brd.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643
  1. /*
  2. * Ram backed block device driver.
  3. *
  4. * Copyright (C) 2007 Nick Piggin
  5. * Copyright (C) 2007 Novell Inc.
  6. *
  7. * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
  8. * of their respective owners.
  9. */
  10. #include <linux/init.h>
  11. #include <linux/module.h>
  12. #include <linux/moduleparam.h>
  13. #include <linux/major.h>
  14. #include <linux/blkdev.h>
  15. #include <linux/bio.h>
  16. #include <linux/highmem.h>
  17. #include <linux/radix-tree.h>
  18. #include <linux/buffer_head.h> /* invalidate_bh_lrus() */
  19. #include <linux/slab.h>
  20. #include <asm/uaccess.h>
  21. #define SECTOR_SHIFT 9
  22. #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
  23. #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
  24. /*
  25. * Each block ramdisk device has a radix_tree brd_pages of pages that stores
  26. * the pages containing the block device's contents. A brd page's ->index is
  27. * its offset in PAGE_SIZE units. This is similar to, but in no way connected
  28. * with, the kernel's pagecache or buffer cache (which sit above our block
  29. * device).
  30. */
  31. struct brd_device {
  32. int brd_number;
  33. int brd_refcnt;
  34. loff_t brd_offset;
  35. loff_t brd_sizelimit;
  36. unsigned brd_blocksize;
  37. struct request_queue *brd_queue;
  38. struct gendisk *brd_disk;
  39. struct list_head brd_list;
  40. /*
  41. * Backing store of pages and lock to protect it. This is the contents
  42. * of the block device.
  43. */
  44. spinlock_t brd_lock;
  45. struct radix_tree_root brd_pages;
  46. };
  47. /*
  48. * Look up and return a brd's page for a given sector.
  49. */
  50. static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
  51. {
  52. pgoff_t idx;
  53. struct page *page;
  54. /*
  55. * The page lifetime is protected by the fact that we have opened the
  56. * device node -- brd pages will never be deleted under us, so we
  57. * don't need any further locking or refcounting.
  58. *
  59. * This is strictly true for the radix-tree nodes as well (ie. we
  60. * don't actually need the rcu_read_lock()), however that is not a
  61. * documented feature of the radix-tree API so it is better to be
  62. * safe here (we don't have total exclusion from radix tree updates
  63. * here, only deletes).
  64. */
  65. rcu_read_lock();
  66. idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
  67. page = radix_tree_lookup(&brd->brd_pages, idx);
  68. rcu_read_unlock();
  69. BUG_ON(page && page->index != idx);
  70. return page;
  71. }
  72. /*
  73. * Look up and return a brd's page for a given sector.
  74. * If one does not exist, allocate an empty page, and insert that. Then
  75. * return it.
  76. */
  77. static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
  78. {
  79. pgoff_t idx;
  80. struct page *page;
  81. gfp_t gfp_flags;
  82. page = brd_lookup_page(brd, sector);
  83. if (page)
  84. return page;
  85. /*
  86. * Must use NOIO because we don't want to recurse back into the
  87. * block or filesystem layers from page reclaim.
  88. *
  89. * Cannot support XIP and highmem, because our ->direct_access
  90. * routine for XIP must return memory that is always addressable.
  91. * If XIP was reworked to use pfns and kmap throughout, this
  92. * restriction might be able to be lifted.
  93. */
  94. gfp_flags = GFP_NOIO | __GFP_ZERO;
  95. #ifndef CONFIG_BLK_DEV_XIP
  96. gfp_flags |= __GFP_HIGHMEM;
  97. #endif
  98. page = alloc_page(gfp_flags);
  99. if (!page)
  100. return NULL;
  101. if (radix_tree_preload(GFP_NOIO)) {
  102. __free_page(page);
  103. return NULL;
  104. }
  105. spin_lock(&brd->brd_lock);
  106. idx = sector >> PAGE_SECTORS_SHIFT;
  107. if (radix_tree_insert(&brd->brd_pages, idx, page)) {
  108. __free_page(page);
  109. page = radix_tree_lookup(&brd->brd_pages, idx);
  110. BUG_ON(!page);
  111. BUG_ON(page->index != idx);
  112. } else
  113. page->index = idx;
  114. spin_unlock(&brd->brd_lock);
  115. radix_tree_preload_end();
  116. return page;
  117. }
  118. static void brd_free_page(struct brd_device *brd, sector_t sector)
  119. {
  120. struct page *page;
  121. pgoff_t idx;
  122. spin_lock(&brd->brd_lock);
  123. idx = sector >> PAGE_SECTORS_SHIFT;
  124. page = radix_tree_delete(&brd->brd_pages, idx);
  125. spin_unlock(&brd->brd_lock);
  126. if (page)
  127. __free_page(page);
  128. }
  129. static void brd_zero_page(struct brd_device *brd, sector_t sector)
  130. {
  131. struct page *page;
  132. page = brd_lookup_page(brd, sector);
  133. if (page)
  134. clear_highpage(page);
  135. }
  136. /*
  137. * Free all backing store pages and radix tree. This must only be called when
  138. * there are no other users of the device.
  139. */
  140. #define FREE_BATCH 16
  141. static void brd_free_pages(struct brd_device *brd)
  142. {
  143. unsigned long pos = 0;
  144. struct page *pages[FREE_BATCH];
  145. int nr_pages;
  146. do {
  147. int i;
  148. nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
  149. (void **)pages, pos, FREE_BATCH);
  150. for (i = 0; i < nr_pages; i++) {
  151. void *ret;
  152. BUG_ON(pages[i]->index < pos);
  153. pos = pages[i]->index;
  154. ret = radix_tree_delete(&brd->brd_pages, pos);
  155. BUG_ON(!ret || ret != pages[i]);
  156. __free_page(pages[i]);
  157. }
  158. pos++;
  159. /*
  160. * This assumes radix_tree_gang_lookup always returns as
  161. * many pages as possible. If the radix-tree code changes,
  162. * so will this have to.
  163. */
  164. } while (nr_pages == FREE_BATCH);
  165. }
  166. /*
  167. * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
  168. */
  169. static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
  170. {
  171. unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
  172. size_t copy;
  173. copy = min_t(size_t, n, PAGE_SIZE - offset);
  174. if (!brd_insert_page(brd, sector))
  175. return -ENOMEM;
  176. if (copy < n) {
  177. sector += copy >> SECTOR_SHIFT;
  178. if (!brd_insert_page(brd, sector))
  179. return -ENOMEM;
  180. }
  181. return 0;
  182. }
  183. static void discard_from_brd(struct brd_device *brd,
  184. sector_t sector, size_t n)
  185. {
  186. while (n >= PAGE_SIZE) {
  187. /*
  188. * Don't want to actually discard pages here because
  189. * re-allocating the pages can result in writeback
  190. * deadlocks under heavy load.
  191. */
  192. if (0)
  193. brd_free_page(brd, sector);
  194. else
  195. brd_zero_page(brd, sector);
  196. sector += PAGE_SIZE >> SECTOR_SHIFT;
  197. n -= PAGE_SIZE;
  198. }
  199. }
  200. /*
  201. * Copy n bytes from src to the brd starting at sector. Does not sleep.
  202. */
  203. static void copy_to_brd(struct brd_device *brd, const void *src,
  204. sector_t sector, size_t n)
  205. {
  206. struct page *page;
  207. void *dst;
  208. unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
  209. size_t copy;
  210. copy = min_t(size_t, n, PAGE_SIZE - offset);
  211. page = brd_lookup_page(brd, sector);
  212. BUG_ON(!page);
  213. dst = kmap_atomic(page, KM_USER1);
  214. memcpy(dst + offset, src, copy);
  215. kunmap_atomic(dst, KM_USER1);
  216. if (copy < n) {
  217. src += copy;
  218. sector += copy >> SECTOR_SHIFT;
  219. copy = n - copy;
  220. page = brd_lookup_page(brd, sector);
  221. BUG_ON(!page);
  222. dst = kmap_atomic(page, KM_USER1);
  223. memcpy(dst, src, copy);
  224. kunmap_atomic(dst, KM_USER1);
  225. }
  226. }
  227. /*
  228. * Copy n bytes to dst from the brd starting at sector. Does not sleep.
  229. */
  230. static void copy_from_brd(void *dst, struct brd_device *brd,
  231. sector_t sector, size_t n)
  232. {
  233. struct page *page;
  234. void *src;
  235. unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
  236. size_t copy;
  237. copy = min_t(size_t, n, PAGE_SIZE - offset);
  238. page = brd_lookup_page(brd, sector);
  239. if (page) {
  240. src = kmap_atomic(page, KM_USER1);
  241. memcpy(dst, src + offset, copy);
  242. kunmap_atomic(src, KM_USER1);
  243. } else
  244. memset(dst, 0, copy);
  245. if (copy < n) {
  246. dst += copy;
  247. sector += copy >> SECTOR_SHIFT;
  248. copy = n - copy;
  249. page = brd_lookup_page(brd, sector);
  250. if (page) {
  251. src = kmap_atomic(page, KM_USER1);
  252. memcpy(dst, src, copy);
  253. kunmap_atomic(src, KM_USER1);
  254. } else
  255. memset(dst, 0, copy);
  256. }
  257. }
  258. /*
  259. * Process a single bvec of a bio.
  260. */
  261. static int brd_do_bvec(struct brd_device *brd, struct page *page,
  262. unsigned int len, unsigned int off, int rw,
  263. sector_t sector)
  264. {
  265. void *mem;
  266. int err = 0;
  267. if (rw != READ) {
  268. err = copy_to_brd_setup(brd, sector, len);
  269. if (err)
  270. goto out;
  271. }
  272. mem = kmap_atomic(page, KM_USER0);
  273. if (rw == READ) {
  274. copy_from_brd(mem + off, brd, sector, len);
  275. flush_dcache_page(page);
  276. } else {
  277. flush_dcache_page(page);
  278. copy_to_brd(brd, mem + off, sector, len);
  279. }
  280. kunmap_atomic(mem, KM_USER0);
  281. out:
  282. return err;
  283. }
  284. static int brd_make_request(struct request_queue *q, struct bio *bio)
  285. {
  286. struct block_device *bdev = bio->bi_bdev;
  287. struct brd_device *brd = bdev->bd_disk->private_data;
  288. int rw;
  289. struct bio_vec *bvec;
  290. sector_t sector;
  291. int i;
  292. int err = -EIO;
  293. sector = bio->bi_sector;
  294. if (sector + (bio->bi_size >> SECTOR_SHIFT) >
  295. get_capacity(bdev->bd_disk))
  296. goto out;
  297. if (unlikely(bio_rw_flagged(bio, BIO_RW_DISCARD))) {
  298. err = 0;
  299. discard_from_brd(brd, sector, bio->bi_size);
  300. goto out;
  301. }
  302. rw = bio_rw(bio);
  303. if (rw == READA)
  304. rw = READ;
  305. bio_for_each_segment(bvec, bio, i) {
  306. unsigned int len = bvec->bv_len;
  307. err = brd_do_bvec(brd, bvec->bv_page, len,
  308. bvec->bv_offset, rw, sector);
  309. if (err)
  310. break;
  311. sector += len >> SECTOR_SHIFT;
  312. }
  313. out:
  314. bio_endio(bio, err);
  315. return 0;
  316. }
  317. #ifdef CONFIG_BLK_DEV_XIP
  318. static int brd_direct_access(struct block_device *bdev, sector_t sector,
  319. void **kaddr, unsigned long *pfn)
  320. {
  321. struct brd_device *brd = bdev->bd_disk->private_data;
  322. struct page *page;
  323. if (!brd)
  324. return -ENODEV;
  325. if (sector & (PAGE_SECTORS-1))
  326. return -EINVAL;
  327. if (sector + PAGE_SECTORS > get_capacity(bdev->bd_disk))
  328. return -ERANGE;
  329. page = brd_insert_page(brd, sector);
  330. if (!page)
  331. return -ENOMEM;
  332. *kaddr = page_address(page);
  333. *pfn = page_to_pfn(page);
  334. return 0;
  335. }
  336. #endif
  337. static int brd_ioctl(struct block_device *bdev, fmode_t mode,
  338. unsigned int cmd, unsigned long arg)
  339. {
  340. int error;
  341. struct brd_device *brd = bdev->bd_disk->private_data;
  342. if (cmd != BLKFLSBUF)
  343. return -ENOTTY;
  344. /*
  345. * ram device BLKFLSBUF has special semantics, we want to actually
  346. * release and destroy the ramdisk data.
  347. */
  348. mutex_lock(&bdev->bd_mutex);
  349. error = -EBUSY;
  350. if (bdev->bd_openers <= 1) {
  351. /*
  352. * Invalidate the cache first, so it isn't written
  353. * back to the device.
  354. *
  355. * Another thread might instantiate more buffercache here,
  356. * but there is not much we can do to close that race.
  357. */
  358. invalidate_bh_lrus();
  359. truncate_inode_pages(bdev->bd_inode->i_mapping, 0);
  360. brd_free_pages(brd);
  361. error = 0;
  362. }
  363. mutex_unlock(&bdev->bd_mutex);
  364. return error;
  365. }
  366. static const struct block_device_operations brd_fops = {
  367. .owner = THIS_MODULE,
  368. .locked_ioctl = brd_ioctl,
  369. #ifdef CONFIG_BLK_DEV_XIP
  370. .direct_access = brd_direct_access,
  371. #endif
  372. };
  373. /*
  374. * And now the modules code and kernel interface.
  375. */
  376. static int rd_nr;
  377. int rd_size = CONFIG_BLK_DEV_RAM_SIZE;
  378. static int max_part;
  379. static int part_shift;
  380. module_param(rd_nr, int, 0);
  381. MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
  382. module_param(rd_size, int, 0);
  383. MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
  384. module_param(max_part, int, 0);
  385. MODULE_PARM_DESC(max_part, "Maximum number of partitions per RAM disk");
  386. MODULE_LICENSE("GPL");
  387. MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
  388. MODULE_ALIAS("rd");
  389. #ifndef MODULE
  390. /* Legacy boot options - nonmodular */
  391. static int __init ramdisk_size(char *str)
  392. {
  393. rd_size = simple_strtol(str, NULL, 0);
  394. return 1;
  395. }
  396. __setup("ramdisk_size=", ramdisk_size);
  397. #endif
  398. /*
  399. * The device scheme is derived from loop.c. Keep them in synch where possible
  400. * (should share code eventually).
  401. */
  402. static LIST_HEAD(brd_devices);
  403. static DEFINE_MUTEX(brd_devices_mutex);
  404. static struct brd_device *brd_alloc(int i)
  405. {
  406. struct brd_device *brd;
  407. struct gendisk *disk;
  408. brd = kzalloc(sizeof(*brd), GFP_KERNEL);
  409. if (!brd)
  410. goto out;
  411. brd->brd_number = i;
  412. spin_lock_init(&brd->brd_lock);
  413. INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
  414. brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
  415. if (!brd->brd_queue)
  416. goto out_free_dev;
  417. blk_queue_make_request(brd->brd_queue, brd_make_request);
  418. blk_queue_ordered(brd->brd_queue, QUEUE_ORDERED_TAG, NULL);
  419. blk_queue_max_hw_sectors(brd->brd_queue, 1024);
  420. blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);
  421. brd->brd_queue->limits.discard_granularity = PAGE_SIZE;
  422. brd->brd_queue->limits.max_discard_sectors = UINT_MAX;
  423. brd->brd_queue->limits.discard_zeroes_data = 1;
  424. queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, brd->brd_queue);
  425. disk = brd->brd_disk = alloc_disk(1 << part_shift);
  426. if (!disk)
  427. goto out_free_queue;
  428. disk->major = RAMDISK_MAJOR;
  429. disk->first_minor = i << part_shift;
  430. disk->fops = &brd_fops;
  431. disk->private_data = brd;
  432. disk->queue = brd->brd_queue;
  433. disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
  434. sprintf(disk->disk_name, "ram%d", i);
  435. set_capacity(disk, rd_size * 2);
  436. return brd;
  437. out_free_queue:
  438. blk_cleanup_queue(brd->brd_queue);
  439. out_free_dev:
  440. kfree(brd);
  441. out:
  442. return NULL;
  443. }
  444. static void brd_free(struct brd_device *brd)
  445. {
  446. put_disk(brd->brd_disk);
  447. blk_cleanup_queue(brd->brd_queue);
  448. brd_free_pages(brd);
  449. kfree(brd);
  450. }
  451. static struct brd_device *brd_init_one(int i)
  452. {
  453. struct brd_device *brd;
  454. list_for_each_entry(brd, &brd_devices, brd_list) {
  455. if (brd->brd_number == i)
  456. goto out;
  457. }
  458. brd = brd_alloc(i);
  459. if (brd) {
  460. add_disk(brd->brd_disk);
  461. list_add_tail(&brd->brd_list, &brd_devices);
  462. }
  463. out:
  464. return brd;
  465. }
  466. static void brd_del_one(struct brd_device *brd)
  467. {
  468. list_del(&brd->brd_list);
  469. del_gendisk(brd->brd_disk);
  470. brd_free(brd);
  471. }
  472. static struct kobject *brd_probe(dev_t dev, int *part, void *data)
  473. {
  474. struct brd_device *brd;
  475. struct kobject *kobj;
  476. mutex_lock(&brd_devices_mutex);
  477. brd = brd_init_one(dev & MINORMASK);
  478. kobj = brd ? get_disk(brd->brd_disk) : ERR_PTR(-ENOMEM);
  479. mutex_unlock(&brd_devices_mutex);
  480. *part = 0;
  481. return kobj;
  482. }
  483. static int __init brd_init(void)
  484. {
  485. int i, nr;
  486. unsigned long range;
  487. struct brd_device *brd, *next;
  488. /*
  489. * brd module now has a feature to instantiate underlying device
  490. * structure on-demand, provided that there is an access dev node.
  491. * However, this will not work well with user space tool that doesn't
  492. * know about such "feature". In order to not break any existing
  493. * tool, we do the following:
  494. *
  495. * (1) if rd_nr is specified, create that many upfront, and this
  496. * also becomes a hard limit.
  497. * (2) if rd_nr is not specified, create 1 rd device on module
  498. * load, user can further extend brd device by create dev node
  499. * themselves and have kernel automatically instantiate actual
  500. * device on-demand.
  501. */
  502. part_shift = 0;
  503. if (max_part > 0)
  504. part_shift = fls(max_part);
  505. if (rd_nr > 1UL << (MINORBITS - part_shift))
  506. return -EINVAL;
  507. if (rd_nr) {
  508. nr = rd_nr;
  509. range = rd_nr;
  510. } else {
  511. nr = CONFIG_BLK_DEV_RAM_COUNT;
  512. range = 1UL << (MINORBITS - part_shift);
  513. }
  514. if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
  515. return -EIO;
  516. for (i = 0; i < nr; i++) {
  517. brd = brd_alloc(i);
  518. if (!brd)
  519. goto out_free;
  520. list_add_tail(&brd->brd_list, &brd_devices);
  521. }
  522. /* point of no return */
  523. list_for_each_entry(brd, &brd_devices, brd_list)
  524. add_disk(brd->brd_disk);
  525. blk_register_region(MKDEV(RAMDISK_MAJOR, 0), range,
  526. THIS_MODULE, brd_probe, NULL, NULL);
  527. printk(KERN_INFO "brd: module loaded\n");
  528. return 0;
  529. out_free:
  530. list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
  531. list_del(&brd->brd_list);
  532. brd_free(brd);
  533. }
  534. unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
  535. return -ENOMEM;
  536. }
  537. static void __exit brd_exit(void)
  538. {
  539. unsigned long range;
  540. struct brd_device *brd, *next;
  541. range = rd_nr ? rd_nr : 1UL << (MINORBITS - part_shift);
  542. list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
  543. brd_del_one(brd);
  544. blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), range);
  545. unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
  546. }
  547. module_init(brd_init);
  548. module_exit(brd_exit);