437. }
  2438. /*
  2439. * Helper for ASPM support.
  2440. *
  2441. * Disable PLL when in L0s as well as receiver clock when in L1.
  2442. * This power saving option must be enabled through the SerDes.
  2443. *
  2444. * Programming the SerDes must go through the same 288 bit serial shift
  2445. * register as the other analog registers. Hence the 9 writes.
  2446. */
  2447. void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore)
  2448. {
  2449. u8 i;
  2450. if (ah->is_pciexpress != true)
  2451. return;
  2452. /* Do not touch SerDes registers */
  2453. if (ah->config.pcie_powersave_enable == 2)
  2454. return;
  2455. /* Nothing to do on restore for 11N */
  2456. if (restore)
  2457. return;
  2458. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2459. /*
  2460. * AR9280 2.0 or later chips use SerDes values from the
  2461. * initvals.h initialized depending on chipset during
  2462. * ath9k_hw_do_attach()
  2463. */
  2464. for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
  2465. REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
  2466. INI_RA(&ah->iniPcieSerdes, i, 1));
  2467. }
  2468. } else if (AR_SREV_9280(ah) &&
  2469. (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
  2470. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
  2471. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  2472. /* RX shut off when elecidle is asserted */
  2473. REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
  2474. REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
  2475. REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
  2476. /* Shut off CLKREQ active in L1 */
  2477. if (ah->config.pcie_clock_req)
  2478. REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
  2479. else
  2480. REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
  2481. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  2482. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  2483. REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
  2484. /* Load the new settings */
  2485. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  2486. } else {
  2487. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  2488. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  2489. /* RX shut off when elecidle is asserted */
  2490. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
  2491. REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
  2492. REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
  2493. /*
  2494. * Ignore ah->ah_config.pcie_clock_req setting for
  2495. * pre-AR9280 11n
  2496. */
  2497. REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
  2498. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  2499. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  2500. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
  2501. /* Load the new settings */
  2502. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  2503. }
  2504. udelay(1000);
  2505. /* set bit 19 to allow forcing of pcie core into L1 state */
  2506. REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
  2507. /* Several PCIe massages to ensure proper behaviour */
  2508. if (ah->config.pcie_waen) {
  2509. REG_WRITE(ah, AR_WA, ah->config.pcie_waen);
  2510. } else {
  2511. if (AR_SREV_9285(ah))
  2512. REG_WRITE(ah, AR_WA, AR9285_WA_DEFAULT);
  2513. /*
  2514. * On AR9280 chips bit 22 of 0x4004 needs to be set to
  2515. * otherwise card may disappear.
  2516. */
  2517. else if (AR_SREV_9280(ah))
  2518. REG_WRITE(ah, AR_WA, AR9280_WA_DEFAULT);
  2519. else
  2520. REG_WRITE(ah, AR_WA, AR_WA_DEFAULT);
  2521. }
  2522. }
  2523. /**********************/
  2524. /* Interrupt Handling */
  2525. /**********************/
  2526. bool ath9k_hw_intrpend(struct ath_hw *ah)
  2527. {
  2528. u32 host_isr;
  2529. if (AR_SREV_9100(ah))
  2530. return true;
  2531. host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
  2532. if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
  2533. return true;
  2534. host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  2535. if ((host_isr & AR_INTR_SYNC_DEFAULT)
  2536. && (host_isr != AR_INTR_SPURIOUS))
  2537. return true;
  2538. return false;
  2539. }
  2540. bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
  2541. {
  2542. u32 isr = 0;
  2543. u32 mask2 = 0;
  2544. struct ath9k_hw_capabilities *pCap = &ah->caps;
  2545. u32 sync_cause = 0;
  2546. bool fatal_int = false;
  2547. if (!AR_SREV_9100(ah)) {
  2548. if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
  2549. if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
  2550. == AR_RTC_STATUS_ON) {
  2551. isr = REG_READ(ah, AR_ISR);
  2552. }
  2553. }
  2554. sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
  2555. AR_INTR_SYNC_DEFAULT;
  2556. *masked = 0;
  2557. if (!isr && !sync_cause)
  2558. return false;
  2559. } else {
  2560. *masked = 0;
  2561. isr = REG_READ(ah, AR_ISR);
  2562. }
  2563. if (isr) {
  2564. if (isr & AR_ISR_BCNMISC) {
  2565. u32 isr2;
  2566. isr2 = REG_READ(ah, AR_ISR_S2);
  2567. if (isr2 & AR_ISR_S2_TIM)
  2568. mask2 |= ATH9K_INT_TIM;
  2569. if (isr2 & AR_ISR_S2_DTIM)
  2570. mask2 |= ATH9K_INT_DTIM;
  2571. if (isr2 & AR_ISR_S2_DTIMSYNC)
  2572. mask2 |= ATH9K_INT_DTIMSYNC;
  2573. if (isr2 & (AR_ISR_S2_CABEND))
  2574. mask2 |= ATH9K_INT_CABEND;
  2575. if (isr2 & AR_ISR_S2_GTT)
  2576. mask2 |= ATH9K_INT_GTT;
  2577. if (isr2 & AR_ISR_S2_CST)
  2578. mask2 |= ATH9K_INT_CST;
  2579. if (isr2 & AR_ISR_S2_TSFOOR)
  2580. mask2 |= ATH9K_INT_TSFOOR;
  2581. }
  2582. isr = REG_READ(ah, AR_ISR_RAC);
  2583. if (isr == 0xffffffff) {
  2584. *masked = 0;
  2585. return false;
  2586. }
  2587. *masked = isr & ATH9K_INT_COMMON;
  2588. if (ah->config.intr_mitigation) {
  2589. if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
  2590. *masked |= ATH9K_INT_RX;
  2591. }
  2592. if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
  2593. *masked |= ATH9K_INT_RX;
  2594. if (isr &
  2595. (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
  2596. AR_ISR_TXEOL)) {
  2597. u32 s0_s, s1_s;
  2598. *masked |= ATH9K_INT_TX;
  2599. s0_s = REG_READ(ah, AR_ISR_S0_S);
  2600. ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
  2601. ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
  2602. s1_s = REG_READ(ah, AR_ISR_S1_S);
  2603. ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
  2604. ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
  2605. }
  2606. if (isr & AR_ISR_RXORN) {
  2607. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
  2608. "receive FIFO overrun interrupt\n");
  2609. }
  2610. if (!AR_SREV_9100(ah)) {
  2611. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  2612. u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
  2613. if (isr5 & AR_ISR_S5_TIM_TIMER)
  2614. *masked |= ATH9K_INT_TIM_TIMER;
  2615. }
  2616. }
  2617. *masked |= mask2;
  2618. }
  2619. if (AR_SREV_9100(ah))
  2620. return true;
  2621. if (sync_cause) {
  2622. fatal_int =
  2623. (sync_cause &
  2624. (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
  2625. ? true : false;
  2626. if (fatal_int) {
  2627. if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
  2628. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  2629. "received PCI FATAL interrupt\n");
  2630. }
  2631. if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
  2632. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  2633. "received PCI PERR interrupt\n");
  2634. }
  2635. *masked |= ATH9K_INT_FATAL;
  2636. }
  2637. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
  2638. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
  2639. "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
  2640. REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
  2641. REG_WRITE(ah, AR_RC, 0);
  2642. *masked |= ATH9K_INT_FATAL;
  2643. }
  2644. if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
  2645. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
  2646. "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
  2647. }
  2648. REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
  2649. (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
  2650. }
  2651. return true;
  2652. }
  2653. enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
  2654. {
  2655. u32 omask = ah->mask_reg;
  2656. u32 mask, mask2;
  2657. struct ath9k_hw_capabilities *pCap = &ah->caps;
  2658. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
  2659. if (omask & ATH9K_INT_GLOBAL) {
  2660. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "disable IER\n");
  2661. REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
  2662. (void) REG_READ(ah, AR_IER);
  2663. if (!AR_SREV_9100(ah)) {
  2664. REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
  2665. (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
  2666. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  2667. (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
  2668. }
  2669. }
  2670. mask = ints & ATH9K_INT_COMMON;
  2671. mask2 = 0;
  2672. if (ints & ATH9K_INT_TX) {
  2673. if (ah->txok_interrupt_mask)
  2674. mask |= AR_IMR_TXOK;
  2675. if (ah->txdesc_interrupt_mask)
  2676. mask |= AR_IMR_TXDESC;
  2677. if (ah->txerr_interrupt_mask)
  2678. mask |= AR_IMR_TXERR;
  2679. if (ah->txeol_interrupt_mask)
  2680. mask |= AR_IMR_TXEOL;
  2681. }
  2682. if (ints & ATH9K_INT_RX) {
  2683. mask |= AR_IMR_RXERR;
  2684. if (ah->config.intr_mitigation)
  2685. mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
  2686. else
  2687. mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
  2688. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
  2689. mask |= AR_IMR_GENTMR;
  2690. }
  2691. if (ints & (ATH9K_INT_BMISC)) {
  2692. mask |= AR_IMR_BCNMISC;
  2693. if (ints & ATH9K_INT_TIM)
  2694. mask2 |= AR_IMR_S2_TIM;
  2695. if (ints & ATH9K_INT_DTIM)
  2696. mask2 |= AR_IMR_S2_DTIM;
  2697. if (ints & ATH9K_INT_DTIMSYNC)
  2698. mask2 |= AR_IMR_S2_DTIMSYNC;
  2699. if (ints & ATH9K_INT_CABEND)
  2700. mask2 |= AR_IMR_S2_CABEND;
  2701. if (ints & ATH9K_INT_TSFOOR)
  2702. mask2 |= AR_IMR_S2_TSFOOR;
  2703. }
  2704. if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
  2705. mask |= AR_IMR_BCNMISC;
  2706. if (ints & ATH9K_INT_GTT)
  2707. mask2 |= AR_IMR_S2_GTT;
  2708. if (ints & ATH9K_INT_CST)
  2709. mask2 |= AR_IMR_S2_CST;
  2710. }
  2711. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
  2712. REG_WRITE(ah, AR_IMR, mask);
  2713. mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
  2714. AR_IMR_S2_DTIM |
  2715. AR_IMR_S2_DTIMSYNC |
  2716. AR_IMR_S2_CABEND |
  2717. AR_IMR_S2_CABTO |
  2718. AR_IMR_S2_TSFOOR |
  2719. AR_IMR_S2_GTT | AR_IMR_S2_CST);
  2720. REG_WRITE(ah, AR_IMR_S2, mask | mask2);
  2721. ah->mask_reg = ints;
  2722. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  2723. if (ints & ATH9K_INT_TIM_TIMER)
  2724. REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
  2725. else
  2726. REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
  2727. }
  2728. if (ints & ATH9K_INT_GLOBAL) {
  2729. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "enable IER\n");
  2730. REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
  2731. if (!AR_SREV_9100(ah)) {
  2732. REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
  2733. AR_INTR_MAC_IRQ);
  2734. REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
  2735. REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
  2736. AR_INTR_SYNC_DEFAULT);
  2737. REG_WRITE(ah, AR_INTR_SYNC_MASK,
  2738. AR_INTR_SYNC_DEFAULT);
  2739. }
  2740. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
  2741. REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
  2742. }
  2743. return omask;
  2744. }
  2745. /*******************/
  2746. /* Beacon Handling */
  2747. /*******************/
  2748. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  2749. {
  2750. int flags = 0;
  2751. ah->beacon_interval = beacon_period;
  2752. switch (ah->opmode) {
  2753. case NL80211_IFTYPE_STATION:
  2754. case NL80211_IFTYPE_MONITOR:
  2755. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
  2756. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
  2757. REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
  2758. flags |= AR_TBTT_TIMER_EN;
  2759. break;
  2760. case NL80211_IFTYPE_ADHOC:
  2761. case NL80211_IFTYPE_MESH_POINT:
  2762. REG_SET_BIT(ah, AR_TXCFG,
  2763. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  2764. REG_WRITE(ah, AR_NEXT_NDP_TIMER,
  2765. TU_TO_USEC(next_beacon +
  2766. (ah->atim_window ? ah->
  2767. atim_window : 1)));
  2768. flags |= AR_NDP_TIMER_EN;
  2769. case NL80211_IFTYPE_AP:
  2770. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
  2771. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
  2772. TU_TO_USEC(next_beacon -
  2773. ah->config.
  2774. dma_beacon_response_time));
  2775. REG_WRITE(ah, AR_NEXT_SWBA,
  2776. TU_TO_USEC(next_beacon -
  2777. ah->config.
  2778. sw_beacon_response_time));
  2779. flags |=
  2780. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  2781. break;
  2782. default:
  2783. DPRINTF(ah->ah_sc, ATH_DBG_BEACON,
  2784. "%s: unsupported opmode: %d\n",
  2785. __func__, ah->opmode);
  2786. return;
  2787. break;
  2788. }
  2789. REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  2790. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  2791. REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
  2792. REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
  2793. beacon_period &= ~ATH9K_BEACON_ENA;
  2794. if (beacon_period & ATH9K_BEACON_RESET_TSF) {
  2795. beacon_period &= ~ATH9K_BEACON_RESET_TSF;
  2796. ath9k_hw_reset_tsf(ah);
  2797. }
  2798. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  2799. }
  2800. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  2801. const struct ath9k_beacon_state *bs)
  2802. {
  2803. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  2804. struct ath9k_hw_capabilities *pCap = &ah->caps;
  2805. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  2806. REG_WRITE(ah, AR_BEACON_PERIOD,
  2807. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  2808. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  2809. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  2810. REG_RMW_FIELD(ah, AR_RSSI_THR,
  2811. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  2812. beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
  2813. if (bs->bs_sleepduration > beaconintval)
  2814. beaconintval = bs->bs_sleepduration;
  2815. dtimperiod = bs->bs_dtimperiod;
  2816. if (bs->bs_sleepduration > dtimperiod)
  2817. dtimperiod = bs->bs_sleepduration;
  2818. if (beaconintval == dtimperiod)
  2819. nextTbtt = bs->bs_nextdtim;
  2820. else
  2821. nextTbtt = bs->bs_nexttbtt;
  2822. DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  2823. DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
  2824. DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
  2825. DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
  2826. REG_WRITE(ah, AR_NEXT_DTIM,
  2827. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  2828. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  2829. REG_WRITE(ah, AR_SLEEP1,
  2830. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  2831. | AR_SLEEP1_ASSUME_DTIM);
  2832. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  2833. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  2834. else
  2835. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  2836. REG_WRITE(ah, AR_SLEEP2,
  2837. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  2838. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  2839. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  2840. REG_SET_BIT(ah, AR_TIMER_MODE,
  2841. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  2842. AR_DTIM_TIMER_EN);
  2843. /* TSF Out of Range Threshold */
  2844. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  2845. }
  2846. /*******************/
  2847. /* HW Capabilities */
  2848. /*******************/
  2849. void ath9k_hw_fill_cap_info(struct ath_hw *ah)
  2850. {
  2851. struct ath9k_hw_capabilities *pCap = &ah->caps;
  2852. u16 capField = 0, eeval;
  2853. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  2854. ah->regulatory.current_rd = eeval;
  2855. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
  2856. if (AR_SREV_9285_10_OR_LATER(ah))
  2857. eeval |= AR9285_RDEXT_DEFAULT;
  2858. ah->regulatory.current_rd_ext = eeval;
  2859. capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
  2860. if (ah->opmode != NL80211_IFTYPE_AP &&
  2861. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  2862. if (ah->regulatory.current_rd == 0x64 ||
  2863. ah->regulatory.current_rd == 0x65)
  2864. ah->regulatory.current_rd += 5;
  2865. else if (ah->regulatory.current_rd == 0x41)
  2866. ah->regulatory.current_rd = 0x43;
  2867. DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY,
  2868. "regdomain mapped to 0x%x\n", ah->regulatory.current_rd);
  2869. }
  2870. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  2871. bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
  2872. if (eeval & AR5416_OPFLAGS_11A) {
  2873. set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
  2874. if (ah->config.ht_enable) {
  2875. if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
  2876. set_bit(ATH9K_MODE_11NA_HT20,
  2877. pCap->wireless_modes);
  2878. if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
  2879. set_bit(ATH9K_MODE_11NA_HT40PLUS,
  2880. pCap->wireless_modes);
  2881. set_bit(ATH9K_MODE_11NA_HT40MINUS,
  2882. pCap->wireless_modes);
  2883. }
  2884. }
  2885. }
  2886. if (eeval & AR5416_OPFLAGS_11G) {
  2887. set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
  2888. if (ah->config.ht_enable) {
  2889. if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
  2890. set_bit(ATH9K_MODE_11NG_HT20,
  2891. pCap->wireless_modes);
  2892. if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
  2893. set_bit(ATH9K_MODE_11NG_HT40PLUS,
  2894. pCap->wireless_modes);
  2895. set_bit(ATH9K_MODE_11NG_HT40MINUS,
  2896. pCap->wireless_modes);
  2897. }
  2898. }
  2899. }
  2900. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  2901. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  2902. !(eeval & AR5416_OPFLAGS_11A))
  2903. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  2904. else
  2905. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  2906. if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
  2907. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  2908. pCap->low_2ghz_chan = 2312;
  2909. pCap->high_2ghz_chan = 2732;
  2910. pCap->low_5ghz_chan = 4920;
  2911. pCap->high_5ghz_chan = 6100;
  2912. pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
  2913. pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
  2914. pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
  2915. pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
  2916. pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
  2917. pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
  2918. if (ah->config.ht_enable)
  2919. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  2920. else
  2921. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  2922. pCap->hw_caps |= ATH9K_HW_CAP_GTT;
  2923. pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
  2924. pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
  2925. pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
  2926. if (capField & AR_EEPROM_EEPCAP_MAXQCU)
  2927. pCap->total_queues =
  2928. MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
  2929. else
  2930. pCap->total_queues = ATH9K_NUM_TX_QUEUES;
  2931. if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
  2932. pCap->keycache_size =
  2933. 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
  2934. else
  2935. pCap->keycache_size = AR_KEYTABLE_SIZE;
  2936. pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
  2937. pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
  2938. if (AR_SREV_9285_10_OR_LATER(ah))
  2939. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  2940. else if (AR_SREV_9280_10_OR_LATER(ah))
  2941. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  2942. else
  2943. pCap->num_gpio_pins = AR_NUM_GPIO;
  2944. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
  2945. pCap->hw_caps |= ATH9K_HW_CAP_CST;
  2946. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  2947. } else {
  2948. pCap->rts_aggr_limit = (8 * 1024);
  2949. }
  2950. pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
  2951. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  2952. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  2953. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  2954. ah->rfkill_gpio =
  2955. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  2956. ah->rfkill_polarity =
  2957. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  2958. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  2959. }
  2960. #endif
  2961. if ((ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI) ||
  2962. (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) ||
  2963. (ah->hw_version.macVersion == AR_SREV_VERSION_9160) ||
  2964. (ah->hw_version.macVersion == AR_SREV_VERSION_9100) ||
  2965. (ah->hw_version.macVersion == AR_SREV_VERSION_9280) ||
  2966. (ah->hw_version.macVersion == AR_SREV_VERSION_9285))
  2967. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  2968. else
  2969. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  2970. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  2971. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  2972. else
  2973. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  2974. if (ah->regulatory.current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
  2975. pCap->reg_cap =
  2976. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  2977. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
  2978. AR_EEPROM_EEREGCAP_EN_KK_U2 |
  2979. AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
  2980. } else {
  2981. pCap->reg_cap =
  2982. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  2983. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
  2984. }
  2985. pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
  2986. pCap->num_antcfg_5ghz =
  2987. ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
  2988. pCap->num_antcfg_2ghz =
  2989. ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
  2990. if (AR_SREV_9280_10_OR_LATER(ah) && btcoex_enable) {
  2991. pCap->hw_caps |= ATH9K_HW_CAP_BT_COEX;
  2992. ah->btactive_gpio = 6;
  2993. ah->wlanactive_gpio = 5;
  2994. }
  2995. }
  2996. bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
  2997. u32 capability, u32 *result)
  2998. {
  2999. switch (type) {
  3000. case ATH9K_CAP_CIPHER:
  3001. switch (capability) {
  3002. case ATH9K_CIPHER_AES_CCM:
  3003. case ATH9K_CIPHER_AES_OCB:
  3004. case ATH9K_CIPHER_TKIP:
  3005. case ATH9K_CIPHER_WEP:
  3006. case ATH9K_CIPHER_MIC:
  3007. case ATH9K_CIPHER_CLR:
  3008. return true;
  3009. default:
  3010. return false;
  3011. }
  3012. case ATH9K_CAP_TKIP_MIC:
  3013. switch (capability) {
  3014. case 0:
  3015. return true;
  3016. case 1:
  3017. return (ah->sta_id1_defaults &
  3018. AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
  3019. false;
  3020. }
  3021. case ATH9K_CAP_TKIP_SPLIT:
  3022. return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
  3023. false : true;
  3024. case ATH9K_CAP_DIVERSITY:
  3025. return (REG_READ(ah, AR_PHY_CCK_DETECT) &
  3026. AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
  3027. true : false;
  3028. case ATH9K_CAP_MCAST_KEYSRCH:
  3029. switch (capability) {
  3030. case 0:
  3031. return true;
  3032. case 1:
  3033. if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
  3034. return false;
  3035. } else {
  3036. return (ah->sta_id1_defaults &
  3037. AR_STA_ID1_MCAST_KSRCH) ? true :
  3038. false;
  3039. }
  3040. }
  3041. return false;
  3042. case ATH9K_CAP_TXPOW:
  3043. switch (capability) {
  3044. case 0:
  3045. return 0;
  3046. case 1:
  3047. *result = ah->regulatory.power_limit;
  3048. return 0;
  3049. case 2:
  3050. *result = ah->regulatory.max_power_level;
  3051. return 0;
  3052. case 3:
  3053. *result = ah->regulatory.tp_scale;
  3054. return 0;
  3055. }
  3056. return false;
  3057. case ATH9K_CAP_DS:
  3058. return (AR_SREV_9280_20_OR_LATER(ah) &&
  3059. (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
  3060. ? false : true;
  3061. default:
  3062. return false;
  3063. }
  3064. }
  3065. bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
  3066. u32 capability, u32 setting, int *status)
  3067. {
  3068. u32 v;
  3069. switch (type) {
  3070. case ATH9K_CAP_TKIP_MIC:
  3071. if (setting)
  3072. ah->sta_id1_defaults |=
  3073. AR_STA_ID1_CRPT_MIC_ENABLE;
  3074. else
  3075. ah->sta_id1_defaults &=
  3076. ~AR_STA_ID1_CRPT_MIC_ENABLE;
  3077. return true;
  3078. case ATH9K_CAP_DIVERSITY:
  3079. v = REG_READ(ah, AR_PHY_CCK_DETECT);
  3080. if (setting)
  3081. v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
  3082. else
  3083. v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
  3084. REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
  3085. return true;
  3086. case ATH9K_CAP_MCAST_KEYSRCH:
  3087. if (setting)
  3088. ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
  3089. else
  3090. ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
  3091. return true;
  3092. default:
  3093. return false;
  3094. }
  3095. }
  3096. /****************************/
  3097. /* GPIO / RFKILL / Antennae */
  3098. /****************************/
  3099. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  3100. u32 gpio, u32 type)
  3101. {
  3102. int addr;
  3103. u32 gpio_shift, tmp;
  3104. if (gpio > 11)
  3105. addr = AR_GPIO_OUTPUT_MUX3;
  3106. else if (gpio > 5)
  3107. addr = AR_GPIO_OUTPUT_MUX2;
  3108. else
  3109. addr = AR_GPIO_OUTPUT_MUX1;
  3110. gpio_shift = (gpio % 6) * 5;
  3111. if (AR_SREV_9280_20_OR_LATER(ah)
  3112. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  3113. REG_RMW(ah, addr, (type << gpio_shift),
  3114. (0x1f << gpio_shift));
  3115. } else {
  3116. tmp = REG_READ(ah, addr);
  3117. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  3118. tmp &= ~(0x1f << gpio_shift);
  3119. tmp |= (type << gpio_shift);
  3120. REG_WRITE(ah, addr, tmp);
  3121. }
  3122. }
  3123. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  3124. {
  3125. u32 gpio_shift;
  3126. ASSERT(gpio < ah->caps.num_gpio_pins);
  3127. gpio_shift = gpio << 1;
  3128. REG_RMW(ah,
  3129. AR_GPIO_OE_OUT,
  3130. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  3131. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  3132. }
  3133. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  3134. {
  3135. #define MS_REG_READ(x, y) \
  3136. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  3137. if (gpio >= ah->caps.num_gpio_pins)
  3138. return 0xffffffff;
  3139. if (AR_SREV_9287_10_OR_LATER(ah))
  3140. return MS_REG_READ(AR9287, gpio) != 0;
  3141. else if (AR_SREV_9285_10_OR_LATER(ah))
  3142. return MS_REG_READ(AR9285, gpio) != 0;
  3143. else if (AR_SREV_9280_10_OR_LATER(ah))
  3144. return MS_REG_READ(AR928X, gpio) != 0;
  3145. else
  3146. return MS_REG_READ(AR, gpio) != 0;
  3147. }
  3148. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  3149. u32 ah_signal_type)
  3150. {
  3151. u32 gpio_shift;
  3152. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  3153. gpio_shift = 2 * gpio;
  3154. REG_RMW(ah,
  3155. AR_GPIO_OE_OUT,
  3156. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  3157. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  3158. }
  3159. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  3160. {
  3161. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  3162. AR_GPIO_BIT(gpio));
  3163. }
  3164. u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
  3165. {
  3166. return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
  3167. }
  3168. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  3169. {
  3170. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  3171. }
  3172. bool ath9k_hw_setantennaswitch(struct ath_hw *ah,
  3173. enum ath9k_ant_setting settings,
  3174. struct ath9k_channel *chan,
  3175. u8 *tx_chainmask,
  3176. u8 *rx_chainmask,
  3177. u8 *antenna_cfgd)
  3178. {
  3179. static u8 tx_chainmask_cfg, rx_chainmask_cfg;
  3180. if (AR_SREV_9280(ah)) {
  3181. if (!tx_chainmask_cfg) {
  3182. tx_chainmask_cfg = *tx_chainmask;
  3183. rx_chainmask_cfg = *rx_chainmask;
  3184. }
  3185. switch (settings) {
  3186. case ATH9K_ANT_FIXED_A:
  3187. *tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
  3188. *rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
  3189. *antenna_cfgd = true;
  3190. break;
  3191. case ATH9K_ANT_FIXED_B:
  3192. if (ah->caps.tx_chainmask >
  3193. ATH9K_ANTENNA1_CHAINMASK) {
  3194. *tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
  3195. }
  3196. *rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
  3197. *antenna_cfgd = true;
  3198. break;
  3199. case ATH9K_ANT_VARIABLE:
  3200. *tx_chainmask = tx_chainmask_cfg;
  3201. *rx_chainmask = rx_chainmask_cfg;
  3202. *antenna_cfgd = true;
  3203. break;
  3204. default:
  3205. break;
  3206. }
  3207. } else {
  3208. ah->diversity_control = settings;
  3209. }
  3210. return true;
  3211. }
  3212. /*********************/
  3213. /* General Operation */
  3214. /*********************/
  3215. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  3216. {
  3217. u32 bits = REG_READ(ah, AR_RX_FILTER);
  3218. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  3219. if (phybits & AR_PHY_ERR_RADAR)
  3220. bits |= ATH9K_RX_FILTER_PHYRADAR;
  3221. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  3222. bits |= ATH9K_RX_FILTER_PHYERR;
  3223. return bits;
  3224. }
  3225. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  3226. {
  3227. u32 phybits;
  3228. REG_WRITE(ah, AR_RX_FILTER, (bits & 0xffff) | AR_RX_COMPR_BAR);
  3229. phybits = 0;
  3230. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  3231. phybits |= AR_PHY_ERR_RADAR;
  3232. if (bits & ATH9K_RX_FILTER_PHYERR)
  3233. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  3234. REG_WRITE(ah, AR_PHY_ERR, phybits);
  3235. if (phybits)
  3236. REG_WRITE(ah, AR_RXCFG,
  3237. REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
  3238. else
  3239. REG_WRITE(ah, AR_RXCFG,
  3240. REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
  3241. }
  3242. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  3243. {
  3244. return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM);
  3245. }
  3246. bool ath9k_hw_disable(struct ath_hw *ah)
  3247. {
  3248. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  3249. return false;
  3250. return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD);
  3251. }
  3252. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
  3253. {
  3254. struct ath9k_channel *chan = ah->curchan;
  3255. struct ieee80211_channel *channel = chan->chan;
  3256. ah->regulatory.power_limit = min(limit, (u32) MAX_RATE_POWER);
  3257. ah->eep_ops->set_txpower(ah, chan,
  3258. ath9k_regd_get_ctl(&ah->regulatory, chan),
  3259. channel->max_antenna_gain * 2,
  3260. channel->max_power * 2,
  3261. min((u32) MAX_RATE_POWER,
  3262. (u32) ah->regulatory.power_limit));
  3263. }
  3264. void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
  3265. {
  3266. memcpy(ah->macaddr, mac, ETH_ALEN);
  3267. }
  3268. void ath9k_hw_setopmode(struct ath_hw *ah)
  3269. {
  3270. ath9k_hw_set_operating_mode(ah, ah->opmode);
  3271. }
  3272. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  3273. {
  3274. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  3275. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  3276. }
  3277. void ath9k_hw_setbssidmask(struct ath_softc *sc)
  3278. {
  3279. REG_WRITE(sc->sc_ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
  3280. REG_WRITE(sc->sc_ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
  3281. }
  3282. void ath9k_hw_write_associd(struct ath_softc *sc)
  3283. {
  3284. REG_WRITE(sc->sc_ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
  3285. REG_WRITE(sc->sc_ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
  3286. ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  3287. }
  3288. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  3289. {
  3290. u64 tsf;
  3291. tsf = REG_READ(ah, AR_TSF_U32);
  3292. tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
  3293. return tsf;
  3294. }
  3295. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  3296. {
  3297. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  3298. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  3299. }
  3300. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  3301. {
  3302. ath9k_ps_wakeup(ah->ah_sc);
  3303. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  3304. AH_TSF_WRITE_TIMEOUT))
  3305. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  3306. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  3307. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  3308. ath9k_ps_restore(ah->ah_sc);
  3309. }
  3310. bool ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
  3311. {
  3312. if (setting)
  3313. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  3314. else
  3315. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  3316. return true;
  3317. }
  3318. bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  3319. {
  3320. if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
  3321. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad slot time %u\n", us);
  3322. ah->slottime = (u32) -1;
  3323. return false;
  3324. } else {
  3325. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
  3326. ah->slottime = us;
  3327. return true;
  3328. }
  3329. }
  3330. void ath9k_hw_set11nmac2040(struct ath_hw *ah, enum ath9k_ht_macmode mode)
  3331. {
  3332. u32 macmode;
  3333. if (mode == ATH9K_HT_MACMODE_2040 &&
  3334. !ah->config.cwm_ignore_extcca)
  3335. macmode = AR_2040_JOINED_RX_CLEAR;
  3336. else
  3337. macmode = 0;
  3338. REG_WRITE(ah, AR_2040_MODE, macmode);
  3339. }
  3340. /***************************/
  3341. /* Bluetooth Coexistence */
  3342. /***************************/
  3343. void ath9k_hw_btcoex_enable(struct ath_hw *ah)
  3344. {
  3345. /* connect bt_active to baseband */
  3346. REG_CLR_BIT(ah, AR_GPIO_INPUT_EN_VAL,
  3347. (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
  3348. AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
  3349. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
  3350. AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
  3351. /* Set input mux for bt_active to gpio pin */
  3352. REG_RMW_FIELD(ah, AR_GPIO_INPUT_MUX1,
  3353. AR_GPIO_INPUT_MUX1_BT_ACTIVE,
  3354. ah->btactive_gpio);
  3355. /* Configure the desired gpio port for input */
  3356. ath9k_hw_cfg_gpio_input(ah, ah->btactive_gpio);
  3357. /* Configure the desired GPIO port for TX_FRAME output */
  3358. ath9k_hw_cfg_output(ah, ah->wlanactive_gpio,
  3359. AR_GPIO_OUTPUT_MUX_AS_TX_FRAME);
  3360. }