sky2.c 90 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424
  1. /*
  2. * New driver for Marvell Yukon 2 chipset.
  3. * Based on earlier sk98lin, and skge driver.
  4. *
  5. * This driver intentionally does not support all the features
  6. * of the original driver such as link fail-over and link management because
  7. * those should be done at higher levels.
  8. *
  9. * Copyright (C) 2005 Stephen Hemminger <shemminger@osdl.org>
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or
  14. * (at your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24. */
  25. #include <linux/config.h>
  26. #include <linux/crc32.h>
  27. #include <linux/kernel.h>
  28. #include <linux/version.h>
  29. #include <linux/module.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/dma-mapping.h>
  32. #include <linux/etherdevice.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/pci.h>
  35. #include <linux/ip.h>
  36. #include <linux/tcp.h>
  37. #include <linux/in.h>
  38. #include <linux/delay.h>
  39. #include <linux/workqueue.h>
  40. #include <linux/if_vlan.h>
  41. #include <linux/prefetch.h>
  42. #include <linux/mii.h>
  43. #include <asm/irq.h>
  44. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  45. #define SKY2_VLAN_TAG_USED 1
  46. #endif
  47. #include "sky2.h"
  48. #define DRV_NAME "sky2"
  49. #define DRV_VERSION "1.1"
  50. #define PFX DRV_NAME " "
  51. /*
  52. * The Yukon II chipset takes 64 bit command blocks (called list elements)
  53. * that are organized into three (receive, transmit, status) different rings
  54. * similar to Tigon3. A transmit can require several elements;
  55. * a receive requires one (or two if using 64 bit dma).
  56. */
  57. #define RX_LE_SIZE 512
  58. #define RX_LE_BYTES (RX_LE_SIZE*sizeof(struct sky2_rx_le))
  59. #define RX_MAX_PENDING (RX_LE_SIZE/2 - 2)
  60. #define RX_DEF_PENDING RX_MAX_PENDING
  61. #define RX_SKB_ALIGN 8
  62. #define TX_RING_SIZE 512
  63. #define TX_DEF_PENDING (TX_RING_SIZE - 1)
  64. #define TX_MIN_PENDING 64
  65. #define MAX_SKB_TX_LE (4 + (sizeof(dma_addr_t)/sizeof(u32))*MAX_SKB_FRAGS)
  66. #define STATUS_RING_SIZE 2048 /* 2 ports * (TX + 2*RX) */
  67. #define STATUS_LE_BYTES (STATUS_RING_SIZE*sizeof(struct sky2_status_le))
  68. #define ETH_JUMBO_MTU 9000
  69. #define TX_WATCHDOG (5 * HZ)
  70. #define NAPI_WEIGHT 64
  71. #define PHY_RETRIES 1000
  72. static const u32 default_msg =
  73. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
  74. | NETIF_MSG_TIMER | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR
  75. | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
  76. static int debug = -1; /* defaults above */
  77. module_param(debug, int, 0);
  78. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  79. static int copybreak __read_mostly = 256;
  80. module_param(copybreak, int, 0);
  81. MODULE_PARM_DESC(copybreak, "Receive copy threshold");
  82. static int disable_msi = 0;
  83. module_param(disable_msi, int, 0);
  84. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  85. static const struct pci_device_id sky2_id_table[] = {
  86. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9000) },
  87. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9E00) },
  88. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b00) },
  89. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },
  90. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4340) },
  91. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4341) },
  92. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4342) },
  93. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4343) },
  94. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4344) },
  95. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4345) },
  96. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4346) },
  97. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4347) },
  98. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4350) },
  99. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4351) },
  100. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4352) },
  101. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4360) },
  102. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4361) },
  103. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4362) },
  104. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4363) },
  105. { 0 }
  106. };
  107. MODULE_DEVICE_TABLE(pci, sky2_id_table);
  108. /* Avoid conditionals by using array */
  109. static const unsigned txqaddr[] = { Q_XA1, Q_XA2 };
  110. static const unsigned rxqaddr[] = { Q_R1, Q_R2 };
  111. /* This driver supports yukon2 chipset only */
  112. static const char *yukon2_name[] = {
  113. "XL", /* 0xb3 */
  114. "EC Ultra", /* 0xb4 */
  115. "UNKNOWN", /* 0xb5 */
  116. "EC", /* 0xb6 */
  117. "FE", /* 0xb7 */
  118. };
  119. /* Access to external PHY */
  120. static int gm_phy_write(struct sky2_hw *hw, unsigned port, u16 reg, u16 val)
  121. {
  122. int i;
  123. gma_write16(hw, port, GM_SMI_DATA, val);
  124. gma_write16(hw, port, GM_SMI_CTRL,
  125. GM_SMI_CT_PHY_AD(PHY_ADDR_MARV) | GM_SMI_CT_REG_AD(reg));
  126. for (i = 0; i < PHY_RETRIES; i++) {
  127. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  128. return 0;
  129. udelay(1);
  130. }
  131. printk(KERN_WARNING PFX "%s: phy write timeout\n", hw->dev[port]->name);
  132. return -ETIMEDOUT;
  133. }
  134. static int __gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg, u16 *val)
  135. {
  136. int i;
  137. gma_write16(hw, port, GM_SMI_CTRL, GM_SMI_CT_PHY_AD(PHY_ADDR_MARV)
  138. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  139. for (i = 0; i < PHY_RETRIES; i++) {
  140. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL) {
  141. *val = gma_read16(hw, port, GM_SMI_DATA);
  142. return 0;
  143. }
  144. udelay(1);
  145. }
  146. return -ETIMEDOUT;
  147. }
  148. static u16 gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg)
  149. {
  150. u16 v;
  151. if (__gm_phy_read(hw, port, reg, &v) != 0)
  152. printk(KERN_WARNING PFX "%s: phy read timeout\n", hw->dev[port]->name);
  153. return v;
  154. }
  155. static int sky2_set_power_state(struct sky2_hw *hw, pci_power_t state)
  156. {
  157. u16 power_control;
  158. u32 reg1;
  159. int vaux;
  160. int ret = 0;
  161. pr_debug("sky2_set_power_state %d\n", state);
  162. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  163. power_control = sky2_pci_read16(hw, hw->pm_cap + PCI_PM_PMC);
  164. vaux = (sky2_read16(hw, B0_CTST) & Y2_VAUX_AVAIL) &&
  165. (power_control & PCI_PM_CAP_PME_D3cold);
  166. power_control = sky2_pci_read16(hw, hw->pm_cap + PCI_PM_CTRL);
  167. power_control |= PCI_PM_CTRL_PME_STATUS;
  168. power_control &= ~(PCI_PM_CTRL_STATE_MASK);
  169. switch (state) {
  170. case PCI_D0:
  171. /* switch power to VCC (WA for VAUX problem) */
  172. sky2_write8(hw, B0_POWER_CTRL,
  173. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  174. /* disable Core Clock Division, */
  175. sky2_write32(hw, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
  176. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
  177. /* enable bits are inverted */
  178. sky2_write8(hw, B2_Y2_CLK_GATE,
  179. Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
  180. Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
  181. Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS);
  182. else
  183. sky2_write8(hw, B2_Y2_CLK_GATE, 0);
  184. /* Turn off phy power saving */
  185. reg1 = sky2_pci_read32(hw, PCI_DEV_REG1);
  186. reg1 &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
  187. /* looks like this XL is back asswards .. */
  188. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1) {
  189. reg1 |= PCI_Y2_PHY1_COMA;
  190. if (hw->ports > 1)
  191. reg1 |= PCI_Y2_PHY2_COMA;
  192. }
  193. if (hw->chip_id == CHIP_ID_YUKON_EC_U) {
  194. sky2_pci_write32(hw, PCI_DEV_REG3, 0);
  195. reg1 = sky2_pci_read32(hw, PCI_DEV_REG4);
  196. reg1 &= P_ASPM_CONTROL_MSK;
  197. sky2_pci_write32(hw, PCI_DEV_REG4, reg1);
  198. sky2_pci_write32(hw, PCI_DEV_REG5, 0);
  199. }
  200. sky2_pci_write32(hw, PCI_DEV_REG1, reg1);
  201. break;
  202. case PCI_D3hot:
  203. case PCI_D3cold:
  204. /* Turn on phy power saving */
  205. reg1 = sky2_pci_read32(hw, PCI_DEV_REG1);
  206. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
  207. reg1 &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
  208. else
  209. reg1 |= (PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
  210. sky2_pci_write32(hw, PCI_DEV_REG1, reg1);
  211. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
  212. sky2_write8(hw, B2_Y2_CLK_GATE, 0);
  213. else
  214. /* enable bits are inverted */
  215. sky2_write8(hw, B2_Y2_CLK_GATE,
  216. Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
  217. Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
  218. Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS);
  219. /* switch power to VAUX */
  220. if (vaux && state != PCI_D3cold)
  221. sky2_write8(hw, B0_POWER_CTRL,
  222. (PC_VAUX_ENA | PC_VCC_ENA |
  223. PC_VAUX_ON | PC_VCC_OFF));
  224. break;
  225. default:
  226. printk(KERN_ERR PFX "Unknown power state %d\n", state);
  227. ret = -1;
  228. }
  229. sky2_pci_write16(hw, hw->pm_cap + PCI_PM_CTRL, power_control);
  230. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  231. return ret;
  232. }
  233. static void sky2_phy_reset(struct sky2_hw *hw, unsigned port)
  234. {
  235. u16 reg;
  236. /* disable all GMAC IRQ's */
  237. sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  238. /* disable PHY IRQs */
  239. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  240. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  241. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  242. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  243. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  244. reg = gma_read16(hw, port, GM_RX_CTRL);
  245. reg |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
  246. gma_write16(hw, port, GM_RX_CTRL, reg);
  247. }
  248. static void sky2_phy_init(struct sky2_hw *hw, unsigned port)
  249. {
  250. struct sky2_port *sky2 = netdev_priv(hw->dev[port]);
  251. u16 ctrl, ct1000, adv, pg, ledctrl, ledover;
  252. if (sky2->autoneg == AUTONEG_ENABLE && hw->chip_id != CHIP_ID_YUKON_XL) {
  253. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  254. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  255. PHY_M_EC_MAC_S_MSK);
  256. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  257. if (hw->chip_id == CHIP_ID_YUKON_EC)
  258. ectrl |= PHY_M_EC_DSC_2(2) | PHY_M_EC_DOWN_S_ENA;
  259. else
  260. ectrl |= PHY_M_EC_M_DSC(2) | PHY_M_EC_S_DSC(3);
  261. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  262. }
  263. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  264. if (hw->copper) {
  265. if (hw->chip_id == CHIP_ID_YUKON_FE) {
  266. /* enable automatic crossover */
  267. ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO) >> 1;
  268. } else {
  269. /* disable energy detect */
  270. ctrl &= ~PHY_M_PC_EN_DET_MSK;
  271. /* enable automatic crossover */
  272. ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO);
  273. if (sky2->autoneg == AUTONEG_ENABLE &&
  274. hw->chip_id == CHIP_ID_YUKON_XL) {
  275. ctrl &= ~PHY_M_PC_DSC_MSK;
  276. ctrl |= PHY_M_PC_DSC(2) | PHY_M_PC_DOWN_S_ENA;
  277. }
  278. }
  279. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  280. } else {
  281. /* workaround for deviation #4.88 (CRC errors) */
  282. /* disable Automatic Crossover */
  283. ctrl &= ~PHY_M_PC_MDIX_MSK;
  284. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  285. if (hw->chip_id == CHIP_ID_YUKON_XL) {
  286. /* Fiber: select 1000BASE-X only mode MAC Specific Ctrl Reg. */
  287. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 2);
  288. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  289. ctrl &= ~PHY_M_MAC_MD_MSK;
  290. ctrl |= PHY_M_MAC_MODE_SEL(PHY_M_MAC_MD_1000BX);
  291. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  292. /* select page 1 to access Fiber registers */
  293. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 1);
  294. }
  295. }
  296. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  297. if (sky2->autoneg == AUTONEG_DISABLE)
  298. ctrl &= ~PHY_CT_ANE;
  299. else
  300. ctrl |= PHY_CT_ANE;
  301. ctrl |= PHY_CT_RESET;
  302. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  303. ctrl = 0;
  304. ct1000 = 0;
  305. adv = PHY_AN_CSMA;
  306. if (sky2->autoneg == AUTONEG_ENABLE) {
  307. if (hw->copper) {
  308. if (sky2->advertising & ADVERTISED_1000baseT_Full)
  309. ct1000 |= PHY_M_1000C_AFD;
  310. if (sky2->advertising & ADVERTISED_1000baseT_Half)
  311. ct1000 |= PHY_M_1000C_AHD;
  312. if (sky2->advertising & ADVERTISED_100baseT_Full)
  313. adv |= PHY_M_AN_100_FD;
  314. if (sky2->advertising & ADVERTISED_100baseT_Half)
  315. adv |= PHY_M_AN_100_HD;
  316. if (sky2->advertising & ADVERTISED_10baseT_Full)
  317. adv |= PHY_M_AN_10_FD;
  318. if (sky2->advertising & ADVERTISED_10baseT_Half)
  319. adv |= PHY_M_AN_10_HD;
  320. } else /* special defines for FIBER (88E1011S only) */
  321. adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
  322. /* Set Flow-control capabilities */
  323. if (sky2->tx_pause && sky2->rx_pause)
  324. adv |= PHY_AN_PAUSE_CAP; /* symmetric */
  325. else if (sky2->rx_pause && !sky2->tx_pause)
  326. adv |= PHY_AN_PAUSE_ASYM | PHY_AN_PAUSE_CAP;
  327. else if (!sky2->rx_pause && sky2->tx_pause)
  328. adv |= PHY_AN_PAUSE_ASYM; /* local */
  329. /* Restart Auto-negotiation */
  330. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  331. } else {
  332. /* forced speed/duplex settings */
  333. ct1000 = PHY_M_1000C_MSE;
  334. if (sky2->duplex == DUPLEX_FULL)
  335. ctrl |= PHY_CT_DUP_MD;
  336. switch (sky2->speed) {
  337. case SPEED_1000:
  338. ctrl |= PHY_CT_SP1000;
  339. break;
  340. case SPEED_100:
  341. ctrl |= PHY_CT_SP100;
  342. break;
  343. }
  344. ctrl |= PHY_CT_RESET;
  345. }
  346. if (hw->chip_id != CHIP_ID_YUKON_FE)
  347. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  348. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  349. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  350. /* Setup Phy LED's */
  351. ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS);
  352. ledover = 0;
  353. switch (hw->chip_id) {
  354. case CHIP_ID_YUKON_FE:
  355. /* on 88E3082 these bits are at 11..9 (shifted left) */
  356. ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) << 1;
  357. ctrl = gm_phy_read(hw, port, PHY_MARV_FE_LED_PAR);
  358. /* delete ACT LED control bits */
  359. ctrl &= ~PHY_M_FELP_LED1_MSK;
  360. /* change ACT LED control to blink mode */
  361. ctrl |= PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_ACT_BL);
  362. gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR, ctrl);
  363. break;
  364. case CHIP_ID_YUKON_XL:
  365. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  366. /* select page 3 to access LED control register */
  367. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  368. /* set LED Function Control register */
  369. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, (PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */
  370. PHY_M_LEDC_INIT_CTRL(7) | /* 10 Mbps */
  371. PHY_M_LEDC_STA1_CTRL(7) | /* 100 Mbps */
  372. PHY_M_LEDC_STA0_CTRL(7))); /* 1000 Mbps */
  373. /* set Polarity Control register */
  374. gm_phy_write(hw, port, PHY_MARV_PHY_STAT,
  375. (PHY_M_POLC_LS1_P_MIX(4) |
  376. PHY_M_POLC_IS0_P_MIX(4) |
  377. PHY_M_POLC_LOS_CTRL(2) |
  378. PHY_M_POLC_INIT_CTRL(2) |
  379. PHY_M_POLC_STA1_CTRL(2) |
  380. PHY_M_POLC_STA0_CTRL(2)));
  381. /* restore page register */
  382. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  383. break;
  384. default:
  385. /* set Tx LED (LED_TX) to blink mode on Rx OR Tx activity */
  386. ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL;
  387. /* turn off the Rx LED (LED_RX) */
  388. ledover |= PHY_M_LED_MO_RX(MO_LED_OFF);
  389. }
  390. if (hw->chip_id == CHIP_ID_YUKON_EC_U && hw->chip_rev >= 2) {
  391. /* apply fixes in PHY AFE */
  392. gm_phy_write(hw, port, 22, 255);
  393. /* increase differential signal amplitude in 10BASE-T */
  394. gm_phy_write(hw, port, 24, 0xaa99);
  395. gm_phy_write(hw, port, 23, 0x2011);
  396. /* fix for IEEE A/B Symmetry failure in 1000BASE-T */
  397. gm_phy_write(hw, port, 24, 0xa204);
  398. gm_phy_write(hw, port, 23, 0x2002);
  399. /* set page register to 0 */
  400. gm_phy_write(hw, port, 22, 0);
  401. } else {
  402. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
  403. if (sky2->autoneg == AUTONEG_DISABLE || sky2->speed == SPEED_100) {
  404. /* turn on 100 Mbps LED (LED_LINK100) */
  405. ledover |= PHY_M_LED_MO_100(MO_LED_ON);
  406. }
  407. if (ledover)
  408. gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
  409. }
  410. /* Enable phy interrupt on auto-negotiation complete (or link up) */
  411. if (sky2->autoneg == AUTONEG_ENABLE)
  412. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL);
  413. else
  414. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  415. }
  416. /* Force a renegotiation */
  417. static void sky2_phy_reinit(struct sky2_port *sky2)
  418. {
  419. spin_lock_bh(&sky2->phy_lock);
  420. sky2_phy_init(sky2->hw, sky2->port);
  421. spin_unlock_bh(&sky2->phy_lock);
  422. }
  423. static void sky2_mac_init(struct sky2_hw *hw, unsigned port)
  424. {
  425. struct sky2_port *sky2 = netdev_priv(hw->dev[port]);
  426. u16 reg;
  427. int i;
  428. const u8 *addr = hw->dev[port]->dev_addr;
  429. sky2_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  430. sky2_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR|GPC_ENA_PAUSE);
  431. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
  432. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0 && port == 1) {
  433. /* WA DEV_472 -- looks like crossed wires on port 2 */
  434. /* clear GMAC 1 Control reset */
  435. sky2_write8(hw, SK_REG(0, GMAC_CTRL), GMC_RST_CLR);
  436. do {
  437. sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_SET);
  438. sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_CLR);
  439. } while (gm_phy_read(hw, 1, PHY_MARV_ID0) != PHY_MARV_ID0_VAL ||
  440. gm_phy_read(hw, 1, PHY_MARV_ID1) != PHY_MARV_ID1_Y2 ||
  441. gm_phy_read(hw, 1, PHY_MARV_INT_MASK) != 0);
  442. }
  443. if (sky2->autoneg == AUTONEG_DISABLE) {
  444. reg = gma_read16(hw, port, GM_GP_CTRL);
  445. reg |= GM_GPCR_AU_ALL_DIS;
  446. gma_write16(hw, port, GM_GP_CTRL, reg);
  447. gma_read16(hw, port, GM_GP_CTRL);
  448. switch (sky2->speed) {
  449. case SPEED_1000:
  450. reg &= ~GM_GPCR_SPEED_100;
  451. reg |= GM_GPCR_SPEED_1000;
  452. break;
  453. case SPEED_100:
  454. reg &= ~GM_GPCR_SPEED_1000;
  455. reg |= GM_GPCR_SPEED_100;
  456. break;
  457. case SPEED_10:
  458. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  459. break;
  460. }
  461. if (sky2->duplex == DUPLEX_FULL)
  462. reg |= GM_GPCR_DUP_FULL;
  463. } else
  464. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  465. if (!sky2->tx_pause && !sky2->rx_pause) {
  466. sky2_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  467. reg |=
  468. GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  469. } else if (sky2->tx_pause && !sky2->rx_pause) {
  470. /* disable Rx flow-control */
  471. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  472. }
  473. gma_write16(hw, port, GM_GP_CTRL, reg);
  474. sky2_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  475. spin_lock_bh(&sky2->phy_lock);
  476. sky2_phy_init(hw, port);
  477. spin_unlock_bh(&sky2->phy_lock);
  478. /* MIB clear */
  479. reg = gma_read16(hw, port, GM_PHY_ADDR);
  480. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  481. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  482. gma_read16(hw, port, GM_MIB_CNT_BASE + 8 * i);
  483. gma_write16(hw, port, GM_PHY_ADDR, reg);
  484. /* transmit control */
  485. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  486. /* receive control reg: unicast + multicast + no FCS */
  487. gma_write16(hw, port, GM_RX_CTRL,
  488. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  489. /* transmit flow control */
  490. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  491. /* transmit parameter */
  492. gma_write16(hw, port, GM_TX_PARAM,
  493. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  494. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  495. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) |
  496. TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
  497. /* serial mode register */
  498. reg = DATA_BLIND_VAL(DATA_BLIND_DEF) |
  499. GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  500. if (hw->dev[port]->mtu > ETH_DATA_LEN)
  501. reg |= GM_SMOD_JUMBO_ENA;
  502. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  503. /* virtual address for data */
  504. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  505. /* physical address: used for pause frames */
  506. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  507. /* ignore counter overflows */
  508. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  509. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  510. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  511. /* Configure Rx MAC FIFO */
  512. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  513. sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T),
  514. GMF_OPER_ON | GMF_RX_F_FL_ON);
  515. /* Flush Rx MAC FIFO on any flow control or error */
  516. sky2_write16(hw, SK_REG(port, RX_GMF_FL_MSK), GMR_FS_ANY_ERR);
  517. /* Set threshold to 0xa (64 bytes)
  518. * ASF disabled so no need to do WA dev #4.30
  519. */
  520. sky2_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF);
  521. /* Configure Tx MAC FIFO */
  522. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  523. sky2_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  524. if (hw->chip_id == CHIP_ID_YUKON_EC_U) {
  525. sky2_write8(hw, SK_REG(port, RX_GMF_LP_THR), 768/8);
  526. sky2_write8(hw, SK_REG(port, RX_GMF_UP_THR), 1024/8);
  527. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  528. /* set Tx GMAC FIFO Almost Empty Threshold */
  529. sky2_write32(hw, SK_REG(port, TX_GMF_AE_THR), 0x180);
  530. /* Disable Store & Forward mode for TX */
  531. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_STFW_DIS);
  532. }
  533. }
  534. }
  535. /* Assign Ram Buffer allocation.
  536. * start and end are in units of 4k bytes
  537. * ram registers are in units of 64bit words
  538. */
  539. static void sky2_ramset(struct sky2_hw *hw, u16 q, u8 startk, u8 endk)
  540. {
  541. u32 start, end;
  542. start = startk * 4096/8;
  543. end = (endk * 4096/8) - 1;
  544. sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  545. sky2_write32(hw, RB_ADDR(q, RB_START), start);
  546. sky2_write32(hw, RB_ADDR(q, RB_END), end);
  547. sky2_write32(hw, RB_ADDR(q, RB_WP), start);
  548. sky2_write32(hw, RB_ADDR(q, RB_RP), start);
  549. if (q == Q_R1 || q == Q_R2) {
  550. u32 space = (endk - startk) * 4096/8;
  551. u32 tp = space - space/4;
  552. /* On receive queue's set the thresholds
  553. * give receiver priority when > 3/4 full
  554. * send pause when down to 2K
  555. */
  556. sky2_write32(hw, RB_ADDR(q, RB_RX_UTHP), tp);
  557. sky2_write32(hw, RB_ADDR(q, RB_RX_LTHP), space/2);
  558. tp = space - 2048/8;
  559. sky2_write32(hw, RB_ADDR(q, RB_RX_UTPP), tp);
  560. sky2_write32(hw, RB_ADDR(q, RB_RX_LTPP), space/4);
  561. } else {
  562. /* Enable store & forward on Tx queue's because
  563. * Tx FIFO is only 1K on Yukon
  564. */
  565. sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  566. }
  567. sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  568. sky2_read8(hw, RB_ADDR(q, RB_CTRL));
  569. }
  570. /* Setup Bus Memory Interface */
  571. static void sky2_qset(struct sky2_hw *hw, u16 q)
  572. {
  573. sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_CLR_RESET);
  574. sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_OPER_INIT);
  575. sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_FIFO_OP_ON);
  576. sky2_write32(hw, Q_ADDR(q, Q_WM), BMU_WM_DEFAULT);
  577. }
  578. /* Setup prefetch unit registers. This is the interface between
  579. * hardware and driver list elements
  580. */
  581. static void sky2_prefetch_init(struct sky2_hw *hw, u32 qaddr,
  582. u64 addr, u32 last)
  583. {
  584. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
  585. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_CLR);
  586. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_HI), addr >> 32);
  587. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_LO), (u32) addr);
  588. sky2_write16(hw, Y2_QADDR(qaddr, PREF_UNIT_LAST_IDX), last);
  589. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_OP_ON);
  590. sky2_read32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL));
  591. }
  592. static inline struct sky2_tx_le *get_tx_le(struct sky2_port *sky2)
  593. {
  594. struct sky2_tx_le *le = sky2->tx_le + sky2->tx_prod;
  595. sky2->tx_prod = (sky2->tx_prod + 1) % TX_RING_SIZE;
  596. return le;
  597. }
  598. /* Update chip's next pointer */
  599. static inline void sky2_put_idx(struct sky2_hw *hw, unsigned q, u16 idx)
  600. {
  601. wmb();
  602. sky2_write16(hw, Y2_QADDR(q, PREF_UNIT_PUT_IDX), idx);
  603. mmiowb();
  604. }
  605. static inline struct sky2_rx_le *sky2_next_rx(struct sky2_port *sky2)
  606. {
  607. struct sky2_rx_le *le = sky2->rx_le + sky2->rx_put;
  608. sky2->rx_put = (sky2->rx_put + 1) % RX_LE_SIZE;
  609. return le;
  610. }
  611. /* Return high part of DMA address (could be 32 or 64 bit) */
  612. static inline u32 high32(dma_addr_t a)
  613. {
  614. return sizeof(a) > sizeof(u32) ? (a >> 16) >> 16 : 0;
  615. }
  616. /* Build description to hardware about buffer */
  617. static void sky2_rx_add(struct sky2_port *sky2, dma_addr_t map)
  618. {
  619. struct sky2_rx_le *le;
  620. u32 hi = high32(map);
  621. u16 len = sky2->rx_bufsize;
  622. if (sky2->rx_addr64 != hi) {
  623. le = sky2_next_rx(sky2);
  624. le->addr = cpu_to_le32(hi);
  625. le->ctrl = 0;
  626. le->opcode = OP_ADDR64 | HW_OWNER;
  627. sky2->rx_addr64 = high32(map + len);
  628. }
  629. le = sky2_next_rx(sky2);
  630. le->addr = cpu_to_le32((u32) map);
  631. le->length = cpu_to_le16(len);
  632. le->ctrl = 0;
  633. le->opcode = OP_PACKET | HW_OWNER;
  634. }
  635. /* Tell chip where to start receive checksum.
  636. * Actually has two checksums, but set both same to avoid possible byte
  637. * order problems.
  638. */
  639. static void rx_set_checksum(struct sky2_port *sky2)
  640. {
  641. struct sky2_rx_le *le;
  642. le = sky2_next_rx(sky2);
  643. le->addr = (ETH_HLEN << 16) | ETH_HLEN;
  644. le->ctrl = 0;
  645. le->opcode = OP_TCPSTART | HW_OWNER;
  646. sky2_write32(sky2->hw,
  647. Q_ADDR(rxqaddr[sky2->port], Q_CSR),
  648. sky2->rx_csum ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM);
  649. }
  650. /*
  651. * The RX Stop command will not work for Yukon-2 if the BMU does not
  652. * reach the end of packet and since we can't make sure that we have
  653. * incoming data, we must reset the BMU while it is not doing a DMA
  654. * transfer. Since it is possible that the RX path is still active,
  655. * the RX RAM buffer will be stopped first, so any possible incoming
  656. * data will not trigger a DMA. After the RAM buffer is stopped, the
  657. * BMU is polled until any DMA in progress is ended and only then it
  658. * will be reset.
  659. */
  660. static void sky2_rx_stop(struct sky2_port *sky2)
  661. {
  662. struct sky2_hw *hw = sky2->hw;
  663. unsigned rxq = rxqaddr[sky2->port];
  664. int i;
  665. /* disable the RAM Buffer receive queue */
  666. sky2_write8(hw, RB_ADDR(rxq, RB_CTRL), RB_DIS_OP_MD);
  667. for (i = 0; i < 0xffff; i++)
  668. if (sky2_read8(hw, RB_ADDR(rxq, Q_RSL))
  669. == sky2_read8(hw, RB_ADDR(rxq, Q_RL)))
  670. goto stopped;
  671. printk(KERN_WARNING PFX "%s: receiver stop failed\n",
  672. sky2->netdev->name);
  673. stopped:
  674. sky2_write32(hw, Q_ADDR(rxq, Q_CSR), BMU_RST_SET | BMU_FIFO_RST);
  675. /* reset the Rx prefetch unit */
  676. sky2_write32(hw, Y2_QADDR(rxq, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
  677. }
  678. /* Clean out receive buffer area, assumes receiver hardware stopped */
  679. static void sky2_rx_clean(struct sky2_port *sky2)
  680. {
  681. unsigned i;
  682. memset(sky2->rx_le, 0, RX_LE_BYTES);
  683. for (i = 0; i < sky2->rx_pending; i++) {
  684. struct ring_info *re = sky2->rx_ring + i;
  685. if (re->skb) {
  686. pci_unmap_single(sky2->hw->pdev,
  687. re->mapaddr, sky2->rx_bufsize,
  688. PCI_DMA_FROMDEVICE);
  689. kfree_skb(re->skb);
  690. re->skb = NULL;
  691. }
  692. }
  693. }
  694. /* Basic MII support */
  695. static int sky2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  696. {
  697. struct mii_ioctl_data *data = if_mii(ifr);
  698. struct sky2_port *sky2 = netdev_priv(dev);
  699. struct sky2_hw *hw = sky2->hw;
  700. int err = -EOPNOTSUPP;
  701. if (!netif_running(dev))
  702. return -ENODEV; /* Phy still in reset */
  703. switch (cmd) {
  704. case SIOCGMIIPHY:
  705. data->phy_id = PHY_ADDR_MARV;
  706. /* fallthru */
  707. case SIOCGMIIREG: {
  708. u16 val = 0;
  709. spin_lock_bh(&sky2->phy_lock);
  710. err = __gm_phy_read(hw, sky2->port, data->reg_num & 0x1f, &val);
  711. spin_unlock_bh(&sky2->phy_lock);
  712. data->val_out = val;
  713. break;
  714. }
  715. case SIOCSMIIREG:
  716. if (!capable(CAP_NET_ADMIN))
  717. return -EPERM;
  718. spin_lock_bh(&sky2->phy_lock);
  719. err = gm_phy_write(hw, sky2->port, data->reg_num & 0x1f,
  720. data->val_in);
  721. spin_unlock_bh(&sky2->phy_lock);
  722. break;
  723. }
  724. return err;
  725. }
  726. #ifdef SKY2_VLAN_TAG_USED
  727. static void sky2_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  728. {
  729. struct sky2_port *sky2 = netdev_priv(dev);
  730. struct sky2_hw *hw = sky2->hw;
  731. u16 port = sky2->port;
  732. spin_lock_bh(&sky2->tx_lock);
  733. sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), RX_VLAN_STRIP_ON);
  734. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_VLAN_TAG_ON);
  735. sky2->vlgrp = grp;
  736. spin_unlock_bh(&sky2->tx_lock);
  737. }
  738. static void sky2_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
  739. {
  740. struct sky2_port *sky2 = netdev_priv(dev);
  741. struct sky2_hw *hw = sky2->hw;
  742. u16 port = sky2->port;
  743. spin_lock_bh(&sky2->tx_lock);
  744. sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), RX_VLAN_STRIP_OFF);
  745. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_VLAN_TAG_OFF);
  746. if (sky2->vlgrp)
  747. sky2->vlgrp->vlan_devices[vid] = NULL;
  748. spin_unlock_bh(&sky2->tx_lock);
  749. }
  750. #endif
  751. /*
  752. * It appears the hardware has a bug in the FIFO logic that
  753. * cause it to hang if the FIFO gets overrun and the receive buffer
  754. * is not aligned. ALso alloc_skb() won't align properly if slab
  755. * debugging is enabled.
  756. */
  757. static inline struct sk_buff *sky2_alloc_skb(unsigned int size, gfp_t gfp_mask)
  758. {
  759. struct sk_buff *skb;
  760. skb = alloc_skb(size + RX_SKB_ALIGN, gfp_mask);
  761. if (likely(skb)) {
  762. unsigned long p = (unsigned long) skb->data;
  763. skb_reserve(skb,
  764. ((p + RX_SKB_ALIGN - 1) & ~(RX_SKB_ALIGN - 1)) - p);
  765. }
  766. return skb;
  767. }
  768. /*
  769. * Allocate and setup receiver buffer pool.
  770. * In case of 64 bit dma, there are 2X as many list elements
  771. * available as ring entries
  772. * and need to reserve one list element so we don't wrap around.
  773. */
  774. static int sky2_rx_start(struct sky2_port *sky2)
  775. {
  776. struct sky2_hw *hw = sky2->hw;
  777. unsigned rxq = rxqaddr[sky2->port];
  778. int i;
  779. sky2->rx_put = sky2->rx_next = 0;
  780. sky2_qset(hw, rxq);
  781. if (hw->chip_id == CHIP_ID_YUKON_EC_U && hw->chip_rev >= 2) {
  782. /* MAC Rx RAM Read is controlled by hardware */
  783. sky2_write32(hw, Q_ADDR(rxq, Q_F), F_M_RX_RAM_DIS);
  784. }
  785. sky2_prefetch_init(hw, rxq, sky2->rx_le_map, RX_LE_SIZE - 1);
  786. rx_set_checksum(sky2);
  787. for (i = 0; i < sky2->rx_pending; i++) {
  788. struct ring_info *re = sky2->rx_ring + i;
  789. re->skb = sky2_alloc_skb(sky2->rx_bufsize, GFP_KERNEL);
  790. if (!re->skb)
  791. goto nomem;
  792. re->mapaddr = pci_map_single(hw->pdev, re->skb->data,
  793. sky2->rx_bufsize, PCI_DMA_FROMDEVICE);
  794. sky2_rx_add(sky2, re->mapaddr);
  795. }
  796. /* Truncate oversize frames */
  797. sky2_write16(hw, SK_REG(sky2->port, RX_GMF_TR_THR), sky2->rx_bufsize - 8);
  798. sky2_write32(hw, SK_REG(sky2->port, RX_GMF_CTRL_T), RX_TRUNC_ON);
  799. /* Tell chip about available buffers */
  800. sky2_write16(hw, Y2_QADDR(rxq, PREF_UNIT_PUT_IDX), sky2->rx_put);
  801. return 0;
  802. nomem:
  803. sky2_rx_clean(sky2);
  804. return -ENOMEM;
  805. }
  806. /* Bring up network interface. */
  807. static int sky2_up(struct net_device *dev)
  808. {
  809. struct sky2_port *sky2 = netdev_priv(dev);
  810. struct sky2_hw *hw = sky2->hw;
  811. unsigned port = sky2->port;
  812. u32 ramsize, rxspace, imask;
  813. int err = -ENOMEM;
  814. if (netif_msg_ifup(sky2))
  815. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  816. /* must be power of 2 */
  817. sky2->tx_le = pci_alloc_consistent(hw->pdev,
  818. TX_RING_SIZE *
  819. sizeof(struct sky2_tx_le),
  820. &sky2->tx_le_map);
  821. if (!sky2->tx_le)
  822. goto err_out;
  823. sky2->tx_ring = kcalloc(TX_RING_SIZE, sizeof(struct tx_ring_info),
  824. GFP_KERNEL);
  825. if (!sky2->tx_ring)
  826. goto err_out;
  827. sky2->tx_prod = sky2->tx_cons = 0;
  828. sky2->rx_le = pci_alloc_consistent(hw->pdev, RX_LE_BYTES,
  829. &sky2->rx_le_map);
  830. if (!sky2->rx_le)
  831. goto err_out;
  832. memset(sky2->rx_le, 0, RX_LE_BYTES);
  833. sky2->rx_ring = kcalloc(sky2->rx_pending, sizeof(struct ring_info),
  834. GFP_KERNEL);
  835. if (!sky2->rx_ring)
  836. goto err_out;
  837. sky2_mac_init(hw, port);
  838. /* Determine available ram buffer space (in 4K blocks).
  839. * Note: not sure about the FE setting below yet
  840. */
  841. if (hw->chip_id == CHIP_ID_YUKON_FE)
  842. ramsize = 4;
  843. else
  844. ramsize = sky2_read8(hw, B2_E_0);
  845. /* Give transmitter one third (rounded up) */
  846. rxspace = ramsize - (ramsize + 2) / 3;
  847. sky2_ramset(hw, rxqaddr[port], 0, rxspace);
  848. sky2_ramset(hw, txqaddr[port], rxspace, ramsize);
  849. /* Make sure SyncQ is disabled */
  850. sky2_write8(hw, RB_ADDR(port == 0 ? Q_XS1 : Q_XS2, RB_CTRL),
  851. RB_RST_SET);
  852. sky2_qset(hw, txqaddr[port]);
  853. /* Set almost empty threshold */
  854. if (hw->chip_id == CHIP_ID_YUKON_EC_U && hw->chip_rev == 1)
  855. sky2_write16(hw, Q_ADDR(txqaddr[port], Q_AL), 0x1a0);
  856. sky2_prefetch_init(hw, txqaddr[port], sky2->tx_le_map,
  857. TX_RING_SIZE - 1);
  858. err = sky2_rx_start(sky2);
  859. if (err)
  860. goto err_out;
  861. /* Enable interrupts from phy/mac for port */
  862. imask = sky2_read32(hw, B0_IMSK);
  863. imask |= (port == 0) ? Y2_IS_PORT_1 : Y2_IS_PORT_2;
  864. sky2_write32(hw, B0_IMSK, imask);
  865. return 0;
  866. err_out:
  867. if (sky2->rx_le) {
  868. pci_free_consistent(hw->pdev, RX_LE_BYTES,
  869. sky2->rx_le, sky2->rx_le_map);
  870. sky2->rx_le = NULL;
  871. }
  872. if (sky2->tx_le) {
  873. pci_free_consistent(hw->pdev,
  874. TX_RING_SIZE * sizeof(struct sky2_tx_le),
  875. sky2->tx_le, sky2->tx_le_map);
  876. sky2->tx_le = NULL;
  877. }
  878. kfree(sky2->tx_ring);
  879. kfree(sky2->rx_ring);
  880. sky2->tx_ring = NULL;
  881. sky2->rx_ring = NULL;
  882. return err;
  883. }
  884. /* Modular subtraction in ring */
  885. static inline int tx_dist(unsigned tail, unsigned head)
  886. {
  887. return (head - tail) % TX_RING_SIZE;
  888. }
  889. /* Number of list elements available for next tx */
  890. static inline int tx_avail(const struct sky2_port *sky2)
  891. {
  892. return sky2->tx_pending - tx_dist(sky2->tx_cons, sky2->tx_prod);
  893. }
  894. /* Estimate of number of transmit list elements required */
  895. static unsigned tx_le_req(const struct sk_buff *skb)
  896. {
  897. unsigned count;
  898. count = sizeof(dma_addr_t) / sizeof(u32);
  899. count += skb_shinfo(skb)->nr_frags * count;
  900. if (skb_shinfo(skb)->tso_size)
  901. ++count;
  902. if (skb->ip_summed == CHECKSUM_HW)
  903. ++count;
  904. return count;
  905. }
  906. /*
  907. * Put one packet in ring for transmit.
  908. * A single packet can generate multiple list elements, and
  909. * the number of ring elements will probably be less than the number
  910. * of list elements used.
  911. *
  912. * No BH disabling for tx_lock here (like tg3)
  913. */
  914. static int sky2_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  915. {
  916. struct sky2_port *sky2 = netdev_priv(dev);
  917. struct sky2_hw *hw = sky2->hw;
  918. struct sky2_tx_le *le = NULL;
  919. struct tx_ring_info *re;
  920. unsigned i, len;
  921. int avail;
  922. dma_addr_t mapping;
  923. u32 addr64;
  924. u16 mss;
  925. u8 ctrl;
  926. /* No BH disabling for tx_lock here. We are running in BH disabled
  927. * context and TX reclaim runs via poll inside of a software
  928. * interrupt, and no related locks in IRQ processing.
  929. */
  930. if (!spin_trylock(&sky2->tx_lock))
  931. return NETDEV_TX_LOCKED;
  932. if (unlikely(tx_avail(sky2) < tx_le_req(skb))) {
  933. /* There is a known but harmless race with lockless tx
  934. * and netif_stop_queue.
  935. */
  936. if (!netif_queue_stopped(dev)) {
  937. netif_stop_queue(dev);
  938. if (net_ratelimit())
  939. printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
  940. dev->name);
  941. }
  942. spin_unlock(&sky2->tx_lock);
  943. return NETDEV_TX_BUSY;
  944. }
  945. if (unlikely(netif_msg_tx_queued(sky2)))
  946. printk(KERN_DEBUG "%s: tx queued, slot %u, len %d\n",
  947. dev->name, sky2->tx_prod, skb->len);
  948. len = skb_headlen(skb);
  949. mapping = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  950. addr64 = high32(mapping);
  951. re = sky2->tx_ring + sky2->tx_prod;
  952. /* Send high bits if changed or crosses boundary */
  953. if (addr64 != sky2->tx_addr64 || high32(mapping + len) != sky2->tx_addr64) {
  954. le = get_tx_le(sky2);
  955. le->tx.addr = cpu_to_le32(addr64);
  956. le->ctrl = 0;
  957. le->opcode = OP_ADDR64 | HW_OWNER;
  958. sky2->tx_addr64 = high32(mapping + len);
  959. }
  960. /* Check for TCP Segmentation Offload */
  961. mss = skb_shinfo(skb)->tso_size;
  962. if (mss != 0) {
  963. /* just drop the packet if non-linear expansion fails */
  964. if (skb_header_cloned(skb) &&
  965. pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) {
  966. dev_kfree_skb_any(skb);
  967. goto out_unlock;
  968. }
  969. mss += ((skb->h.th->doff - 5) * 4); /* TCP options */
  970. mss += (skb->nh.iph->ihl * 4) + sizeof(struct tcphdr);
  971. mss += ETH_HLEN;
  972. }
  973. if (mss != sky2->tx_last_mss) {
  974. le = get_tx_le(sky2);
  975. le->tx.tso.size = cpu_to_le16(mss);
  976. le->tx.tso.rsvd = 0;
  977. le->opcode = OP_LRGLEN | HW_OWNER;
  978. le->ctrl = 0;
  979. sky2->tx_last_mss = mss;
  980. }
  981. ctrl = 0;
  982. #ifdef SKY2_VLAN_TAG_USED
  983. /* Add VLAN tag, can piggyback on LRGLEN or ADDR64 */
  984. if (sky2->vlgrp && vlan_tx_tag_present(skb)) {
  985. if (!le) {
  986. le = get_tx_le(sky2);
  987. le->tx.addr = 0;
  988. le->opcode = OP_VLAN|HW_OWNER;
  989. le->ctrl = 0;
  990. } else
  991. le->opcode |= OP_VLAN;
  992. le->length = cpu_to_be16(vlan_tx_tag_get(skb));
  993. ctrl |= INS_VLAN;
  994. }
  995. #endif
  996. /* Handle TCP checksum offload */
  997. if (skb->ip_summed == CHECKSUM_HW) {
  998. u16 hdr = skb->h.raw - skb->data;
  999. u16 offset = hdr + skb->csum;
  1000. ctrl = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
  1001. if (skb->nh.iph->protocol == IPPROTO_UDP)
  1002. ctrl |= UDPTCP;
  1003. le = get_tx_le(sky2);
  1004. le->tx.csum.start = cpu_to_le16(hdr);
  1005. le->tx.csum.offset = cpu_to_le16(offset);
  1006. le->length = 0; /* initial checksum value */
  1007. le->ctrl = 1; /* one packet */
  1008. le->opcode = OP_TCPLISW | HW_OWNER;
  1009. }
  1010. le = get_tx_le(sky2);
  1011. le->tx.addr = cpu_to_le32((u32) mapping);
  1012. le->length = cpu_to_le16(len);
  1013. le->ctrl = ctrl;
  1014. le->opcode = mss ? (OP_LARGESEND | HW_OWNER) : (OP_PACKET | HW_OWNER);
  1015. /* Record the transmit mapping info */
  1016. re->skb = skb;
  1017. pci_unmap_addr_set(re, mapaddr, mapping);
  1018. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1019. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1020. struct tx_ring_info *fre;
  1021. mapping = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  1022. frag->size, PCI_DMA_TODEVICE);
  1023. addr64 = high32(mapping);
  1024. if (addr64 != sky2->tx_addr64) {
  1025. le = get_tx_le(sky2);
  1026. le->tx.addr = cpu_to_le32(addr64);
  1027. le->ctrl = 0;
  1028. le->opcode = OP_ADDR64 | HW_OWNER;
  1029. sky2->tx_addr64 = addr64;
  1030. }
  1031. le = get_tx_le(sky2);
  1032. le->tx.addr = cpu_to_le32((u32) mapping);
  1033. le->length = cpu_to_le16(frag->size);
  1034. le->ctrl = ctrl;
  1035. le->opcode = OP_BUFFER | HW_OWNER;
  1036. fre = sky2->tx_ring
  1037. + ((re - sky2->tx_ring) + i + 1) % TX_RING_SIZE;
  1038. pci_unmap_addr_set(fre, mapaddr, mapping);
  1039. }
  1040. re->idx = sky2->tx_prod;
  1041. le->ctrl |= EOP;
  1042. avail = tx_avail(sky2);
  1043. if (mss != 0 || avail < TX_MIN_PENDING) {
  1044. le->ctrl |= FRC_STAT;
  1045. if (avail <= MAX_SKB_TX_LE)
  1046. netif_stop_queue(dev);
  1047. }
  1048. sky2_put_idx(hw, txqaddr[sky2->port], sky2->tx_prod);
  1049. out_unlock:
  1050. spin_unlock(&sky2->tx_lock);
  1051. dev->trans_start = jiffies;
  1052. return NETDEV_TX_OK;
  1053. }
  1054. /*
  1055. * Free ring elements from starting at tx_cons until "done"
  1056. *
  1057. * NB: the hardware will tell us about partial completion of multi-part
  1058. * buffers; these are deferred until completion.
  1059. */
  1060. static void sky2_tx_complete(struct sky2_port *sky2, u16 done)
  1061. {
  1062. struct net_device *dev = sky2->netdev;
  1063. struct pci_dev *pdev = sky2->hw->pdev;
  1064. u16 nxt, put;
  1065. unsigned i;
  1066. BUG_ON(done >= TX_RING_SIZE);
  1067. if (unlikely(netif_msg_tx_done(sky2)))
  1068. printk(KERN_DEBUG "%s: tx done, up to %u\n",
  1069. dev->name, done);
  1070. for (put = sky2->tx_cons; put != done; put = nxt) {
  1071. struct tx_ring_info *re = sky2->tx_ring + put;
  1072. struct sk_buff *skb = re->skb;
  1073. nxt = re->idx;
  1074. BUG_ON(nxt >= TX_RING_SIZE);
  1075. prefetch(sky2->tx_ring + nxt);
  1076. /* Check for partial status */
  1077. if (tx_dist(put, done) < tx_dist(put, nxt))
  1078. break;
  1079. skb = re->skb;
  1080. pci_unmap_single(pdev, pci_unmap_addr(re, mapaddr),
  1081. skb_headlen(skb), PCI_DMA_TODEVICE);
  1082. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1083. struct tx_ring_info *fre;
  1084. fre = sky2->tx_ring + (put + i + 1) % TX_RING_SIZE;
  1085. pci_unmap_page(pdev, pci_unmap_addr(fre, mapaddr),
  1086. skb_shinfo(skb)->frags[i].size,
  1087. PCI_DMA_TODEVICE);
  1088. }
  1089. dev_kfree_skb_any(skb);
  1090. }
  1091. sky2->tx_cons = put;
  1092. if (tx_avail(sky2) > MAX_SKB_TX_LE)
  1093. netif_wake_queue(dev);
  1094. }
  1095. /* Cleanup all untransmitted buffers, assume transmitter not running */
  1096. static void sky2_tx_clean(struct sky2_port *sky2)
  1097. {
  1098. spin_lock_bh(&sky2->tx_lock);
  1099. sky2_tx_complete(sky2, sky2->tx_prod);
  1100. spin_unlock_bh(&sky2->tx_lock);
  1101. }
  1102. /* Network shutdown */
  1103. static int sky2_down(struct net_device *dev)
  1104. {
  1105. struct sky2_port *sky2 = netdev_priv(dev);
  1106. struct sky2_hw *hw = sky2->hw;
  1107. unsigned port = sky2->port;
  1108. u16 ctrl;
  1109. u32 imask;
  1110. /* Never really got started! */
  1111. if (!sky2->tx_le)
  1112. return 0;
  1113. if (netif_msg_ifdown(sky2))
  1114. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  1115. /* Stop more packets from being queued */
  1116. netif_stop_queue(dev);
  1117. sky2_phy_reset(hw, port);
  1118. /* Stop transmitter */
  1119. sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_STOP);
  1120. sky2_read32(hw, Q_ADDR(txqaddr[port], Q_CSR));
  1121. sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  1122. RB_RST_SET | RB_DIS_OP_MD);
  1123. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1124. ctrl &= ~(GM_GPCR_TX_ENA | GM_GPCR_RX_ENA);
  1125. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1126. sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1127. /* Workaround shared GMAC reset */
  1128. if (!(hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0
  1129. && port == 0 && hw->dev[1] && netif_running(hw->dev[1])))
  1130. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1131. /* Disable Force Sync bit and Enable Alloc bit */
  1132. sky2_write8(hw, SK_REG(port, TXA_CTRL),
  1133. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  1134. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  1135. sky2_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  1136. sky2_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  1137. /* Reset the PCI FIFO of the async Tx queue */
  1138. sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR),
  1139. BMU_RST_SET | BMU_FIFO_RST);
  1140. /* Reset the Tx prefetch units */
  1141. sky2_write32(hw, Y2_QADDR(txqaddr[port], PREF_UNIT_CTRL),
  1142. PREF_UNIT_RST_SET);
  1143. sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  1144. sky2_rx_stop(sky2);
  1145. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  1146. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  1147. /* Disable port IRQ */
  1148. imask = sky2_read32(hw, B0_IMSK);
  1149. imask &= ~(sky2->port == 0) ? Y2_IS_PORT_1 : Y2_IS_PORT_2;
  1150. sky2_write32(hw, B0_IMSK, imask);
  1151. /* turn off LED's */
  1152. sky2_write16(hw, B0_Y2LED, LED_STAT_OFF);
  1153. synchronize_irq(hw->pdev->irq);
  1154. sky2_tx_clean(sky2);
  1155. sky2_rx_clean(sky2);
  1156. pci_free_consistent(hw->pdev, RX_LE_BYTES,
  1157. sky2->rx_le, sky2->rx_le_map);
  1158. kfree(sky2->rx_ring);
  1159. pci_free_consistent(hw->pdev,
  1160. TX_RING_SIZE * sizeof(struct sky2_tx_le),
  1161. sky2->tx_le, sky2->tx_le_map);
  1162. kfree(sky2->tx_ring);
  1163. sky2->tx_le = NULL;
  1164. sky2->rx_le = NULL;
  1165. sky2->rx_ring = NULL;
  1166. sky2->tx_ring = NULL;
  1167. return 0;
  1168. }
  1169. static u16 sky2_phy_speed(const struct sky2_hw *hw, u16 aux)
  1170. {
  1171. if (!hw->copper)
  1172. return SPEED_1000;
  1173. if (hw->chip_id == CHIP_ID_YUKON_FE)
  1174. return (aux & PHY_M_PS_SPEED_100) ? SPEED_100 : SPEED_10;
  1175. switch (aux & PHY_M_PS_SPEED_MSK) {
  1176. case PHY_M_PS_SPEED_1000:
  1177. return SPEED_1000;
  1178. case PHY_M_PS_SPEED_100:
  1179. return SPEED_100;
  1180. default:
  1181. return SPEED_10;
  1182. }
  1183. }
  1184. static void sky2_link_up(struct sky2_port *sky2)
  1185. {
  1186. struct sky2_hw *hw = sky2->hw;
  1187. unsigned port = sky2->port;
  1188. u16 reg;
  1189. /* Enable Transmit FIFO Underrun */
  1190. sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1191. reg = gma_read16(hw, port, GM_GP_CTRL);
  1192. if (sky2->autoneg == AUTONEG_DISABLE) {
  1193. reg |= GM_GPCR_AU_ALL_DIS;
  1194. /* Is write/read necessary? Copied from sky2_mac_init */
  1195. gma_write16(hw, port, GM_GP_CTRL, reg);
  1196. gma_read16(hw, port, GM_GP_CTRL);
  1197. switch (sky2->speed) {
  1198. case SPEED_1000:
  1199. reg &= ~GM_GPCR_SPEED_100;
  1200. reg |= GM_GPCR_SPEED_1000;
  1201. break;
  1202. case SPEED_100:
  1203. reg &= ~GM_GPCR_SPEED_1000;
  1204. reg |= GM_GPCR_SPEED_100;
  1205. break;
  1206. case SPEED_10:
  1207. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  1208. break;
  1209. }
  1210. } else
  1211. reg &= ~GM_GPCR_AU_ALL_DIS;
  1212. if (sky2->duplex == DUPLEX_FULL || sky2->autoneg == AUTONEG_ENABLE)
  1213. reg |= GM_GPCR_DUP_FULL;
  1214. /* enable Rx/Tx */
  1215. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1216. gma_write16(hw, port, GM_GP_CTRL, reg);
  1217. gma_read16(hw, port, GM_GP_CTRL);
  1218. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  1219. netif_carrier_on(sky2->netdev);
  1220. netif_wake_queue(sky2->netdev);
  1221. /* Turn on link LED */
  1222. sky2_write8(hw, SK_REG(port, LNK_LED_REG),
  1223. LINKLED_ON | LINKLED_BLINK_OFF | LINKLED_LINKSYNC_OFF);
  1224. if (hw->chip_id == CHIP_ID_YUKON_XL) {
  1225. u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  1226. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  1227. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */
  1228. PHY_M_LEDC_INIT_CTRL(sky2->speed ==
  1229. SPEED_10 ? 7 : 0) |
  1230. PHY_M_LEDC_STA1_CTRL(sky2->speed ==
  1231. SPEED_100 ? 7 : 0) |
  1232. PHY_M_LEDC_STA0_CTRL(sky2->speed ==
  1233. SPEED_1000 ? 7 : 0));
  1234. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  1235. }
  1236. if (netif_msg_link(sky2))
  1237. printk(KERN_INFO PFX
  1238. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  1239. sky2->netdev->name, sky2->speed,
  1240. sky2->duplex == DUPLEX_FULL ? "full" : "half",
  1241. (sky2->tx_pause && sky2->rx_pause) ? "both" :
  1242. sky2->tx_pause ? "tx" : sky2->rx_pause ? "rx" : "none");
  1243. }
  1244. static void sky2_link_down(struct sky2_port *sky2)
  1245. {
  1246. struct sky2_hw *hw = sky2->hw;
  1247. unsigned port = sky2->port;
  1248. u16 reg;
  1249. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  1250. reg = gma_read16(hw, port, GM_GP_CTRL);
  1251. reg &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1252. gma_write16(hw, port, GM_GP_CTRL, reg);
  1253. gma_read16(hw, port, GM_GP_CTRL); /* PCI post */
  1254. if (sky2->rx_pause && !sky2->tx_pause) {
  1255. /* restore Asymmetric Pause bit */
  1256. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  1257. gm_phy_read(hw, port, PHY_MARV_AUNE_ADV)
  1258. | PHY_M_AN_ASP);
  1259. }
  1260. netif_carrier_off(sky2->netdev);
  1261. netif_stop_queue(sky2->netdev);
  1262. /* Turn on link LED */
  1263. sky2_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  1264. if (netif_msg_link(sky2))
  1265. printk(KERN_INFO PFX "%s: Link is down.\n", sky2->netdev->name);
  1266. sky2_phy_init(hw, port);
  1267. }
  1268. static int sky2_autoneg_done(struct sky2_port *sky2, u16 aux)
  1269. {
  1270. struct sky2_hw *hw = sky2->hw;
  1271. unsigned port = sky2->port;
  1272. u16 lpa;
  1273. lpa = gm_phy_read(hw, port, PHY_MARV_AUNE_LP);
  1274. if (lpa & PHY_M_AN_RF) {
  1275. printk(KERN_ERR PFX "%s: remote fault", sky2->netdev->name);
  1276. return -1;
  1277. }
  1278. if (hw->chip_id != CHIP_ID_YUKON_FE &&
  1279. gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1280. printk(KERN_ERR PFX "%s: master/slave fault",
  1281. sky2->netdev->name);
  1282. return -1;
  1283. }
  1284. if (!(aux & PHY_M_PS_SPDUP_RES)) {
  1285. printk(KERN_ERR PFX "%s: speed/duplex mismatch",
  1286. sky2->netdev->name);
  1287. return -1;
  1288. }
  1289. sky2->duplex = (aux & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1290. sky2->speed = sky2_phy_speed(hw, aux);
  1291. /* Pause bits are offset (9..8) */
  1292. if (hw->chip_id == CHIP_ID_YUKON_XL)
  1293. aux >>= 6;
  1294. sky2->rx_pause = (aux & PHY_M_PS_RX_P_EN) != 0;
  1295. sky2->tx_pause = (aux & PHY_M_PS_TX_P_EN) != 0;
  1296. if ((sky2->tx_pause || sky2->rx_pause)
  1297. && !(sky2->speed < SPEED_1000 && sky2->duplex == DUPLEX_HALF))
  1298. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1299. else
  1300. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1301. return 0;
  1302. }
  1303. /* Interrupt from PHY */
  1304. static void sky2_phy_intr(struct sky2_hw *hw, unsigned port)
  1305. {
  1306. struct net_device *dev = hw->dev[port];
  1307. struct sky2_port *sky2 = netdev_priv(dev);
  1308. u16 istatus, phystat;
  1309. spin_lock(&sky2->phy_lock);
  1310. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1311. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1312. if (!netif_running(dev))
  1313. goto out;
  1314. if (netif_msg_intr(sky2))
  1315. printk(KERN_INFO PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1316. sky2->netdev->name, istatus, phystat);
  1317. if (istatus & PHY_M_IS_AN_COMPL) {
  1318. if (sky2_autoneg_done(sky2, phystat) == 0)
  1319. sky2_link_up(sky2);
  1320. goto out;
  1321. }
  1322. if (istatus & PHY_M_IS_LSP_CHANGE)
  1323. sky2->speed = sky2_phy_speed(hw, phystat);
  1324. if (istatus & PHY_M_IS_DUP_CHANGE)
  1325. sky2->duplex =
  1326. (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1327. if (istatus & PHY_M_IS_LST_CHANGE) {
  1328. if (phystat & PHY_M_PS_LINK_UP)
  1329. sky2_link_up(sky2);
  1330. else
  1331. sky2_link_down(sky2);
  1332. }
  1333. out:
  1334. spin_unlock(&sky2->phy_lock);
  1335. }
  1336. /* Transmit timeout is only called if we are running, carries is up
  1337. * and tx queue is full (stopped).
  1338. */
  1339. static void sky2_tx_timeout(struct net_device *dev)
  1340. {
  1341. struct sky2_port *sky2 = netdev_priv(dev);
  1342. struct sky2_hw *hw = sky2->hw;
  1343. unsigned txq = txqaddr[sky2->port];
  1344. u16 report, done;
  1345. if (netif_msg_timer(sky2))
  1346. printk(KERN_ERR PFX "%s: tx timeout\n", dev->name);
  1347. report = sky2_read16(hw, sky2->port == 0 ? STAT_TXA1_RIDX : STAT_TXA2_RIDX);
  1348. done = sky2_read16(hw, Q_ADDR(txq, Q_DONE));
  1349. printk(KERN_DEBUG PFX "%s: transmit ring %u .. %u report=%u done=%u\n",
  1350. dev->name,
  1351. sky2->tx_cons, sky2->tx_prod, report, done);
  1352. if (report != done) {
  1353. printk(KERN_INFO PFX "status burst pending (irq moderation?)\n");
  1354. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_STOP);
  1355. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
  1356. } else if (report != sky2->tx_cons) {
  1357. printk(KERN_INFO PFX "status report lost?\n");
  1358. spin_lock_bh(&sky2->tx_lock);
  1359. sky2_tx_complete(sky2, report);
  1360. spin_unlock_bh(&sky2->tx_lock);
  1361. } else {
  1362. printk(KERN_INFO PFX "hardware hung? flushing\n");
  1363. sky2_write32(hw, Q_ADDR(txq, Q_CSR), BMU_STOP);
  1364. sky2_write32(hw, Y2_QADDR(txq, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
  1365. sky2_tx_clean(sky2);
  1366. sky2_qset(hw, txq);
  1367. sky2_prefetch_init(hw, txq, sky2->tx_le_map, TX_RING_SIZE - 1);
  1368. }
  1369. }
  1370. #define roundup(x, y) ((((x)+((y)-1))/(y))*(y))
  1371. /* Want receive buffer size to be multiple of 64 bits
  1372. * and incl room for vlan and truncation
  1373. */
  1374. static inline unsigned sky2_buf_size(int mtu)
  1375. {
  1376. return roundup(mtu + ETH_HLEN + VLAN_HLEN, 8) + 8;
  1377. }
  1378. static int sky2_change_mtu(struct net_device *dev, int new_mtu)
  1379. {
  1380. struct sky2_port *sky2 = netdev_priv(dev);
  1381. struct sky2_hw *hw = sky2->hw;
  1382. int err;
  1383. u16 ctl, mode;
  1384. u32 imask;
  1385. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  1386. return -EINVAL;
  1387. if (hw->chip_id == CHIP_ID_YUKON_EC_U && new_mtu > ETH_DATA_LEN)
  1388. return -EINVAL;
  1389. if (!netif_running(dev)) {
  1390. dev->mtu = new_mtu;
  1391. return 0;
  1392. }
  1393. imask = sky2_read32(hw, B0_IMSK);
  1394. sky2_write32(hw, B0_IMSK, 0);
  1395. dev->trans_start = jiffies; /* prevent tx timeout */
  1396. netif_stop_queue(dev);
  1397. netif_poll_disable(hw->dev[0]);
  1398. synchronize_irq(hw->pdev->irq);
  1399. ctl = gma_read16(hw, sky2->port, GM_GP_CTRL);
  1400. gma_write16(hw, sky2->port, GM_GP_CTRL, ctl & ~GM_GPCR_RX_ENA);
  1401. sky2_rx_stop(sky2);
  1402. sky2_rx_clean(sky2);
  1403. dev->mtu = new_mtu;
  1404. sky2->rx_bufsize = sky2_buf_size(new_mtu);
  1405. mode = DATA_BLIND_VAL(DATA_BLIND_DEF) |
  1406. GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1407. if (dev->mtu > ETH_DATA_LEN)
  1408. mode |= GM_SMOD_JUMBO_ENA;
  1409. gma_write16(hw, sky2->port, GM_SERIAL_MODE, mode);
  1410. sky2_write8(hw, RB_ADDR(rxqaddr[sky2->port], RB_CTRL), RB_ENA_OP_MD);
  1411. err = sky2_rx_start(sky2);
  1412. sky2_write32(hw, B0_IMSK, imask);
  1413. if (err)
  1414. dev_close(dev);
  1415. else {
  1416. gma_write16(hw, sky2->port, GM_GP_CTRL, ctl);
  1417. netif_poll_enable(hw->dev[0]);
  1418. netif_wake_queue(dev);
  1419. }
  1420. return err;
  1421. }
  1422. /*
  1423. * Receive one packet.
  1424. * For small packets or errors, just reuse existing skb.
  1425. * For larger packets, get new buffer.
  1426. */
  1427. static struct sk_buff *sky2_receive(struct sky2_port *sky2,
  1428. u16 length, u32 status)
  1429. {
  1430. struct ring_info *re = sky2->rx_ring + sky2->rx_next;
  1431. struct sk_buff *skb = NULL;
  1432. if (unlikely(netif_msg_rx_status(sky2)))
  1433. printk(KERN_DEBUG PFX "%s: rx slot %u status 0x%x len %d\n",
  1434. sky2->netdev->name, sky2->rx_next, status, length);
  1435. sky2->rx_next = (sky2->rx_next + 1) % sky2->rx_pending;
  1436. prefetch(sky2->rx_ring + sky2->rx_next);
  1437. if (status & GMR_FS_ANY_ERR)
  1438. goto error;
  1439. if (!(status & GMR_FS_RX_OK))
  1440. goto resubmit;
  1441. if (length > sky2->netdev->mtu + ETH_HLEN)
  1442. goto oversize;
  1443. if (length < copybreak) {
  1444. skb = alloc_skb(length + 2, GFP_ATOMIC);
  1445. if (!skb)
  1446. goto resubmit;
  1447. skb_reserve(skb, 2);
  1448. pci_dma_sync_single_for_cpu(sky2->hw->pdev, re->mapaddr,
  1449. length, PCI_DMA_FROMDEVICE);
  1450. memcpy(skb->data, re->skb->data, length);
  1451. skb->ip_summed = re->skb->ip_summed;
  1452. skb->csum = re->skb->csum;
  1453. pci_dma_sync_single_for_device(sky2->hw->pdev, re->mapaddr,
  1454. length, PCI_DMA_FROMDEVICE);
  1455. } else {
  1456. struct sk_buff *nskb;
  1457. nskb = sky2_alloc_skb(sky2->rx_bufsize, GFP_ATOMIC);
  1458. if (!nskb)
  1459. goto resubmit;
  1460. skb = re->skb;
  1461. re->skb = nskb;
  1462. pci_unmap_single(sky2->hw->pdev, re->mapaddr,
  1463. sky2->rx_bufsize, PCI_DMA_FROMDEVICE);
  1464. prefetch(skb->data);
  1465. re->mapaddr = pci_map_single(sky2->hw->pdev, nskb->data,
  1466. sky2->rx_bufsize, PCI_DMA_FROMDEVICE);
  1467. }
  1468. skb_put(skb, length);
  1469. resubmit:
  1470. re->skb->ip_summed = CHECKSUM_NONE;
  1471. sky2_rx_add(sky2, re->mapaddr);
  1472. /* Tell receiver about new buffers. */
  1473. sky2_put_idx(sky2->hw, rxqaddr[sky2->port], sky2->rx_put);
  1474. return skb;
  1475. oversize:
  1476. ++sky2->net_stats.rx_over_errors;
  1477. goto resubmit;
  1478. error:
  1479. ++sky2->net_stats.rx_errors;
  1480. if (netif_msg_rx_err(sky2) && net_ratelimit())
  1481. printk(KERN_INFO PFX "%s: rx error, status 0x%x length %d\n",
  1482. sky2->netdev->name, status, length);
  1483. if (status & (GMR_FS_LONG_ERR | GMR_FS_UN_SIZE))
  1484. sky2->net_stats.rx_length_errors++;
  1485. if (status & GMR_FS_FRAGMENT)
  1486. sky2->net_stats.rx_frame_errors++;
  1487. if (status & GMR_FS_CRC_ERR)
  1488. sky2->net_stats.rx_crc_errors++;
  1489. if (status & GMR_FS_RX_FF_OV)
  1490. sky2->net_stats.rx_fifo_errors++;
  1491. goto resubmit;
  1492. }
  1493. /* Transmit complete */
  1494. static inline void sky2_tx_done(struct net_device *dev, u16 last)
  1495. {
  1496. struct sky2_port *sky2 = netdev_priv(dev);
  1497. if (netif_running(dev)) {
  1498. spin_lock(&sky2->tx_lock);
  1499. sky2_tx_complete(sky2, last);
  1500. spin_unlock(&sky2->tx_lock);
  1501. }
  1502. }
  1503. /* Process status response ring */
  1504. static int sky2_status_intr(struct sky2_hw *hw, int to_do)
  1505. {
  1506. int work_done = 0;
  1507. rmb();
  1508. for(;;) {
  1509. struct sky2_status_le *le = hw->st_le + hw->st_idx;
  1510. struct net_device *dev;
  1511. struct sky2_port *sky2;
  1512. struct sk_buff *skb;
  1513. u32 status;
  1514. u16 length;
  1515. u8 link, opcode;
  1516. opcode = le->opcode;
  1517. if (!opcode)
  1518. break;
  1519. opcode &= ~HW_OWNER;
  1520. hw->st_idx = (hw->st_idx + 1) % STATUS_RING_SIZE;
  1521. le->opcode = 0;
  1522. link = le->link;
  1523. BUG_ON(link >= 2);
  1524. dev = hw->dev[link];
  1525. sky2 = netdev_priv(dev);
  1526. length = le->length;
  1527. status = le->status;
  1528. switch (opcode) {
  1529. case OP_RXSTAT:
  1530. skb = sky2_receive(sky2, length, status);
  1531. if (!skb)
  1532. break;
  1533. skb->dev = dev;
  1534. skb->protocol = eth_type_trans(skb, dev);
  1535. dev->last_rx = jiffies;
  1536. #ifdef SKY2_VLAN_TAG_USED
  1537. if (sky2->vlgrp && (status & GMR_FS_VLAN)) {
  1538. vlan_hwaccel_receive_skb(skb,
  1539. sky2->vlgrp,
  1540. be16_to_cpu(sky2->rx_tag));
  1541. } else
  1542. #endif
  1543. netif_receive_skb(skb);
  1544. if (++work_done >= to_do)
  1545. goto exit_loop;
  1546. break;
  1547. #ifdef SKY2_VLAN_TAG_USED
  1548. case OP_RXVLAN:
  1549. sky2->rx_tag = length;
  1550. break;
  1551. case OP_RXCHKSVLAN:
  1552. sky2->rx_tag = length;
  1553. /* fall through */
  1554. #endif
  1555. case OP_RXCHKS:
  1556. skb = sky2->rx_ring[sky2->rx_next].skb;
  1557. skb->ip_summed = CHECKSUM_HW;
  1558. skb->csum = le16_to_cpu(status);
  1559. break;
  1560. case OP_TXINDEXLE:
  1561. /* TX index reports status for both ports */
  1562. sky2_tx_done(hw->dev[0], status & 0xffff);
  1563. if (hw->dev[1])
  1564. sky2_tx_done(hw->dev[1],
  1565. ((status >> 24) & 0xff)
  1566. | (u16)(length & 0xf) << 8);
  1567. break;
  1568. default:
  1569. if (net_ratelimit())
  1570. printk(KERN_WARNING PFX
  1571. "unknown status opcode 0x%x\n", opcode);
  1572. break;
  1573. }
  1574. }
  1575. exit_loop:
  1576. return work_done;
  1577. }
  1578. static void sky2_hw_error(struct sky2_hw *hw, unsigned port, u32 status)
  1579. {
  1580. struct net_device *dev = hw->dev[port];
  1581. if (net_ratelimit())
  1582. printk(KERN_INFO PFX "%s: hw error interrupt status 0x%x\n",
  1583. dev->name, status);
  1584. if (status & Y2_IS_PAR_RD1) {
  1585. if (net_ratelimit())
  1586. printk(KERN_ERR PFX "%s: ram data read parity error\n",
  1587. dev->name);
  1588. /* Clear IRQ */
  1589. sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_RD_PERR);
  1590. }
  1591. if (status & Y2_IS_PAR_WR1) {
  1592. if (net_ratelimit())
  1593. printk(KERN_ERR PFX "%s: ram data write parity error\n",
  1594. dev->name);
  1595. sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_WR_PERR);
  1596. }
  1597. if (status & Y2_IS_PAR_MAC1) {
  1598. if (net_ratelimit())
  1599. printk(KERN_ERR PFX "%s: MAC parity error\n", dev->name);
  1600. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_PE);
  1601. }
  1602. if (status & Y2_IS_PAR_RX1) {
  1603. if (net_ratelimit())
  1604. printk(KERN_ERR PFX "%s: RX parity error\n", dev->name);
  1605. sky2_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), BMU_CLR_IRQ_PAR);
  1606. }
  1607. if (status & Y2_IS_TCP_TXA1) {
  1608. if (net_ratelimit())
  1609. printk(KERN_ERR PFX "%s: TCP segmentation error\n",
  1610. dev->name);
  1611. sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_CLR_IRQ_TCP);
  1612. }
  1613. }
  1614. static void sky2_hw_intr(struct sky2_hw *hw)
  1615. {
  1616. u32 status = sky2_read32(hw, B0_HWE_ISRC);
  1617. if (status & Y2_IS_TIST_OV)
  1618. sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  1619. if (status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) {
  1620. u16 pci_err;
  1621. pci_err = sky2_pci_read16(hw, PCI_STATUS);
  1622. if (net_ratelimit())
  1623. printk(KERN_ERR PFX "%s: pci hw error (0x%x)\n",
  1624. pci_name(hw->pdev), pci_err);
  1625. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1626. sky2_pci_write16(hw, PCI_STATUS,
  1627. pci_err | PCI_STATUS_ERROR_BITS);
  1628. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1629. }
  1630. if (status & Y2_IS_PCI_EXP) {
  1631. /* PCI-Express uncorrectable Error occurred */
  1632. u32 pex_err;
  1633. pex_err = sky2_pci_read32(hw, PEX_UNC_ERR_STAT);
  1634. if (net_ratelimit())
  1635. printk(KERN_ERR PFX "%s: pci express error (0x%x)\n",
  1636. pci_name(hw->pdev), pex_err);
  1637. /* clear the interrupt */
  1638. sky2_write32(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1639. sky2_pci_write32(hw, PEX_UNC_ERR_STAT,
  1640. 0xffffffffUL);
  1641. sky2_write32(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1642. if (pex_err & PEX_FATAL_ERRORS) {
  1643. u32 hwmsk = sky2_read32(hw, B0_HWE_IMSK);
  1644. hwmsk &= ~Y2_IS_PCI_EXP;
  1645. sky2_write32(hw, B0_HWE_IMSK, hwmsk);
  1646. }
  1647. }
  1648. if (status & Y2_HWE_L1_MASK)
  1649. sky2_hw_error(hw, 0, status);
  1650. status >>= 8;
  1651. if (status & Y2_HWE_L1_MASK)
  1652. sky2_hw_error(hw, 1, status);
  1653. }
  1654. static void sky2_mac_intr(struct sky2_hw *hw, unsigned port)
  1655. {
  1656. struct net_device *dev = hw->dev[port];
  1657. struct sky2_port *sky2 = netdev_priv(dev);
  1658. u8 status = sky2_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1659. if (netif_msg_intr(sky2))
  1660. printk(KERN_INFO PFX "%s: mac interrupt status 0x%x\n",
  1661. dev->name, status);
  1662. if (status & GM_IS_RX_FF_OR) {
  1663. ++sky2->net_stats.rx_fifo_errors;
  1664. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1665. }
  1666. if (status & GM_IS_TX_FF_UR) {
  1667. ++sky2->net_stats.tx_fifo_errors;
  1668. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1669. }
  1670. }
  1671. /* This should never happen it is a fatal situation */
  1672. static void sky2_descriptor_error(struct sky2_hw *hw, unsigned port,
  1673. const char *rxtx, u32 mask)
  1674. {
  1675. struct net_device *dev = hw->dev[port];
  1676. struct sky2_port *sky2 = netdev_priv(dev);
  1677. u32 imask;
  1678. printk(KERN_ERR PFX "%s: %s descriptor error (hardware problem)\n",
  1679. dev ? dev->name : "<not registered>", rxtx);
  1680. imask = sky2_read32(hw, B0_IMSK);
  1681. imask &= ~mask;
  1682. sky2_write32(hw, B0_IMSK, imask);
  1683. if (dev) {
  1684. spin_lock(&sky2->phy_lock);
  1685. sky2_link_down(sky2);
  1686. spin_unlock(&sky2->phy_lock);
  1687. }
  1688. }
  1689. static int sky2_poll(struct net_device *dev0, int *budget)
  1690. {
  1691. struct sky2_hw *hw = ((struct sky2_port *) netdev_priv(dev0))->hw;
  1692. int work_limit = min(dev0->quota, *budget);
  1693. int work_done = 0;
  1694. u32 status = sky2_read32(hw, B0_Y2_SP_EISR);
  1695. if (unlikely(status & ~Y2_IS_STAT_BMU)) {
  1696. if (status & Y2_IS_HW_ERR)
  1697. sky2_hw_intr(hw);
  1698. if (status & Y2_IS_IRQ_PHY1)
  1699. sky2_phy_intr(hw, 0);
  1700. if (status & Y2_IS_IRQ_PHY2)
  1701. sky2_phy_intr(hw, 1);
  1702. if (status & Y2_IS_IRQ_MAC1)
  1703. sky2_mac_intr(hw, 0);
  1704. if (status & Y2_IS_IRQ_MAC2)
  1705. sky2_mac_intr(hw, 1);
  1706. if (status & Y2_IS_CHK_RX1)
  1707. sky2_descriptor_error(hw, 0, "receive", Y2_IS_CHK_RX1);
  1708. if (status & Y2_IS_CHK_RX2)
  1709. sky2_descriptor_error(hw, 1, "receive", Y2_IS_CHK_RX2);
  1710. if (status & Y2_IS_CHK_TXA1)
  1711. sky2_descriptor_error(hw, 0, "transmit", Y2_IS_CHK_TXA1);
  1712. if (status & Y2_IS_CHK_TXA2)
  1713. sky2_descriptor_error(hw, 1, "transmit", Y2_IS_CHK_TXA2);
  1714. }
  1715. if (status & Y2_IS_STAT_BMU) {
  1716. work_done = sky2_status_intr(hw, work_limit);
  1717. *budget -= work_done;
  1718. dev0->quota -= work_done;
  1719. if (work_done >= work_limit)
  1720. return 1;
  1721. sky2_write32(hw, STAT_CTRL, SC_STAT_CLR_IRQ);
  1722. }
  1723. netif_rx_complete(dev0);
  1724. status = sky2_read32(hw, B0_Y2_SP_LISR);
  1725. return 0;
  1726. }
  1727. static irqreturn_t sky2_intr(int irq, void *dev_id, struct pt_regs *regs)
  1728. {
  1729. struct sky2_hw *hw = dev_id;
  1730. struct net_device *dev0 = hw->dev[0];
  1731. u32 status;
  1732. /* Reading this mask interrupts as side effect */
  1733. status = sky2_read32(hw, B0_Y2_SP_ISRC2);
  1734. if (status == 0 || status == ~0)
  1735. return IRQ_NONE;
  1736. prefetch(&hw->st_le[hw->st_idx]);
  1737. if (likely(__netif_rx_schedule_prep(dev0)))
  1738. __netif_rx_schedule(dev0);
  1739. else
  1740. printk(KERN_DEBUG PFX "irq race detected\n");
  1741. return IRQ_HANDLED;
  1742. }
  1743. #ifdef CONFIG_NET_POLL_CONTROLLER
  1744. static void sky2_netpoll(struct net_device *dev)
  1745. {
  1746. struct sky2_port *sky2 = netdev_priv(dev);
  1747. sky2_intr(sky2->hw->pdev->irq, sky2->hw, NULL);
  1748. }
  1749. #endif
  1750. /* Chip internal frequency for clock calculations */
  1751. static inline u32 sky2_mhz(const struct sky2_hw *hw)
  1752. {
  1753. switch (hw->chip_id) {
  1754. case CHIP_ID_YUKON_EC:
  1755. case CHIP_ID_YUKON_EC_U:
  1756. return 125; /* 125 Mhz */
  1757. case CHIP_ID_YUKON_FE:
  1758. return 100; /* 100 Mhz */
  1759. default: /* YUKON_XL */
  1760. return 156; /* 156 Mhz */
  1761. }
  1762. }
  1763. static inline u32 sky2_us2clk(const struct sky2_hw *hw, u32 us)
  1764. {
  1765. return sky2_mhz(hw) * us;
  1766. }
  1767. static inline u32 sky2_clk2us(const struct sky2_hw *hw, u32 clk)
  1768. {
  1769. return clk / sky2_mhz(hw);
  1770. }
  1771. static int sky2_reset(struct sky2_hw *hw)
  1772. {
  1773. u16 status;
  1774. u8 t8, pmd_type;
  1775. int i;
  1776. sky2_write8(hw, B0_CTST, CS_RST_CLR);
  1777. hw->chip_id = sky2_read8(hw, B2_CHIP_ID);
  1778. if (hw->chip_id < CHIP_ID_YUKON_XL || hw->chip_id > CHIP_ID_YUKON_FE) {
  1779. printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
  1780. pci_name(hw->pdev), hw->chip_id);
  1781. return -EOPNOTSUPP;
  1782. }
  1783. hw->chip_rev = (sky2_read8(hw, B2_MAC_CFG) & CFG_CHIP_R_MSK) >> 4;
  1784. /* This rev is really old, and requires untested workarounds */
  1785. if (hw->chip_id == CHIP_ID_YUKON_EC && hw->chip_rev == CHIP_REV_YU_EC_A1) {
  1786. printk(KERN_ERR PFX "%s: unsupported revision Yukon-%s (0x%x) rev %d\n",
  1787. pci_name(hw->pdev), yukon2_name[hw->chip_id - CHIP_ID_YUKON_XL],
  1788. hw->chip_id, hw->chip_rev);
  1789. return -EOPNOTSUPP;
  1790. }
  1791. /* This chip is new and not tested yet */
  1792. if (hw->chip_id == CHIP_ID_YUKON_EC_U) {
  1793. pr_info(PFX "%s: is a version of Yukon 2 chipset that has not been tested yet.\n",
  1794. pci_name(hw->pdev));
  1795. pr_info("Please report success/failure to maintainer <shemminger@osdl.org>\n");
  1796. }
  1797. /* disable ASF */
  1798. if (hw->chip_id <= CHIP_ID_YUKON_EC) {
  1799. sky2_write8(hw, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
  1800. sky2_write16(hw, B0_CTST, Y2_ASF_DISABLE);
  1801. }
  1802. /* do a SW reset */
  1803. sky2_write8(hw, B0_CTST, CS_RST_SET);
  1804. sky2_write8(hw, B0_CTST, CS_RST_CLR);
  1805. /* clear PCI errors, if any */
  1806. status = sky2_pci_read16(hw, PCI_STATUS);
  1807. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1808. sky2_pci_write16(hw, PCI_STATUS, status | PCI_STATUS_ERROR_BITS);
  1809. sky2_write8(hw, B0_CTST, CS_MRST_CLR);
  1810. /* clear any PEX errors */
  1811. if (pci_find_capability(hw->pdev, PCI_CAP_ID_EXP))
  1812. sky2_pci_write32(hw, PEX_UNC_ERR_STAT, 0xffffffffUL);
  1813. pmd_type = sky2_read8(hw, B2_PMD_TYP);
  1814. hw->copper = !(pmd_type == 'L' || pmd_type == 'S');
  1815. hw->ports = 1;
  1816. t8 = sky2_read8(hw, B2_Y2_HW_RES);
  1817. if ((t8 & CFG_DUAL_MAC_MSK) == CFG_DUAL_MAC_MSK) {
  1818. if (!(sky2_read8(hw, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
  1819. ++hw->ports;
  1820. }
  1821. sky2_set_power_state(hw, PCI_D0);
  1822. for (i = 0; i < hw->ports; i++) {
  1823. sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  1824. sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  1825. }
  1826. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1827. /* Clear I2C IRQ noise */
  1828. sky2_write32(hw, B2_I2C_IRQ, 1);
  1829. /* turn off hardware timer (unused) */
  1830. sky2_write8(hw, B2_TI_CTRL, TIM_STOP);
  1831. sky2_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  1832. sky2_write8(hw, B0_Y2LED, LED_STAT_ON);
  1833. /* Turn off descriptor polling */
  1834. sky2_write32(hw, B28_DPT_CTRL, DPT_STOP);
  1835. /* Turn off receive timestamp */
  1836. sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_STOP);
  1837. sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  1838. /* enable the Tx Arbiters */
  1839. for (i = 0; i < hw->ports; i++)
  1840. sky2_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  1841. /* Initialize ram interface */
  1842. for (i = 0; i < hw->ports; i++) {
  1843. sky2_write8(hw, RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
  1844. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R1), SK_RI_TO_53);
  1845. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA1), SK_RI_TO_53);
  1846. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS1), SK_RI_TO_53);
  1847. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R1), SK_RI_TO_53);
  1848. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA1), SK_RI_TO_53);
  1849. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS1), SK_RI_TO_53);
  1850. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R2), SK_RI_TO_53);
  1851. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA2), SK_RI_TO_53);
  1852. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS2), SK_RI_TO_53);
  1853. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R2), SK_RI_TO_53);
  1854. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA2), SK_RI_TO_53);
  1855. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS2), SK_RI_TO_53);
  1856. }
  1857. sky2_write32(hw, B0_HWE_IMSK, Y2_HWE_ALL_MASK);
  1858. for (i = 0; i < hw->ports; i++)
  1859. sky2_phy_reset(hw, i);
  1860. memset(hw->st_le, 0, STATUS_LE_BYTES);
  1861. hw->st_idx = 0;
  1862. sky2_write32(hw, STAT_CTRL, SC_STAT_RST_SET);
  1863. sky2_write32(hw, STAT_CTRL, SC_STAT_RST_CLR);
  1864. sky2_write32(hw, STAT_LIST_ADDR_LO, hw->st_dma);
  1865. sky2_write32(hw, STAT_LIST_ADDR_HI, (u64) hw->st_dma >> 32);
  1866. /* Set the list last index */
  1867. sky2_write16(hw, STAT_LAST_IDX, STATUS_RING_SIZE - 1);
  1868. sky2_write16(hw, STAT_TX_IDX_TH, 10);
  1869. sky2_write8(hw, STAT_FIFO_WM, 16);
  1870. /* set Status-FIFO ISR watermark */
  1871. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0)
  1872. sky2_write8(hw, STAT_FIFO_ISR_WM, 4);
  1873. else
  1874. sky2_write8(hw, STAT_FIFO_ISR_WM, 16);
  1875. sky2_write32(hw, STAT_TX_TIMER_INI, sky2_us2clk(hw, 1000));
  1876. sky2_write32(hw, STAT_ISR_TIMER_INI, sky2_us2clk(hw, 20));
  1877. sky2_write32(hw, STAT_LEV_TIMER_INI, sky2_us2clk(hw, 100));
  1878. /* enable status unit */
  1879. sky2_write32(hw, STAT_CTRL, SC_STAT_OP_ON);
  1880. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
  1881. sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START);
  1882. sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START);
  1883. return 0;
  1884. }
  1885. static u32 sky2_supported_modes(const struct sky2_hw *hw)
  1886. {
  1887. u32 modes;
  1888. if (hw->copper) {
  1889. modes = SUPPORTED_10baseT_Half
  1890. | SUPPORTED_10baseT_Full
  1891. | SUPPORTED_100baseT_Half
  1892. | SUPPORTED_100baseT_Full
  1893. | SUPPORTED_Autoneg | SUPPORTED_TP;
  1894. if (hw->chip_id != CHIP_ID_YUKON_FE)
  1895. modes |= SUPPORTED_1000baseT_Half
  1896. | SUPPORTED_1000baseT_Full;
  1897. } else
  1898. modes = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
  1899. | SUPPORTED_Autoneg;
  1900. return modes;
  1901. }
  1902. static int sky2_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  1903. {
  1904. struct sky2_port *sky2 = netdev_priv(dev);
  1905. struct sky2_hw *hw = sky2->hw;
  1906. ecmd->transceiver = XCVR_INTERNAL;
  1907. ecmd->supported = sky2_supported_modes(hw);
  1908. ecmd->phy_address = PHY_ADDR_MARV;
  1909. if (hw->copper) {
  1910. ecmd->supported = SUPPORTED_10baseT_Half
  1911. | SUPPORTED_10baseT_Full
  1912. | SUPPORTED_100baseT_Half
  1913. | SUPPORTED_100baseT_Full
  1914. | SUPPORTED_1000baseT_Half
  1915. | SUPPORTED_1000baseT_Full
  1916. | SUPPORTED_Autoneg | SUPPORTED_TP;
  1917. ecmd->port = PORT_TP;
  1918. } else
  1919. ecmd->port = PORT_FIBRE;
  1920. ecmd->advertising = sky2->advertising;
  1921. ecmd->autoneg = sky2->autoneg;
  1922. ecmd->speed = sky2->speed;
  1923. ecmd->duplex = sky2->duplex;
  1924. return 0;
  1925. }
  1926. static int sky2_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  1927. {
  1928. struct sky2_port *sky2 = netdev_priv(dev);
  1929. const struct sky2_hw *hw = sky2->hw;
  1930. u32 supported = sky2_supported_modes(hw);
  1931. if (ecmd->autoneg == AUTONEG_ENABLE) {
  1932. ecmd->advertising = supported;
  1933. sky2->duplex = -1;
  1934. sky2->speed = -1;
  1935. } else {
  1936. u32 setting;
  1937. switch (ecmd->speed) {
  1938. case SPEED_1000:
  1939. if (ecmd->duplex == DUPLEX_FULL)
  1940. setting = SUPPORTED_1000baseT_Full;
  1941. else if (ecmd->duplex == DUPLEX_HALF)
  1942. setting = SUPPORTED_1000baseT_Half;
  1943. else
  1944. return -EINVAL;
  1945. break;
  1946. case SPEED_100:
  1947. if (ecmd->duplex == DUPLEX_FULL)
  1948. setting = SUPPORTED_100baseT_Full;
  1949. else if (ecmd->duplex == DUPLEX_HALF)
  1950. setting = SUPPORTED_100baseT_Half;
  1951. else
  1952. return -EINVAL;
  1953. break;
  1954. case SPEED_10:
  1955. if (ecmd->duplex == DUPLEX_FULL)
  1956. setting = SUPPORTED_10baseT_Full;
  1957. else if (ecmd->duplex == DUPLEX_HALF)
  1958. setting = SUPPORTED_10baseT_Half;
  1959. else
  1960. return -EINVAL;
  1961. break;
  1962. default:
  1963. return -EINVAL;
  1964. }
  1965. if ((setting & supported) == 0)
  1966. return -EINVAL;
  1967. sky2->speed = ecmd->speed;
  1968. sky2->duplex = ecmd->duplex;
  1969. }
  1970. sky2->autoneg = ecmd->autoneg;
  1971. sky2->advertising = ecmd->advertising;
  1972. if (netif_running(dev))
  1973. sky2_phy_reinit(sky2);
  1974. return 0;
  1975. }
  1976. static void sky2_get_drvinfo(struct net_device *dev,
  1977. struct ethtool_drvinfo *info)
  1978. {
  1979. struct sky2_port *sky2 = netdev_priv(dev);
  1980. strcpy(info->driver, DRV_NAME);
  1981. strcpy(info->version, DRV_VERSION);
  1982. strcpy(info->fw_version, "N/A");
  1983. strcpy(info->bus_info, pci_name(sky2->hw->pdev));
  1984. }
  1985. static const struct sky2_stat {
  1986. char name[ETH_GSTRING_LEN];
  1987. u16 offset;
  1988. } sky2_stats[] = {
  1989. { "tx_bytes", GM_TXO_OK_HI },
  1990. { "rx_bytes", GM_RXO_OK_HI },
  1991. { "tx_broadcast", GM_TXF_BC_OK },
  1992. { "rx_broadcast", GM_RXF_BC_OK },
  1993. { "tx_multicast", GM_TXF_MC_OK },
  1994. { "rx_multicast", GM_RXF_MC_OK },
  1995. { "tx_unicast", GM_TXF_UC_OK },
  1996. { "rx_unicast", GM_RXF_UC_OK },
  1997. { "tx_mac_pause", GM_TXF_MPAUSE },
  1998. { "rx_mac_pause", GM_RXF_MPAUSE },
  1999. { "collisions", GM_TXF_COL },
  2000. { "late_collision",GM_TXF_LAT_COL },
  2001. { "aborted", GM_TXF_ABO_COL },
  2002. { "single_collisions", GM_TXF_SNG_COL },
  2003. { "multi_collisions", GM_TXF_MUL_COL },
  2004. { "rx_short", GM_RXE_SHT },
  2005. { "rx_runt", GM_RXE_FRAG },
  2006. { "rx_64_byte_packets", GM_RXF_64B },
  2007. { "rx_65_to_127_byte_packets", GM_RXF_127B },
  2008. { "rx_128_to_255_byte_packets", GM_RXF_255B },
  2009. { "rx_256_to_511_byte_packets", GM_RXF_511B },
  2010. { "rx_512_to_1023_byte_packets", GM_RXF_1023B },
  2011. { "rx_1024_to_1518_byte_packets", GM_RXF_1518B },
  2012. { "rx_1518_to_max_byte_packets", GM_RXF_MAX_SZ },
  2013. { "rx_too_long", GM_RXF_LNG_ERR },
  2014. { "rx_fifo_overflow", GM_RXE_FIFO_OV },
  2015. { "rx_jabber", GM_RXF_JAB_PKT },
  2016. { "rx_fcs_error", GM_RXF_FCS_ERR },
  2017. { "tx_64_byte_packets", GM_TXF_64B },
  2018. { "tx_65_to_127_byte_packets", GM_TXF_127B },
  2019. { "tx_128_to_255_byte_packets", GM_TXF_255B },
  2020. { "tx_256_to_511_byte_packets", GM_TXF_511B },
  2021. { "tx_512_to_1023_byte_packets", GM_TXF_1023B },
  2022. { "tx_1024_to_1518_byte_packets", GM_TXF_1518B },
  2023. { "tx_1519_to_max_byte_packets", GM_TXF_MAX_SZ },
  2024. { "tx_fifo_underrun", GM_TXE_FIFO_UR },
  2025. };
  2026. static u32 sky2_get_rx_csum(struct net_device *dev)
  2027. {
  2028. struct sky2_port *sky2 = netdev_priv(dev);
  2029. return sky2->rx_csum;
  2030. }
  2031. static int sky2_set_rx_csum(struct net_device *dev, u32 data)
  2032. {
  2033. struct sky2_port *sky2 = netdev_priv(dev);
  2034. sky2->rx_csum = data;
  2035. sky2_write32(sky2->hw, Q_ADDR(rxqaddr[sky2->port], Q_CSR),
  2036. data ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM);
  2037. return 0;
  2038. }
  2039. static u32 sky2_get_msglevel(struct net_device *netdev)
  2040. {
  2041. struct sky2_port *sky2 = netdev_priv(netdev);
  2042. return sky2->msg_enable;
  2043. }
  2044. static int sky2_nway_reset(struct net_device *dev)
  2045. {
  2046. struct sky2_port *sky2 = netdev_priv(dev);
  2047. if (sky2->autoneg != AUTONEG_ENABLE)
  2048. return -EINVAL;
  2049. sky2_phy_reinit(sky2);
  2050. return 0;
  2051. }
  2052. static void sky2_phy_stats(struct sky2_port *sky2, u64 * data, unsigned count)
  2053. {
  2054. struct sky2_hw *hw = sky2->hw;
  2055. unsigned port = sky2->port;
  2056. int i;
  2057. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  2058. | (u64) gma_read32(hw, port, GM_TXO_OK_LO);
  2059. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  2060. | (u64) gma_read32(hw, port, GM_RXO_OK_LO);
  2061. for (i = 2; i < count; i++)
  2062. data[i] = (u64) gma_read32(hw, port, sky2_stats[i].offset);
  2063. }
  2064. static void sky2_set_msglevel(struct net_device *netdev, u32 value)
  2065. {
  2066. struct sky2_port *sky2 = netdev_priv(netdev);
  2067. sky2->msg_enable = value;
  2068. }
  2069. static int sky2_get_stats_count(struct net_device *dev)
  2070. {
  2071. return ARRAY_SIZE(sky2_stats);
  2072. }
  2073. static void sky2_get_ethtool_stats(struct net_device *dev,
  2074. struct ethtool_stats *stats, u64 * data)
  2075. {
  2076. struct sky2_port *sky2 = netdev_priv(dev);
  2077. sky2_phy_stats(sky2, data, ARRAY_SIZE(sky2_stats));
  2078. }
  2079. static void sky2_get_strings(struct net_device *dev, u32 stringset, u8 * data)
  2080. {
  2081. int i;
  2082. switch (stringset) {
  2083. case ETH_SS_STATS:
  2084. for (i = 0; i < ARRAY_SIZE(sky2_stats); i++)
  2085. memcpy(data + i * ETH_GSTRING_LEN,
  2086. sky2_stats[i].name, ETH_GSTRING_LEN);
  2087. break;
  2088. }
  2089. }
  2090. /* Use hardware MIB variables for critical path statistics and
  2091. * transmit feedback not reported at interrupt.
  2092. * Other errors are accounted for in interrupt handler.
  2093. */
  2094. static struct net_device_stats *sky2_get_stats(struct net_device *dev)
  2095. {
  2096. struct sky2_port *sky2 = netdev_priv(dev);
  2097. u64 data[13];
  2098. sky2_phy_stats(sky2, data, ARRAY_SIZE(data));
  2099. sky2->net_stats.tx_bytes = data[0];
  2100. sky2->net_stats.rx_bytes = data[1];
  2101. sky2->net_stats.tx_packets = data[2] + data[4] + data[6];
  2102. sky2->net_stats.rx_packets = data[3] + data[5] + data[7];
  2103. sky2->net_stats.multicast = data[5] + data[7];
  2104. sky2->net_stats.collisions = data[10];
  2105. sky2->net_stats.tx_aborted_errors = data[12];
  2106. return &sky2->net_stats;
  2107. }
  2108. static int sky2_set_mac_address(struct net_device *dev, void *p)
  2109. {
  2110. struct sky2_port *sky2 = netdev_priv(dev);
  2111. struct sky2_hw *hw = sky2->hw;
  2112. unsigned port = sky2->port;
  2113. const struct sockaddr *addr = p;
  2114. if (!is_valid_ether_addr(addr->sa_data))
  2115. return -EADDRNOTAVAIL;
  2116. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2117. memcpy_toio(hw->regs + B2_MAC_1 + port * 8,
  2118. dev->dev_addr, ETH_ALEN);
  2119. memcpy_toio(hw->regs + B2_MAC_2 + port * 8,
  2120. dev->dev_addr, ETH_ALEN);
  2121. /* virtual address for data */
  2122. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2123. /* physical address: used for pause frames */
  2124. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2125. return 0;
  2126. }
  2127. static void sky2_set_multicast(struct net_device *dev)
  2128. {
  2129. struct sky2_port *sky2 = netdev_priv(dev);
  2130. struct sky2_hw *hw = sky2->hw;
  2131. unsigned port = sky2->port;
  2132. struct dev_mc_list *list = dev->mc_list;
  2133. u16 reg;
  2134. u8 filter[8];
  2135. memset(filter, 0, sizeof(filter));
  2136. reg = gma_read16(hw, port, GM_RX_CTRL);
  2137. reg |= GM_RXCR_UCF_ENA;
  2138. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2139. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2140. else if ((dev->flags & IFF_ALLMULTI) || dev->mc_count > 16) /* all multicast */
  2141. memset(filter, 0xff, sizeof(filter));
  2142. else if (dev->mc_count == 0) /* no multicast */
  2143. reg &= ~GM_RXCR_MCF_ENA;
  2144. else {
  2145. int i;
  2146. reg |= GM_RXCR_MCF_ENA;
  2147. for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
  2148. u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
  2149. filter[bit / 8] |= 1 << (bit % 8);
  2150. }
  2151. }
  2152. gma_write16(hw, port, GM_MC_ADDR_H1,
  2153. (u16) filter[0] | ((u16) filter[1] << 8));
  2154. gma_write16(hw, port, GM_MC_ADDR_H2,
  2155. (u16) filter[2] | ((u16) filter[3] << 8));
  2156. gma_write16(hw, port, GM_MC_ADDR_H3,
  2157. (u16) filter[4] | ((u16) filter[5] << 8));
  2158. gma_write16(hw, port, GM_MC_ADDR_H4,
  2159. (u16) filter[6] | ((u16) filter[7] << 8));
  2160. gma_write16(hw, port, GM_RX_CTRL, reg);
  2161. }
  2162. /* Can have one global because blinking is controlled by
  2163. * ethtool and that is always under RTNL mutex
  2164. */
  2165. static void sky2_led(struct sky2_hw *hw, unsigned port, int on)
  2166. {
  2167. u16 pg;
  2168. switch (hw->chip_id) {
  2169. case CHIP_ID_YUKON_XL:
  2170. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  2171. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  2172. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
  2173. on ? (PHY_M_LEDC_LOS_CTRL(1) |
  2174. PHY_M_LEDC_INIT_CTRL(7) |
  2175. PHY_M_LEDC_STA1_CTRL(7) |
  2176. PHY_M_LEDC_STA0_CTRL(7))
  2177. : 0);
  2178. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  2179. break;
  2180. default:
  2181. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  2182. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  2183. on ? PHY_M_LED_MO_DUP(MO_LED_ON) |
  2184. PHY_M_LED_MO_10(MO_LED_ON) |
  2185. PHY_M_LED_MO_100(MO_LED_ON) |
  2186. PHY_M_LED_MO_1000(MO_LED_ON) |
  2187. PHY_M_LED_MO_RX(MO_LED_ON)
  2188. : PHY_M_LED_MO_DUP(MO_LED_OFF) |
  2189. PHY_M_LED_MO_10(MO_LED_OFF) |
  2190. PHY_M_LED_MO_100(MO_LED_OFF) |
  2191. PHY_M_LED_MO_1000(MO_LED_OFF) |
  2192. PHY_M_LED_MO_RX(MO_LED_OFF));
  2193. }
  2194. }
  2195. /* blink LED's for finding board */
  2196. static int sky2_phys_id(struct net_device *dev, u32 data)
  2197. {
  2198. struct sky2_port *sky2 = netdev_priv(dev);
  2199. struct sky2_hw *hw = sky2->hw;
  2200. unsigned port = sky2->port;
  2201. u16 ledctrl, ledover = 0;
  2202. long ms;
  2203. int interrupted;
  2204. int onoff = 1;
  2205. if (!data || data > (u32) (MAX_SCHEDULE_TIMEOUT / HZ))
  2206. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT);
  2207. else
  2208. ms = data * 1000;
  2209. /* save initial values */
  2210. spin_lock_bh(&sky2->phy_lock);
  2211. if (hw->chip_id == CHIP_ID_YUKON_XL) {
  2212. u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  2213. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  2214. ledctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  2215. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  2216. } else {
  2217. ledctrl = gm_phy_read(hw, port, PHY_MARV_LED_CTRL);
  2218. ledover = gm_phy_read(hw, port, PHY_MARV_LED_OVER);
  2219. }
  2220. interrupted = 0;
  2221. while (!interrupted && ms > 0) {
  2222. sky2_led(hw, port, onoff);
  2223. onoff = !onoff;
  2224. spin_unlock_bh(&sky2->phy_lock);
  2225. interrupted = msleep_interruptible(250);
  2226. spin_lock_bh(&sky2->phy_lock);
  2227. ms -= 250;
  2228. }
  2229. /* resume regularly scheduled programming */
  2230. if (hw->chip_id == CHIP_ID_YUKON_XL) {
  2231. u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  2232. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  2233. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ledctrl);
  2234. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  2235. } else {
  2236. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
  2237. gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
  2238. }
  2239. spin_unlock_bh(&sky2->phy_lock);
  2240. return 0;
  2241. }
  2242. static void sky2_get_pauseparam(struct net_device *dev,
  2243. struct ethtool_pauseparam *ecmd)
  2244. {
  2245. struct sky2_port *sky2 = netdev_priv(dev);
  2246. ecmd->tx_pause = sky2->tx_pause;
  2247. ecmd->rx_pause = sky2->rx_pause;
  2248. ecmd->autoneg = sky2->autoneg;
  2249. }
  2250. static int sky2_set_pauseparam(struct net_device *dev,
  2251. struct ethtool_pauseparam *ecmd)
  2252. {
  2253. struct sky2_port *sky2 = netdev_priv(dev);
  2254. int err = 0;
  2255. sky2->autoneg = ecmd->autoneg;
  2256. sky2->tx_pause = ecmd->tx_pause != 0;
  2257. sky2->rx_pause = ecmd->rx_pause != 0;
  2258. sky2_phy_reinit(sky2);
  2259. return err;
  2260. }
  2261. static int sky2_get_coalesce(struct net_device *dev,
  2262. struct ethtool_coalesce *ecmd)
  2263. {
  2264. struct sky2_port *sky2 = netdev_priv(dev);
  2265. struct sky2_hw *hw = sky2->hw;
  2266. if (sky2_read8(hw, STAT_TX_TIMER_CTRL) == TIM_STOP)
  2267. ecmd->tx_coalesce_usecs = 0;
  2268. else {
  2269. u32 clks = sky2_read32(hw, STAT_TX_TIMER_INI);
  2270. ecmd->tx_coalesce_usecs = sky2_clk2us(hw, clks);
  2271. }
  2272. ecmd->tx_max_coalesced_frames = sky2_read16(hw, STAT_TX_IDX_TH);
  2273. if (sky2_read8(hw, STAT_LEV_TIMER_CTRL) == TIM_STOP)
  2274. ecmd->rx_coalesce_usecs = 0;
  2275. else {
  2276. u32 clks = sky2_read32(hw, STAT_LEV_TIMER_INI);
  2277. ecmd->rx_coalesce_usecs = sky2_clk2us(hw, clks);
  2278. }
  2279. ecmd->rx_max_coalesced_frames = sky2_read8(hw, STAT_FIFO_WM);
  2280. if (sky2_read8(hw, STAT_ISR_TIMER_CTRL) == TIM_STOP)
  2281. ecmd->rx_coalesce_usecs_irq = 0;
  2282. else {
  2283. u32 clks = sky2_read32(hw, STAT_ISR_TIMER_INI);
  2284. ecmd->rx_coalesce_usecs_irq = sky2_clk2us(hw, clks);
  2285. }
  2286. ecmd->rx_max_coalesced_frames_irq = sky2_read8(hw, STAT_FIFO_ISR_WM);
  2287. return 0;
  2288. }
  2289. /* Note: this affect both ports */
  2290. static int sky2_set_coalesce(struct net_device *dev,
  2291. struct ethtool_coalesce *ecmd)
  2292. {
  2293. struct sky2_port *sky2 = netdev_priv(dev);
  2294. struct sky2_hw *hw = sky2->hw;
  2295. const u32 tmax = sky2_clk2us(hw, 0x0ffffff);
  2296. if (ecmd->tx_coalesce_usecs > tmax ||
  2297. ecmd->rx_coalesce_usecs > tmax ||
  2298. ecmd->rx_coalesce_usecs_irq > tmax)
  2299. return -EINVAL;
  2300. if (ecmd->tx_max_coalesced_frames >= TX_RING_SIZE-1)
  2301. return -EINVAL;
  2302. if (ecmd->rx_max_coalesced_frames > RX_MAX_PENDING)
  2303. return -EINVAL;
  2304. if (ecmd->rx_max_coalesced_frames_irq >RX_MAX_PENDING)
  2305. return -EINVAL;
  2306. if (ecmd->tx_coalesce_usecs == 0)
  2307. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_STOP);
  2308. else {
  2309. sky2_write32(hw, STAT_TX_TIMER_INI,
  2310. sky2_us2clk(hw, ecmd->tx_coalesce_usecs));
  2311. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
  2312. }
  2313. sky2_write16(hw, STAT_TX_IDX_TH, ecmd->tx_max_coalesced_frames);
  2314. if (ecmd->rx_coalesce_usecs == 0)
  2315. sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_STOP);
  2316. else {
  2317. sky2_write32(hw, STAT_LEV_TIMER_INI,
  2318. sky2_us2clk(hw, ecmd->rx_coalesce_usecs));
  2319. sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START);
  2320. }
  2321. sky2_write8(hw, STAT_FIFO_WM, ecmd->rx_max_coalesced_frames);
  2322. if (ecmd->rx_coalesce_usecs_irq == 0)
  2323. sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_STOP);
  2324. else {
  2325. sky2_write32(hw, STAT_ISR_TIMER_INI,
  2326. sky2_us2clk(hw, ecmd->rx_coalesce_usecs_irq));
  2327. sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START);
  2328. }
  2329. sky2_write8(hw, STAT_FIFO_ISR_WM, ecmd->rx_max_coalesced_frames_irq);
  2330. return 0;
  2331. }
  2332. static void sky2_get_ringparam(struct net_device *dev,
  2333. struct ethtool_ringparam *ering)
  2334. {
  2335. struct sky2_port *sky2 = netdev_priv(dev);
  2336. ering->rx_max_pending = RX_MAX_PENDING;
  2337. ering->rx_mini_max_pending = 0;
  2338. ering->rx_jumbo_max_pending = 0;
  2339. ering->tx_max_pending = TX_RING_SIZE - 1;
  2340. ering->rx_pending = sky2->rx_pending;
  2341. ering->rx_mini_pending = 0;
  2342. ering->rx_jumbo_pending = 0;
  2343. ering->tx_pending = sky2->tx_pending;
  2344. }
  2345. static int sky2_set_ringparam(struct net_device *dev,
  2346. struct ethtool_ringparam *ering)
  2347. {
  2348. struct sky2_port *sky2 = netdev_priv(dev);
  2349. int err = 0;
  2350. if (ering->rx_pending > RX_MAX_PENDING ||
  2351. ering->rx_pending < 8 ||
  2352. ering->tx_pending < MAX_SKB_TX_LE ||
  2353. ering->tx_pending > TX_RING_SIZE - 1)
  2354. return -EINVAL;
  2355. if (netif_running(dev))
  2356. sky2_down(dev);
  2357. sky2->rx_pending = ering->rx_pending;
  2358. sky2->tx_pending = ering->tx_pending;
  2359. if (netif_running(dev)) {
  2360. err = sky2_up(dev);
  2361. if (err)
  2362. dev_close(dev);
  2363. else
  2364. sky2_set_multicast(dev);
  2365. }
  2366. return err;
  2367. }
  2368. static int sky2_get_regs_len(struct net_device *dev)
  2369. {
  2370. return 0x4000;
  2371. }
  2372. /*
  2373. * Returns copy of control register region
  2374. * Note: access to the RAM address register set will cause timeouts.
  2375. */
  2376. static void sky2_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  2377. void *p)
  2378. {
  2379. const struct sky2_port *sky2 = netdev_priv(dev);
  2380. const void __iomem *io = sky2->hw->regs;
  2381. BUG_ON(regs->len < B3_RI_WTO_R1);
  2382. regs->version = 1;
  2383. memset(p, 0, regs->len);
  2384. memcpy_fromio(p, io, B3_RAM_ADDR);
  2385. memcpy_fromio(p + B3_RI_WTO_R1,
  2386. io + B3_RI_WTO_R1,
  2387. regs->len - B3_RI_WTO_R1);
  2388. }
  2389. static struct ethtool_ops sky2_ethtool_ops = {
  2390. .get_settings = sky2_get_settings,
  2391. .set_settings = sky2_set_settings,
  2392. .get_drvinfo = sky2_get_drvinfo,
  2393. .get_msglevel = sky2_get_msglevel,
  2394. .set_msglevel = sky2_set_msglevel,
  2395. .nway_reset = sky2_nway_reset,
  2396. .get_regs_len = sky2_get_regs_len,
  2397. .get_regs = sky2_get_regs,
  2398. .get_link = ethtool_op_get_link,
  2399. .get_sg = ethtool_op_get_sg,
  2400. .set_sg = ethtool_op_set_sg,
  2401. .get_tx_csum = ethtool_op_get_tx_csum,
  2402. .set_tx_csum = ethtool_op_set_tx_csum,
  2403. .get_tso = ethtool_op_get_tso,
  2404. .set_tso = ethtool_op_set_tso,
  2405. .get_rx_csum = sky2_get_rx_csum,
  2406. .set_rx_csum = sky2_set_rx_csum,
  2407. .get_strings = sky2_get_strings,
  2408. .get_coalesce = sky2_get_coalesce,
  2409. .set_coalesce = sky2_set_coalesce,
  2410. .get_ringparam = sky2_get_ringparam,
  2411. .set_ringparam = sky2_set_ringparam,
  2412. .get_pauseparam = sky2_get_pauseparam,
  2413. .set_pauseparam = sky2_set_pauseparam,
  2414. .phys_id = sky2_phys_id,
  2415. .get_stats_count = sky2_get_stats_count,
  2416. .get_ethtool_stats = sky2_get_ethtool_stats,
  2417. .get_perm_addr = ethtool_op_get_perm_addr,
  2418. };
  2419. /* Initialize network device */
  2420. static __devinit struct net_device *sky2_init_netdev(struct sky2_hw *hw,
  2421. unsigned port, int highmem)
  2422. {
  2423. struct sky2_port *sky2;
  2424. struct net_device *dev = alloc_etherdev(sizeof(*sky2));
  2425. if (!dev) {
  2426. printk(KERN_ERR "sky2 etherdev alloc failed");
  2427. return NULL;
  2428. }
  2429. SET_MODULE_OWNER(dev);
  2430. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2431. dev->irq = hw->pdev->irq;
  2432. dev->open = sky2_up;
  2433. dev->stop = sky2_down;
  2434. dev->do_ioctl = sky2_ioctl;
  2435. dev->hard_start_xmit = sky2_xmit_frame;
  2436. dev->get_stats = sky2_get_stats;
  2437. dev->set_multicast_list = sky2_set_multicast;
  2438. dev->set_mac_address = sky2_set_mac_address;
  2439. dev->change_mtu = sky2_change_mtu;
  2440. SET_ETHTOOL_OPS(dev, &sky2_ethtool_ops);
  2441. dev->tx_timeout = sky2_tx_timeout;
  2442. dev->watchdog_timeo = TX_WATCHDOG;
  2443. if (port == 0)
  2444. dev->poll = sky2_poll;
  2445. dev->weight = NAPI_WEIGHT;
  2446. #ifdef CONFIG_NET_POLL_CONTROLLER
  2447. dev->poll_controller = sky2_netpoll;
  2448. #endif
  2449. sky2 = netdev_priv(dev);
  2450. sky2->netdev = dev;
  2451. sky2->hw = hw;
  2452. sky2->msg_enable = netif_msg_init(debug, default_msg);
  2453. spin_lock_init(&sky2->tx_lock);
  2454. /* Auto speed and flow control */
  2455. sky2->autoneg = AUTONEG_ENABLE;
  2456. sky2->tx_pause = 1;
  2457. sky2->rx_pause = 1;
  2458. sky2->duplex = -1;
  2459. sky2->speed = -1;
  2460. sky2->advertising = sky2_supported_modes(hw);
  2461. /* Receive checksum disabled for Yukon XL
  2462. * because of observed problems with incorrect
  2463. * values when multiple packets are received in one interrupt
  2464. */
  2465. sky2->rx_csum = (hw->chip_id != CHIP_ID_YUKON_XL);
  2466. spin_lock_init(&sky2->phy_lock);
  2467. sky2->tx_pending = TX_DEF_PENDING;
  2468. sky2->rx_pending = RX_DEF_PENDING;
  2469. sky2->rx_bufsize = sky2_buf_size(ETH_DATA_LEN);
  2470. hw->dev[port] = dev;
  2471. sky2->port = port;
  2472. dev->features |= NETIF_F_LLTX;
  2473. if (hw->chip_id != CHIP_ID_YUKON_EC_U)
  2474. dev->features |= NETIF_F_TSO;
  2475. if (highmem)
  2476. dev->features |= NETIF_F_HIGHDMA;
  2477. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2478. #ifdef SKY2_VLAN_TAG_USED
  2479. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  2480. dev->vlan_rx_register = sky2_vlan_rx_register;
  2481. dev->vlan_rx_kill_vid = sky2_vlan_rx_kill_vid;
  2482. #endif
  2483. /* read the mac address */
  2484. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port * 8, ETH_ALEN);
  2485. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2486. /* device is off until link detection */
  2487. netif_carrier_off(dev);
  2488. netif_stop_queue(dev);
  2489. return dev;
  2490. }
  2491. static void __devinit sky2_show_addr(struct net_device *dev)
  2492. {
  2493. const struct sky2_port *sky2 = netdev_priv(dev);
  2494. if (netif_msg_probe(sky2))
  2495. printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  2496. dev->name,
  2497. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2498. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2499. }
  2500. /* Handle software interrupt used during MSI test */
  2501. static irqreturn_t __devinit sky2_test_intr(int irq, void *dev_id,
  2502. struct pt_regs *regs)
  2503. {
  2504. struct sky2_hw *hw = dev_id;
  2505. u32 status = sky2_read32(hw, B0_Y2_SP_ISRC2);
  2506. if (status == 0)
  2507. return IRQ_NONE;
  2508. if (status & Y2_IS_IRQ_SW) {
  2509. hw->msi_detected = 1;
  2510. wake_up(&hw->msi_wait);
  2511. sky2_write8(hw, B0_CTST, CS_CL_SW_IRQ);
  2512. }
  2513. sky2_write32(hw, B0_Y2_SP_ICR, 2);
  2514. return IRQ_HANDLED;
  2515. }
  2516. /* Test interrupt path by forcing a a software IRQ */
  2517. static int __devinit sky2_test_msi(struct sky2_hw *hw)
  2518. {
  2519. struct pci_dev *pdev = hw->pdev;
  2520. int err;
  2521. sky2_write32(hw, B0_IMSK, Y2_IS_IRQ_SW);
  2522. err = request_irq(pdev->irq, sky2_test_intr, SA_SHIRQ, DRV_NAME, hw);
  2523. if (err) {
  2524. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2525. pci_name(pdev), pdev->irq);
  2526. return err;
  2527. }
  2528. init_waitqueue_head (&hw->msi_wait);
  2529. sky2_write8(hw, B0_CTST, CS_ST_SW_IRQ);
  2530. wmb();
  2531. wait_event_timeout(hw->msi_wait, hw->msi_detected, HZ/10);
  2532. if (!hw->msi_detected) {
  2533. /* MSI test failed, go back to INTx mode */
  2534. printk(KERN_WARNING PFX "%s: No interrupt was generated using MSI, "
  2535. "switching to INTx mode. Please report this failure to "
  2536. "the PCI maintainer and include system chipset information.\n",
  2537. pci_name(pdev));
  2538. err = -EOPNOTSUPP;
  2539. sky2_write8(hw, B0_CTST, CS_CL_SW_IRQ);
  2540. }
  2541. sky2_write32(hw, B0_IMSK, 0);
  2542. free_irq(pdev->irq, hw);
  2543. return err;
  2544. }
  2545. static int __devinit sky2_probe(struct pci_dev *pdev,
  2546. const struct pci_device_id *ent)
  2547. {
  2548. struct net_device *dev, *dev1 = NULL;
  2549. struct sky2_hw *hw;
  2550. int err, pm_cap, using_dac = 0;
  2551. err = pci_enable_device(pdev);
  2552. if (err) {
  2553. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  2554. pci_name(pdev));
  2555. goto err_out;
  2556. }
  2557. err = pci_request_regions(pdev, DRV_NAME);
  2558. if (err) {
  2559. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  2560. pci_name(pdev));
  2561. goto err_out;
  2562. }
  2563. pci_set_master(pdev);
  2564. /* Find power-management capability. */
  2565. pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  2566. if (pm_cap == 0) {
  2567. printk(KERN_ERR PFX "Cannot find PowerManagement capability, "
  2568. "aborting.\n");
  2569. err = -EIO;
  2570. goto err_out_free_regions;
  2571. }
  2572. if (sizeof(dma_addr_t) > sizeof(u32) &&
  2573. !(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
  2574. using_dac = 1;
  2575. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  2576. if (err < 0) {
  2577. printk(KERN_ERR PFX "%s unable to obtain 64 bit DMA "
  2578. "for consistent allocations\n", pci_name(pdev));
  2579. goto err_out_free_regions;
  2580. }
  2581. } else {
  2582. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  2583. if (err) {
  2584. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  2585. pci_name(pdev));
  2586. goto err_out_free_regions;
  2587. }
  2588. }
  2589. err = -ENOMEM;
  2590. hw = kzalloc(sizeof(*hw), GFP_KERNEL);
  2591. if (!hw) {
  2592. printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
  2593. pci_name(pdev));
  2594. goto err_out_free_regions;
  2595. }
  2596. hw->pdev = pdev;
  2597. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  2598. if (!hw->regs) {
  2599. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  2600. pci_name(pdev));
  2601. goto err_out_free_hw;
  2602. }
  2603. hw->pm_cap = pm_cap;
  2604. #ifdef __BIG_ENDIAN
  2605. /* byte swap descriptors in hardware */
  2606. {
  2607. u32 reg;
  2608. reg = sky2_pci_read32(hw, PCI_DEV_REG2);
  2609. reg |= PCI_REV_DESC;
  2610. sky2_pci_write32(hw, PCI_DEV_REG2, reg);
  2611. }
  2612. #endif
  2613. /* ring for status responses */
  2614. hw->st_le = pci_alloc_consistent(hw->pdev, STATUS_LE_BYTES,
  2615. &hw->st_dma);
  2616. if (!hw->st_le)
  2617. goto err_out_iounmap;
  2618. err = sky2_reset(hw);
  2619. if (err)
  2620. goto err_out_iounmap;
  2621. printk(KERN_INFO PFX "v%s addr 0x%lx irq %d Yukon-%s (0x%x) rev %d\n",
  2622. DRV_VERSION, pci_resource_start(pdev, 0), pdev->irq,
  2623. yukon2_name[hw->chip_id - CHIP_ID_YUKON_XL],
  2624. hw->chip_id, hw->chip_rev);
  2625. dev = sky2_init_netdev(hw, 0, using_dac);
  2626. if (!dev)
  2627. goto err_out_free_pci;
  2628. err = register_netdev(dev);
  2629. if (err) {
  2630. printk(KERN_ERR PFX "%s: cannot register net device\n",
  2631. pci_name(pdev));
  2632. goto err_out_free_netdev;
  2633. }
  2634. sky2_show_addr(dev);
  2635. if (hw->ports > 1 && (dev1 = sky2_init_netdev(hw, 1, using_dac))) {
  2636. if (register_netdev(dev1) == 0)
  2637. sky2_show_addr(dev1);
  2638. else {
  2639. /* Failure to register second port need not be fatal */
  2640. printk(KERN_WARNING PFX
  2641. "register of second port failed\n");
  2642. hw->dev[1] = NULL;
  2643. free_netdev(dev1);
  2644. }
  2645. }
  2646. if (!disable_msi && pci_enable_msi(pdev) == 0) {
  2647. err = sky2_test_msi(hw);
  2648. if (err == -EOPNOTSUPP)
  2649. pci_disable_msi(pdev);
  2650. else if (err)
  2651. goto err_out_unregister;
  2652. }
  2653. err = request_irq(pdev->irq, sky2_intr, SA_SHIRQ, DRV_NAME, hw);
  2654. if (err) {
  2655. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2656. pci_name(pdev), pdev->irq);
  2657. goto err_out_unregister;
  2658. }
  2659. sky2_write32(hw, B0_IMSK, Y2_IS_BASE);
  2660. pci_set_drvdata(pdev, hw);
  2661. return 0;
  2662. err_out_unregister:
  2663. pci_disable_msi(pdev);
  2664. if (dev1) {
  2665. unregister_netdev(dev1);
  2666. free_netdev(dev1);
  2667. }
  2668. unregister_netdev(dev);
  2669. err_out_free_netdev:
  2670. free_netdev(dev);
  2671. err_out_free_pci:
  2672. sky2_write8(hw, B0_CTST, CS_RST_SET);
  2673. pci_free_consistent(hw->pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma);
  2674. err_out_iounmap:
  2675. iounmap(hw->regs);
  2676. err_out_free_hw:
  2677. kfree(hw);
  2678. err_out_free_regions:
  2679. pci_release_regions(pdev);
  2680. pci_disable_device(pdev);
  2681. err_out:
  2682. return err;
  2683. }
  2684. static void __devexit sky2_remove(struct pci_dev *pdev)
  2685. {
  2686. struct sky2_hw *hw = pci_get_drvdata(pdev);
  2687. struct net_device *dev0, *dev1;
  2688. if (!hw)
  2689. return;
  2690. dev0 = hw->dev[0];
  2691. dev1 = hw->dev[1];
  2692. if (dev1)
  2693. unregister_netdev(dev1);
  2694. unregister_netdev(dev0);
  2695. sky2_write32(hw, B0_IMSK, 0);
  2696. sky2_set_power_state(hw, PCI_D3hot);
  2697. sky2_write16(hw, B0_Y2LED, LED_STAT_OFF);
  2698. sky2_write8(hw, B0_CTST, CS_RST_SET);
  2699. sky2_read8(hw, B0_CTST);
  2700. free_irq(pdev->irq, hw);
  2701. pci_disable_msi(pdev);
  2702. pci_free_consistent(pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma);
  2703. pci_release_regions(pdev);
  2704. pci_disable_device(pdev);
  2705. if (dev1)
  2706. free_netdev(dev1);
  2707. free_netdev(dev0);
  2708. iounmap(hw->regs);
  2709. kfree(hw);
  2710. pci_set_drvdata(pdev, NULL);
  2711. }
  2712. #ifdef CONFIG_PM
  2713. static int sky2_suspend(struct pci_dev *pdev, pm_message_t state)
  2714. {
  2715. struct sky2_hw *hw = pci_get_drvdata(pdev);
  2716. int i;
  2717. for (i = 0; i < 2; i++) {
  2718. struct net_device *dev = hw->dev[i];
  2719. if (dev) {
  2720. if (!netif_running(dev))
  2721. continue;
  2722. sky2_down(dev);
  2723. netif_device_detach(dev);
  2724. }
  2725. }
  2726. return sky2_set_power_state(hw, pci_choose_state(pdev, state));
  2727. }
  2728. static int sky2_resume(struct pci_dev *pdev)
  2729. {
  2730. struct sky2_hw *hw = pci_get_drvdata(pdev);
  2731. int i, err;
  2732. pci_restore_state(pdev);
  2733. pci_enable_wake(pdev, PCI_D0, 0);
  2734. err = sky2_set_power_state(hw, PCI_D0);
  2735. if (err)
  2736. goto out;
  2737. err = sky2_reset(hw);
  2738. if (err)
  2739. goto out;
  2740. for (i = 0; i < 2; i++) {
  2741. struct net_device *dev = hw->dev[i];
  2742. if (dev && netif_running(dev)) {
  2743. netif_device_attach(dev);
  2744. err = sky2_up(dev);
  2745. if (err) {
  2746. printk(KERN_ERR PFX "%s: could not up: %d\n",
  2747. dev->name, err);
  2748. dev_close(dev);
  2749. break;
  2750. }
  2751. }
  2752. }
  2753. out:
  2754. return err;
  2755. }
  2756. #endif
  2757. static struct pci_driver sky2_driver = {
  2758. .name = DRV_NAME,
  2759. .id_table = sky2_id_table,
  2760. .probe = sky2_probe,
  2761. .remove = __devexit_p(sky2_remove),
  2762. #ifdef CONFIG_PM
  2763. .suspend = sky2_suspend,
  2764. .resume = sky2_resume,
  2765. #endif
  2766. };
  2767. static int __init sky2_init_module(void)
  2768. {
  2769. return pci_register_driver(&sky2_driver);
  2770. }
  2771. static void __exit sky2_cleanup_module(void)
  2772. {
  2773. pci_unregister_driver(&sky2_driver);
  2774. }
  2775. module_init(sky2_init_module);
  2776. module_exit(sky2_cleanup_module);
  2777. MODULE_DESCRIPTION("Marvell Yukon 2 Gigabit Ethernet driver");
  2778. MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
  2779. MODULE_LICENSE("GPL");
  2780. MODULE_VERSION(DRV_VERSION);