sched.c 219 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/stop_machine.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <linux/slab.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include <asm/mutex.h>
  77. #include "sched_cpupri.h"
  78. #include "workqueue_sched.h"
  79. #define CREATE_TRACE_POINTS
  80. #include <trace/events/sched.h>
  81. /*
  82. * Convert user-nice values [ -20 ... 0 ... 19 ]
  83. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  84. * and back.
  85. */
  86. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  87. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  88. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  89. /*
  90. * 'User priority' is the nice value converted to something we
  91. * can work with better when scaling various scheduler parameters,
  92. * it's a [ 0 ... 39 ] range.
  93. */
  94. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  95. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  96. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  97. /*
  98. * Helpers for converting nanosecond timing to jiffy resolution
  99. */
  100. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  101. #define NICE_0_LOAD SCHED_LOAD_SCALE
  102. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  103. /*
  104. * These are the 'tuning knobs' of the scheduler:
  105. *
  106. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  107. * Timeslices get refilled after they expire.
  108. */
  109. #define DEF_TIMESLICE (100 * HZ / 1000)
  110. /*
  111. * single value that denotes runtime == period, ie unlimited time.
  112. */
  113. #define RUNTIME_INF ((u64)~0ULL)
  114. static inline int rt_policy(int policy)
  115. {
  116. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  117. return 1;
  118. return 0;
  119. }
  120. static inline int task_has_rt_policy(struct task_struct *p)
  121. {
  122. return rt_policy(p->policy);
  123. }
  124. /*
  125. * This is the priority-queue data structure of the RT scheduling class:
  126. */
  127. struct rt_prio_array {
  128. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  129. struct list_head queue[MAX_RT_PRIO];
  130. };
  131. struct rt_bandwidth {
  132. /* nests inside the rq lock: */
  133. raw_spinlock_t rt_runtime_lock;
  134. ktime_t rt_period;
  135. u64 rt_runtime;
  136. struct hrtimer rt_period_timer;
  137. };
  138. static struct rt_bandwidth def_rt_bandwidth;
  139. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  140. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  141. {
  142. struct rt_bandwidth *rt_b =
  143. container_of(timer, struct rt_bandwidth, rt_period_timer);
  144. ktime_t now;
  145. int overrun;
  146. int idle = 0;
  147. for (;;) {
  148. now = hrtimer_cb_get_time(timer);
  149. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  150. if (!overrun)
  151. break;
  152. idle = do_sched_rt_period_timer(rt_b, overrun);
  153. }
  154. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  155. }
  156. static
  157. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  158. {
  159. rt_b->rt_period = ns_to_ktime(period);
  160. rt_b->rt_runtime = runtime;
  161. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  162. hrtimer_init(&rt_b->rt_period_timer,
  163. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  164. rt_b->rt_period_timer.function = sched_rt_period_timer;
  165. }
  166. static inline int rt_bandwidth_enabled(void)
  167. {
  168. return sysctl_sched_rt_runtime >= 0;
  169. }
  170. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  171. {
  172. ktime_t now;
  173. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  174. return;
  175. if (hrtimer_active(&rt_b->rt_period_timer))
  176. return;
  177. raw_spin_lock(&rt_b->rt_runtime_lock);
  178. for (;;) {
  179. unsigned long delta;
  180. ktime_t soft, hard;
  181. if (hrtimer_active(&rt_b->rt_period_timer))
  182. break;
  183. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  184. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  185. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  186. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  187. delta = ktime_to_ns(ktime_sub(hard, soft));
  188. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  189. HRTIMER_MODE_ABS_PINNED, 0);
  190. }
  191. raw_spin_unlock(&rt_b->rt_runtime_lock);
  192. }
  193. #ifdef CONFIG_RT_GROUP_SCHED
  194. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  195. {
  196. hrtimer_cancel(&rt_b->rt_period_timer);
  197. }
  198. #endif
  199. /*
  200. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  201. * detach_destroy_domains and partition_sched_domains.
  202. */
  203. static DEFINE_MUTEX(sched_domains_mutex);
  204. #ifdef CONFIG_CGROUP_SCHED
  205. #include <linux/cgroup.h>
  206. struct cfs_rq;
  207. static LIST_HEAD(task_groups);
  208. /* task group related information */
  209. struct task_group {
  210. struct cgroup_subsys_state css;
  211. #ifdef CONFIG_FAIR_GROUP_SCHED
  212. /* schedulable entities of this group on each cpu */
  213. struct sched_entity **se;
  214. /* runqueue "owned" by this group on each cpu */
  215. struct cfs_rq **cfs_rq;
  216. unsigned long shares;
  217. atomic_t load_weight;
  218. #endif
  219. #ifdef CONFIG_RT_GROUP_SCHED
  220. struct sched_rt_entity **rt_se;
  221. struct rt_rq **rt_rq;
  222. struct rt_bandwidth rt_bandwidth;
  223. #endif
  224. struct rcu_head rcu;
  225. struct list_head list;
  226. struct task_group *parent;
  227. struct list_head siblings;
  228. struct list_head children;
  229. };
  230. #define root_task_group init_task_group
  231. /* task_group_lock serializes the addition/removal of task groups */
  232. static DEFINE_SPINLOCK(task_group_lock);
  233. #ifdef CONFIG_FAIR_GROUP_SCHED
  234. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  235. /*
  236. * A weight of 0 or 1 can cause arithmetics problems.
  237. * A weight of a cfs_rq is the sum of weights of which entities
  238. * are queued on this cfs_rq, so a weight of a entity should not be
  239. * too large, so as the shares value of a task group.
  240. * (The default weight is 1024 - so there's no practical
  241. * limitation from this.)
  242. */
  243. #define MIN_SHARES 2
  244. #define MAX_SHARES (1UL << 18)
  245. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  246. #endif
  247. /* Default task group.
  248. * Every task in system belong to this group at bootup.
  249. */
  250. struct task_group init_task_group;
  251. #endif /* CONFIG_CGROUP_SCHED */
  252. /* CFS-related fields in a runqueue */
  253. struct cfs_rq {
  254. struct load_weight load;
  255. unsigned long nr_running;
  256. u64 exec_clock;
  257. u64 min_vruntime;
  258. struct rb_root tasks_timeline;
  259. struct rb_node *rb_leftmost;
  260. struct list_head tasks;
  261. struct list_head *balance_iterator;
  262. /*
  263. * 'curr' points to currently running entity on this cfs_rq.
  264. * It is set to NULL otherwise (i.e when none are currently running).
  265. */
  266. struct sched_entity *curr, *next, *last;
  267. unsigned int nr_spread_over;
  268. #ifdef CONFIG_FAIR_GROUP_SCHED
  269. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  270. /*
  271. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  272. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  273. * (like users, containers etc.)
  274. *
  275. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  276. * list is used during load balance.
  277. */
  278. int on_list;
  279. struct list_head leaf_cfs_rq_list;
  280. struct task_group *tg; /* group that "owns" this runqueue */
  281. #ifdef CONFIG_SMP
  282. /*
  283. * the part of load.weight contributed by tasks
  284. */
  285. unsigned long task_weight;
  286. /*
  287. * h_load = weight * f(tg)
  288. *
  289. * Where f(tg) is the recursive weight fraction assigned to
  290. * this group.
  291. */
  292. unsigned long h_load;
  293. /*
  294. * Maintaining per-cpu shares distribution for group scheduling
  295. *
  296. * load_stamp is the last time we updated the load average
  297. * load_last is the last time we updated the load average and saw load
  298. * load_unacc_exec_time is currently unaccounted execution time
  299. */
  300. u64 load_avg;
  301. u64 load_period;
  302. u64 load_stamp, load_last, load_unacc_exec_time;
  303. unsigned long load_contribution;
  304. #endif
  305. #endif
  306. };
  307. /* Real-Time classes' related field in a runqueue: */
  308. struct rt_rq {
  309. struct rt_prio_array active;
  310. unsigned long rt_nr_running;
  311. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  312. struct {
  313. int curr; /* highest queued rt task prio */
  314. #ifdef CONFIG_SMP
  315. int next; /* next highest */
  316. #endif
  317. } highest_prio;
  318. #endif
  319. #ifdef CONFIG_SMP
  320. unsigned long rt_nr_migratory;
  321. unsigned long rt_nr_total;
  322. int overloaded;
  323. struct plist_head pushable_tasks;
  324. #endif
  325. int rt_throttled;
  326. u64 rt_time;
  327. u64 rt_runtime;
  328. /* Nests inside the rq lock: */
  329. raw_spinlock_t rt_runtime_lock;
  330. #ifdef CONFIG_RT_GROUP_SCHED
  331. unsigned long rt_nr_boosted;
  332. struct rq *rq;
  333. struct list_head leaf_rt_rq_list;
  334. struct task_group *tg;
  335. #endif
  336. };
  337. #ifdef CONFIG_SMP
  338. /*
  339. * We add the notion of a root-domain which will be used to define per-domain
  340. * variables. Each exclusive cpuset essentially defines an island domain by
  341. * fully partitioning the member cpus from any other cpuset. Whenever a new
  342. * exclusive cpuset is created, we also create and attach a new root-domain
  343. * object.
  344. *
  345. */
  346. struct root_domain {
  347. atomic_t refcount;
  348. cpumask_var_t span;
  349. cpumask_var_t online;
  350. /*
  351. * The "RT overload" flag: it gets set if a CPU has more than
  352. * one runnable RT task.
  353. */
  354. cpumask_var_t rto_mask;
  355. atomic_t rto_count;
  356. struct cpupri cpupri;
  357. };
  358. /*
  359. * By default the system creates a single root-domain with all cpus as
  360. * members (mimicking the global state we have today).
  361. */
  362. static struct root_domain def_root_domain;
  363. #endif /* CONFIG_SMP */
  364. /*
  365. * This is the main, per-CPU runqueue data structure.
  366. *
  367. * Locking rule: those places that want to lock multiple runqueues
  368. * (such as the load balancing or the thread migration code), lock
  369. * acquire operations must be ordered by ascending &runqueue.
  370. */
  371. struct rq {
  372. /* runqueue lock: */
  373. raw_spinlock_t lock;
  374. /*
  375. * nr_running and cpu_load should be in the same cacheline because
  376. * remote CPUs use both these fields when doing load calculation.
  377. */
  378. unsigned long nr_running;
  379. #define CPU_LOAD_IDX_MAX 5
  380. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  381. unsigned long last_load_update_tick;
  382. #ifdef CONFIG_NO_HZ
  383. u64 nohz_stamp;
  384. unsigned char nohz_balance_kick;
  385. #endif
  386. unsigned int skip_clock_update;
  387. /* capture load from *all* tasks on this cpu: */
  388. struct load_weight load;
  389. unsigned long nr_load_updates;
  390. u64 nr_switches;
  391. struct cfs_rq cfs;
  392. struct rt_rq rt;
  393. #ifdef CONFIG_FAIR_GROUP_SCHED
  394. /* list of leaf cfs_rq on this cpu: */
  395. struct list_head leaf_cfs_rq_list;
  396. #endif
  397. #ifdef CONFIG_RT_GROUP_SCHED
  398. struct list_head leaf_rt_rq_list;
  399. #endif
  400. /*
  401. * This is part of a global counter where only the total sum
  402. * over all CPUs matters. A task can increase this counter on
  403. * one CPU and if it got migrated afterwards it may decrease
  404. * it on another CPU. Always updated under the runqueue lock:
  405. */
  406. unsigned long nr_uninterruptible;
  407. struct task_struct *curr, *idle, *stop;
  408. unsigned long next_balance;
  409. struct mm_struct *prev_mm;
  410. u64 clock;
  411. u64 clock_task;
  412. atomic_t nr_iowait;
  413. #ifdef CONFIG_SMP
  414. struct root_domain *rd;
  415. struct sched_domain *sd;
  416. unsigned long cpu_power;
  417. unsigned char idle_at_tick;
  418. /* For active balancing */
  419. int post_schedule;
  420. int active_balance;
  421. int push_cpu;
  422. struct cpu_stop_work active_balance_work;
  423. /* cpu of this runqueue: */
  424. int cpu;
  425. int online;
  426. unsigned long avg_load_per_task;
  427. u64 rt_avg;
  428. u64 age_stamp;
  429. u64 idle_stamp;
  430. u64 avg_idle;
  431. #endif
  432. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  433. u64 prev_irq_time;
  434. #endif
  435. /* calc_load related fields */
  436. unsigned long calc_load_update;
  437. long calc_load_active;
  438. #ifdef CONFIG_SCHED_HRTICK
  439. #ifdef CONFIG_SMP
  440. int hrtick_csd_pending;
  441. struct call_single_data hrtick_csd;
  442. #endif
  443. struct hrtimer hrtick_timer;
  444. #endif
  445. #ifdef CONFIG_SCHEDSTATS
  446. /* latency stats */
  447. struct sched_info rq_sched_info;
  448. unsigned long long rq_cpu_time;
  449. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  450. /* sys_sched_yield() stats */
  451. unsigned int yld_count;
  452. /* schedule() stats */
  453. unsigned int sched_switch;
  454. unsigned int sched_count;
  455. unsigned int sched_goidle;
  456. /* try_to_wake_up() stats */
  457. unsigned int ttwu_count;
  458. unsigned int ttwu_local;
  459. /* BKL stats */
  460. unsigned int bkl_count;
  461. #endif
  462. };
  463. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  464. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  465. static inline int cpu_of(struct rq *rq)
  466. {
  467. #ifdef CONFIG_SMP
  468. return rq->cpu;
  469. #else
  470. return 0;
  471. #endif
  472. }
  473. #define rcu_dereference_check_sched_domain(p) \
  474. rcu_dereference_check((p), \
  475. rcu_read_lock_sched_held() || \
  476. lockdep_is_held(&sched_domains_mutex))
  477. /*
  478. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  479. * See detach_destroy_domains: synchronize_sched for details.
  480. *
  481. * The domain tree of any CPU may only be accessed from within
  482. * preempt-disabled sections.
  483. */
  484. #define for_each_domain(cpu, __sd) \
  485. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  486. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  487. #define this_rq() (&__get_cpu_var(runqueues))
  488. #define task_rq(p) cpu_rq(task_cpu(p))
  489. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  490. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  491. #ifdef CONFIG_CGROUP_SCHED
  492. /*
  493. * Return the group to which this tasks belongs.
  494. *
  495. * We use task_subsys_state_check() and extend the RCU verification
  496. * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
  497. * holds that lock for each task it moves into the cgroup. Therefore
  498. * by holding that lock, we pin the task to the current cgroup.
  499. */
  500. static inline struct task_group *task_group(struct task_struct *p)
  501. {
  502. struct cgroup_subsys_state *css;
  503. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  504. lockdep_is_held(&task_rq(p)->lock));
  505. return container_of(css, struct task_group, css);
  506. }
  507. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  508. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  509. {
  510. #ifdef CONFIG_FAIR_GROUP_SCHED
  511. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  512. p->se.parent = task_group(p)->se[cpu];
  513. #endif
  514. #ifdef CONFIG_RT_GROUP_SCHED
  515. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  516. p->rt.parent = task_group(p)->rt_se[cpu];
  517. #endif
  518. }
  519. #else /* CONFIG_CGROUP_SCHED */
  520. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  521. static inline struct task_group *task_group(struct task_struct *p)
  522. {
  523. return NULL;
  524. }
  525. #endif /* CONFIG_CGROUP_SCHED */
  526. static u64 irq_time_cpu(int cpu);
  527. static void sched_irq_time_avg_update(struct rq *rq, u64 irq_time);
  528. inline void update_rq_clock(struct rq *rq)
  529. {
  530. if (!rq->skip_clock_update) {
  531. int cpu = cpu_of(rq);
  532. u64 irq_time;
  533. rq->clock = sched_clock_cpu(cpu);
  534. irq_time = irq_time_cpu(cpu);
  535. if (rq->clock - irq_time > rq->clock_task)
  536. rq->clock_task = rq->clock - irq_time;
  537. sched_irq_time_avg_update(rq, irq_time);
  538. }
  539. }
  540. /*
  541. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  542. */
  543. #ifdef CONFIG_SCHED_DEBUG
  544. # define const_debug __read_mostly
  545. #else
  546. # define const_debug static const
  547. #endif
  548. /**
  549. * runqueue_is_locked
  550. * @cpu: the processor in question.
  551. *
  552. * Returns true if the current cpu runqueue is locked.
  553. * This interface allows printk to be called with the runqueue lock
  554. * held and know whether or not it is OK to wake up the klogd.
  555. */
  556. int runqueue_is_locked(int cpu)
  557. {
  558. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  559. }
  560. /*
  561. * Debugging: various feature bits
  562. */
  563. #define SCHED_FEAT(name, enabled) \
  564. __SCHED_FEAT_##name ,
  565. enum {
  566. #include "sched_features.h"
  567. };
  568. #undef SCHED_FEAT
  569. #define SCHED_FEAT(name, enabled) \
  570. (1UL << __SCHED_FEAT_##name) * enabled |
  571. const_debug unsigned int sysctl_sched_features =
  572. #include "sched_features.h"
  573. 0;
  574. #undef SCHED_FEAT
  575. #ifdef CONFIG_SCHED_DEBUG
  576. #define SCHED_FEAT(name, enabled) \
  577. #name ,
  578. static __read_mostly char *sched_feat_names[] = {
  579. #include "sched_features.h"
  580. NULL
  581. };
  582. #undef SCHED_FEAT
  583. static int sched_feat_show(struct seq_file *m, void *v)
  584. {
  585. int i;
  586. for (i = 0; sched_feat_names[i]; i++) {
  587. if (!(sysctl_sched_features & (1UL << i)))
  588. seq_puts(m, "NO_");
  589. seq_printf(m, "%s ", sched_feat_names[i]);
  590. }
  591. seq_puts(m, "\n");
  592. return 0;
  593. }
  594. static ssize_t
  595. sched_feat_write(struct file *filp, const char __user *ubuf,
  596. size_t cnt, loff_t *ppos)
  597. {
  598. char buf[64];
  599. char *cmp;
  600. int neg = 0;
  601. int i;
  602. if (cnt > 63)
  603. cnt = 63;
  604. if (copy_from_user(&buf, ubuf, cnt))
  605. return -EFAULT;
  606. buf[cnt] = 0;
  607. cmp = strstrip(buf);
  608. if (strncmp(buf, "NO_", 3) == 0) {
  609. neg = 1;
  610. cmp += 3;
  611. }
  612. for (i = 0; sched_feat_names[i]; i++) {
  613. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  614. if (neg)
  615. sysctl_sched_features &= ~(1UL << i);
  616. else
  617. sysctl_sched_features |= (1UL << i);
  618. break;
  619. }
  620. }
  621. if (!sched_feat_names[i])
  622. return -EINVAL;
  623. *ppos += cnt;
  624. return cnt;
  625. }
  626. static int sched_feat_open(struct inode *inode, struct file *filp)
  627. {
  628. return single_open(filp, sched_feat_show, NULL);
  629. }
  630. static const struct file_operations sched_feat_fops = {
  631. .open = sched_feat_open,
  632. .write = sched_feat_write,
  633. .read = seq_read,
  634. .llseek = seq_lseek,
  635. .release = single_release,
  636. };
  637. static __init int sched_init_debug(void)
  638. {
  639. debugfs_create_file("sched_features", 0644, NULL, NULL,
  640. &sched_feat_fops);
  641. return 0;
  642. }
  643. late_initcall(sched_init_debug);
  644. #endif
  645. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  646. /*
  647. * Number of tasks to iterate in a single balance run.
  648. * Limited because this is done with IRQs disabled.
  649. */
  650. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  651. /*
  652. * period over which we average the RT time consumption, measured
  653. * in ms.
  654. *
  655. * default: 1s
  656. */
  657. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  658. /*
  659. * period over which we measure -rt task cpu usage in us.
  660. * default: 1s
  661. */
  662. unsigned int sysctl_sched_rt_period = 1000000;
  663. static __read_mostly int scheduler_running;
  664. /*
  665. * part of the period that we allow rt tasks to run in us.
  666. * default: 0.95s
  667. */
  668. int sysctl_sched_rt_runtime = 950000;
  669. static inline u64 global_rt_period(void)
  670. {
  671. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  672. }
  673. static inline u64 global_rt_runtime(void)
  674. {
  675. if (sysctl_sched_rt_runtime < 0)
  676. return RUNTIME_INF;
  677. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  678. }
  679. #ifndef prepare_arch_switch
  680. # define prepare_arch_switch(next) do { } while (0)
  681. #endif
  682. #ifndef finish_arch_switch
  683. # define finish_arch_switch(prev) do { } while (0)
  684. #endif
  685. static inline int task_current(struct rq *rq, struct task_struct *p)
  686. {
  687. return rq->curr == p;
  688. }
  689. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  690. static inline int task_running(struct rq *rq, struct task_struct *p)
  691. {
  692. return task_current(rq, p);
  693. }
  694. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  695. {
  696. }
  697. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  698. {
  699. #ifdef CONFIG_DEBUG_SPINLOCK
  700. /* this is a valid case when another task releases the spinlock */
  701. rq->lock.owner = current;
  702. #endif
  703. /*
  704. * If we are tracking spinlock dependencies then we have to
  705. * fix up the runqueue lock - which gets 'carried over' from
  706. * prev into current:
  707. */
  708. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  709. raw_spin_unlock_irq(&rq->lock);
  710. }
  711. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  712. static inline int task_running(struct rq *rq, struct task_struct *p)
  713. {
  714. #ifdef CONFIG_SMP
  715. return p->oncpu;
  716. #else
  717. return task_current(rq, p);
  718. #endif
  719. }
  720. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  721. {
  722. #ifdef CONFIG_SMP
  723. /*
  724. * We can optimise this out completely for !SMP, because the
  725. * SMP rebalancing from interrupt is the only thing that cares
  726. * here.
  727. */
  728. next->oncpu = 1;
  729. #endif
  730. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  731. raw_spin_unlock_irq(&rq->lock);
  732. #else
  733. raw_spin_unlock(&rq->lock);
  734. #endif
  735. }
  736. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  737. {
  738. #ifdef CONFIG_SMP
  739. /*
  740. * After ->oncpu is cleared, the task can be moved to a different CPU.
  741. * We must ensure this doesn't happen until the switch is completely
  742. * finished.
  743. */
  744. smp_wmb();
  745. prev->oncpu = 0;
  746. #endif
  747. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  748. local_irq_enable();
  749. #endif
  750. }
  751. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  752. /*
  753. * Check whether the task is waking, we use this to synchronize ->cpus_allowed
  754. * against ttwu().
  755. */
  756. static inline int task_is_waking(struct task_struct *p)
  757. {
  758. return unlikely(p->state == TASK_WAKING);
  759. }
  760. /*
  761. * __task_rq_lock - lock the runqueue a given task resides on.
  762. * Must be called interrupts disabled.
  763. */
  764. static inline struct rq *__task_rq_lock(struct task_struct *p)
  765. __acquires(rq->lock)
  766. {
  767. struct rq *rq;
  768. for (;;) {
  769. rq = task_rq(p);
  770. raw_spin_lock(&rq->lock);
  771. if (likely(rq == task_rq(p)))
  772. return rq;
  773. raw_spin_unlock(&rq->lock);
  774. }
  775. }
  776. /*
  777. * task_rq_lock - lock the runqueue a given task resides on and disable
  778. * interrupts. Note the ordering: we can safely lookup the task_rq without
  779. * explicitly disabling preemption.
  780. */
  781. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  782. __acquires(rq->lock)
  783. {
  784. struct rq *rq;
  785. for (;;) {
  786. local_irq_save(*flags);
  787. rq = task_rq(p);
  788. raw_spin_lock(&rq->lock);
  789. if (likely(rq == task_rq(p)))
  790. return rq;
  791. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  792. }
  793. }
  794. static void __task_rq_unlock(struct rq *rq)
  795. __releases(rq->lock)
  796. {
  797. raw_spin_unlock(&rq->lock);
  798. }
  799. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  800. __releases(rq->lock)
  801. {
  802. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  803. }
  804. /*
  805. * this_rq_lock - lock this runqueue and disable interrupts.
  806. */
  807. static struct rq *this_rq_lock(void)
  808. __acquires(rq->lock)
  809. {
  810. struct rq *rq;
  811. local_irq_disable();
  812. rq = this_rq();
  813. raw_spin_lock(&rq->lock);
  814. return rq;
  815. }
  816. #ifdef CONFIG_SCHED_HRTICK
  817. /*
  818. * Use HR-timers to deliver accurate preemption points.
  819. *
  820. * Its all a bit involved since we cannot program an hrt while holding the
  821. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  822. * reschedule event.
  823. *
  824. * When we get rescheduled we reprogram the hrtick_timer outside of the
  825. * rq->lock.
  826. */
  827. /*
  828. * Use hrtick when:
  829. * - enabled by features
  830. * - hrtimer is actually high res
  831. */
  832. static inline int hrtick_enabled(struct rq *rq)
  833. {
  834. if (!sched_feat(HRTICK))
  835. return 0;
  836. if (!cpu_active(cpu_of(rq)))
  837. return 0;
  838. return hrtimer_is_hres_active(&rq->hrtick_timer);
  839. }
  840. static void hrtick_clear(struct rq *rq)
  841. {
  842. if (hrtimer_active(&rq->hrtick_timer))
  843. hrtimer_cancel(&rq->hrtick_timer);
  844. }
  845. /*
  846. * High-resolution timer tick.
  847. * Runs from hardirq context with interrupts disabled.
  848. */
  849. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  850. {
  851. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  852. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  853. raw_spin_lock(&rq->lock);
  854. update_rq_clock(rq);
  855. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  856. raw_spin_unlock(&rq->lock);
  857. return HRTIMER_NORESTART;
  858. }
  859. #ifdef CONFIG_SMP
  860. /*
  861. * called from hardirq (IPI) context
  862. */
  863. static void __hrtick_start(void *arg)
  864. {
  865. struct rq *rq = arg;
  866. raw_spin_lock(&rq->lock);
  867. hrtimer_restart(&rq->hrtick_timer);
  868. rq->hrtick_csd_pending = 0;
  869. raw_spin_unlock(&rq->lock);
  870. }
  871. /*
  872. * Called to set the hrtick timer state.
  873. *
  874. * called with rq->lock held and irqs disabled
  875. */
  876. static void hrtick_start(struct rq *rq, u64 delay)
  877. {
  878. struct hrtimer *timer = &rq->hrtick_timer;
  879. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  880. hrtimer_set_expires(timer, time);
  881. if (rq == this_rq()) {
  882. hrtimer_restart(timer);
  883. } else if (!rq->hrtick_csd_pending) {
  884. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  885. rq->hrtick_csd_pending = 1;
  886. }
  887. }
  888. static int
  889. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  890. {
  891. int cpu = (int)(long)hcpu;
  892. switch (action) {
  893. case CPU_UP_CANCELED:
  894. case CPU_UP_CANCELED_FROZEN:
  895. case CPU_DOWN_PREPARE:
  896. case CPU_DOWN_PREPARE_FROZEN:
  897. case CPU_DEAD:
  898. case CPU_DEAD_FROZEN:
  899. hrtick_clear(cpu_rq(cpu));
  900. return NOTIFY_OK;
  901. }
  902. return NOTIFY_DONE;
  903. }
  904. static __init void init_hrtick(void)
  905. {
  906. hotcpu_notifier(hotplug_hrtick, 0);
  907. }
  908. #else
  909. /*
  910. * Called to set the hrtick timer state.
  911. *
  912. * called with rq->lock held and irqs disabled
  913. */
  914. static void hrtick_start(struct rq *rq, u64 delay)
  915. {
  916. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  917. HRTIMER_MODE_REL_PINNED, 0);
  918. }
  919. static inline void init_hrtick(void)
  920. {
  921. }
  922. #endif /* CONFIG_SMP */
  923. static void init_rq_hrtick(struct rq *rq)
  924. {
  925. #ifdef CONFIG_SMP
  926. rq->hrtick_csd_pending = 0;
  927. rq->hrtick_csd.flags = 0;
  928. rq->hrtick_csd.func = __hrtick_start;
  929. rq->hrtick_csd.info = rq;
  930. #endif
  931. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  932. rq->hrtick_timer.function = hrtick;
  933. }
  934. #else /* CONFIG_SCHED_HRTICK */
  935. static inline void hrtick_clear(struct rq *rq)
  936. {
  937. }
  938. static inline void init_rq_hrtick(struct rq *rq)
  939. {
  940. }
  941. static inline void init_hrtick(void)
  942. {
  943. }
  944. #endif /* CONFIG_SCHED_HRTICK */
  945. /*
  946. * resched_task - mark a task 'to be rescheduled now'.
  947. *
  948. * On UP this means the setting of the need_resched flag, on SMP it
  949. * might also involve a cross-CPU call to trigger the scheduler on
  950. * the target CPU.
  951. */
  952. #ifdef CONFIG_SMP
  953. #ifndef tsk_is_polling
  954. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  955. #endif
  956. static void resched_task(struct task_struct *p)
  957. {
  958. int cpu;
  959. assert_raw_spin_locked(&task_rq(p)->lock);
  960. if (test_tsk_need_resched(p))
  961. return;
  962. set_tsk_need_resched(p);
  963. cpu = task_cpu(p);
  964. if (cpu == smp_processor_id())
  965. return;
  966. /* NEED_RESCHED must be visible before we test polling */
  967. smp_mb();
  968. if (!tsk_is_polling(p))
  969. smp_send_reschedule(cpu);
  970. }
  971. static void resched_cpu(int cpu)
  972. {
  973. struct rq *rq = cpu_rq(cpu);
  974. unsigned long flags;
  975. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  976. return;
  977. resched_task(cpu_curr(cpu));
  978. raw_spin_unlock_irqrestore(&rq->lock, flags);
  979. }
  980. #ifdef CONFIG_NO_HZ
  981. /*
  982. * In the semi idle case, use the nearest busy cpu for migrating timers
  983. * from an idle cpu. This is good for power-savings.
  984. *
  985. * We don't do similar optimization for completely idle system, as
  986. * selecting an idle cpu will add more delays to the timers than intended
  987. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  988. */
  989. int get_nohz_timer_target(void)
  990. {
  991. int cpu = smp_processor_id();
  992. int i;
  993. struct sched_domain *sd;
  994. for_each_domain(cpu, sd) {
  995. for_each_cpu(i, sched_domain_span(sd))
  996. if (!idle_cpu(i))
  997. return i;
  998. }
  999. return cpu;
  1000. }
  1001. /*
  1002. * When add_timer_on() enqueues a timer into the timer wheel of an
  1003. * idle CPU then this timer might expire before the next timer event
  1004. * which is scheduled to wake up that CPU. In case of a completely
  1005. * idle system the next event might even be infinite time into the
  1006. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1007. * leaves the inner idle loop so the newly added timer is taken into
  1008. * account when the CPU goes back to idle and evaluates the timer
  1009. * wheel for the next timer event.
  1010. */
  1011. void wake_up_idle_cpu(int cpu)
  1012. {
  1013. struct rq *rq = cpu_rq(cpu);
  1014. if (cpu == smp_processor_id())
  1015. return;
  1016. /*
  1017. * This is safe, as this function is called with the timer
  1018. * wheel base lock of (cpu) held. When the CPU is on the way
  1019. * to idle and has not yet set rq->curr to idle then it will
  1020. * be serialized on the timer wheel base lock and take the new
  1021. * timer into account automatically.
  1022. */
  1023. if (rq->curr != rq->idle)
  1024. return;
  1025. /*
  1026. * We can set TIF_RESCHED on the idle task of the other CPU
  1027. * lockless. The worst case is that the other CPU runs the
  1028. * idle task through an additional NOOP schedule()
  1029. */
  1030. set_tsk_need_resched(rq->idle);
  1031. /* NEED_RESCHED must be visible before we test polling */
  1032. smp_mb();
  1033. if (!tsk_is_polling(rq->idle))
  1034. smp_send_reschedule(cpu);
  1035. }
  1036. #endif /* CONFIG_NO_HZ */
  1037. static u64 sched_avg_period(void)
  1038. {
  1039. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1040. }
  1041. static void sched_avg_update(struct rq *rq)
  1042. {
  1043. s64 period = sched_avg_period();
  1044. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1045. /*
  1046. * Inline assembly required to prevent the compiler
  1047. * optimising this loop into a divmod call.
  1048. * See __iter_div_u64_rem() for another example of this.
  1049. */
  1050. asm("" : "+rm" (rq->age_stamp));
  1051. rq->age_stamp += period;
  1052. rq->rt_avg /= 2;
  1053. }
  1054. }
  1055. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1056. {
  1057. rq->rt_avg += rt_delta;
  1058. sched_avg_update(rq);
  1059. }
  1060. #else /* !CONFIG_SMP */
  1061. static void resched_task(struct task_struct *p)
  1062. {
  1063. assert_raw_spin_locked(&task_rq(p)->lock);
  1064. set_tsk_need_resched(p);
  1065. }
  1066. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1067. {
  1068. }
  1069. static void sched_avg_update(struct rq *rq)
  1070. {
  1071. }
  1072. #endif /* CONFIG_SMP */
  1073. #if BITS_PER_LONG == 32
  1074. # define WMULT_CONST (~0UL)
  1075. #else
  1076. # define WMULT_CONST (1UL << 32)
  1077. #endif
  1078. #define WMULT_SHIFT 32
  1079. /*
  1080. * Shift right and round:
  1081. */
  1082. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1083. /*
  1084. * delta *= weight / lw
  1085. */
  1086. static unsigned long
  1087. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1088. struct load_weight *lw)
  1089. {
  1090. u64 tmp;
  1091. if (!lw->inv_weight) {
  1092. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1093. lw->inv_weight = 1;
  1094. else
  1095. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1096. / (lw->weight+1);
  1097. }
  1098. tmp = (u64)delta_exec * weight;
  1099. /*
  1100. * Check whether we'd overflow the 64-bit multiplication:
  1101. */
  1102. if (unlikely(tmp > WMULT_CONST))
  1103. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1104. WMULT_SHIFT/2);
  1105. else
  1106. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1107. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1108. }
  1109. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1110. {
  1111. lw->weight += inc;
  1112. lw->inv_weight = 0;
  1113. }
  1114. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1115. {
  1116. lw->weight -= dec;
  1117. lw->inv_weight = 0;
  1118. }
  1119. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  1120. {
  1121. lw->weight = w;
  1122. lw->inv_weight = 0;
  1123. }
  1124. /*
  1125. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1126. * of tasks with abnormal "nice" values across CPUs the contribution that
  1127. * each task makes to its run queue's load is weighted according to its
  1128. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1129. * scaled version of the new time slice allocation that they receive on time
  1130. * slice expiry etc.
  1131. */
  1132. #define WEIGHT_IDLEPRIO 3
  1133. #define WMULT_IDLEPRIO 1431655765
  1134. /*
  1135. * Nice levels are multiplicative, with a gentle 10% change for every
  1136. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1137. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1138. * that remained on nice 0.
  1139. *
  1140. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1141. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1142. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1143. * If a task goes up by ~10% and another task goes down by ~10% then
  1144. * the relative distance between them is ~25%.)
  1145. */
  1146. static const int prio_to_weight[40] = {
  1147. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1148. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1149. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1150. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1151. /* 0 */ 1024, 820, 655, 526, 423,
  1152. /* 5 */ 335, 272, 215, 172, 137,
  1153. /* 10 */ 110, 87, 70, 56, 45,
  1154. /* 15 */ 36, 29, 23, 18, 15,
  1155. };
  1156. /*
  1157. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1158. *
  1159. * In cases where the weight does not change often, we can use the
  1160. * precalculated inverse to speed up arithmetics by turning divisions
  1161. * into multiplications:
  1162. */
  1163. static const u32 prio_to_wmult[40] = {
  1164. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1165. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1166. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1167. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1168. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1169. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1170. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1171. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1172. };
  1173. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1174. enum cpuacct_stat_index {
  1175. CPUACCT_STAT_USER, /* ... user mode */
  1176. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1177. CPUACCT_STAT_NSTATS,
  1178. };
  1179. #ifdef CONFIG_CGROUP_CPUACCT
  1180. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1181. static void cpuacct_update_stats(struct task_struct *tsk,
  1182. enum cpuacct_stat_index idx, cputime_t val);
  1183. #else
  1184. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1185. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1186. enum cpuacct_stat_index idx, cputime_t val) {}
  1187. #endif
  1188. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1189. {
  1190. update_load_add(&rq->load, load);
  1191. }
  1192. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1193. {
  1194. update_load_sub(&rq->load, load);
  1195. }
  1196. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1197. typedef int (*tg_visitor)(struct task_group *, void *);
  1198. /*
  1199. * Iterate the full tree, calling @down when first entering a node and @up when
  1200. * leaving it for the final time.
  1201. */
  1202. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1203. {
  1204. struct task_group *parent, *child;
  1205. int ret;
  1206. rcu_read_lock();
  1207. parent = &root_task_group;
  1208. down:
  1209. ret = (*down)(parent, data);
  1210. if (ret)
  1211. goto out_unlock;
  1212. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1213. parent = child;
  1214. goto down;
  1215. up:
  1216. continue;
  1217. }
  1218. ret = (*up)(parent, data);
  1219. if (ret)
  1220. goto out_unlock;
  1221. child = parent;
  1222. parent = parent->parent;
  1223. if (parent)
  1224. goto up;
  1225. out_unlock:
  1226. rcu_read_unlock();
  1227. return ret;
  1228. }
  1229. static int tg_nop(struct task_group *tg, void *data)
  1230. {
  1231. return 0;
  1232. }
  1233. #endif
  1234. #ifdef CONFIG_SMP
  1235. /* Used instead of source_load when we know the type == 0 */
  1236. static unsigned long weighted_cpuload(const int cpu)
  1237. {
  1238. return cpu_rq(cpu)->load.weight;
  1239. }
  1240. /*
  1241. * Return a low guess at the load of a migration-source cpu weighted
  1242. * according to the scheduling class and "nice" value.
  1243. *
  1244. * We want to under-estimate the load of migration sources, to
  1245. * balance conservatively.
  1246. */
  1247. static unsigned long source_load(int cpu, int type)
  1248. {
  1249. struct rq *rq = cpu_rq(cpu);
  1250. unsigned long total = weighted_cpuload(cpu);
  1251. if (type == 0 || !sched_feat(LB_BIAS))
  1252. return total;
  1253. return min(rq->cpu_load[type-1], total);
  1254. }
  1255. /*
  1256. * Return a high guess at the load of a migration-target cpu weighted
  1257. * according to the scheduling class and "nice" value.
  1258. */
  1259. static unsigned long target_load(int cpu, int type)
  1260. {
  1261. struct rq *rq = cpu_rq(cpu);
  1262. unsigned long total = weighted_cpuload(cpu);
  1263. if (type == 0 || !sched_feat(LB_BIAS))
  1264. return total;
  1265. return max(rq->cpu_load[type-1], total);
  1266. }
  1267. static unsigned long power_of(int cpu)
  1268. {
  1269. return cpu_rq(cpu)->cpu_power;
  1270. }
  1271. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1272. static unsigned long cpu_avg_load_per_task(int cpu)
  1273. {
  1274. struct rq *rq = cpu_rq(cpu);
  1275. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1276. if (nr_running)
  1277. rq->avg_load_per_task = rq->load.weight / nr_running;
  1278. else
  1279. rq->avg_load_per_task = 0;
  1280. return rq->avg_load_per_task;
  1281. }
  1282. #ifdef CONFIG_FAIR_GROUP_SCHED
  1283. /*
  1284. * Compute the cpu's hierarchical load factor for each task group.
  1285. * This needs to be done in a top-down fashion because the load of a child
  1286. * group is a fraction of its parents load.
  1287. */
  1288. static int tg_load_down(struct task_group *tg, void *data)
  1289. {
  1290. unsigned long load;
  1291. long cpu = (long)data;
  1292. if (!tg->parent) {
  1293. load = cpu_rq(cpu)->load.weight;
  1294. } else {
  1295. load = tg->parent->cfs_rq[cpu]->h_load;
  1296. load *= tg->se[cpu]->load.weight;
  1297. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1298. }
  1299. tg->cfs_rq[cpu]->h_load = load;
  1300. return 0;
  1301. }
  1302. static void update_h_load(long cpu)
  1303. {
  1304. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1305. }
  1306. #endif
  1307. #ifdef CONFIG_PREEMPT
  1308. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1309. /*
  1310. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1311. * way at the expense of forcing extra atomic operations in all
  1312. * invocations. This assures that the double_lock is acquired using the
  1313. * same underlying policy as the spinlock_t on this architecture, which
  1314. * reduces latency compared to the unfair variant below. However, it
  1315. * also adds more overhead and therefore may reduce throughput.
  1316. */
  1317. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1318. __releases(this_rq->lock)
  1319. __acquires(busiest->lock)
  1320. __acquires(this_rq->lock)
  1321. {
  1322. raw_spin_unlock(&this_rq->lock);
  1323. double_rq_lock(this_rq, busiest);
  1324. return 1;
  1325. }
  1326. #else
  1327. /*
  1328. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1329. * latency by eliminating extra atomic operations when the locks are
  1330. * already in proper order on entry. This favors lower cpu-ids and will
  1331. * grant the double lock to lower cpus over higher ids under contention,
  1332. * regardless of entry order into the function.
  1333. */
  1334. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1335. __releases(this_rq->lock)
  1336. __acquires(busiest->lock)
  1337. __acquires(this_rq->lock)
  1338. {
  1339. int ret = 0;
  1340. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1341. if (busiest < this_rq) {
  1342. raw_spin_unlock(&this_rq->lock);
  1343. raw_spin_lock(&busiest->lock);
  1344. raw_spin_lock_nested(&this_rq->lock,
  1345. SINGLE_DEPTH_NESTING);
  1346. ret = 1;
  1347. } else
  1348. raw_spin_lock_nested(&busiest->lock,
  1349. SINGLE_DEPTH_NESTING);
  1350. }
  1351. return ret;
  1352. }
  1353. #endif /* CONFIG_PREEMPT */
  1354. /*
  1355. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1356. */
  1357. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1358. {
  1359. if (unlikely(!irqs_disabled())) {
  1360. /* printk() doesn't work good under rq->lock */
  1361. raw_spin_unlock(&this_rq->lock);
  1362. BUG_ON(1);
  1363. }
  1364. return _double_lock_balance(this_rq, busiest);
  1365. }
  1366. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1367. __releases(busiest->lock)
  1368. {
  1369. raw_spin_unlock(&busiest->lock);
  1370. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1371. }
  1372. /*
  1373. * double_rq_lock - safely lock two runqueues
  1374. *
  1375. * Note this does not disable interrupts like task_rq_lock,
  1376. * you need to do so manually before calling.
  1377. */
  1378. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1379. __acquires(rq1->lock)
  1380. __acquires(rq2->lock)
  1381. {
  1382. BUG_ON(!irqs_disabled());
  1383. if (rq1 == rq2) {
  1384. raw_spin_lock(&rq1->lock);
  1385. __acquire(rq2->lock); /* Fake it out ;) */
  1386. } else {
  1387. if (rq1 < rq2) {
  1388. raw_spin_lock(&rq1->lock);
  1389. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1390. } else {
  1391. raw_spin_lock(&rq2->lock);
  1392. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1393. }
  1394. }
  1395. }
  1396. /*
  1397. * double_rq_unlock - safely unlock two runqueues
  1398. *
  1399. * Note this does not restore interrupts like task_rq_unlock,
  1400. * you need to do so manually after calling.
  1401. */
  1402. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1403. __releases(rq1->lock)
  1404. __releases(rq2->lock)
  1405. {
  1406. raw_spin_unlock(&rq1->lock);
  1407. if (rq1 != rq2)
  1408. raw_spin_unlock(&rq2->lock);
  1409. else
  1410. __release(rq2->lock);
  1411. }
  1412. #endif
  1413. static void calc_load_account_idle(struct rq *this_rq);
  1414. static void update_sysctl(void);
  1415. static int get_update_sysctl_factor(void);
  1416. static void update_cpu_load(struct rq *this_rq);
  1417. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1418. {
  1419. set_task_rq(p, cpu);
  1420. #ifdef CONFIG_SMP
  1421. /*
  1422. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1423. * successfuly executed on another CPU. We must ensure that updates of
  1424. * per-task data have been completed by this moment.
  1425. */
  1426. smp_wmb();
  1427. task_thread_info(p)->cpu = cpu;
  1428. #endif
  1429. }
  1430. static const struct sched_class rt_sched_class;
  1431. #define sched_class_highest (&stop_sched_class)
  1432. #define for_each_class(class) \
  1433. for (class = sched_class_highest; class; class = class->next)
  1434. #include "sched_stats.h"
  1435. static void inc_nr_running(struct rq *rq)
  1436. {
  1437. rq->nr_running++;
  1438. }
  1439. static void dec_nr_running(struct rq *rq)
  1440. {
  1441. rq->nr_running--;
  1442. }
  1443. static void set_load_weight(struct task_struct *p)
  1444. {
  1445. /*
  1446. * SCHED_IDLE tasks get minimal weight:
  1447. */
  1448. if (p->policy == SCHED_IDLE) {
  1449. p->se.load.weight = WEIGHT_IDLEPRIO;
  1450. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1451. return;
  1452. }
  1453. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1454. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1455. }
  1456. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1457. {
  1458. update_rq_clock(rq);
  1459. sched_info_queued(p);
  1460. p->sched_class->enqueue_task(rq, p, flags);
  1461. p->se.on_rq = 1;
  1462. }
  1463. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1464. {
  1465. update_rq_clock(rq);
  1466. sched_info_dequeued(p);
  1467. p->sched_class->dequeue_task(rq, p, flags);
  1468. p->se.on_rq = 0;
  1469. }
  1470. /*
  1471. * activate_task - move a task to the runqueue.
  1472. */
  1473. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1474. {
  1475. if (task_contributes_to_load(p))
  1476. rq->nr_uninterruptible--;
  1477. enqueue_task(rq, p, flags);
  1478. inc_nr_running(rq);
  1479. }
  1480. /*
  1481. * deactivate_task - remove a task from the runqueue.
  1482. */
  1483. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1484. {
  1485. if (task_contributes_to_load(p))
  1486. rq->nr_uninterruptible++;
  1487. dequeue_task(rq, p, flags);
  1488. dec_nr_running(rq);
  1489. }
  1490. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1491. /*
  1492. * There are no locks covering percpu hardirq/softirq time.
  1493. * They are only modified in account_system_vtime, on corresponding CPU
  1494. * with interrupts disabled. So, writes are safe.
  1495. * They are read and saved off onto struct rq in update_rq_clock().
  1496. * This may result in other CPU reading this CPU's irq time and can
  1497. * race with irq/account_system_vtime on this CPU. We would either get old
  1498. * or new value (or semi updated value on 32 bit) with a side effect of
  1499. * accounting a slice of irq time to wrong task when irq is in progress
  1500. * while we read rq->clock. That is a worthy compromise in place of having
  1501. * locks on each irq in account_system_time.
  1502. */
  1503. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1504. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1505. static DEFINE_PER_CPU(u64, irq_start_time);
  1506. static int sched_clock_irqtime;
  1507. void enable_sched_clock_irqtime(void)
  1508. {
  1509. sched_clock_irqtime = 1;
  1510. }
  1511. void disable_sched_clock_irqtime(void)
  1512. {
  1513. sched_clock_irqtime = 0;
  1514. }
  1515. static u64 irq_time_cpu(int cpu)
  1516. {
  1517. if (!sched_clock_irqtime)
  1518. return 0;
  1519. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1520. }
  1521. void account_system_vtime(struct task_struct *curr)
  1522. {
  1523. unsigned long flags;
  1524. int cpu;
  1525. u64 now, delta;
  1526. if (!sched_clock_irqtime)
  1527. return;
  1528. local_irq_save(flags);
  1529. cpu = smp_processor_id();
  1530. now = sched_clock_cpu(cpu);
  1531. delta = now - per_cpu(irq_start_time, cpu);
  1532. per_cpu(irq_start_time, cpu) = now;
  1533. /*
  1534. * We do not account for softirq time from ksoftirqd here.
  1535. * We want to continue accounting softirq time to ksoftirqd thread
  1536. * in that case, so as not to confuse scheduler with a special task
  1537. * that do not consume any time, but still wants to run.
  1538. */
  1539. if (hardirq_count())
  1540. per_cpu(cpu_hardirq_time, cpu) += delta;
  1541. else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
  1542. per_cpu(cpu_softirq_time, cpu) += delta;
  1543. local_irq_restore(flags);
  1544. }
  1545. EXPORT_SYMBOL_GPL(account_system_vtime);
  1546. static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time)
  1547. {
  1548. if (sched_clock_irqtime && sched_feat(NONIRQ_POWER)) {
  1549. u64 delta_irq = curr_irq_time - rq->prev_irq_time;
  1550. rq->prev_irq_time = curr_irq_time;
  1551. sched_rt_avg_update(rq, delta_irq);
  1552. }
  1553. }
  1554. #else
  1555. static u64 irq_time_cpu(int cpu)
  1556. {
  1557. return 0;
  1558. }
  1559. static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) { }
  1560. #endif
  1561. #include "sched_idletask.c"
  1562. #include "sched_fair.c"
  1563. #include "sched_rt.c"
  1564. #include "sched_stoptask.c"
  1565. #ifdef CONFIG_SCHED_DEBUG
  1566. # include "sched_debug.c"
  1567. #endif
  1568. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1569. {
  1570. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1571. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1572. if (stop) {
  1573. /*
  1574. * Make it appear like a SCHED_FIFO task, its something
  1575. * userspace knows about and won't get confused about.
  1576. *
  1577. * Also, it will make PI more or less work without too
  1578. * much confusion -- but then, stop work should not
  1579. * rely on PI working anyway.
  1580. */
  1581. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1582. stop->sched_class = &stop_sched_class;
  1583. }
  1584. cpu_rq(cpu)->stop = stop;
  1585. if (old_stop) {
  1586. /*
  1587. * Reset it back to a normal scheduling class so that
  1588. * it can die in pieces.
  1589. */
  1590. old_stop->sched_class = &rt_sched_class;
  1591. }
  1592. }
  1593. /*
  1594. * __normal_prio - return the priority that is based on the static prio
  1595. */
  1596. static inline int __normal_prio(struct task_struct *p)
  1597. {
  1598. return p->static_prio;
  1599. }
  1600. /*
  1601. * Calculate the expected normal priority: i.e. priority
  1602. * without taking RT-inheritance into account. Might be
  1603. * boosted by interactivity modifiers. Changes upon fork,
  1604. * setprio syscalls, and whenever the interactivity
  1605. * estimator recalculates.
  1606. */
  1607. static inline int normal_prio(struct task_struct *p)
  1608. {
  1609. int prio;
  1610. if (task_has_rt_policy(p))
  1611. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1612. else
  1613. prio = __normal_prio(p);
  1614. return prio;
  1615. }
  1616. /*
  1617. * Calculate the current priority, i.e. the priority
  1618. * taken into account by the scheduler. This value might
  1619. * be boosted by RT tasks, or might be boosted by
  1620. * interactivity modifiers. Will be RT if the task got
  1621. * RT-boosted. If not then it returns p->normal_prio.
  1622. */
  1623. static int effective_prio(struct task_struct *p)
  1624. {
  1625. p->normal_prio = normal_prio(p);
  1626. /*
  1627. * If we are RT tasks or we were boosted to RT priority,
  1628. * keep the priority unchanged. Otherwise, update priority
  1629. * to the normal priority:
  1630. */
  1631. if (!rt_prio(p->prio))
  1632. return p->normal_prio;
  1633. return p->prio;
  1634. }
  1635. /**
  1636. * task_curr - is this task currently executing on a CPU?
  1637. * @p: the task in question.
  1638. */
  1639. inline int task_curr(const struct task_struct *p)
  1640. {
  1641. return cpu_curr(task_cpu(p)) == p;
  1642. }
  1643. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1644. const struct sched_class *prev_class,
  1645. int oldprio, int running)
  1646. {
  1647. if (prev_class != p->sched_class) {
  1648. if (prev_class->switched_from)
  1649. prev_class->switched_from(rq, p, running);
  1650. p->sched_class->switched_to(rq, p, running);
  1651. } else
  1652. p->sched_class->prio_changed(rq, p, oldprio, running);
  1653. }
  1654. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  1655. {
  1656. const struct sched_class *class;
  1657. if (p->sched_class == rq->curr->sched_class) {
  1658. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  1659. } else {
  1660. for_each_class(class) {
  1661. if (class == rq->curr->sched_class)
  1662. break;
  1663. if (class == p->sched_class) {
  1664. resched_task(rq->curr);
  1665. break;
  1666. }
  1667. }
  1668. }
  1669. /*
  1670. * A queue event has occurred, and we're going to schedule. In
  1671. * this case, we can save a useless back to back clock update.
  1672. */
  1673. if (test_tsk_need_resched(rq->curr))
  1674. rq->skip_clock_update = 1;
  1675. }
  1676. #ifdef CONFIG_SMP
  1677. /*
  1678. * Is this task likely cache-hot:
  1679. */
  1680. static int
  1681. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1682. {
  1683. s64 delta;
  1684. if (p->sched_class != &fair_sched_class)
  1685. return 0;
  1686. if (unlikely(p->policy == SCHED_IDLE))
  1687. return 0;
  1688. /*
  1689. * Buddy candidates are cache hot:
  1690. */
  1691. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1692. (&p->se == cfs_rq_of(&p->se)->next ||
  1693. &p->se == cfs_rq_of(&p->se)->last))
  1694. return 1;
  1695. if (sysctl_sched_migration_cost == -1)
  1696. return 1;
  1697. if (sysctl_sched_migration_cost == 0)
  1698. return 0;
  1699. delta = now - p->se.exec_start;
  1700. return delta < (s64)sysctl_sched_migration_cost;
  1701. }
  1702. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1703. {
  1704. #ifdef CONFIG_SCHED_DEBUG
  1705. /*
  1706. * We should never call set_task_cpu() on a blocked task,
  1707. * ttwu() will sort out the placement.
  1708. */
  1709. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1710. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1711. #endif
  1712. trace_sched_migrate_task(p, new_cpu);
  1713. if (task_cpu(p) != new_cpu) {
  1714. p->se.nr_migrations++;
  1715. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1716. }
  1717. __set_task_cpu(p, new_cpu);
  1718. }
  1719. struct migration_arg {
  1720. struct task_struct *task;
  1721. int dest_cpu;
  1722. };
  1723. static int migration_cpu_stop(void *data);
  1724. /*
  1725. * The task's runqueue lock must be held.
  1726. * Returns true if you have to wait for migration thread.
  1727. */
  1728. static bool migrate_task(struct task_struct *p, struct rq *rq)
  1729. {
  1730. /*
  1731. * If the task is not on a runqueue (and not running), then
  1732. * the next wake-up will properly place the task.
  1733. */
  1734. return p->se.on_rq || task_running(rq, p);
  1735. }
  1736. /*
  1737. * wait_task_inactive - wait for a thread to unschedule.
  1738. *
  1739. * If @match_state is nonzero, it's the @p->state value just checked and
  1740. * not expected to change. If it changes, i.e. @p might have woken up,
  1741. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1742. * we return a positive number (its total switch count). If a second call
  1743. * a short while later returns the same number, the caller can be sure that
  1744. * @p has remained unscheduled the whole time.
  1745. *
  1746. * The caller must ensure that the task *will* unschedule sometime soon,
  1747. * else this function might spin for a *long* time. This function can't
  1748. * be called with interrupts off, or it may introduce deadlock with
  1749. * smp_call_function() if an IPI is sent by the same process we are
  1750. * waiting to become inactive.
  1751. */
  1752. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1753. {
  1754. unsigned long flags;
  1755. int running, on_rq;
  1756. unsigned long ncsw;
  1757. struct rq *rq;
  1758. for (;;) {
  1759. /*
  1760. * We do the initial early heuristics without holding
  1761. * any task-queue locks at all. We'll only try to get
  1762. * the runqueue lock when things look like they will
  1763. * work out!
  1764. */
  1765. rq = task_rq(p);
  1766. /*
  1767. * If the task is actively running on another CPU
  1768. * still, just relax and busy-wait without holding
  1769. * any locks.
  1770. *
  1771. * NOTE! Since we don't hold any locks, it's not
  1772. * even sure that "rq" stays as the right runqueue!
  1773. * But we don't care, since "task_running()" will
  1774. * return false if the runqueue has changed and p
  1775. * is actually now running somewhere else!
  1776. */
  1777. while (task_running(rq, p)) {
  1778. if (match_state && unlikely(p->state != match_state))
  1779. return 0;
  1780. cpu_relax();
  1781. }
  1782. /*
  1783. * Ok, time to look more closely! We need the rq
  1784. * lock now, to be *sure*. If we're wrong, we'll
  1785. * just go back and repeat.
  1786. */
  1787. rq = task_rq_lock(p, &flags);
  1788. trace_sched_wait_task(p);
  1789. running = task_running(rq, p);
  1790. on_rq = p->se.on_rq;
  1791. ncsw = 0;
  1792. if (!match_state || p->state == match_state)
  1793. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1794. task_rq_unlock(rq, &flags);
  1795. /*
  1796. * If it changed from the expected state, bail out now.
  1797. */
  1798. if (unlikely(!ncsw))
  1799. break;
  1800. /*
  1801. * Was it really running after all now that we
  1802. * checked with the proper locks actually held?
  1803. *
  1804. * Oops. Go back and try again..
  1805. */
  1806. if (unlikely(running)) {
  1807. cpu_relax();
  1808. continue;
  1809. }
  1810. /*
  1811. * It's not enough that it's not actively running,
  1812. * it must be off the runqueue _entirely_, and not
  1813. * preempted!
  1814. *
  1815. * So if it was still runnable (but just not actively
  1816. * running right now), it's preempted, and we should
  1817. * yield - it could be a while.
  1818. */
  1819. if (unlikely(on_rq)) {
  1820. schedule_timeout_uninterruptible(1);
  1821. continue;
  1822. }
  1823. /*
  1824. * Ahh, all good. It wasn't running, and it wasn't
  1825. * runnable, which means that it will never become
  1826. * running in the future either. We're all done!
  1827. */
  1828. break;
  1829. }
  1830. return ncsw;
  1831. }
  1832. /***
  1833. * kick_process - kick a running thread to enter/exit the kernel
  1834. * @p: the to-be-kicked thread
  1835. *
  1836. * Cause a process which is running on another CPU to enter
  1837. * kernel-mode, without any delay. (to get signals handled.)
  1838. *
  1839. * NOTE: this function doesnt have to take the runqueue lock,
  1840. * because all it wants to ensure is that the remote task enters
  1841. * the kernel. If the IPI races and the task has been migrated
  1842. * to another CPU then no harm is done and the purpose has been
  1843. * achieved as well.
  1844. */
  1845. void kick_process(struct task_struct *p)
  1846. {
  1847. int cpu;
  1848. preempt_disable();
  1849. cpu = task_cpu(p);
  1850. if ((cpu != smp_processor_id()) && task_curr(p))
  1851. smp_send_reschedule(cpu);
  1852. preempt_enable();
  1853. }
  1854. EXPORT_SYMBOL_GPL(kick_process);
  1855. #endif /* CONFIG_SMP */
  1856. /**
  1857. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1858. * @p: the task to evaluate
  1859. * @func: the function to be called
  1860. * @info: the function call argument
  1861. *
  1862. * Calls the function @func when the task is currently running. This might
  1863. * be on the current CPU, which just calls the function directly
  1864. */
  1865. void task_oncpu_function_call(struct task_struct *p,
  1866. void (*func) (void *info), void *info)
  1867. {
  1868. int cpu;
  1869. preempt_disable();
  1870. cpu = task_cpu(p);
  1871. if (task_curr(p))
  1872. smp_call_function_single(cpu, func, info, 1);
  1873. preempt_enable();
  1874. }
  1875. #ifdef CONFIG_SMP
  1876. /*
  1877. * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
  1878. */
  1879. static int select_fallback_rq(int cpu, struct task_struct *p)
  1880. {
  1881. int dest_cpu;
  1882. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1883. /* Look for allowed, online CPU in same node. */
  1884. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1885. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1886. return dest_cpu;
  1887. /* Any allowed, online CPU? */
  1888. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1889. if (dest_cpu < nr_cpu_ids)
  1890. return dest_cpu;
  1891. /* No more Mr. Nice Guy. */
  1892. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1893. /*
  1894. * Don't tell them about moving exiting tasks or
  1895. * kernel threads (both mm NULL), since they never
  1896. * leave kernel.
  1897. */
  1898. if (p->mm && printk_ratelimit()) {
  1899. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  1900. task_pid_nr(p), p->comm, cpu);
  1901. }
  1902. return dest_cpu;
  1903. }
  1904. /*
  1905. * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
  1906. */
  1907. static inline
  1908. int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
  1909. {
  1910. int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
  1911. /*
  1912. * In order not to call set_task_cpu() on a blocking task we need
  1913. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1914. * cpu.
  1915. *
  1916. * Since this is common to all placement strategies, this lives here.
  1917. *
  1918. * [ this allows ->select_task() to simply return task_cpu(p) and
  1919. * not worry about this generic constraint ]
  1920. */
  1921. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1922. !cpu_online(cpu)))
  1923. cpu = select_fallback_rq(task_cpu(p), p);
  1924. return cpu;
  1925. }
  1926. static void update_avg(u64 *avg, u64 sample)
  1927. {
  1928. s64 diff = sample - *avg;
  1929. *avg += diff >> 3;
  1930. }
  1931. #endif
  1932. static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
  1933. bool is_sync, bool is_migrate, bool is_local,
  1934. unsigned long en_flags)
  1935. {
  1936. schedstat_inc(p, se.statistics.nr_wakeups);
  1937. if (is_sync)
  1938. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1939. if (is_migrate)
  1940. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1941. if (is_local)
  1942. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1943. else
  1944. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1945. activate_task(rq, p, en_flags);
  1946. }
  1947. static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
  1948. int wake_flags, bool success)
  1949. {
  1950. trace_sched_wakeup(p, success);
  1951. check_preempt_curr(rq, p, wake_flags);
  1952. p->state = TASK_RUNNING;
  1953. #ifdef CONFIG_SMP
  1954. if (p->sched_class->task_woken)
  1955. p->sched_class->task_woken(rq, p);
  1956. if (unlikely(rq->idle_stamp)) {
  1957. u64 delta = rq->clock - rq->idle_stamp;
  1958. u64 max = 2*sysctl_sched_migration_cost;
  1959. if (delta > max)
  1960. rq->avg_idle = max;
  1961. else
  1962. update_avg(&rq->avg_idle, delta);
  1963. rq->idle_stamp = 0;
  1964. }
  1965. #endif
  1966. /* if a worker is waking up, notify workqueue */
  1967. if ((p->flags & PF_WQ_WORKER) && success)
  1968. wq_worker_waking_up(p, cpu_of(rq));
  1969. }
  1970. /**
  1971. * try_to_wake_up - wake up a thread
  1972. * @p: the thread to be awakened
  1973. * @state: the mask of task states that can be woken
  1974. * @wake_flags: wake modifier flags (WF_*)
  1975. *
  1976. * Put it on the run-queue if it's not already there. The "current"
  1977. * thread is always on the run-queue (except when the actual
  1978. * re-schedule is in progress), and as such you're allowed to do
  1979. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1980. * runnable without the overhead of this.
  1981. *
  1982. * Returns %true if @p was woken up, %false if it was already running
  1983. * or @state didn't match @p's state.
  1984. */
  1985. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  1986. int wake_flags)
  1987. {
  1988. int cpu, orig_cpu, this_cpu, success = 0;
  1989. unsigned long flags;
  1990. unsigned long en_flags = ENQUEUE_WAKEUP;
  1991. struct rq *rq;
  1992. this_cpu = get_cpu();
  1993. smp_wmb();
  1994. rq = task_rq_lock(p, &flags);
  1995. if (!(p->state & state))
  1996. goto out;
  1997. if (p->se.on_rq)
  1998. goto out_running;
  1999. cpu = task_cpu(p);
  2000. orig_cpu = cpu;
  2001. #ifdef CONFIG_SMP
  2002. if (unlikely(task_running(rq, p)))
  2003. goto out_activate;
  2004. /*
  2005. * In order to handle concurrent wakeups and release the rq->lock
  2006. * we put the task in TASK_WAKING state.
  2007. *
  2008. * First fix up the nr_uninterruptible count:
  2009. */
  2010. if (task_contributes_to_load(p)) {
  2011. if (likely(cpu_online(orig_cpu)))
  2012. rq->nr_uninterruptible--;
  2013. else
  2014. this_rq()->nr_uninterruptible--;
  2015. }
  2016. p->state = TASK_WAKING;
  2017. if (p->sched_class->task_waking) {
  2018. p->sched_class->task_waking(rq, p);
  2019. en_flags |= ENQUEUE_WAKING;
  2020. }
  2021. cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
  2022. if (cpu != orig_cpu)
  2023. set_task_cpu(p, cpu);
  2024. __task_rq_unlock(rq);
  2025. rq = cpu_rq(cpu);
  2026. raw_spin_lock(&rq->lock);
  2027. /*
  2028. * We migrated the task without holding either rq->lock, however
  2029. * since the task is not on the task list itself, nobody else
  2030. * will try and migrate the task, hence the rq should match the
  2031. * cpu we just moved it to.
  2032. */
  2033. WARN_ON(task_cpu(p) != cpu);
  2034. WARN_ON(p->state != TASK_WAKING);
  2035. #ifdef CONFIG_SCHEDSTATS
  2036. schedstat_inc(rq, ttwu_count);
  2037. if (cpu == this_cpu)
  2038. schedstat_inc(rq, ttwu_local);
  2039. else {
  2040. struct sched_domain *sd;
  2041. for_each_domain(this_cpu, sd) {
  2042. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2043. schedstat_inc(sd, ttwu_wake_remote);
  2044. break;
  2045. }
  2046. }
  2047. }
  2048. #endif /* CONFIG_SCHEDSTATS */
  2049. out_activate:
  2050. #endif /* CONFIG_SMP */
  2051. ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
  2052. cpu == this_cpu, en_flags);
  2053. success = 1;
  2054. out_running:
  2055. ttwu_post_activation(p, rq, wake_flags, success);
  2056. out:
  2057. task_rq_unlock(rq, &flags);
  2058. put_cpu();
  2059. return success;
  2060. }
  2061. /**
  2062. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2063. * @p: the thread to be awakened
  2064. *
  2065. * Put @p on the run-queue if it's not alredy there. The caller must
  2066. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2067. * the current task. this_rq() stays locked over invocation.
  2068. */
  2069. static void try_to_wake_up_local(struct task_struct *p)
  2070. {
  2071. struct rq *rq = task_rq(p);
  2072. bool success = false;
  2073. BUG_ON(rq != this_rq());
  2074. BUG_ON(p == current);
  2075. lockdep_assert_held(&rq->lock);
  2076. if (!(p->state & TASK_NORMAL))
  2077. return;
  2078. if (!p->se.on_rq) {
  2079. if (likely(!task_running(rq, p))) {
  2080. schedstat_inc(rq, ttwu_count);
  2081. schedstat_inc(rq, ttwu_local);
  2082. }
  2083. ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
  2084. success = true;
  2085. }
  2086. ttwu_post_activation(p, rq, 0, success);
  2087. }
  2088. /**
  2089. * wake_up_process - Wake up a specific process
  2090. * @p: The process to be woken up.
  2091. *
  2092. * Attempt to wake up the nominated process and move it to the set of runnable
  2093. * processes. Returns 1 if the process was woken up, 0 if it was already
  2094. * running.
  2095. *
  2096. * It may be assumed that this function implies a write memory barrier before
  2097. * changing the task state if and only if any tasks are woken up.
  2098. */
  2099. int wake_up_process(struct task_struct *p)
  2100. {
  2101. return try_to_wake_up(p, TASK_ALL, 0);
  2102. }
  2103. EXPORT_SYMBOL(wake_up_process);
  2104. int wake_up_state(struct task_struct *p, unsigned int state)
  2105. {
  2106. return try_to_wake_up(p, state, 0);
  2107. }
  2108. /*
  2109. * Perform scheduler related setup for a newly forked process p.
  2110. * p is forked by current.
  2111. *
  2112. * __sched_fork() is basic setup used by init_idle() too:
  2113. */
  2114. static void __sched_fork(struct task_struct *p)
  2115. {
  2116. p->se.exec_start = 0;
  2117. p->se.sum_exec_runtime = 0;
  2118. p->se.prev_sum_exec_runtime = 0;
  2119. p->se.nr_migrations = 0;
  2120. #ifdef CONFIG_SCHEDSTATS
  2121. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2122. #endif
  2123. INIT_LIST_HEAD(&p->rt.run_list);
  2124. p->se.on_rq = 0;
  2125. INIT_LIST_HEAD(&p->se.group_node);
  2126. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2127. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2128. #endif
  2129. }
  2130. /*
  2131. * fork()/clone()-time setup:
  2132. */
  2133. void sched_fork(struct task_struct *p, int clone_flags)
  2134. {
  2135. int cpu = get_cpu();
  2136. __sched_fork(p);
  2137. /*
  2138. * We mark the process as running here. This guarantees that
  2139. * nobody will actually run it, and a signal or other external
  2140. * event cannot wake it up and insert it on the runqueue either.
  2141. */
  2142. p->state = TASK_RUNNING;
  2143. /*
  2144. * Revert to default priority/policy on fork if requested.
  2145. */
  2146. if (unlikely(p->sched_reset_on_fork)) {
  2147. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2148. p->policy = SCHED_NORMAL;
  2149. p->normal_prio = p->static_prio;
  2150. }
  2151. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2152. p->static_prio = NICE_TO_PRIO(0);
  2153. p->normal_prio = p->static_prio;
  2154. set_load_weight(p);
  2155. }
  2156. /*
  2157. * We don't need the reset flag anymore after the fork. It has
  2158. * fulfilled its duty:
  2159. */
  2160. p->sched_reset_on_fork = 0;
  2161. }
  2162. /*
  2163. * Make sure we do not leak PI boosting priority to the child.
  2164. */
  2165. p->prio = current->normal_prio;
  2166. if (!rt_prio(p->prio))
  2167. p->sched_class = &fair_sched_class;
  2168. if (p->sched_class->task_fork)
  2169. p->sched_class->task_fork(p);
  2170. /*
  2171. * The child is not yet in the pid-hash so no cgroup attach races,
  2172. * and the cgroup is pinned to this child due to cgroup_fork()
  2173. * is ran before sched_fork().
  2174. *
  2175. * Silence PROVE_RCU.
  2176. */
  2177. rcu_read_lock();
  2178. set_task_cpu(p, cpu);
  2179. rcu_read_unlock();
  2180. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2181. if (likely(sched_info_on()))
  2182. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2183. #endif
  2184. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2185. p->oncpu = 0;
  2186. #endif
  2187. #ifdef CONFIG_PREEMPT
  2188. /* Want to start with kernel preemption disabled. */
  2189. task_thread_info(p)->preempt_count = 1;
  2190. #endif
  2191. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2192. put_cpu();
  2193. }
  2194. /*
  2195. * wake_up_new_task - wake up a newly created task for the first time.
  2196. *
  2197. * This function will do some initial scheduler statistics housekeeping
  2198. * that must be done for every newly created context, then puts the task
  2199. * on the runqueue and wakes it.
  2200. */
  2201. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2202. {
  2203. unsigned long flags;
  2204. struct rq *rq;
  2205. int cpu __maybe_unused = get_cpu();
  2206. #ifdef CONFIG_SMP
  2207. rq = task_rq_lock(p, &flags);
  2208. p->state = TASK_WAKING;
  2209. /*
  2210. * Fork balancing, do it here and not earlier because:
  2211. * - cpus_allowed can change in the fork path
  2212. * - any previously selected cpu might disappear through hotplug
  2213. *
  2214. * We set TASK_WAKING so that select_task_rq() can drop rq->lock
  2215. * without people poking at ->cpus_allowed.
  2216. */
  2217. cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
  2218. set_task_cpu(p, cpu);
  2219. p->state = TASK_RUNNING;
  2220. task_rq_unlock(rq, &flags);
  2221. #endif
  2222. rq = task_rq_lock(p, &flags);
  2223. activate_task(rq, p, 0);
  2224. trace_sched_wakeup_new(p, 1);
  2225. check_preempt_curr(rq, p, WF_FORK);
  2226. #ifdef CONFIG_SMP
  2227. if (p->sched_class->task_woken)
  2228. p->sched_class->task_woken(rq, p);
  2229. #endif
  2230. task_rq_unlock(rq, &flags);
  2231. put_cpu();
  2232. }
  2233. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2234. /**
  2235. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2236. * @notifier: notifier struct to register
  2237. */
  2238. void preempt_notifier_register(struct preempt_notifier *notifier)
  2239. {
  2240. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2241. }
  2242. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2243. /**
  2244. * preempt_notifier_unregister - no longer interested in preemption notifications
  2245. * @notifier: notifier struct to unregister
  2246. *
  2247. * This is safe to call from within a preemption notifier.
  2248. */
  2249. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2250. {
  2251. hlist_del(&notifier->link);
  2252. }
  2253. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2254. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2255. {
  2256. struct preempt_notifier *notifier;
  2257. struct hlist_node *node;
  2258. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2259. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2260. }
  2261. static void
  2262. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2263. struct task_struct *next)
  2264. {
  2265. struct preempt_notifier *notifier;
  2266. struct hlist_node *node;
  2267. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2268. notifier->ops->sched_out(notifier, next);
  2269. }
  2270. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2271. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2272. {
  2273. }
  2274. static void
  2275. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2276. struct task_struct *next)
  2277. {
  2278. }
  2279. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2280. /**
  2281. * prepare_task_switch - prepare to switch tasks
  2282. * @rq: the runqueue preparing to switch
  2283. * @prev: the current task that is being switched out
  2284. * @next: the task we are going to switch to.
  2285. *
  2286. * This is called with the rq lock held and interrupts off. It must
  2287. * be paired with a subsequent finish_task_switch after the context
  2288. * switch.
  2289. *
  2290. * prepare_task_switch sets up locking and calls architecture specific
  2291. * hooks.
  2292. */
  2293. static inline void
  2294. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2295. struct task_struct *next)
  2296. {
  2297. fire_sched_out_preempt_notifiers(prev, next);
  2298. prepare_lock_switch(rq, next);
  2299. prepare_arch_switch(next);
  2300. }
  2301. /**
  2302. * finish_task_switch - clean up after a task-switch
  2303. * @rq: runqueue associated with task-switch
  2304. * @prev: the thread we just switched away from.
  2305. *
  2306. * finish_task_switch must be called after the context switch, paired
  2307. * with a prepare_task_switch call before the context switch.
  2308. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2309. * and do any other architecture-specific cleanup actions.
  2310. *
  2311. * Note that we may have delayed dropping an mm in context_switch(). If
  2312. * so, we finish that here outside of the runqueue lock. (Doing it
  2313. * with the lock held can cause deadlocks; see schedule() for
  2314. * details.)
  2315. */
  2316. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2317. __releases(rq->lock)
  2318. {
  2319. struct mm_struct *mm = rq->prev_mm;
  2320. long prev_state;
  2321. rq->prev_mm = NULL;
  2322. /*
  2323. * A task struct has one reference for the use as "current".
  2324. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2325. * schedule one last time. The schedule call will never return, and
  2326. * the scheduled task must drop that reference.
  2327. * The test for TASK_DEAD must occur while the runqueue locks are
  2328. * still held, otherwise prev could be scheduled on another cpu, die
  2329. * there before we look at prev->state, and then the reference would
  2330. * be dropped twice.
  2331. * Manfred Spraul <manfred@colorfullife.com>
  2332. */
  2333. prev_state = prev->state;
  2334. finish_arch_switch(prev);
  2335. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2336. local_irq_disable();
  2337. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2338. perf_event_task_sched_in(current);
  2339. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2340. local_irq_enable();
  2341. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2342. finish_lock_switch(rq, prev);
  2343. fire_sched_in_preempt_notifiers(current);
  2344. if (mm)
  2345. mmdrop(mm);
  2346. if (unlikely(prev_state == TASK_DEAD)) {
  2347. /*
  2348. * Remove function-return probe instances associated with this
  2349. * task and put them back on the free list.
  2350. */
  2351. kprobe_flush_task(prev);
  2352. put_task_struct(prev);
  2353. }
  2354. }
  2355. #ifdef CONFIG_SMP
  2356. /* assumes rq->lock is held */
  2357. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2358. {
  2359. if (prev->sched_class->pre_schedule)
  2360. prev->sched_class->pre_schedule(rq, prev);
  2361. }
  2362. /* rq->lock is NOT held, but preemption is disabled */
  2363. static inline void post_schedule(struct rq *rq)
  2364. {
  2365. if (rq->post_schedule) {
  2366. unsigned long flags;
  2367. raw_spin_lock_irqsave(&rq->lock, flags);
  2368. if (rq->curr->sched_class->post_schedule)
  2369. rq->curr->sched_class->post_schedule(rq);
  2370. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2371. rq->post_schedule = 0;
  2372. }
  2373. }
  2374. #else
  2375. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2376. {
  2377. }
  2378. static inline void post_schedule(struct rq *rq)
  2379. {
  2380. }
  2381. #endif
  2382. /**
  2383. * schedule_tail - first thing a freshly forked thread must call.
  2384. * @prev: the thread we just switched away from.
  2385. */
  2386. asmlinkage void schedule_tail(struct task_struct *prev)
  2387. __releases(rq->lock)
  2388. {
  2389. struct rq *rq = this_rq();
  2390. finish_task_switch(rq, prev);
  2391. /*
  2392. * FIXME: do we need to worry about rq being invalidated by the
  2393. * task_switch?
  2394. */
  2395. post_schedule(rq);
  2396. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2397. /* In this case, finish_task_switch does not reenable preemption */
  2398. preempt_enable();
  2399. #endif
  2400. if (current->set_child_tid)
  2401. put_user(task_pid_vnr(current), current->set_child_tid);
  2402. }
  2403. /*
  2404. * context_switch - switch to the new MM and the new
  2405. * thread's register state.
  2406. */
  2407. static inline void
  2408. context_switch(struct rq *rq, struct task_struct *prev,
  2409. struct task_struct *next)
  2410. {
  2411. struct mm_struct *mm, *oldmm;
  2412. prepare_task_switch(rq, prev, next);
  2413. trace_sched_switch(prev, next);
  2414. mm = next->mm;
  2415. oldmm = prev->active_mm;
  2416. /*
  2417. * For paravirt, this is coupled with an exit in switch_to to
  2418. * combine the page table reload and the switch backend into
  2419. * one hypercall.
  2420. */
  2421. arch_start_context_switch(prev);
  2422. if (!mm) {
  2423. next->active_mm = oldmm;
  2424. atomic_inc(&oldmm->mm_count);
  2425. enter_lazy_tlb(oldmm, next);
  2426. } else
  2427. switch_mm(oldmm, mm, next);
  2428. if (!prev->mm) {
  2429. prev->active_mm = NULL;
  2430. rq->prev_mm = oldmm;
  2431. }
  2432. /*
  2433. * Since the runqueue lock will be released by the next
  2434. * task (which is an invalid locking op but in the case
  2435. * of the scheduler it's an obvious special-case), so we
  2436. * do an early lockdep release here:
  2437. */
  2438. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2439. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2440. #endif
  2441. /* Here we just switch the register state and the stack. */
  2442. switch_to(prev, next, prev);
  2443. barrier();
  2444. /*
  2445. * this_rq must be evaluated again because prev may have moved
  2446. * CPUs since it called schedule(), thus the 'rq' on its stack
  2447. * frame will be invalid.
  2448. */
  2449. finish_task_switch(this_rq(), prev);
  2450. }
  2451. /*
  2452. * nr_running, nr_uninterruptible and nr_context_switches:
  2453. *
  2454. * externally visible scheduler statistics: current number of runnable
  2455. * threads, current number of uninterruptible-sleeping threads, total
  2456. * number of context switches performed since bootup.
  2457. */
  2458. unsigned long nr_running(void)
  2459. {
  2460. unsigned long i, sum = 0;
  2461. for_each_online_cpu(i)
  2462. sum += cpu_rq(i)->nr_running;
  2463. return sum;
  2464. }
  2465. unsigned long nr_uninterruptible(void)
  2466. {
  2467. unsigned long i, sum = 0;
  2468. for_each_possible_cpu(i)
  2469. sum += cpu_rq(i)->nr_uninterruptible;
  2470. /*
  2471. * Since we read the counters lockless, it might be slightly
  2472. * inaccurate. Do not allow it to go below zero though:
  2473. */
  2474. if (unlikely((long)sum < 0))
  2475. sum = 0;
  2476. return sum;
  2477. }
  2478. unsigned long long nr_context_switches(void)
  2479. {
  2480. int i;
  2481. unsigned long long sum = 0;
  2482. for_each_possible_cpu(i)
  2483. sum += cpu_rq(i)->nr_switches;
  2484. return sum;
  2485. }
  2486. unsigned long nr_iowait(void)
  2487. {
  2488. unsigned long i, sum = 0;
  2489. for_each_possible_cpu(i)
  2490. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2491. return sum;
  2492. }
  2493. unsigned long nr_iowait_cpu(int cpu)
  2494. {
  2495. struct rq *this = cpu_rq(cpu);
  2496. return atomic_read(&this->nr_iowait);
  2497. }
  2498. unsigned long this_cpu_load(void)
  2499. {
  2500. struct rq *this = this_rq();
  2501. return this->cpu_load[0];
  2502. }
  2503. /* Variables and functions for calc_load */
  2504. static atomic_long_t calc_load_tasks;
  2505. static unsigned long calc_load_update;
  2506. unsigned long avenrun[3];
  2507. EXPORT_SYMBOL(avenrun);
  2508. static long calc_load_fold_active(struct rq *this_rq)
  2509. {
  2510. long nr_active, delta = 0;
  2511. nr_active = this_rq->nr_running;
  2512. nr_active += (long) this_rq->nr_uninterruptible;
  2513. if (nr_active != this_rq->calc_load_active) {
  2514. delta = nr_active - this_rq->calc_load_active;
  2515. this_rq->calc_load_active = nr_active;
  2516. }
  2517. return delta;
  2518. }
  2519. #ifdef CONFIG_NO_HZ
  2520. /*
  2521. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2522. *
  2523. * When making the ILB scale, we should try to pull this in as well.
  2524. */
  2525. static atomic_long_t calc_load_tasks_idle;
  2526. static void calc_load_account_idle(struct rq *this_rq)
  2527. {
  2528. long delta;
  2529. delta = calc_load_fold_active(this_rq);
  2530. if (delta)
  2531. atomic_long_add(delta, &calc_load_tasks_idle);
  2532. }
  2533. static long calc_load_fold_idle(void)
  2534. {
  2535. long delta = 0;
  2536. /*
  2537. * Its got a race, we don't care...
  2538. */
  2539. if (atomic_long_read(&calc_load_tasks_idle))
  2540. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2541. return delta;
  2542. }
  2543. #else
  2544. static void calc_load_account_idle(struct rq *this_rq)
  2545. {
  2546. }
  2547. static inline long calc_load_fold_idle(void)
  2548. {
  2549. return 0;
  2550. }
  2551. #endif
  2552. /**
  2553. * get_avenrun - get the load average array
  2554. * @loads: pointer to dest load array
  2555. * @offset: offset to add
  2556. * @shift: shift count to shift the result left
  2557. *
  2558. * These values are estimates at best, so no need for locking.
  2559. */
  2560. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2561. {
  2562. loads[0] = (avenrun[0] + offset) << shift;
  2563. loads[1] = (avenrun[1] + offset) << shift;
  2564. loads[2] = (avenrun[2] + offset) << shift;
  2565. }
  2566. static unsigned long
  2567. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2568. {
  2569. load *= exp;
  2570. load += active * (FIXED_1 - exp);
  2571. return load >> FSHIFT;
  2572. }
  2573. /*
  2574. * calc_load - update the avenrun load estimates 10 ticks after the
  2575. * CPUs have updated calc_load_tasks.
  2576. */
  2577. void calc_global_load(void)
  2578. {
  2579. unsigned long upd = calc_load_update + 10;
  2580. long active;
  2581. if (time_before(jiffies, upd))
  2582. return;
  2583. active = atomic_long_read(&calc_load_tasks);
  2584. active = active > 0 ? active * FIXED_1 : 0;
  2585. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2586. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2587. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2588. calc_load_update += LOAD_FREQ;
  2589. }
  2590. /*
  2591. * Called from update_cpu_load() to periodically update this CPU's
  2592. * active count.
  2593. */
  2594. static void calc_load_account_active(struct rq *this_rq)
  2595. {
  2596. long delta;
  2597. if (time_before(jiffies, this_rq->calc_load_update))
  2598. return;
  2599. delta = calc_load_fold_active(this_rq);
  2600. delta += calc_load_fold_idle();
  2601. if (delta)
  2602. atomic_long_add(delta, &calc_load_tasks);
  2603. this_rq->calc_load_update += LOAD_FREQ;
  2604. }
  2605. /*
  2606. * The exact cpuload at various idx values, calculated at every tick would be
  2607. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2608. *
  2609. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2610. * on nth tick when cpu may be busy, then we have:
  2611. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2612. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2613. *
  2614. * decay_load_missed() below does efficient calculation of
  2615. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2616. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2617. *
  2618. * The calculation is approximated on a 128 point scale.
  2619. * degrade_zero_ticks is the number of ticks after which load at any
  2620. * particular idx is approximated to be zero.
  2621. * degrade_factor is a precomputed table, a row for each load idx.
  2622. * Each column corresponds to degradation factor for a power of two ticks,
  2623. * based on 128 point scale.
  2624. * Example:
  2625. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2626. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2627. *
  2628. * With this power of 2 load factors, we can degrade the load n times
  2629. * by looking at 1 bits in n and doing as many mult/shift instead of
  2630. * n mult/shifts needed by the exact degradation.
  2631. */
  2632. #define DEGRADE_SHIFT 7
  2633. static const unsigned char
  2634. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2635. static const unsigned char
  2636. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2637. {0, 0, 0, 0, 0, 0, 0, 0},
  2638. {64, 32, 8, 0, 0, 0, 0, 0},
  2639. {96, 72, 40, 12, 1, 0, 0},
  2640. {112, 98, 75, 43, 15, 1, 0},
  2641. {120, 112, 98, 76, 45, 16, 2} };
  2642. /*
  2643. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2644. * would be when CPU is idle and so we just decay the old load without
  2645. * adding any new load.
  2646. */
  2647. static unsigned long
  2648. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2649. {
  2650. int j = 0;
  2651. if (!missed_updates)
  2652. return load;
  2653. if (missed_updates >= degrade_zero_ticks[idx])
  2654. return 0;
  2655. if (idx == 1)
  2656. return load >> missed_updates;
  2657. while (missed_updates) {
  2658. if (missed_updates % 2)
  2659. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2660. missed_updates >>= 1;
  2661. j++;
  2662. }
  2663. return load;
  2664. }
  2665. /*
  2666. * Update rq->cpu_load[] statistics. This function is usually called every
  2667. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2668. * every tick. We fix it up based on jiffies.
  2669. */
  2670. static void update_cpu_load(struct rq *this_rq)
  2671. {
  2672. unsigned long this_load = this_rq->load.weight;
  2673. unsigned long curr_jiffies = jiffies;
  2674. unsigned long pending_updates;
  2675. int i, scale;
  2676. this_rq->nr_load_updates++;
  2677. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2678. if (curr_jiffies == this_rq->last_load_update_tick)
  2679. return;
  2680. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2681. this_rq->last_load_update_tick = curr_jiffies;
  2682. /* Update our load: */
  2683. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2684. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2685. unsigned long old_load, new_load;
  2686. /* scale is effectively 1 << i now, and >> i divides by scale */
  2687. old_load = this_rq->cpu_load[i];
  2688. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2689. new_load = this_load;
  2690. /*
  2691. * Round up the averaging division if load is increasing. This
  2692. * prevents us from getting stuck on 9 if the load is 10, for
  2693. * example.
  2694. */
  2695. if (new_load > old_load)
  2696. new_load += scale - 1;
  2697. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2698. }
  2699. sched_avg_update(this_rq);
  2700. }
  2701. static void update_cpu_load_active(struct rq *this_rq)
  2702. {
  2703. update_cpu_load(this_rq);
  2704. calc_load_account_active(this_rq);
  2705. }
  2706. #ifdef CONFIG_SMP
  2707. /*
  2708. * sched_exec - execve() is a valuable balancing opportunity, because at
  2709. * this point the task has the smallest effective memory and cache footprint.
  2710. */
  2711. void sched_exec(void)
  2712. {
  2713. struct task_struct *p = current;
  2714. unsigned long flags;
  2715. struct rq *rq;
  2716. int dest_cpu;
  2717. rq = task_rq_lock(p, &flags);
  2718. dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
  2719. if (dest_cpu == smp_processor_id())
  2720. goto unlock;
  2721. /*
  2722. * select_task_rq() can race against ->cpus_allowed
  2723. */
  2724. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
  2725. likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
  2726. struct migration_arg arg = { p, dest_cpu };
  2727. task_rq_unlock(rq, &flags);
  2728. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  2729. return;
  2730. }
  2731. unlock:
  2732. task_rq_unlock(rq, &flags);
  2733. }
  2734. #endif
  2735. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2736. EXPORT_PER_CPU_SYMBOL(kstat);
  2737. /*
  2738. * Return any ns on the sched_clock that have not yet been accounted in
  2739. * @p in case that task is currently running.
  2740. *
  2741. * Called with task_rq_lock() held on @rq.
  2742. */
  2743. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2744. {
  2745. u64 ns = 0;
  2746. if (task_current(rq, p)) {
  2747. update_rq_clock(rq);
  2748. ns = rq->clock_task - p->se.exec_start;
  2749. if ((s64)ns < 0)
  2750. ns = 0;
  2751. }
  2752. return ns;
  2753. }
  2754. unsigned long long task_delta_exec(struct task_struct *p)
  2755. {
  2756. unsigned long flags;
  2757. struct rq *rq;
  2758. u64 ns = 0;
  2759. rq = task_rq_lock(p, &flags);
  2760. ns = do_task_delta_exec(p, rq);
  2761. task_rq_unlock(rq, &flags);
  2762. return ns;
  2763. }
  2764. /*
  2765. * Return accounted runtime for the task.
  2766. * In case the task is currently running, return the runtime plus current's
  2767. * pending runtime that have not been accounted yet.
  2768. */
  2769. unsigned long long task_sched_runtime(struct task_struct *p)
  2770. {
  2771. unsigned long flags;
  2772. struct rq *rq;
  2773. u64 ns = 0;
  2774. rq = task_rq_lock(p, &flags);
  2775. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2776. task_rq_unlock(rq, &flags);
  2777. return ns;
  2778. }
  2779. /*
  2780. * Return sum_exec_runtime for the thread group.
  2781. * In case the task is currently running, return the sum plus current's
  2782. * pending runtime that have not been accounted yet.
  2783. *
  2784. * Note that the thread group might have other running tasks as well,
  2785. * so the return value not includes other pending runtime that other
  2786. * running tasks might have.
  2787. */
  2788. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  2789. {
  2790. struct task_cputime totals;
  2791. unsigned long flags;
  2792. struct rq *rq;
  2793. u64 ns;
  2794. rq = task_rq_lock(p, &flags);
  2795. thread_group_cputime(p, &totals);
  2796. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  2797. task_rq_unlock(rq, &flags);
  2798. return ns;
  2799. }
  2800. /*
  2801. * Account user cpu time to a process.
  2802. * @p: the process that the cpu time gets accounted to
  2803. * @cputime: the cpu time spent in user space since the last update
  2804. * @cputime_scaled: cputime scaled by cpu frequency
  2805. */
  2806. void account_user_time(struct task_struct *p, cputime_t cputime,
  2807. cputime_t cputime_scaled)
  2808. {
  2809. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2810. cputime64_t tmp;
  2811. /* Add user time to process. */
  2812. p->utime = cputime_add(p->utime, cputime);
  2813. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2814. account_group_user_time(p, cputime);
  2815. /* Add user time to cpustat. */
  2816. tmp = cputime_to_cputime64(cputime);
  2817. if (TASK_NICE(p) > 0)
  2818. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2819. else
  2820. cpustat->user = cputime64_add(cpustat->user, tmp);
  2821. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  2822. /* Account for user time used */
  2823. acct_update_integrals(p);
  2824. }
  2825. /*
  2826. * Account guest cpu time to a process.
  2827. * @p: the process that the cpu time gets accounted to
  2828. * @cputime: the cpu time spent in virtual machine since the last update
  2829. * @cputime_scaled: cputime scaled by cpu frequency
  2830. */
  2831. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2832. cputime_t cputime_scaled)
  2833. {
  2834. cputime64_t tmp;
  2835. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2836. tmp = cputime_to_cputime64(cputime);
  2837. /* Add guest time to process. */
  2838. p->utime = cputime_add(p->utime, cputime);
  2839. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2840. account_group_user_time(p, cputime);
  2841. p->gtime = cputime_add(p->gtime, cputime);
  2842. /* Add guest time to cpustat. */
  2843. if (TASK_NICE(p) > 0) {
  2844. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2845. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  2846. } else {
  2847. cpustat->user = cputime64_add(cpustat->user, tmp);
  2848. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2849. }
  2850. }
  2851. /*
  2852. * Account system cpu time to a process.
  2853. * @p: the process that the cpu time gets accounted to
  2854. * @hardirq_offset: the offset to subtract from hardirq_count()
  2855. * @cputime: the cpu time spent in kernel space since the last update
  2856. * @cputime_scaled: cputime scaled by cpu frequency
  2857. */
  2858. void account_system_time(struct task_struct *p, int hardirq_offset,
  2859. cputime_t cputime, cputime_t cputime_scaled)
  2860. {
  2861. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2862. cputime64_t tmp;
  2863. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2864. account_guest_time(p, cputime, cputime_scaled);
  2865. return;
  2866. }
  2867. /* Add system time to process. */
  2868. p->stime = cputime_add(p->stime, cputime);
  2869. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  2870. account_group_system_time(p, cputime);
  2871. /* Add system time to cpustat. */
  2872. tmp = cputime_to_cputime64(cputime);
  2873. if (hardirq_count() - hardirq_offset)
  2874. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2875. else if (in_serving_softirq())
  2876. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2877. else
  2878. cpustat->system = cputime64_add(cpustat->system, tmp);
  2879. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  2880. /* Account for system time used */
  2881. acct_update_integrals(p);
  2882. }
  2883. /*
  2884. * Account for involuntary wait time.
  2885. * @steal: the cpu time spent in involuntary wait
  2886. */
  2887. void account_steal_time(cputime_t cputime)
  2888. {
  2889. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2890. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2891. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  2892. }
  2893. /*
  2894. * Account for idle time.
  2895. * @cputime: the cpu time spent in idle wait
  2896. */
  2897. void account_idle_time(cputime_t cputime)
  2898. {
  2899. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2900. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2901. struct rq *rq = this_rq();
  2902. if (atomic_read(&rq->nr_iowait) > 0)
  2903. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  2904. else
  2905. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  2906. }
  2907. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2908. /*
  2909. * Account a single tick of cpu time.
  2910. * @p: the process that the cpu time gets accounted to
  2911. * @user_tick: indicates if the tick is a user or a system tick
  2912. */
  2913. void account_process_tick(struct task_struct *p, int user_tick)
  2914. {
  2915. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2916. struct rq *rq = this_rq();
  2917. if (user_tick)
  2918. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2919. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2920. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2921. one_jiffy_scaled);
  2922. else
  2923. account_idle_time(cputime_one_jiffy);
  2924. }
  2925. /*
  2926. * Account multiple ticks of steal time.
  2927. * @p: the process from which the cpu time has been stolen
  2928. * @ticks: number of stolen ticks
  2929. */
  2930. void account_steal_ticks(unsigned long ticks)
  2931. {
  2932. account_steal_time(jiffies_to_cputime(ticks));
  2933. }
  2934. /*
  2935. * Account multiple ticks of idle time.
  2936. * @ticks: number of stolen ticks
  2937. */
  2938. void account_idle_ticks(unsigned long ticks)
  2939. {
  2940. account_idle_time(jiffies_to_cputime(ticks));
  2941. }
  2942. #endif
  2943. /*
  2944. * Use precise platform statistics if available:
  2945. */
  2946. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2947. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2948. {
  2949. *ut = p->utime;
  2950. *st = p->stime;
  2951. }
  2952. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2953. {
  2954. struct task_cputime cputime;
  2955. thread_group_cputime(p, &cputime);
  2956. *ut = cputime.utime;
  2957. *st = cputime.stime;
  2958. }
  2959. #else
  2960. #ifndef nsecs_to_cputime
  2961. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2962. #endif
  2963. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2964. {
  2965. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  2966. /*
  2967. * Use CFS's precise accounting:
  2968. */
  2969. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2970. if (total) {
  2971. u64 temp = rtime;
  2972. temp *= utime;
  2973. do_div(temp, total);
  2974. utime = (cputime_t)temp;
  2975. } else
  2976. utime = rtime;
  2977. /*
  2978. * Compare with previous values, to keep monotonicity:
  2979. */
  2980. p->prev_utime = max(p->prev_utime, utime);
  2981. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  2982. *ut = p->prev_utime;
  2983. *st = p->prev_stime;
  2984. }
  2985. /*
  2986. * Must be called with siglock held.
  2987. */
  2988. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2989. {
  2990. struct signal_struct *sig = p->signal;
  2991. struct task_cputime cputime;
  2992. cputime_t rtime, utime, total;
  2993. thread_group_cputime(p, &cputime);
  2994. total = cputime_add(cputime.utime, cputime.stime);
  2995. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  2996. if (total) {
  2997. u64 temp = rtime;
  2998. temp *= cputime.utime;
  2999. do_div(temp, total);
  3000. utime = (cputime_t)temp;
  3001. } else
  3002. utime = rtime;
  3003. sig->prev_utime = max(sig->prev_utime, utime);
  3004. sig->prev_stime = max(sig->prev_stime,
  3005. cputime_sub(rtime, sig->prev_utime));
  3006. *ut = sig->prev_utime;
  3007. *st = sig->prev_stime;
  3008. }
  3009. #endif
  3010. /*
  3011. * This function gets called by the timer code, with HZ frequency.
  3012. * We call it with interrupts disabled.
  3013. *
  3014. * It also gets called by the fork code, when changing the parent's
  3015. * timeslices.
  3016. */
  3017. void scheduler_tick(void)
  3018. {
  3019. int cpu = smp_processor_id();
  3020. struct rq *rq = cpu_rq(cpu);
  3021. struct task_struct *curr = rq->curr;
  3022. sched_clock_tick();
  3023. raw_spin_lock(&rq->lock);
  3024. update_rq_clock(rq);
  3025. update_cpu_load_active(rq);
  3026. curr->sched_class->task_tick(rq, curr, 0);
  3027. raw_spin_unlock(&rq->lock);
  3028. perf_event_task_tick();
  3029. #ifdef CONFIG_SMP
  3030. rq->idle_at_tick = idle_cpu(cpu);
  3031. trigger_load_balance(rq, cpu);
  3032. #endif
  3033. }
  3034. notrace unsigned long get_parent_ip(unsigned long addr)
  3035. {
  3036. if (in_lock_functions(addr)) {
  3037. addr = CALLER_ADDR2;
  3038. if (in_lock_functions(addr))
  3039. addr = CALLER_ADDR3;
  3040. }
  3041. return addr;
  3042. }
  3043. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3044. defined(CONFIG_PREEMPT_TRACER))
  3045. void __kprobes add_preempt_count(int val)
  3046. {
  3047. #ifdef CONFIG_DEBUG_PREEMPT
  3048. /*
  3049. * Underflow?
  3050. */
  3051. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3052. return;
  3053. #endif
  3054. preempt_count() += val;
  3055. #ifdef CONFIG_DEBUG_PREEMPT
  3056. /*
  3057. * Spinlock count overflowing soon?
  3058. */
  3059. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3060. PREEMPT_MASK - 10);
  3061. #endif
  3062. if (preempt_count() == val)
  3063. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3064. }
  3065. EXPORT_SYMBOL(add_preempt_count);
  3066. void __kprobes sub_preempt_count(int val)
  3067. {
  3068. #ifdef CONFIG_DEBUG_PREEMPT
  3069. /*
  3070. * Underflow?
  3071. */
  3072. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3073. return;
  3074. /*
  3075. * Is the spinlock portion underflowing?
  3076. */
  3077. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3078. !(preempt_count() & PREEMPT_MASK)))
  3079. return;
  3080. #endif
  3081. if (preempt_count() == val)
  3082. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3083. preempt_count() -= val;
  3084. }
  3085. EXPORT_SYMBOL(sub_preempt_count);
  3086. #endif
  3087. /*
  3088. * Print scheduling while atomic bug:
  3089. */
  3090. static noinline void __schedule_bug(struct task_struct *prev)
  3091. {
  3092. struct pt_regs *regs = get_irq_regs();
  3093. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3094. prev->comm, prev->pid, preempt_count());
  3095. debug_show_held_locks(prev);
  3096. print_modules();
  3097. if (irqs_disabled())
  3098. print_irqtrace_events(prev);
  3099. if (regs)
  3100. show_regs(regs);
  3101. else
  3102. dump_stack();
  3103. }
  3104. /*
  3105. * Various schedule()-time debugging checks and statistics:
  3106. */
  3107. static inline void schedule_debug(struct task_struct *prev)
  3108. {
  3109. /*
  3110. * Test if we are atomic. Since do_exit() needs to call into
  3111. * schedule() atomically, we ignore that path for now.
  3112. * Otherwise, whine if we are scheduling when we should not be.
  3113. */
  3114. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3115. __schedule_bug(prev);
  3116. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3117. schedstat_inc(this_rq(), sched_count);
  3118. #ifdef CONFIG_SCHEDSTATS
  3119. if (unlikely(prev->lock_depth >= 0)) {
  3120. schedstat_inc(this_rq(), bkl_count);
  3121. schedstat_inc(prev, sched_info.bkl_count);
  3122. }
  3123. #endif
  3124. }
  3125. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3126. {
  3127. if (prev->se.on_rq)
  3128. update_rq_clock(rq);
  3129. rq->skip_clock_update = 0;
  3130. prev->sched_class->put_prev_task(rq, prev);
  3131. }
  3132. /*
  3133. * Pick up the highest-prio task:
  3134. */
  3135. static inline struct task_struct *
  3136. pick_next_task(struct rq *rq)
  3137. {
  3138. const struct sched_class *class;
  3139. struct task_struct *p;
  3140. /*
  3141. * Optimization: we know that if all tasks are in
  3142. * the fair class we can call that function directly:
  3143. */
  3144. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3145. p = fair_sched_class.pick_next_task(rq);
  3146. if (likely(p))
  3147. return p;
  3148. }
  3149. for_each_class(class) {
  3150. p = class->pick_next_task(rq);
  3151. if (p)
  3152. return p;
  3153. }
  3154. BUG(); /* the idle class will always have a runnable task */
  3155. }
  3156. /*
  3157. * schedule() is the main scheduler function.
  3158. */
  3159. asmlinkage void __sched schedule(void)
  3160. {
  3161. struct task_struct *prev, *next;
  3162. unsigned long *switch_count;
  3163. struct rq *rq;
  3164. int cpu;
  3165. need_resched:
  3166. preempt_disable();
  3167. cpu = smp_processor_id();
  3168. rq = cpu_rq(cpu);
  3169. rcu_note_context_switch(cpu);
  3170. prev = rq->curr;
  3171. release_kernel_lock(prev);
  3172. need_resched_nonpreemptible:
  3173. schedule_debug(prev);
  3174. if (sched_feat(HRTICK))
  3175. hrtick_clear(rq);
  3176. raw_spin_lock_irq(&rq->lock);
  3177. clear_tsk_need_resched(prev);
  3178. switch_count = &prev->nivcsw;
  3179. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3180. if (unlikely(signal_pending_state(prev->state, prev))) {
  3181. prev->state = TASK_RUNNING;
  3182. } else {
  3183. /*
  3184. * If a worker is going to sleep, notify and
  3185. * ask workqueue whether it wants to wake up a
  3186. * task to maintain concurrency. If so, wake
  3187. * up the task.
  3188. */
  3189. if (prev->flags & PF_WQ_WORKER) {
  3190. struct task_struct *to_wakeup;
  3191. to_wakeup = wq_worker_sleeping(prev, cpu);
  3192. if (to_wakeup)
  3193. try_to_wake_up_local(to_wakeup);
  3194. }
  3195. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3196. }
  3197. switch_count = &prev->nvcsw;
  3198. }
  3199. pre_schedule(rq, prev);
  3200. if (unlikely(!rq->nr_running))
  3201. idle_balance(cpu, rq);
  3202. put_prev_task(rq, prev);
  3203. next = pick_next_task(rq);
  3204. if (likely(prev != next)) {
  3205. sched_info_switch(prev, next);
  3206. perf_event_task_sched_out(prev, next);
  3207. rq->nr_switches++;
  3208. rq->curr = next;
  3209. ++*switch_count;
  3210. context_switch(rq, prev, next); /* unlocks the rq */
  3211. /*
  3212. * The context switch have flipped the stack from under us
  3213. * and restored the local variables which were saved when
  3214. * this task called schedule() in the past. prev == current
  3215. * is still correct, but it can be moved to another cpu/rq.
  3216. */
  3217. cpu = smp_processor_id();
  3218. rq = cpu_rq(cpu);
  3219. } else
  3220. raw_spin_unlock_irq(&rq->lock);
  3221. post_schedule(rq);
  3222. if (unlikely(reacquire_kernel_lock(prev)))
  3223. goto need_resched_nonpreemptible;
  3224. preempt_enable_no_resched();
  3225. if (need_resched())
  3226. goto need_resched;
  3227. }
  3228. EXPORT_SYMBOL(schedule);
  3229. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3230. /*
  3231. * Look out! "owner" is an entirely speculative pointer
  3232. * access and not reliable.
  3233. */
  3234. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3235. {
  3236. unsigned int cpu;
  3237. struct rq *rq;
  3238. if (!sched_feat(OWNER_SPIN))
  3239. return 0;
  3240. #ifdef CONFIG_DEBUG_PAGEALLOC
  3241. /*
  3242. * Need to access the cpu field knowing that
  3243. * DEBUG_PAGEALLOC could have unmapped it if
  3244. * the mutex owner just released it and exited.
  3245. */
  3246. if (probe_kernel_address(&owner->cpu, cpu))
  3247. return 0;
  3248. #else
  3249. cpu = owner->cpu;
  3250. #endif
  3251. /*
  3252. * Even if the access succeeded (likely case),
  3253. * the cpu field may no longer be valid.
  3254. */
  3255. if (cpu >= nr_cpumask_bits)
  3256. return 0;
  3257. /*
  3258. * We need to validate that we can do a
  3259. * get_cpu() and that we have the percpu area.
  3260. */
  3261. if (!cpu_online(cpu))
  3262. return 0;
  3263. rq = cpu_rq(cpu);
  3264. for (;;) {
  3265. /*
  3266. * Owner changed, break to re-assess state.
  3267. */
  3268. if (lock->owner != owner) {
  3269. /*
  3270. * If the lock has switched to a different owner,
  3271. * we likely have heavy contention. Return 0 to quit
  3272. * optimistic spinning and not contend further:
  3273. */
  3274. if (lock->owner)
  3275. return 0;
  3276. break;
  3277. }
  3278. /*
  3279. * Is that owner really running on that cpu?
  3280. */
  3281. if (task_thread_info(rq->curr) != owner || need_resched())
  3282. return 0;
  3283. arch_mutex_cpu_relax();
  3284. }
  3285. return 1;
  3286. }
  3287. #endif
  3288. #ifdef CONFIG_PREEMPT
  3289. /*
  3290. * this is the entry point to schedule() from in-kernel preemption
  3291. * off of preempt_enable. Kernel preemptions off return from interrupt
  3292. * occur there and call schedule directly.
  3293. */
  3294. asmlinkage void __sched notrace preempt_schedule(void)
  3295. {
  3296. struct thread_info *ti = current_thread_info();
  3297. /*
  3298. * If there is a non-zero preempt_count or interrupts are disabled,
  3299. * we do not want to preempt the current task. Just return..
  3300. */
  3301. if (likely(ti->preempt_count || irqs_disabled()))
  3302. return;
  3303. do {
  3304. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3305. schedule();
  3306. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3307. /*
  3308. * Check again in case we missed a preemption opportunity
  3309. * between schedule and now.
  3310. */
  3311. barrier();
  3312. } while (need_resched());
  3313. }
  3314. EXPORT_SYMBOL(preempt_schedule);
  3315. /*
  3316. * this is the entry point to schedule() from kernel preemption
  3317. * off of irq context.
  3318. * Note, that this is called and return with irqs disabled. This will
  3319. * protect us against recursive calling from irq.
  3320. */
  3321. asmlinkage void __sched preempt_schedule_irq(void)
  3322. {
  3323. struct thread_info *ti = current_thread_info();
  3324. /* Catch callers which need to be fixed */
  3325. BUG_ON(ti->preempt_count || !irqs_disabled());
  3326. do {
  3327. add_preempt_count(PREEMPT_ACTIVE);
  3328. local_irq_enable();
  3329. schedule();
  3330. local_irq_disable();
  3331. sub_preempt_count(PREEMPT_ACTIVE);
  3332. /*
  3333. * Check again in case we missed a preemption opportunity
  3334. * between schedule and now.
  3335. */
  3336. barrier();
  3337. } while (need_resched());
  3338. }
  3339. #endif /* CONFIG_PREEMPT */
  3340. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3341. void *key)
  3342. {
  3343. return try_to_wake_up(curr->private, mode, wake_flags);
  3344. }
  3345. EXPORT_SYMBOL(default_wake_function);
  3346. /*
  3347. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3348. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3349. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3350. *
  3351. * There are circumstances in which we can try to wake a task which has already
  3352. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3353. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3354. */
  3355. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3356. int nr_exclusive, int wake_flags, void *key)
  3357. {
  3358. wait_queue_t *curr, *next;
  3359. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3360. unsigned flags = curr->flags;
  3361. if (curr->func(curr, mode, wake_flags, key) &&
  3362. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3363. break;
  3364. }
  3365. }
  3366. /**
  3367. * __wake_up - wake up threads blocked on a waitqueue.
  3368. * @q: the waitqueue
  3369. * @mode: which threads
  3370. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3371. * @key: is directly passed to the wakeup function
  3372. *
  3373. * It may be assumed that this function implies a write memory barrier before
  3374. * changing the task state if and only if any tasks are woken up.
  3375. */
  3376. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3377. int nr_exclusive, void *key)
  3378. {
  3379. unsigned long flags;
  3380. spin_lock_irqsave(&q->lock, flags);
  3381. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3382. spin_unlock_irqrestore(&q->lock, flags);
  3383. }
  3384. EXPORT_SYMBOL(__wake_up);
  3385. /*
  3386. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3387. */
  3388. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3389. {
  3390. __wake_up_common(q, mode, 1, 0, NULL);
  3391. }
  3392. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3393. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3394. {
  3395. __wake_up_common(q, mode, 1, 0, key);
  3396. }
  3397. /**
  3398. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3399. * @q: the waitqueue
  3400. * @mode: which threads
  3401. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3402. * @key: opaque value to be passed to wakeup targets
  3403. *
  3404. * The sync wakeup differs that the waker knows that it will schedule
  3405. * away soon, so while the target thread will be woken up, it will not
  3406. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3407. * with each other. This can prevent needless bouncing between CPUs.
  3408. *
  3409. * On UP it can prevent extra preemption.
  3410. *
  3411. * It may be assumed that this function implies a write memory barrier before
  3412. * changing the task state if and only if any tasks are woken up.
  3413. */
  3414. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3415. int nr_exclusive, void *key)
  3416. {
  3417. unsigned long flags;
  3418. int wake_flags = WF_SYNC;
  3419. if (unlikely(!q))
  3420. return;
  3421. if (unlikely(!nr_exclusive))
  3422. wake_flags = 0;
  3423. spin_lock_irqsave(&q->lock, flags);
  3424. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3425. spin_unlock_irqrestore(&q->lock, flags);
  3426. }
  3427. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3428. /*
  3429. * __wake_up_sync - see __wake_up_sync_key()
  3430. */
  3431. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3432. {
  3433. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3434. }
  3435. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3436. /**
  3437. * complete: - signals a single thread waiting on this completion
  3438. * @x: holds the state of this particular completion
  3439. *
  3440. * This will wake up a single thread waiting on this completion. Threads will be
  3441. * awakened in the same order in which they were queued.
  3442. *
  3443. * See also complete_all(), wait_for_completion() and related routines.
  3444. *
  3445. * It may be assumed that this function implies a write memory barrier before
  3446. * changing the task state if and only if any tasks are woken up.
  3447. */
  3448. void complete(struct completion *x)
  3449. {
  3450. unsigned long flags;
  3451. spin_lock_irqsave(&x->wait.lock, flags);
  3452. x->done++;
  3453. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3454. spin_unlock_irqrestore(&x->wait.lock, flags);
  3455. }
  3456. EXPORT_SYMBOL(complete);
  3457. /**
  3458. * complete_all: - signals all threads waiting on this completion
  3459. * @x: holds the state of this particular completion
  3460. *
  3461. * This will wake up all threads waiting on this particular completion event.
  3462. *
  3463. * It may be assumed that this function implies a write memory barrier before
  3464. * changing the task state if and only if any tasks are woken up.
  3465. */
  3466. void complete_all(struct completion *x)
  3467. {
  3468. unsigned long flags;
  3469. spin_lock_irqsave(&x->wait.lock, flags);
  3470. x->done += UINT_MAX/2;
  3471. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3472. spin_unlock_irqrestore(&x->wait.lock, flags);
  3473. }
  3474. EXPORT_SYMBOL(complete_all);
  3475. static inline long __sched
  3476. do_wait_for_common(struct completion *x, long timeout, int state)
  3477. {
  3478. if (!x->done) {
  3479. DECLARE_WAITQUEUE(wait, current);
  3480. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3481. do {
  3482. if (signal_pending_state(state, current)) {
  3483. timeout = -ERESTARTSYS;
  3484. break;
  3485. }
  3486. __set_current_state(state);
  3487. spin_unlock_irq(&x->wait.lock);
  3488. timeout = schedule_timeout(timeout);
  3489. spin_lock_irq(&x->wait.lock);
  3490. } while (!x->done && timeout);
  3491. __remove_wait_queue(&x->wait, &wait);
  3492. if (!x->done)
  3493. return timeout;
  3494. }
  3495. x->done--;
  3496. return timeout ?: 1;
  3497. }
  3498. static long __sched
  3499. wait_for_common(struct completion *x, long timeout, int state)
  3500. {
  3501. might_sleep();
  3502. spin_lock_irq(&x->wait.lock);
  3503. timeout = do_wait_for_common(x, timeout, state);
  3504. spin_unlock_irq(&x->wait.lock);
  3505. return timeout;
  3506. }
  3507. /**
  3508. * wait_for_completion: - waits for completion of a task
  3509. * @x: holds the state of this particular completion
  3510. *
  3511. * This waits to be signaled for completion of a specific task. It is NOT
  3512. * interruptible and there is no timeout.
  3513. *
  3514. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3515. * and interrupt capability. Also see complete().
  3516. */
  3517. void __sched wait_for_completion(struct completion *x)
  3518. {
  3519. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3520. }
  3521. EXPORT_SYMBOL(wait_for_completion);
  3522. /**
  3523. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3524. * @x: holds the state of this particular completion
  3525. * @timeout: timeout value in jiffies
  3526. *
  3527. * This waits for either a completion of a specific task to be signaled or for a
  3528. * specified timeout to expire. The timeout is in jiffies. It is not
  3529. * interruptible.
  3530. */
  3531. unsigned long __sched
  3532. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3533. {
  3534. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3535. }
  3536. EXPORT_SYMBOL(wait_for_completion_timeout);
  3537. /**
  3538. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3539. * @x: holds the state of this particular completion
  3540. *
  3541. * This waits for completion of a specific task to be signaled. It is
  3542. * interruptible.
  3543. */
  3544. int __sched wait_for_completion_interruptible(struct completion *x)
  3545. {
  3546. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3547. if (t == -ERESTARTSYS)
  3548. return t;
  3549. return 0;
  3550. }
  3551. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3552. /**
  3553. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3554. * @x: holds the state of this particular completion
  3555. * @timeout: timeout value in jiffies
  3556. *
  3557. * This waits for either a completion of a specific task to be signaled or for a
  3558. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3559. */
  3560. unsigned long __sched
  3561. wait_for_completion_interruptible_timeout(struct completion *x,
  3562. unsigned long timeout)
  3563. {
  3564. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3565. }
  3566. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3567. /**
  3568. * wait_for_completion_killable: - waits for completion of a task (killable)
  3569. * @x: holds the state of this particular completion
  3570. *
  3571. * This waits to be signaled for completion of a specific task. It can be
  3572. * interrupted by a kill signal.
  3573. */
  3574. int __sched wait_for_completion_killable(struct completion *x)
  3575. {
  3576. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3577. if (t == -ERESTARTSYS)
  3578. return t;
  3579. return 0;
  3580. }
  3581. EXPORT_SYMBOL(wait_for_completion_killable);
  3582. /**
  3583. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3584. * @x: holds the state of this particular completion
  3585. * @timeout: timeout value in jiffies
  3586. *
  3587. * This waits for either a completion of a specific task to be
  3588. * signaled or for a specified timeout to expire. It can be
  3589. * interrupted by a kill signal. The timeout is in jiffies.
  3590. */
  3591. unsigned long __sched
  3592. wait_for_completion_killable_timeout(struct completion *x,
  3593. unsigned long timeout)
  3594. {
  3595. return wait_for_common(x, timeout, TASK_KILLABLE);
  3596. }
  3597. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3598. /**
  3599. * try_wait_for_completion - try to decrement a completion without blocking
  3600. * @x: completion structure
  3601. *
  3602. * Returns: 0 if a decrement cannot be done without blocking
  3603. * 1 if a decrement succeeded.
  3604. *
  3605. * If a completion is being used as a counting completion,
  3606. * attempt to decrement the counter without blocking. This
  3607. * enables us to avoid waiting if the resource the completion
  3608. * is protecting is not available.
  3609. */
  3610. bool try_wait_for_completion(struct completion *x)
  3611. {
  3612. unsigned long flags;
  3613. int ret = 1;
  3614. spin_lock_irqsave(&x->wait.lock, flags);
  3615. if (!x->done)
  3616. ret = 0;
  3617. else
  3618. x->done--;
  3619. spin_unlock_irqrestore(&x->wait.lock, flags);
  3620. return ret;
  3621. }
  3622. EXPORT_SYMBOL(try_wait_for_completion);
  3623. /**
  3624. * completion_done - Test to see if a completion has any waiters
  3625. * @x: completion structure
  3626. *
  3627. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3628. * 1 if there are no waiters.
  3629. *
  3630. */
  3631. bool completion_done(struct completion *x)
  3632. {
  3633. unsigned long flags;
  3634. int ret = 1;
  3635. spin_lock_irqsave(&x->wait.lock, flags);
  3636. if (!x->done)
  3637. ret = 0;
  3638. spin_unlock_irqrestore(&x->wait.lock, flags);
  3639. return ret;
  3640. }
  3641. EXPORT_SYMBOL(completion_done);
  3642. static long __sched
  3643. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3644. {
  3645. unsigned long flags;
  3646. wait_queue_t wait;
  3647. init_waitqueue_entry(&wait, current);
  3648. __set_current_state(state);
  3649. spin_lock_irqsave(&q->lock, flags);
  3650. __add_wait_queue(q, &wait);
  3651. spin_unlock(&q->lock);
  3652. timeout = schedule_timeout(timeout);
  3653. spin_lock_irq(&q->lock);
  3654. __remove_wait_queue(q, &wait);
  3655. spin_unlock_irqrestore(&q->lock, flags);
  3656. return timeout;
  3657. }
  3658. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3659. {
  3660. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3661. }
  3662. EXPORT_SYMBOL(interruptible_sleep_on);
  3663. long __sched
  3664. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3665. {
  3666. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3667. }
  3668. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3669. void __sched sleep_on(wait_queue_head_t *q)
  3670. {
  3671. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3672. }
  3673. EXPORT_SYMBOL(sleep_on);
  3674. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3675. {
  3676. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3677. }
  3678. EXPORT_SYMBOL(sleep_on_timeout);
  3679. #ifdef CONFIG_RT_MUTEXES
  3680. /*
  3681. * rt_mutex_setprio - set the current priority of a task
  3682. * @p: task
  3683. * @prio: prio value (kernel-internal form)
  3684. *
  3685. * This function changes the 'effective' priority of a task. It does
  3686. * not touch ->normal_prio like __setscheduler().
  3687. *
  3688. * Used by the rt_mutex code to implement priority inheritance logic.
  3689. */
  3690. void rt_mutex_setprio(struct task_struct *p, int prio)
  3691. {
  3692. unsigned long flags;
  3693. int oldprio, on_rq, running;
  3694. struct rq *rq;
  3695. const struct sched_class *prev_class;
  3696. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3697. rq = task_rq_lock(p, &flags);
  3698. trace_sched_pi_setprio(p, prio);
  3699. oldprio = p->prio;
  3700. prev_class = p->sched_class;
  3701. on_rq = p->se.on_rq;
  3702. running = task_current(rq, p);
  3703. if (on_rq)
  3704. dequeue_task(rq, p, 0);
  3705. if (running)
  3706. p->sched_class->put_prev_task(rq, p);
  3707. if (rt_prio(prio))
  3708. p->sched_class = &rt_sched_class;
  3709. else
  3710. p->sched_class = &fair_sched_class;
  3711. p->prio = prio;
  3712. if (running)
  3713. p->sched_class->set_curr_task(rq);
  3714. if (on_rq) {
  3715. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3716. check_class_changed(rq, p, prev_class, oldprio, running);
  3717. }
  3718. task_rq_unlock(rq, &flags);
  3719. }
  3720. #endif
  3721. void set_user_nice(struct task_struct *p, long nice)
  3722. {
  3723. int old_prio, delta, on_rq;
  3724. unsigned long flags;
  3725. struct rq *rq;
  3726. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3727. return;
  3728. /*
  3729. * We have to be careful, if called from sys_setpriority(),
  3730. * the task might be in the middle of scheduling on another CPU.
  3731. */
  3732. rq = task_rq_lock(p, &flags);
  3733. /*
  3734. * The RT priorities are set via sched_setscheduler(), but we still
  3735. * allow the 'normal' nice value to be set - but as expected
  3736. * it wont have any effect on scheduling until the task is
  3737. * SCHED_FIFO/SCHED_RR:
  3738. */
  3739. if (task_has_rt_policy(p)) {
  3740. p->static_prio = NICE_TO_PRIO(nice);
  3741. goto out_unlock;
  3742. }
  3743. on_rq = p->se.on_rq;
  3744. if (on_rq)
  3745. dequeue_task(rq, p, 0);
  3746. p->static_prio = NICE_TO_PRIO(nice);
  3747. set_load_weight(p);
  3748. old_prio = p->prio;
  3749. p->prio = effective_prio(p);
  3750. delta = p->prio - old_prio;
  3751. if (on_rq) {
  3752. enqueue_task(rq, p, 0);
  3753. /*
  3754. * If the task increased its priority or is running and
  3755. * lowered its priority, then reschedule its CPU:
  3756. */
  3757. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3758. resched_task(rq->curr);
  3759. }
  3760. out_unlock:
  3761. task_rq_unlock(rq, &flags);
  3762. }
  3763. EXPORT_SYMBOL(set_user_nice);
  3764. /*
  3765. * can_nice - check if a task can reduce its nice value
  3766. * @p: task
  3767. * @nice: nice value
  3768. */
  3769. int can_nice(const struct task_struct *p, const int nice)
  3770. {
  3771. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3772. int nice_rlim = 20 - nice;
  3773. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3774. capable(CAP_SYS_NICE));
  3775. }
  3776. #ifdef __ARCH_WANT_SYS_NICE
  3777. /*
  3778. * sys_nice - change the priority of the current process.
  3779. * @increment: priority increment
  3780. *
  3781. * sys_setpriority is a more generic, but much slower function that
  3782. * does similar things.
  3783. */
  3784. SYSCALL_DEFINE1(nice, int, increment)
  3785. {
  3786. long nice, retval;
  3787. /*
  3788. * Setpriority might change our priority at the same moment.
  3789. * We don't have to worry. Conceptually one call occurs first
  3790. * and we have a single winner.
  3791. */
  3792. if (increment < -40)
  3793. increment = -40;
  3794. if (increment > 40)
  3795. increment = 40;
  3796. nice = TASK_NICE(current) + increment;
  3797. if (nice < -20)
  3798. nice = -20;
  3799. if (nice > 19)
  3800. nice = 19;
  3801. if (increment < 0 && !can_nice(current, nice))
  3802. return -EPERM;
  3803. retval = security_task_setnice(current, nice);
  3804. if (retval)
  3805. return retval;
  3806. set_user_nice(current, nice);
  3807. return 0;
  3808. }
  3809. #endif
  3810. /**
  3811. * task_prio - return the priority value of a given task.
  3812. * @p: the task in question.
  3813. *
  3814. * This is the priority value as seen by users in /proc.
  3815. * RT tasks are offset by -200. Normal tasks are centered
  3816. * around 0, value goes from -16 to +15.
  3817. */
  3818. int task_prio(const struct task_struct *p)
  3819. {
  3820. return p->prio - MAX_RT_PRIO;
  3821. }
  3822. /**
  3823. * task_nice - return the nice value of a given task.
  3824. * @p: the task in question.
  3825. */
  3826. int task_nice(const struct task_struct *p)
  3827. {
  3828. return TASK_NICE(p);
  3829. }
  3830. EXPORT_SYMBOL(task_nice);
  3831. /**
  3832. * idle_cpu - is a given cpu idle currently?
  3833. * @cpu: the processor in question.
  3834. */
  3835. int idle_cpu(int cpu)
  3836. {
  3837. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3838. }
  3839. /**
  3840. * idle_task - return the idle task for a given cpu.
  3841. * @cpu: the processor in question.
  3842. */
  3843. struct task_struct *idle_task(int cpu)
  3844. {
  3845. return cpu_rq(cpu)->idle;
  3846. }
  3847. /**
  3848. * find_process_by_pid - find a process with a matching PID value.
  3849. * @pid: the pid in question.
  3850. */
  3851. static struct task_struct *find_process_by_pid(pid_t pid)
  3852. {
  3853. return pid ? find_task_by_vpid(pid) : current;
  3854. }
  3855. /* Actually do priority change: must hold rq lock. */
  3856. static void
  3857. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3858. {
  3859. BUG_ON(p->se.on_rq);
  3860. p->policy = policy;
  3861. p->rt_priority = prio;
  3862. p->normal_prio = normal_prio(p);
  3863. /* we are holding p->pi_lock already */
  3864. p->prio = rt_mutex_getprio(p);
  3865. if (rt_prio(p->prio))
  3866. p->sched_class = &rt_sched_class;
  3867. else
  3868. p->sched_class = &fair_sched_class;
  3869. set_load_weight(p);
  3870. }
  3871. /*
  3872. * check the target process has a UID that matches the current process's
  3873. */
  3874. static bool check_same_owner(struct task_struct *p)
  3875. {
  3876. const struct cred *cred = current_cred(), *pcred;
  3877. bool match;
  3878. rcu_read_lock();
  3879. pcred = __task_cred(p);
  3880. match = (cred->euid == pcred->euid ||
  3881. cred->euid == pcred->uid);
  3882. rcu_read_unlock();
  3883. return match;
  3884. }
  3885. static int __sched_setscheduler(struct task_struct *p, int policy,
  3886. const struct sched_param *param, bool user)
  3887. {
  3888. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3889. unsigned long flags;
  3890. const struct sched_class *prev_class;
  3891. struct rq *rq;
  3892. int reset_on_fork;
  3893. /* may grab non-irq protected spin_locks */
  3894. BUG_ON(in_interrupt());
  3895. recheck:
  3896. /* double check policy once rq lock held */
  3897. if (policy < 0) {
  3898. reset_on_fork = p->sched_reset_on_fork;
  3899. policy = oldpolicy = p->policy;
  3900. } else {
  3901. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3902. policy &= ~SCHED_RESET_ON_FORK;
  3903. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3904. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3905. policy != SCHED_IDLE)
  3906. return -EINVAL;
  3907. }
  3908. /*
  3909. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3910. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3911. * SCHED_BATCH and SCHED_IDLE is 0.
  3912. */
  3913. if (param->sched_priority < 0 ||
  3914. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3915. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3916. return -EINVAL;
  3917. if (rt_policy(policy) != (param->sched_priority != 0))
  3918. return -EINVAL;
  3919. /*
  3920. * Allow unprivileged RT tasks to decrease priority:
  3921. */
  3922. if (user && !capable(CAP_SYS_NICE)) {
  3923. if (rt_policy(policy)) {
  3924. unsigned long rlim_rtprio =
  3925. task_rlimit(p, RLIMIT_RTPRIO);
  3926. /* can't set/change the rt policy */
  3927. if (policy != p->policy && !rlim_rtprio)
  3928. return -EPERM;
  3929. /* can't increase priority */
  3930. if (param->sched_priority > p->rt_priority &&
  3931. param->sched_priority > rlim_rtprio)
  3932. return -EPERM;
  3933. }
  3934. /*
  3935. * Like positive nice levels, dont allow tasks to
  3936. * move out of SCHED_IDLE either:
  3937. */
  3938. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3939. return -EPERM;
  3940. /* can't change other user's priorities */
  3941. if (!check_same_owner(p))
  3942. return -EPERM;
  3943. /* Normal users shall not reset the sched_reset_on_fork flag */
  3944. if (p->sched_reset_on_fork && !reset_on_fork)
  3945. return -EPERM;
  3946. }
  3947. if (user) {
  3948. retval = security_task_setscheduler(p);
  3949. if (retval)
  3950. return retval;
  3951. }
  3952. /*
  3953. * make sure no PI-waiters arrive (or leave) while we are
  3954. * changing the priority of the task:
  3955. */
  3956. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3957. /*
  3958. * To be able to change p->policy safely, the apropriate
  3959. * runqueue lock must be held.
  3960. */
  3961. rq = __task_rq_lock(p);
  3962. /*
  3963. * Changing the policy of the stop threads its a very bad idea
  3964. */
  3965. if (p == rq->stop) {
  3966. __task_rq_unlock(rq);
  3967. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3968. return -EINVAL;
  3969. }
  3970. #ifdef CONFIG_RT_GROUP_SCHED
  3971. if (user) {
  3972. /*
  3973. * Do not allow realtime tasks into groups that have no runtime
  3974. * assigned.
  3975. */
  3976. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3977. task_group(p)->rt_bandwidth.rt_runtime == 0) {
  3978. __task_rq_unlock(rq);
  3979. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3980. return -EPERM;
  3981. }
  3982. }
  3983. #endif
  3984. /* recheck policy now with rq lock held */
  3985. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3986. policy = oldpolicy = -1;
  3987. __task_rq_unlock(rq);
  3988. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3989. goto recheck;
  3990. }
  3991. on_rq = p->se.on_rq;
  3992. running = task_current(rq, p);
  3993. if (on_rq)
  3994. deactivate_task(rq, p, 0);
  3995. if (running)
  3996. p->sched_class->put_prev_task(rq, p);
  3997. p->sched_reset_on_fork = reset_on_fork;
  3998. oldprio = p->prio;
  3999. prev_class = p->sched_class;
  4000. __setscheduler(rq, p, policy, param->sched_priority);
  4001. if (running)
  4002. p->sched_class->set_curr_task(rq);
  4003. if (on_rq) {
  4004. activate_task(rq, p, 0);
  4005. check_class_changed(rq, p, prev_class, oldprio, running);
  4006. }
  4007. __task_rq_unlock(rq);
  4008. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4009. rt_mutex_adjust_pi(p);
  4010. return 0;
  4011. }
  4012. /**
  4013. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4014. * @p: the task in question.
  4015. * @policy: new policy.
  4016. * @param: structure containing the new RT priority.
  4017. *
  4018. * NOTE that the task may be already dead.
  4019. */
  4020. int sched_setscheduler(struct task_struct *p, int policy,
  4021. const struct sched_param *param)
  4022. {
  4023. return __sched_setscheduler(p, policy, param, true);
  4024. }
  4025. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4026. /**
  4027. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4028. * @p: the task in question.
  4029. * @policy: new policy.
  4030. * @param: structure containing the new RT priority.
  4031. *
  4032. * Just like sched_setscheduler, only don't bother checking if the
  4033. * current context has permission. For example, this is needed in
  4034. * stop_machine(): we create temporary high priority worker threads,
  4035. * but our caller might not have that capability.
  4036. */
  4037. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4038. const struct sched_param *param)
  4039. {
  4040. return __sched_setscheduler(p, policy, param, false);
  4041. }
  4042. static int
  4043. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4044. {
  4045. struct sched_param lparam;
  4046. struct task_struct *p;
  4047. int retval;
  4048. if (!param || pid < 0)
  4049. return -EINVAL;
  4050. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4051. return -EFAULT;
  4052. rcu_read_lock();
  4053. retval = -ESRCH;
  4054. p = find_process_by_pid(pid);
  4055. if (p != NULL)
  4056. retval = sched_setscheduler(p, policy, &lparam);
  4057. rcu_read_unlock();
  4058. return retval;
  4059. }
  4060. /**
  4061. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4062. * @pid: the pid in question.
  4063. * @policy: new policy.
  4064. * @param: structure containing the new RT priority.
  4065. */
  4066. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4067. struct sched_param __user *, param)
  4068. {
  4069. /* negative values for policy are not valid */
  4070. if (policy < 0)
  4071. return -EINVAL;
  4072. return do_sched_setscheduler(pid, policy, param);
  4073. }
  4074. /**
  4075. * sys_sched_setparam - set/change the RT priority of a thread
  4076. * @pid: the pid in question.
  4077. * @param: structure containing the new RT priority.
  4078. */
  4079. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4080. {
  4081. return do_sched_setscheduler(pid, -1, param);
  4082. }
  4083. /**
  4084. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4085. * @pid: the pid in question.
  4086. */
  4087. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4088. {
  4089. struct task_struct *p;
  4090. int retval;
  4091. if (pid < 0)
  4092. return -EINVAL;
  4093. retval = -ESRCH;
  4094. rcu_read_lock();
  4095. p = find_process_by_pid(pid);
  4096. if (p) {
  4097. retval = security_task_getscheduler(p);
  4098. if (!retval)
  4099. retval = p->policy
  4100. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4101. }
  4102. rcu_read_unlock();
  4103. return retval;
  4104. }
  4105. /**
  4106. * sys_sched_getparam - get the RT priority of a thread
  4107. * @pid: the pid in question.
  4108. * @param: structure containing the RT priority.
  4109. */
  4110. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4111. {
  4112. struct sched_param lp;
  4113. struct task_struct *p;
  4114. int retval;
  4115. if (!param || pid < 0)
  4116. return -EINVAL;
  4117. rcu_read_lock();
  4118. p = find_process_by_pid(pid);
  4119. retval = -ESRCH;
  4120. if (!p)
  4121. goto out_unlock;
  4122. retval = security_task_getscheduler(p);
  4123. if (retval)
  4124. goto out_unlock;
  4125. lp.sched_priority = p->rt_priority;
  4126. rcu_read_unlock();
  4127. /*
  4128. * This one might sleep, we cannot do it with a spinlock held ...
  4129. */
  4130. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4131. return retval;
  4132. out_unlock:
  4133. rcu_read_unlock();
  4134. return retval;
  4135. }
  4136. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4137. {
  4138. cpumask_var_t cpus_allowed, new_mask;
  4139. struct task_struct *p;
  4140. int retval;
  4141. get_online_cpus();
  4142. rcu_read_lock();
  4143. p = find_process_by_pid(pid);
  4144. if (!p) {
  4145. rcu_read_unlock();
  4146. put_online_cpus();
  4147. return -ESRCH;
  4148. }
  4149. /* Prevent p going away */
  4150. get_task_struct(p);
  4151. rcu_read_unlock();
  4152. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4153. retval = -ENOMEM;
  4154. goto out_put_task;
  4155. }
  4156. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4157. retval = -ENOMEM;
  4158. goto out_free_cpus_allowed;
  4159. }
  4160. retval = -EPERM;
  4161. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4162. goto out_unlock;
  4163. retval = security_task_setscheduler(p);
  4164. if (retval)
  4165. goto out_unlock;
  4166. cpuset_cpus_allowed(p, cpus_allowed);
  4167. cpumask_and(new_mask, in_mask, cpus_allowed);
  4168. again:
  4169. retval = set_cpus_allowed_ptr(p, new_mask);
  4170. if (!retval) {
  4171. cpuset_cpus_allowed(p, cpus_allowed);
  4172. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4173. /*
  4174. * We must have raced with a concurrent cpuset
  4175. * update. Just reset the cpus_allowed to the
  4176. * cpuset's cpus_allowed
  4177. */
  4178. cpumask_copy(new_mask, cpus_allowed);
  4179. goto again;
  4180. }
  4181. }
  4182. out_unlock:
  4183. free_cpumask_var(new_mask);
  4184. out_free_cpus_allowed:
  4185. free_cpumask_var(cpus_allowed);
  4186. out_put_task:
  4187. put_task_struct(p);
  4188. put_online_cpus();
  4189. return retval;
  4190. }
  4191. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4192. struct cpumask *new_mask)
  4193. {
  4194. if (len < cpumask_size())
  4195. cpumask_clear(new_mask);
  4196. else if (len > cpumask_size())
  4197. len = cpumask_size();
  4198. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4199. }
  4200. /**
  4201. * sys_sched_setaffinity - set the cpu affinity of a process
  4202. * @pid: pid of the process
  4203. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4204. * @user_mask_ptr: user-space pointer to the new cpu mask
  4205. */
  4206. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4207. unsigned long __user *, user_mask_ptr)
  4208. {
  4209. cpumask_var_t new_mask;
  4210. int retval;
  4211. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4212. return -ENOMEM;
  4213. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4214. if (retval == 0)
  4215. retval = sched_setaffinity(pid, new_mask);
  4216. free_cpumask_var(new_mask);
  4217. return retval;
  4218. }
  4219. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4220. {
  4221. struct task_struct *p;
  4222. unsigned long flags;
  4223. struct rq *rq;
  4224. int retval;
  4225. get_online_cpus();
  4226. rcu_read_lock();
  4227. retval = -ESRCH;
  4228. p = find_process_by_pid(pid);
  4229. if (!p)
  4230. goto out_unlock;
  4231. retval = security_task_getscheduler(p);
  4232. if (retval)
  4233. goto out_unlock;
  4234. rq = task_rq_lock(p, &flags);
  4235. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4236. task_rq_unlock(rq, &flags);
  4237. out_unlock:
  4238. rcu_read_unlock();
  4239. put_online_cpus();
  4240. return retval;
  4241. }
  4242. /**
  4243. * sys_sched_getaffinity - get the cpu affinity of a process
  4244. * @pid: pid of the process
  4245. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4246. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4247. */
  4248. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4249. unsigned long __user *, user_mask_ptr)
  4250. {
  4251. int ret;
  4252. cpumask_var_t mask;
  4253. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4254. return -EINVAL;
  4255. if (len & (sizeof(unsigned long)-1))
  4256. return -EINVAL;
  4257. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4258. return -ENOMEM;
  4259. ret = sched_getaffinity(pid, mask);
  4260. if (ret == 0) {
  4261. size_t retlen = min_t(size_t, len, cpumask_size());
  4262. if (copy_to_user(user_mask_ptr, mask, retlen))
  4263. ret = -EFAULT;
  4264. else
  4265. ret = retlen;
  4266. }
  4267. free_cpumask_var(mask);
  4268. return ret;
  4269. }
  4270. /**
  4271. * sys_sched_yield - yield the current processor to other threads.
  4272. *
  4273. * This function yields the current CPU to other tasks. If there are no
  4274. * other threads running on this CPU then this function will return.
  4275. */
  4276. SYSCALL_DEFINE0(sched_yield)
  4277. {
  4278. struct rq *rq = this_rq_lock();
  4279. schedstat_inc(rq, yld_count);
  4280. current->sched_class->yield_task(rq);
  4281. /*
  4282. * Since we are going to call schedule() anyway, there's
  4283. * no need to preempt or enable interrupts:
  4284. */
  4285. __release(rq->lock);
  4286. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4287. do_raw_spin_unlock(&rq->lock);
  4288. preempt_enable_no_resched();
  4289. schedule();
  4290. return 0;
  4291. }
  4292. static inline int should_resched(void)
  4293. {
  4294. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4295. }
  4296. static void __cond_resched(void)
  4297. {
  4298. add_preempt_count(PREEMPT_ACTIVE);
  4299. schedule();
  4300. sub_preempt_count(PREEMPT_ACTIVE);
  4301. }
  4302. int __sched _cond_resched(void)
  4303. {
  4304. if (should_resched()) {
  4305. __cond_resched();
  4306. return 1;
  4307. }
  4308. return 0;
  4309. }
  4310. EXPORT_SYMBOL(_cond_resched);
  4311. /*
  4312. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4313. * call schedule, and on return reacquire the lock.
  4314. *
  4315. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4316. * operations here to prevent schedule() from being called twice (once via
  4317. * spin_unlock(), once by hand).
  4318. */
  4319. int __cond_resched_lock(spinlock_t *lock)
  4320. {
  4321. int resched = should_resched();
  4322. int ret = 0;
  4323. lockdep_assert_held(lock);
  4324. if (spin_needbreak(lock) || resched) {
  4325. spin_unlock(lock);
  4326. if (resched)
  4327. __cond_resched();
  4328. else
  4329. cpu_relax();
  4330. ret = 1;
  4331. spin_lock(lock);
  4332. }
  4333. return ret;
  4334. }
  4335. EXPORT_SYMBOL(__cond_resched_lock);
  4336. int __sched __cond_resched_softirq(void)
  4337. {
  4338. BUG_ON(!in_softirq());
  4339. if (should_resched()) {
  4340. local_bh_enable();
  4341. __cond_resched();
  4342. local_bh_disable();
  4343. return 1;
  4344. }
  4345. return 0;
  4346. }
  4347. EXPORT_SYMBOL(__cond_resched_softirq);
  4348. /**
  4349. * yield - yield the current processor to other threads.
  4350. *
  4351. * This is a shortcut for kernel-space yielding - it marks the
  4352. * thread runnable and calls sys_sched_yield().
  4353. */
  4354. void __sched yield(void)
  4355. {
  4356. set_current_state(TASK_RUNNING);
  4357. sys_sched_yield();
  4358. }
  4359. EXPORT_SYMBOL(yield);
  4360. /*
  4361. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4362. * that process accounting knows that this is a task in IO wait state.
  4363. */
  4364. void __sched io_schedule(void)
  4365. {
  4366. struct rq *rq = raw_rq();
  4367. delayacct_blkio_start();
  4368. atomic_inc(&rq->nr_iowait);
  4369. current->in_iowait = 1;
  4370. schedule();
  4371. current->in_iowait = 0;
  4372. atomic_dec(&rq->nr_iowait);
  4373. delayacct_blkio_end();
  4374. }
  4375. EXPORT_SYMBOL(io_schedule);
  4376. long __sched io_schedule_timeout(long timeout)
  4377. {
  4378. struct rq *rq = raw_rq();
  4379. long ret;
  4380. delayacct_blkio_start();
  4381. atomic_inc(&rq->nr_iowait);
  4382. current->in_iowait = 1;
  4383. ret = schedule_timeout(timeout);
  4384. current->in_iowait = 0;
  4385. atomic_dec(&rq->nr_iowait);
  4386. delayacct_blkio_end();
  4387. return ret;
  4388. }
  4389. /**
  4390. * sys_sched_get_priority_max - return maximum RT priority.
  4391. * @policy: scheduling class.
  4392. *
  4393. * this syscall returns the maximum rt_priority that can be used
  4394. * by a given scheduling class.
  4395. */
  4396. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4397. {
  4398. int ret = -EINVAL;
  4399. switch (policy) {
  4400. case SCHED_FIFO:
  4401. case SCHED_RR:
  4402. ret = MAX_USER_RT_PRIO-1;
  4403. break;
  4404. case SCHED_NORMAL:
  4405. case SCHED_BATCH:
  4406. case SCHED_IDLE:
  4407. ret = 0;
  4408. break;
  4409. }
  4410. return ret;
  4411. }
  4412. /**
  4413. * sys_sched_get_priority_min - return minimum RT priority.
  4414. * @policy: scheduling class.
  4415. *
  4416. * this syscall returns the minimum rt_priority that can be used
  4417. * by a given scheduling class.
  4418. */
  4419. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4420. {
  4421. int ret = -EINVAL;
  4422. switch (policy) {
  4423. case SCHED_FIFO:
  4424. case SCHED_RR:
  4425. ret = 1;
  4426. break;
  4427. case SCHED_NORMAL:
  4428. case SCHED_BATCH:
  4429. case SCHED_IDLE:
  4430. ret = 0;
  4431. }
  4432. return ret;
  4433. }
  4434. /**
  4435. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4436. * @pid: pid of the process.
  4437. * @interval: userspace pointer to the timeslice value.
  4438. *
  4439. * this syscall writes the default timeslice value of a given process
  4440. * into the user-space timespec buffer. A value of '0' means infinity.
  4441. */
  4442. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4443. struct timespec __user *, interval)
  4444. {
  4445. struct task_struct *p;
  4446. unsigned int time_slice;
  4447. unsigned long flags;
  4448. struct rq *rq;
  4449. int retval;
  4450. struct timespec t;
  4451. if (pid < 0)
  4452. return -EINVAL;
  4453. retval = -ESRCH;
  4454. rcu_read_lock();
  4455. p = find_process_by_pid(pid);
  4456. if (!p)
  4457. goto out_unlock;
  4458. retval = security_task_getscheduler(p);
  4459. if (retval)
  4460. goto out_unlock;
  4461. rq = task_rq_lock(p, &flags);
  4462. time_slice = p->sched_class->get_rr_interval(rq, p);
  4463. task_rq_unlock(rq, &flags);
  4464. rcu_read_unlock();
  4465. jiffies_to_timespec(time_slice, &t);
  4466. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4467. return retval;
  4468. out_unlock:
  4469. rcu_read_unlock();
  4470. return retval;
  4471. }
  4472. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4473. void sched_show_task(struct task_struct *p)
  4474. {
  4475. unsigned long free = 0;
  4476. unsigned state;
  4477. state = p->state ? __ffs(p->state) + 1 : 0;
  4478. printk(KERN_INFO "%-15.15s %c", p->comm,
  4479. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4480. #if BITS_PER_LONG == 32
  4481. if (state == TASK_RUNNING)
  4482. printk(KERN_CONT " running ");
  4483. else
  4484. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4485. #else
  4486. if (state == TASK_RUNNING)
  4487. printk(KERN_CONT " running task ");
  4488. else
  4489. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4490. #endif
  4491. #ifdef CONFIG_DEBUG_STACK_USAGE
  4492. free = stack_not_used(p);
  4493. #endif
  4494. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4495. task_pid_nr(p), task_pid_nr(p->real_parent),
  4496. (unsigned long)task_thread_info(p)->flags);
  4497. show_stack(p, NULL);
  4498. }
  4499. void show_state_filter(unsigned long state_filter)
  4500. {
  4501. struct task_struct *g, *p;
  4502. #if BITS_PER_LONG == 32
  4503. printk(KERN_INFO
  4504. " task PC stack pid father\n");
  4505. #else
  4506. printk(KERN_INFO
  4507. " task PC stack pid father\n");
  4508. #endif
  4509. read_lock(&tasklist_lock);
  4510. do_each_thread(g, p) {
  4511. /*
  4512. * reset the NMI-timeout, listing all files on a slow
  4513. * console might take alot of time:
  4514. */
  4515. touch_nmi_watchdog();
  4516. if (!state_filter || (p->state & state_filter))
  4517. sched_show_task(p);
  4518. } while_each_thread(g, p);
  4519. touch_all_softlockup_watchdogs();
  4520. #ifdef CONFIG_SCHED_DEBUG
  4521. sysrq_sched_debug_show();
  4522. #endif
  4523. read_unlock(&tasklist_lock);
  4524. /*
  4525. * Only show locks if all tasks are dumped:
  4526. */
  4527. if (!state_filter)
  4528. debug_show_all_locks();
  4529. }
  4530. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4531. {
  4532. idle->sched_class = &idle_sched_class;
  4533. }
  4534. /**
  4535. * init_idle - set up an idle thread for a given CPU
  4536. * @idle: task in question
  4537. * @cpu: cpu the idle task belongs to
  4538. *
  4539. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4540. * flag, to make booting more robust.
  4541. */
  4542. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4543. {
  4544. struct rq *rq = cpu_rq(cpu);
  4545. unsigned long flags;
  4546. raw_spin_lock_irqsave(&rq->lock, flags);
  4547. __sched_fork(idle);
  4548. idle->state = TASK_RUNNING;
  4549. idle->se.exec_start = sched_clock();
  4550. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4551. /*
  4552. * We're having a chicken and egg problem, even though we are
  4553. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4554. * lockdep check in task_group() will fail.
  4555. *
  4556. * Similar case to sched_fork(). / Alternatively we could
  4557. * use task_rq_lock() here and obtain the other rq->lock.
  4558. *
  4559. * Silence PROVE_RCU
  4560. */
  4561. rcu_read_lock();
  4562. __set_task_cpu(idle, cpu);
  4563. rcu_read_unlock();
  4564. rq->curr = rq->idle = idle;
  4565. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4566. idle->oncpu = 1;
  4567. #endif
  4568. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4569. /* Set the preempt count _outside_ the spinlocks! */
  4570. #if defined(CONFIG_PREEMPT)
  4571. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4572. #else
  4573. task_thread_info(idle)->preempt_count = 0;
  4574. #endif
  4575. /*
  4576. * The idle tasks have their own, simple scheduling class:
  4577. */
  4578. idle->sched_class = &idle_sched_class;
  4579. ftrace_graph_init_task(idle);
  4580. }
  4581. /*
  4582. * In a system that switches off the HZ timer nohz_cpu_mask
  4583. * indicates which cpus entered this state. This is used
  4584. * in the rcu update to wait only for active cpus. For system
  4585. * which do not switch off the HZ timer nohz_cpu_mask should
  4586. * always be CPU_BITS_NONE.
  4587. */
  4588. cpumask_var_t nohz_cpu_mask;
  4589. /*
  4590. * Increase the granularity value when there are more CPUs,
  4591. * because with more CPUs the 'effective latency' as visible
  4592. * to users decreases. But the relationship is not linear,
  4593. * so pick a second-best guess by going with the log2 of the
  4594. * number of CPUs.
  4595. *
  4596. * This idea comes from the SD scheduler of Con Kolivas:
  4597. */
  4598. static int get_update_sysctl_factor(void)
  4599. {
  4600. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4601. unsigned int factor;
  4602. switch (sysctl_sched_tunable_scaling) {
  4603. case SCHED_TUNABLESCALING_NONE:
  4604. factor = 1;
  4605. break;
  4606. case SCHED_TUNABLESCALING_LINEAR:
  4607. factor = cpus;
  4608. break;
  4609. case SCHED_TUNABLESCALING_LOG:
  4610. default:
  4611. factor = 1 + ilog2(cpus);
  4612. break;
  4613. }
  4614. return factor;
  4615. }
  4616. static void update_sysctl(void)
  4617. {
  4618. unsigned int factor = get_update_sysctl_factor();
  4619. #define SET_SYSCTL(name) \
  4620. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4621. SET_SYSCTL(sched_min_granularity);
  4622. SET_SYSCTL(sched_latency);
  4623. SET_SYSCTL(sched_wakeup_granularity);
  4624. #undef SET_SYSCTL
  4625. }
  4626. static inline void sched_init_granularity(void)
  4627. {
  4628. update_sysctl();
  4629. }
  4630. #ifdef CONFIG_SMP
  4631. /*
  4632. * This is how migration works:
  4633. *
  4634. * 1) we invoke migration_cpu_stop() on the target CPU using
  4635. * stop_one_cpu().
  4636. * 2) stopper starts to run (implicitly forcing the migrated thread
  4637. * off the CPU)
  4638. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4639. * 4) if it's in the wrong runqueue then the migration thread removes
  4640. * it and puts it into the right queue.
  4641. * 5) stopper completes and stop_one_cpu() returns and the migration
  4642. * is done.
  4643. */
  4644. /*
  4645. * Change a given task's CPU affinity. Migrate the thread to a
  4646. * proper CPU and schedule it away if the CPU it's executing on
  4647. * is removed from the allowed bitmask.
  4648. *
  4649. * NOTE: the caller must have a valid reference to the task, the
  4650. * task must not exit() & deallocate itself prematurely. The
  4651. * call is not atomic; no spinlocks may be held.
  4652. */
  4653. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4654. {
  4655. unsigned long flags;
  4656. struct rq *rq;
  4657. unsigned int dest_cpu;
  4658. int ret = 0;
  4659. /*
  4660. * Serialize against TASK_WAKING so that ttwu() and wunt() can
  4661. * drop the rq->lock and still rely on ->cpus_allowed.
  4662. */
  4663. again:
  4664. while (task_is_waking(p))
  4665. cpu_relax();
  4666. rq = task_rq_lock(p, &flags);
  4667. if (task_is_waking(p)) {
  4668. task_rq_unlock(rq, &flags);
  4669. goto again;
  4670. }
  4671. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4672. ret = -EINVAL;
  4673. goto out;
  4674. }
  4675. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4676. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  4677. ret = -EINVAL;
  4678. goto out;
  4679. }
  4680. if (p->sched_class->set_cpus_allowed)
  4681. p->sched_class->set_cpus_allowed(p, new_mask);
  4682. else {
  4683. cpumask_copy(&p->cpus_allowed, new_mask);
  4684. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4685. }
  4686. /* Can the task run on the task's current CPU? If so, we're done */
  4687. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4688. goto out;
  4689. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4690. if (migrate_task(p, rq)) {
  4691. struct migration_arg arg = { p, dest_cpu };
  4692. /* Need help from migration thread: drop lock and wait. */
  4693. task_rq_unlock(rq, &flags);
  4694. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4695. tlb_migrate_finish(p->mm);
  4696. return 0;
  4697. }
  4698. out:
  4699. task_rq_unlock(rq, &flags);
  4700. return ret;
  4701. }
  4702. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4703. /*
  4704. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4705. * this because either it can't run here any more (set_cpus_allowed()
  4706. * away from this CPU, or CPU going down), or because we're
  4707. * attempting to rebalance this task on exec (sched_exec).
  4708. *
  4709. * So we race with normal scheduler movements, but that's OK, as long
  4710. * as the task is no longer on this CPU.
  4711. *
  4712. * Returns non-zero if task was successfully migrated.
  4713. */
  4714. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4715. {
  4716. struct rq *rq_dest, *rq_src;
  4717. int ret = 0;
  4718. if (unlikely(!cpu_active(dest_cpu)))
  4719. return ret;
  4720. rq_src = cpu_rq(src_cpu);
  4721. rq_dest = cpu_rq(dest_cpu);
  4722. double_rq_lock(rq_src, rq_dest);
  4723. /* Already moved. */
  4724. if (task_cpu(p) != src_cpu)
  4725. goto done;
  4726. /* Affinity changed (again). */
  4727. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  4728. goto fail;
  4729. /*
  4730. * If we're not on a rq, the next wake-up will ensure we're
  4731. * placed properly.
  4732. */
  4733. if (p->se.on_rq) {
  4734. deactivate_task(rq_src, p, 0);
  4735. set_task_cpu(p, dest_cpu);
  4736. activate_task(rq_dest, p, 0);
  4737. check_preempt_curr(rq_dest, p, 0);
  4738. }
  4739. done:
  4740. ret = 1;
  4741. fail:
  4742. double_rq_unlock(rq_src, rq_dest);
  4743. return ret;
  4744. }
  4745. /*
  4746. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4747. * and performs thread migration by bumping thread off CPU then
  4748. * 'pushing' onto another runqueue.
  4749. */
  4750. static int migration_cpu_stop(void *data)
  4751. {
  4752. struct migration_arg *arg = data;
  4753. /*
  4754. * The original target cpu might have gone down and we might
  4755. * be on another cpu but it doesn't matter.
  4756. */
  4757. local_irq_disable();
  4758. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4759. local_irq_enable();
  4760. return 0;
  4761. }
  4762. #ifdef CONFIG_HOTPLUG_CPU
  4763. /*
  4764. * Ensures that the idle task is using init_mm right before its cpu goes
  4765. * offline.
  4766. */
  4767. void idle_task_exit(void)
  4768. {
  4769. struct mm_struct *mm = current->active_mm;
  4770. BUG_ON(cpu_online(smp_processor_id()));
  4771. if (mm != &init_mm)
  4772. switch_mm(mm, &init_mm, current);
  4773. mmdrop(mm);
  4774. }
  4775. /*
  4776. * While a dead CPU has no uninterruptible tasks queued at this point,
  4777. * it might still have a nonzero ->nr_uninterruptible counter, because
  4778. * for performance reasons the counter is not stricly tracking tasks to
  4779. * their home CPUs. So we just add the counter to another CPU's counter,
  4780. * to keep the global sum constant after CPU-down:
  4781. */
  4782. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4783. {
  4784. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4785. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4786. rq_src->nr_uninterruptible = 0;
  4787. }
  4788. /*
  4789. * remove the tasks which were accounted by rq from calc_load_tasks.
  4790. */
  4791. static void calc_global_load_remove(struct rq *rq)
  4792. {
  4793. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4794. rq->calc_load_active = 0;
  4795. }
  4796. /*
  4797. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4798. * try_to_wake_up()->select_task_rq().
  4799. *
  4800. * Called with rq->lock held even though we'er in stop_machine() and
  4801. * there's no concurrency possible, we hold the required locks anyway
  4802. * because of lock validation efforts.
  4803. */
  4804. static void migrate_tasks(unsigned int dead_cpu)
  4805. {
  4806. struct rq *rq = cpu_rq(dead_cpu);
  4807. struct task_struct *next, *stop = rq->stop;
  4808. int dest_cpu;
  4809. /*
  4810. * Fudge the rq selection such that the below task selection loop
  4811. * doesn't get stuck on the currently eligible stop task.
  4812. *
  4813. * We're currently inside stop_machine() and the rq is either stuck
  4814. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4815. * either way we should never end up calling schedule() until we're
  4816. * done here.
  4817. */
  4818. rq->stop = NULL;
  4819. for ( ; ; ) {
  4820. /*
  4821. * There's this thread running, bail when that's the only
  4822. * remaining thread.
  4823. */
  4824. if (rq->nr_running == 1)
  4825. break;
  4826. next = pick_next_task(rq);
  4827. BUG_ON(!next);
  4828. next->sched_class->put_prev_task(rq, next);
  4829. /* Find suitable destination for @next, with force if needed. */
  4830. dest_cpu = select_fallback_rq(dead_cpu, next);
  4831. raw_spin_unlock(&rq->lock);
  4832. __migrate_task(next, dead_cpu, dest_cpu);
  4833. raw_spin_lock(&rq->lock);
  4834. }
  4835. rq->stop = stop;
  4836. }
  4837. #endif /* CONFIG_HOTPLUG_CPU */
  4838. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4839. static struct ctl_table sd_ctl_dir[] = {
  4840. {
  4841. .procname = "sched_domain",
  4842. .mode = 0555,
  4843. },
  4844. {}
  4845. };
  4846. static struct ctl_table sd_ctl_root[] = {
  4847. {
  4848. .procname = "kernel",
  4849. .mode = 0555,
  4850. .child = sd_ctl_dir,
  4851. },
  4852. {}
  4853. };
  4854. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4855. {
  4856. struct ctl_table *entry =
  4857. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4858. return entry;
  4859. }
  4860. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4861. {
  4862. struct ctl_table *entry;
  4863. /*
  4864. * In the intermediate directories, both the child directory and
  4865. * procname are dynamically allocated and could fail but the mode
  4866. * will always be set. In the lowest directory the names are
  4867. * static strings and all have proc handlers.
  4868. */
  4869. for (entry = *tablep; entry->mode; entry++) {
  4870. if (entry->child)
  4871. sd_free_ctl_entry(&entry->child);
  4872. if (entry->proc_handler == NULL)
  4873. kfree(entry->procname);
  4874. }
  4875. kfree(*tablep);
  4876. *tablep = NULL;
  4877. }
  4878. static void
  4879. set_table_entry(struct ctl_table *entry,
  4880. const char *procname, void *data, int maxlen,
  4881. mode_t mode, proc_handler *proc_handler)
  4882. {
  4883. entry->procname = procname;
  4884. entry->data = data;
  4885. entry->maxlen = maxlen;
  4886. entry->mode = mode;
  4887. entry->proc_handler = proc_handler;
  4888. }
  4889. static struct ctl_table *
  4890. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4891. {
  4892. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4893. if (table == NULL)
  4894. return NULL;
  4895. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4896. sizeof(long), 0644, proc_doulongvec_minmax);
  4897. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4898. sizeof(long), 0644, proc_doulongvec_minmax);
  4899. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4900. sizeof(int), 0644, proc_dointvec_minmax);
  4901. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4902. sizeof(int), 0644, proc_dointvec_minmax);
  4903. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4904. sizeof(int), 0644, proc_dointvec_minmax);
  4905. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4906. sizeof(int), 0644, proc_dointvec_minmax);
  4907. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4908. sizeof(int), 0644, proc_dointvec_minmax);
  4909. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4910. sizeof(int), 0644, proc_dointvec_minmax);
  4911. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4912. sizeof(int), 0644, proc_dointvec_minmax);
  4913. set_table_entry(&table[9], "cache_nice_tries",
  4914. &sd->cache_nice_tries,
  4915. sizeof(int), 0644, proc_dointvec_minmax);
  4916. set_table_entry(&table[10], "flags", &sd->flags,
  4917. sizeof(int), 0644, proc_dointvec_minmax);
  4918. set_table_entry(&table[11], "name", sd->name,
  4919. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4920. /* &table[12] is terminator */
  4921. return table;
  4922. }
  4923. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4924. {
  4925. struct ctl_table *entry, *table;
  4926. struct sched_domain *sd;
  4927. int domain_num = 0, i;
  4928. char buf[32];
  4929. for_each_domain(cpu, sd)
  4930. domain_num++;
  4931. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4932. if (table == NULL)
  4933. return NULL;
  4934. i = 0;
  4935. for_each_domain(cpu, sd) {
  4936. snprintf(buf, 32, "domain%d", i);
  4937. entry->procname = kstrdup(buf, GFP_KERNEL);
  4938. entry->mode = 0555;
  4939. entry->child = sd_alloc_ctl_domain_table(sd);
  4940. entry++;
  4941. i++;
  4942. }
  4943. return table;
  4944. }
  4945. static struct ctl_table_header *sd_sysctl_header;
  4946. static void register_sched_domain_sysctl(void)
  4947. {
  4948. int i, cpu_num = num_possible_cpus();
  4949. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4950. char buf[32];
  4951. WARN_ON(sd_ctl_dir[0].child);
  4952. sd_ctl_dir[0].child = entry;
  4953. if (entry == NULL)
  4954. return;
  4955. for_each_possible_cpu(i) {
  4956. snprintf(buf, 32, "cpu%d", i);
  4957. entry->procname = kstrdup(buf, GFP_KERNEL);
  4958. entry->mode = 0555;
  4959. entry->child = sd_alloc_ctl_cpu_table(i);
  4960. entry++;
  4961. }
  4962. WARN_ON(sd_sysctl_header);
  4963. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4964. }
  4965. /* may be called multiple times per register */
  4966. static void unregister_sched_domain_sysctl(void)
  4967. {
  4968. if (sd_sysctl_header)
  4969. unregister_sysctl_table(sd_sysctl_header);
  4970. sd_sysctl_header = NULL;
  4971. if (sd_ctl_dir[0].child)
  4972. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4973. }
  4974. #else
  4975. static void register_sched_domain_sysctl(void)
  4976. {
  4977. }
  4978. static void unregister_sched_domain_sysctl(void)
  4979. {
  4980. }
  4981. #endif
  4982. static void set_rq_online(struct rq *rq)
  4983. {
  4984. if (!rq->online) {
  4985. const struct sched_class *class;
  4986. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4987. rq->online = 1;
  4988. for_each_class(class) {
  4989. if (class->rq_online)
  4990. class->rq_online(rq);
  4991. }
  4992. }
  4993. }
  4994. static void set_rq_offline(struct rq *rq)
  4995. {
  4996. if (rq->online) {
  4997. const struct sched_class *class;
  4998. for_each_class(class) {
  4999. if (class->rq_offline)
  5000. class->rq_offline(rq);
  5001. }
  5002. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5003. rq->online = 0;
  5004. }
  5005. }
  5006. /*
  5007. * migration_call - callback that gets triggered when a CPU is added.
  5008. * Here we can start up the necessary migration thread for the new CPU.
  5009. */
  5010. static int __cpuinit
  5011. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5012. {
  5013. int cpu = (long)hcpu;
  5014. unsigned long flags;
  5015. struct rq *rq = cpu_rq(cpu);
  5016. switch (action & ~CPU_TASKS_FROZEN) {
  5017. case CPU_UP_PREPARE:
  5018. rq->calc_load_update = calc_load_update;
  5019. break;
  5020. case CPU_ONLINE:
  5021. /* Update our root-domain */
  5022. raw_spin_lock_irqsave(&rq->lock, flags);
  5023. if (rq->rd) {
  5024. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5025. set_rq_online(rq);
  5026. }
  5027. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5028. break;
  5029. #ifdef CONFIG_HOTPLUG_CPU
  5030. case CPU_DYING:
  5031. /* Update our root-domain */
  5032. raw_spin_lock_irqsave(&rq->lock, flags);
  5033. if (rq->rd) {
  5034. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5035. set_rq_offline(rq);
  5036. }
  5037. migrate_tasks(cpu);
  5038. BUG_ON(rq->nr_running != 1); /* the migration thread */
  5039. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5040. migrate_nr_uninterruptible(rq);
  5041. calc_global_load_remove(rq);
  5042. break;
  5043. #endif
  5044. }
  5045. return NOTIFY_OK;
  5046. }
  5047. /*
  5048. * Register at high priority so that task migration (migrate_all_tasks)
  5049. * happens before everything else. This has to be lower priority than
  5050. * the notifier in the perf_event subsystem, though.
  5051. */
  5052. static struct notifier_block __cpuinitdata migration_notifier = {
  5053. .notifier_call = migration_call,
  5054. .priority = CPU_PRI_MIGRATION,
  5055. };
  5056. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5057. unsigned long action, void *hcpu)
  5058. {
  5059. switch (action & ~CPU_TASKS_FROZEN) {
  5060. case CPU_ONLINE:
  5061. case CPU_DOWN_FAILED:
  5062. set_cpu_active((long)hcpu, true);
  5063. return NOTIFY_OK;
  5064. default:
  5065. return NOTIFY_DONE;
  5066. }
  5067. }
  5068. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5069. unsigned long action, void *hcpu)
  5070. {
  5071. switch (action & ~CPU_TASKS_FROZEN) {
  5072. case CPU_DOWN_PREPARE:
  5073. set_cpu_active((long)hcpu, false);
  5074. return NOTIFY_OK;
  5075. default:
  5076. return NOTIFY_DONE;
  5077. }
  5078. }
  5079. static int __init migration_init(void)
  5080. {
  5081. void *cpu = (void *)(long)smp_processor_id();
  5082. int err;
  5083. /* Initialize migration for the boot CPU */
  5084. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5085. BUG_ON(err == NOTIFY_BAD);
  5086. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5087. register_cpu_notifier(&migration_notifier);
  5088. /* Register cpu active notifiers */
  5089. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5090. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5091. return 0;
  5092. }
  5093. early_initcall(migration_init);
  5094. #endif
  5095. #ifdef CONFIG_SMP
  5096. #ifdef CONFIG_SCHED_DEBUG
  5097. static __read_mostly int sched_domain_debug_enabled;
  5098. static int __init sched_domain_debug_setup(char *str)
  5099. {
  5100. sched_domain_debug_enabled = 1;
  5101. return 0;
  5102. }
  5103. early_param("sched_debug", sched_domain_debug_setup);
  5104. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5105. struct cpumask *groupmask)
  5106. {
  5107. struct sched_group *group = sd->groups;
  5108. char str[256];
  5109. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5110. cpumask_clear(groupmask);
  5111. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5112. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5113. printk("does not load-balance\n");
  5114. if (sd->parent)
  5115. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5116. " has parent");
  5117. return -1;
  5118. }
  5119. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5120. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5121. printk(KERN_ERR "ERROR: domain->span does not contain "
  5122. "CPU%d\n", cpu);
  5123. }
  5124. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5125. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5126. " CPU%d\n", cpu);
  5127. }
  5128. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5129. do {
  5130. if (!group) {
  5131. printk("\n");
  5132. printk(KERN_ERR "ERROR: group is NULL\n");
  5133. break;
  5134. }
  5135. if (!group->cpu_power) {
  5136. printk(KERN_CONT "\n");
  5137. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5138. "set\n");
  5139. break;
  5140. }
  5141. if (!cpumask_weight(sched_group_cpus(group))) {
  5142. printk(KERN_CONT "\n");
  5143. printk(KERN_ERR "ERROR: empty group\n");
  5144. break;
  5145. }
  5146. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5147. printk(KERN_CONT "\n");
  5148. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5149. break;
  5150. }
  5151. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5152. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5153. printk(KERN_CONT " %s", str);
  5154. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5155. printk(KERN_CONT " (cpu_power = %d)",
  5156. group->cpu_power);
  5157. }
  5158. group = group->next;
  5159. } while (group != sd->groups);
  5160. printk(KERN_CONT "\n");
  5161. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5162. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5163. if (sd->parent &&
  5164. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5165. printk(KERN_ERR "ERROR: parent span is not a superset "
  5166. "of domain->span\n");
  5167. return 0;
  5168. }
  5169. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5170. {
  5171. cpumask_var_t groupmask;
  5172. int level = 0;
  5173. if (!sched_domain_debug_enabled)
  5174. return;
  5175. if (!sd) {
  5176. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5177. return;
  5178. }
  5179. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5180. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5181. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5182. return;
  5183. }
  5184. for (;;) {
  5185. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5186. break;
  5187. level++;
  5188. sd = sd->parent;
  5189. if (!sd)
  5190. break;
  5191. }
  5192. free_cpumask_var(groupmask);
  5193. }
  5194. #else /* !CONFIG_SCHED_DEBUG */
  5195. # define sched_domain_debug(sd, cpu) do { } while (0)
  5196. #endif /* CONFIG_SCHED_DEBUG */
  5197. static int sd_degenerate(struct sched_domain *sd)
  5198. {
  5199. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5200. return 1;
  5201. /* Following flags need at least 2 groups */
  5202. if (sd->flags & (SD_LOAD_BALANCE |
  5203. SD_BALANCE_NEWIDLE |
  5204. SD_BALANCE_FORK |
  5205. SD_BALANCE_EXEC |
  5206. SD_SHARE_CPUPOWER |
  5207. SD_SHARE_PKG_RESOURCES)) {
  5208. if (sd->groups != sd->groups->next)
  5209. return 0;
  5210. }
  5211. /* Following flags don't use groups */
  5212. if (sd->flags & (SD_WAKE_AFFINE))
  5213. return 0;
  5214. return 1;
  5215. }
  5216. static int
  5217. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5218. {
  5219. unsigned long cflags = sd->flags, pflags = parent->flags;
  5220. if (sd_degenerate(parent))
  5221. return 1;
  5222. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5223. return 0;
  5224. /* Flags needing groups don't count if only 1 group in parent */
  5225. if (parent->groups == parent->groups->next) {
  5226. pflags &= ~(SD_LOAD_BALANCE |
  5227. SD_BALANCE_NEWIDLE |
  5228. SD_BALANCE_FORK |
  5229. SD_BALANCE_EXEC |
  5230. SD_SHARE_CPUPOWER |
  5231. SD_SHARE_PKG_RESOURCES);
  5232. if (nr_node_ids == 1)
  5233. pflags &= ~SD_SERIALIZE;
  5234. }
  5235. if (~cflags & pflags)
  5236. return 0;
  5237. return 1;
  5238. }
  5239. static void free_rootdomain(struct root_domain *rd)
  5240. {
  5241. synchronize_sched();
  5242. cpupri_cleanup(&rd->cpupri);
  5243. free_cpumask_var(rd->rto_mask);
  5244. free_cpumask_var(rd->online);
  5245. free_cpumask_var(rd->span);
  5246. kfree(rd);
  5247. }
  5248. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5249. {
  5250. struct root_domain *old_rd = NULL;
  5251. unsigned long flags;
  5252. raw_spin_lock_irqsave(&rq->lock, flags);
  5253. if (rq->rd) {
  5254. old_rd = rq->rd;
  5255. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5256. set_rq_offline(rq);
  5257. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5258. /*
  5259. * If we dont want to free the old_rt yet then
  5260. * set old_rd to NULL to skip the freeing later
  5261. * in this function:
  5262. */
  5263. if (!atomic_dec_and_test(&old_rd->refcount))
  5264. old_rd = NULL;
  5265. }
  5266. atomic_inc(&rd->refcount);
  5267. rq->rd = rd;
  5268. cpumask_set_cpu(rq->cpu, rd->span);
  5269. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5270. set_rq_online(rq);
  5271. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5272. if (old_rd)
  5273. free_rootdomain(old_rd);
  5274. }
  5275. static int init_rootdomain(struct root_domain *rd)
  5276. {
  5277. memset(rd, 0, sizeof(*rd));
  5278. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5279. goto out;
  5280. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5281. goto free_span;
  5282. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5283. goto free_online;
  5284. if (cpupri_init(&rd->cpupri) != 0)
  5285. goto free_rto_mask;
  5286. return 0;
  5287. free_rto_mask:
  5288. free_cpumask_var(rd->rto_mask);
  5289. free_online:
  5290. free_cpumask_var(rd->online);
  5291. free_span:
  5292. free_cpumask_var(rd->span);
  5293. out:
  5294. return -ENOMEM;
  5295. }
  5296. static void init_defrootdomain(void)
  5297. {
  5298. init_rootdomain(&def_root_domain);
  5299. atomic_set(&def_root_domain.refcount, 1);
  5300. }
  5301. static struct root_domain *alloc_rootdomain(void)
  5302. {
  5303. struct root_domain *rd;
  5304. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5305. if (!rd)
  5306. return NULL;
  5307. if (init_rootdomain(rd) != 0) {
  5308. kfree(rd);
  5309. return NULL;
  5310. }
  5311. return rd;
  5312. }
  5313. /*
  5314. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5315. * hold the hotplug lock.
  5316. */
  5317. static void
  5318. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5319. {
  5320. struct rq *rq = cpu_rq(cpu);
  5321. struct sched_domain *tmp;
  5322. for (tmp = sd; tmp; tmp = tmp->parent)
  5323. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5324. /* Remove the sched domains which do not contribute to scheduling. */
  5325. for (tmp = sd; tmp; ) {
  5326. struct sched_domain *parent = tmp->parent;
  5327. if (!parent)
  5328. break;
  5329. if (sd_parent_degenerate(tmp, parent)) {
  5330. tmp->parent = parent->parent;
  5331. if (parent->parent)
  5332. parent->parent->child = tmp;
  5333. } else
  5334. tmp = tmp->parent;
  5335. }
  5336. if (sd && sd_degenerate(sd)) {
  5337. sd = sd->parent;
  5338. if (sd)
  5339. sd->child = NULL;
  5340. }
  5341. sched_domain_debug(sd, cpu);
  5342. rq_attach_root(rq, rd);
  5343. rcu_assign_pointer(rq->sd, sd);
  5344. }
  5345. /* cpus with isolated domains */
  5346. static cpumask_var_t cpu_isolated_map;
  5347. /* Setup the mask of cpus configured for isolated domains */
  5348. static int __init isolated_cpu_setup(char *str)
  5349. {
  5350. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5351. cpulist_parse(str, cpu_isolated_map);
  5352. return 1;
  5353. }
  5354. __setup("isolcpus=", isolated_cpu_setup);
  5355. /*
  5356. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5357. * to a function which identifies what group(along with sched group) a CPU
  5358. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5359. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5360. *
  5361. * init_sched_build_groups will build a circular linked list of the groups
  5362. * covered by the given span, and will set each group's ->cpumask correctly,
  5363. * and ->cpu_power to 0.
  5364. */
  5365. static void
  5366. init_sched_build_groups(const struct cpumask *span,
  5367. const struct cpumask *cpu_map,
  5368. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5369. struct sched_group **sg,
  5370. struct cpumask *tmpmask),
  5371. struct cpumask *covered, struct cpumask *tmpmask)
  5372. {
  5373. struct sched_group *first = NULL, *last = NULL;
  5374. int i;
  5375. cpumask_clear(covered);
  5376. for_each_cpu(i, span) {
  5377. struct sched_group *sg;
  5378. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5379. int j;
  5380. if (cpumask_test_cpu(i, covered))
  5381. continue;
  5382. cpumask_clear(sched_group_cpus(sg));
  5383. sg->cpu_power = 0;
  5384. for_each_cpu(j, span) {
  5385. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5386. continue;
  5387. cpumask_set_cpu(j, covered);
  5388. cpumask_set_cpu(j, sched_group_cpus(sg));
  5389. }
  5390. if (!first)
  5391. first = sg;
  5392. if (last)
  5393. last->next = sg;
  5394. last = sg;
  5395. }
  5396. last->next = first;
  5397. }
  5398. #define SD_NODES_PER_DOMAIN 16
  5399. #ifdef CONFIG_NUMA
  5400. /**
  5401. * find_next_best_node - find the next node to include in a sched_domain
  5402. * @node: node whose sched_domain we're building
  5403. * @used_nodes: nodes already in the sched_domain
  5404. *
  5405. * Find the next node to include in a given scheduling domain. Simply
  5406. * finds the closest node not already in the @used_nodes map.
  5407. *
  5408. * Should use nodemask_t.
  5409. */
  5410. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5411. {
  5412. int i, n, val, min_val, best_node = 0;
  5413. min_val = INT_MAX;
  5414. for (i = 0; i < nr_node_ids; i++) {
  5415. /* Start at @node */
  5416. n = (node + i) % nr_node_ids;
  5417. if (!nr_cpus_node(n))
  5418. continue;
  5419. /* Skip already used nodes */
  5420. if (node_isset(n, *used_nodes))
  5421. continue;
  5422. /* Simple min distance search */
  5423. val = node_distance(node, n);
  5424. if (val < min_val) {
  5425. min_val = val;
  5426. best_node = n;
  5427. }
  5428. }
  5429. node_set(best_node, *used_nodes);
  5430. return best_node;
  5431. }
  5432. /**
  5433. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5434. * @node: node whose cpumask we're constructing
  5435. * @span: resulting cpumask
  5436. *
  5437. * Given a node, construct a good cpumask for its sched_domain to span. It
  5438. * should be one that prevents unnecessary balancing, but also spreads tasks
  5439. * out optimally.
  5440. */
  5441. static void sched_domain_node_span(int node, struct cpumask *span)
  5442. {
  5443. nodemask_t used_nodes;
  5444. int i;
  5445. cpumask_clear(span);
  5446. nodes_clear(used_nodes);
  5447. cpumask_or(span, span, cpumask_of_node(node));
  5448. node_set(node, used_nodes);
  5449. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5450. int next_node = find_next_best_node(node, &used_nodes);
  5451. cpumask_or(span, span, cpumask_of_node(next_node));
  5452. }
  5453. }
  5454. #endif /* CONFIG_NUMA */
  5455. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5456. /*
  5457. * The cpus mask in sched_group and sched_domain hangs off the end.
  5458. *
  5459. * ( See the the comments in include/linux/sched.h:struct sched_group
  5460. * and struct sched_domain. )
  5461. */
  5462. struct static_sched_group {
  5463. struct sched_group sg;
  5464. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5465. };
  5466. struct static_sched_domain {
  5467. struct sched_domain sd;
  5468. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5469. };
  5470. struct s_data {
  5471. #ifdef CONFIG_NUMA
  5472. int sd_allnodes;
  5473. cpumask_var_t domainspan;
  5474. cpumask_var_t covered;
  5475. cpumask_var_t notcovered;
  5476. #endif
  5477. cpumask_var_t nodemask;
  5478. cpumask_var_t this_sibling_map;
  5479. cpumask_var_t this_core_map;
  5480. cpumask_var_t this_book_map;
  5481. cpumask_var_t send_covered;
  5482. cpumask_var_t tmpmask;
  5483. struct sched_group **sched_group_nodes;
  5484. struct root_domain *rd;
  5485. };
  5486. enum s_alloc {
  5487. sa_sched_groups = 0,
  5488. sa_rootdomain,
  5489. sa_tmpmask,
  5490. sa_send_covered,
  5491. sa_this_book_map,
  5492. sa_this_core_map,
  5493. sa_this_sibling_map,
  5494. sa_nodemask,
  5495. sa_sched_group_nodes,
  5496. #ifdef CONFIG_NUMA
  5497. sa_notcovered,
  5498. sa_covered,
  5499. sa_domainspan,
  5500. #endif
  5501. sa_none,
  5502. };
  5503. /*
  5504. * SMT sched-domains:
  5505. */
  5506. #ifdef CONFIG_SCHED_SMT
  5507. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5508. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5509. static int
  5510. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5511. struct sched_group **sg, struct cpumask *unused)
  5512. {
  5513. if (sg)
  5514. *sg = &per_cpu(sched_groups, cpu).sg;
  5515. return cpu;
  5516. }
  5517. #endif /* CONFIG_SCHED_SMT */
  5518. /*
  5519. * multi-core sched-domains:
  5520. */
  5521. #ifdef CONFIG_SCHED_MC
  5522. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5523. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5524. static int
  5525. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5526. struct sched_group **sg, struct cpumask *mask)
  5527. {
  5528. int group;
  5529. #ifdef CONFIG_SCHED_SMT
  5530. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5531. group = cpumask_first(mask);
  5532. #else
  5533. group = cpu;
  5534. #endif
  5535. if (sg)
  5536. *sg = &per_cpu(sched_group_core, group).sg;
  5537. return group;
  5538. }
  5539. #endif /* CONFIG_SCHED_MC */
  5540. /*
  5541. * book sched-domains:
  5542. */
  5543. #ifdef CONFIG_SCHED_BOOK
  5544. static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
  5545. static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
  5546. static int
  5547. cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
  5548. struct sched_group **sg, struct cpumask *mask)
  5549. {
  5550. int group = cpu;
  5551. #ifdef CONFIG_SCHED_MC
  5552. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5553. group = cpumask_first(mask);
  5554. #elif defined(CONFIG_SCHED_SMT)
  5555. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5556. group = cpumask_first(mask);
  5557. #endif
  5558. if (sg)
  5559. *sg = &per_cpu(sched_group_book, group).sg;
  5560. return group;
  5561. }
  5562. #endif /* CONFIG_SCHED_BOOK */
  5563. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5564. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5565. static int
  5566. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5567. struct sched_group **sg, struct cpumask *mask)
  5568. {
  5569. int group;
  5570. #ifdef CONFIG_SCHED_BOOK
  5571. cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
  5572. group = cpumask_first(mask);
  5573. #elif defined(CONFIG_SCHED_MC)
  5574. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5575. group = cpumask_first(mask);
  5576. #elif defined(CONFIG_SCHED_SMT)
  5577. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5578. group = cpumask_first(mask);
  5579. #else
  5580. group = cpu;
  5581. #endif
  5582. if (sg)
  5583. *sg = &per_cpu(sched_group_phys, group).sg;
  5584. return group;
  5585. }
  5586. #ifdef CONFIG_NUMA
  5587. /*
  5588. * The init_sched_build_groups can't handle what we want to do with node
  5589. * groups, so roll our own. Now each node has its own list of groups which
  5590. * gets dynamically allocated.
  5591. */
  5592. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5593. static struct sched_group ***sched_group_nodes_bycpu;
  5594. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5595. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5596. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5597. struct sched_group **sg,
  5598. struct cpumask *nodemask)
  5599. {
  5600. int group;
  5601. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5602. group = cpumask_first(nodemask);
  5603. if (sg)
  5604. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5605. return group;
  5606. }
  5607. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5608. {
  5609. struct sched_group *sg = group_head;
  5610. int j;
  5611. if (!sg)
  5612. return;
  5613. do {
  5614. for_each_cpu(j, sched_group_cpus(sg)) {
  5615. struct sched_domain *sd;
  5616. sd = &per_cpu(phys_domains, j).sd;
  5617. if (j != group_first_cpu(sd->groups)) {
  5618. /*
  5619. * Only add "power" once for each
  5620. * physical package.
  5621. */
  5622. continue;
  5623. }
  5624. sg->cpu_power += sd->groups->cpu_power;
  5625. }
  5626. sg = sg->next;
  5627. } while (sg != group_head);
  5628. }
  5629. static int build_numa_sched_groups(struct s_data *d,
  5630. const struct cpumask *cpu_map, int num)
  5631. {
  5632. struct sched_domain *sd;
  5633. struct sched_group *sg, *prev;
  5634. int n, j;
  5635. cpumask_clear(d->covered);
  5636. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5637. if (cpumask_empty(d->nodemask)) {
  5638. d->sched_group_nodes[num] = NULL;
  5639. goto out;
  5640. }
  5641. sched_domain_node_span(num, d->domainspan);
  5642. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5643. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5644. GFP_KERNEL, num);
  5645. if (!sg) {
  5646. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  5647. num);
  5648. return -ENOMEM;
  5649. }
  5650. d->sched_group_nodes[num] = sg;
  5651. for_each_cpu(j, d->nodemask) {
  5652. sd = &per_cpu(node_domains, j).sd;
  5653. sd->groups = sg;
  5654. }
  5655. sg->cpu_power = 0;
  5656. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  5657. sg->next = sg;
  5658. cpumask_or(d->covered, d->covered, d->nodemask);
  5659. prev = sg;
  5660. for (j = 0; j < nr_node_ids; j++) {
  5661. n = (num + j) % nr_node_ids;
  5662. cpumask_complement(d->notcovered, d->covered);
  5663. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  5664. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  5665. if (cpumask_empty(d->tmpmask))
  5666. break;
  5667. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  5668. if (cpumask_empty(d->tmpmask))
  5669. continue;
  5670. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5671. GFP_KERNEL, num);
  5672. if (!sg) {
  5673. printk(KERN_WARNING
  5674. "Can not alloc domain group for node %d\n", j);
  5675. return -ENOMEM;
  5676. }
  5677. sg->cpu_power = 0;
  5678. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  5679. sg->next = prev->next;
  5680. cpumask_or(d->covered, d->covered, d->tmpmask);
  5681. prev->next = sg;
  5682. prev = sg;
  5683. }
  5684. out:
  5685. return 0;
  5686. }
  5687. #endif /* CONFIG_NUMA */
  5688. #ifdef CONFIG_NUMA
  5689. /* Free memory allocated for various sched_group structures */
  5690. static void free_sched_groups(const struct cpumask *cpu_map,
  5691. struct cpumask *nodemask)
  5692. {
  5693. int cpu, i;
  5694. for_each_cpu(cpu, cpu_map) {
  5695. struct sched_group **sched_group_nodes
  5696. = sched_group_nodes_bycpu[cpu];
  5697. if (!sched_group_nodes)
  5698. continue;
  5699. for (i = 0; i < nr_node_ids; i++) {
  5700. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5701. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  5702. if (cpumask_empty(nodemask))
  5703. continue;
  5704. if (sg == NULL)
  5705. continue;
  5706. sg = sg->next;
  5707. next_sg:
  5708. oldsg = sg;
  5709. sg = sg->next;
  5710. kfree(oldsg);
  5711. if (oldsg != sched_group_nodes[i])
  5712. goto next_sg;
  5713. }
  5714. kfree(sched_group_nodes);
  5715. sched_group_nodes_bycpu[cpu] = NULL;
  5716. }
  5717. }
  5718. #else /* !CONFIG_NUMA */
  5719. static void free_sched_groups(const struct cpumask *cpu_map,
  5720. struct cpumask *nodemask)
  5721. {
  5722. }
  5723. #endif /* CONFIG_NUMA */
  5724. /*
  5725. * Initialize sched groups cpu_power.
  5726. *
  5727. * cpu_power indicates the capacity of sched group, which is used while
  5728. * distributing the load between different sched groups in a sched domain.
  5729. * Typically cpu_power for all the groups in a sched domain will be same unless
  5730. * there are asymmetries in the topology. If there are asymmetries, group
  5731. * having more cpu_power will pickup more load compared to the group having
  5732. * less cpu_power.
  5733. */
  5734. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5735. {
  5736. struct sched_domain *child;
  5737. struct sched_group *group;
  5738. long power;
  5739. int weight;
  5740. WARN_ON(!sd || !sd->groups);
  5741. if (cpu != group_first_cpu(sd->groups))
  5742. return;
  5743. sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
  5744. child = sd->child;
  5745. sd->groups->cpu_power = 0;
  5746. if (!child) {
  5747. power = SCHED_LOAD_SCALE;
  5748. weight = cpumask_weight(sched_domain_span(sd));
  5749. /*
  5750. * SMT siblings share the power of a single core.
  5751. * Usually multiple threads get a better yield out of
  5752. * that one core than a single thread would have,
  5753. * reflect that in sd->smt_gain.
  5754. */
  5755. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  5756. power *= sd->smt_gain;
  5757. power /= weight;
  5758. power >>= SCHED_LOAD_SHIFT;
  5759. }
  5760. sd->groups->cpu_power += power;
  5761. return;
  5762. }
  5763. /*
  5764. * Add cpu_power of each child group to this groups cpu_power.
  5765. */
  5766. group = child->groups;
  5767. do {
  5768. sd->groups->cpu_power += group->cpu_power;
  5769. group = group->next;
  5770. } while (group != child->groups);
  5771. }
  5772. /*
  5773. * Initializers for schedule domains
  5774. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5775. */
  5776. #ifdef CONFIG_SCHED_DEBUG
  5777. # define SD_INIT_NAME(sd, type) sd->name = #type
  5778. #else
  5779. # define SD_INIT_NAME(sd, type) do { } while (0)
  5780. #endif
  5781. #define SD_INIT(sd, type) sd_init_##type(sd)
  5782. #define SD_INIT_FUNC(type) \
  5783. static noinline void sd_init_##type(struct sched_domain *sd) \
  5784. { \
  5785. memset(sd, 0, sizeof(*sd)); \
  5786. *sd = SD_##type##_INIT; \
  5787. sd->level = SD_LV_##type; \
  5788. SD_INIT_NAME(sd, type); \
  5789. }
  5790. SD_INIT_FUNC(CPU)
  5791. #ifdef CONFIG_NUMA
  5792. SD_INIT_FUNC(ALLNODES)
  5793. SD_INIT_FUNC(NODE)
  5794. #endif
  5795. #ifdef CONFIG_SCHED_SMT
  5796. SD_INIT_FUNC(SIBLING)
  5797. #endif
  5798. #ifdef CONFIG_SCHED_MC
  5799. SD_INIT_FUNC(MC)
  5800. #endif
  5801. #ifdef CONFIG_SCHED_BOOK
  5802. SD_INIT_FUNC(BOOK)
  5803. #endif
  5804. static int default_relax_domain_level = -1;
  5805. static int __init setup_relax_domain_level(char *str)
  5806. {
  5807. unsigned long val;
  5808. val = simple_strtoul(str, NULL, 0);
  5809. if (val < SD_LV_MAX)
  5810. default_relax_domain_level = val;
  5811. return 1;
  5812. }
  5813. __setup("relax_domain_level=", setup_relax_domain_level);
  5814. static void set_domain_attribute(struct sched_domain *sd,
  5815. struct sched_domain_attr *attr)
  5816. {
  5817. int request;
  5818. if (!attr || attr->relax_domain_level < 0) {
  5819. if (default_relax_domain_level < 0)
  5820. return;
  5821. else
  5822. request = default_relax_domain_level;
  5823. } else
  5824. request = attr->relax_domain_level;
  5825. if (request < sd->level) {
  5826. /* turn off idle balance on this domain */
  5827. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5828. } else {
  5829. /* turn on idle balance on this domain */
  5830. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5831. }
  5832. }
  5833. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5834. const struct cpumask *cpu_map)
  5835. {
  5836. switch (what) {
  5837. case sa_sched_groups:
  5838. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  5839. d->sched_group_nodes = NULL;
  5840. case sa_rootdomain:
  5841. free_rootdomain(d->rd); /* fall through */
  5842. case sa_tmpmask:
  5843. free_cpumask_var(d->tmpmask); /* fall through */
  5844. case sa_send_covered:
  5845. free_cpumask_var(d->send_covered); /* fall through */
  5846. case sa_this_book_map:
  5847. free_cpumask_var(d->this_book_map); /* fall through */
  5848. case sa_this_core_map:
  5849. free_cpumask_var(d->this_core_map); /* fall through */
  5850. case sa_this_sibling_map:
  5851. free_cpumask_var(d->this_sibling_map); /* fall through */
  5852. case sa_nodemask:
  5853. free_cpumask_var(d->nodemask); /* fall through */
  5854. case sa_sched_group_nodes:
  5855. #ifdef CONFIG_NUMA
  5856. kfree(d->sched_group_nodes); /* fall through */
  5857. case sa_notcovered:
  5858. free_cpumask_var(d->notcovered); /* fall through */
  5859. case sa_covered:
  5860. free_cpumask_var(d->covered); /* fall through */
  5861. case sa_domainspan:
  5862. free_cpumask_var(d->domainspan); /* fall through */
  5863. #endif
  5864. case sa_none:
  5865. break;
  5866. }
  5867. }
  5868. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5869. const struct cpumask *cpu_map)
  5870. {
  5871. #ifdef CONFIG_NUMA
  5872. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  5873. return sa_none;
  5874. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  5875. return sa_domainspan;
  5876. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  5877. return sa_covered;
  5878. /* Allocate the per-node list of sched groups */
  5879. d->sched_group_nodes = kcalloc(nr_node_ids,
  5880. sizeof(struct sched_group *), GFP_KERNEL);
  5881. if (!d->sched_group_nodes) {
  5882. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5883. return sa_notcovered;
  5884. }
  5885. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  5886. #endif
  5887. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  5888. return sa_sched_group_nodes;
  5889. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  5890. return sa_nodemask;
  5891. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  5892. return sa_this_sibling_map;
  5893. if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
  5894. return sa_this_core_map;
  5895. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  5896. return sa_this_book_map;
  5897. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  5898. return sa_send_covered;
  5899. d->rd = alloc_rootdomain();
  5900. if (!d->rd) {
  5901. printk(KERN_WARNING "Cannot alloc root domain\n");
  5902. return sa_tmpmask;
  5903. }
  5904. return sa_rootdomain;
  5905. }
  5906. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  5907. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  5908. {
  5909. struct sched_domain *sd = NULL;
  5910. #ifdef CONFIG_NUMA
  5911. struct sched_domain *parent;
  5912. d->sd_allnodes = 0;
  5913. if (cpumask_weight(cpu_map) >
  5914. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  5915. sd = &per_cpu(allnodes_domains, i).sd;
  5916. SD_INIT(sd, ALLNODES);
  5917. set_domain_attribute(sd, attr);
  5918. cpumask_copy(sched_domain_span(sd), cpu_map);
  5919. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  5920. d->sd_allnodes = 1;
  5921. }
  5922. parent = sd;
  5923. sd = &per_cpu(node_domains, i).sd;
  5924. SD_INIT(sd, NODE);
  5925. set_domain_attribute(sd, attr);
  5926. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  5927. sd->parent = parent;
  5928. if (parent)
  5929. parent->child = sd;
  5930. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  5931. #endif
  5932. return sd;
  5933. }
  5934. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  5935. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5936. struct sched_domain *parent, int i)
  5937. {
  5938. struct sched_domain *sd;
  5939. sd = &per_cpu(phys_domains, i).sd;
  5940. SD_INIT(sd, CPU);
  5941. set_domain_attribute(sd, attr);
  5942. cpumask_copy(sched_domain_span(sd), d->nodemask);
  5943. sd->parent = parent;
  5944. if (parent)
  5945. parent->child = sd;
  5946. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  5947. return sd;
  5948. }
  5949. static struct sched_domain *__build_book_sched_domain(struct s_data *d,
  5950. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5951. struct sched_domain *parent, int i)
  5952. {
  5953. struct sched_domain *sd = parent;
  5954. #ifdef CONFIG_SCHED_BOOK
  5955. sd = &per_cpu(book_domains, i).sd;
  5956. SD_INIT(sd, BOOK);
  5957. set_domain_attribute(sd, attr);
  5958. cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
  5959. sd->parent = parent;
  5960. parent->child = sd;
  5961. cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
  5962. #endif
  5963. return sd;
  5964. }
  5965. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  5966. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5967. struct sched_domain *parent, int i)
  5968. {
  5969. struct sched_domain *sd = parent;
  5970. #ifdef CONFIG_SCHED_MC
  5971. sd = &per_cpu(core_domains, i).sd;
  5972. SD_INIT(sd, MC);
  5973. set_domain_attribute(sd, attr);
  5974. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  5975. sd->parent = parent;
  5976. parent->child = sd;
  5977. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  5978. #endif
  5979. return sd;
  5980. }
  5981. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  5982. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5983. struct sched_domain *parent, int i)
  5984. {
  5985. struct sched_domain *sd = parent;
  5986. #ifdef CONFIG_SCHED_SMT
  5987. sd = &per_cpu(cpu_domains, i).sd;
  5988. SD_INIT(sd, SIBLING);
  5989. set_domain_attribute(sd, attr);
  5990. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  5991. sd->parent = parent;
  5992. parent->child = sd;
  5993. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  5994. #endif
  5995. return sd;
  5996. }
  5997. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  5998. const struct cpumask *cpu_map, int cpu)
  5999. {
  6000. switch (l) {
  6001. #ifdef CONFIG_SCHED_SMT
  6002. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  6003. cpumask_and(d->this_sibling_map, cpu_map,
  6004. topology_thread_cpumask(cpu));
  6005. if (cpu == cpumask_first(d->this_sibling_map))
  6006. init_sched_build_groups(d->this_sibling_map, cpu_map,
  6007. &cpu_to_cpu_group,
  6008. d->send_covered, d->tmpmask);
  6009. break;
  6010. #endif
  6011. #ifdef CONFIG_SCHED_MC
  6012. case SD_LV_MC: /* set up multi-core groups */
  6013. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  6014. if (cpu == cpumask_first(d->this_core_map))
  6015. init_sched_build_groups(d->this_core_map, cpu_map,
  6016. &cpu_to_core_group,
  6017. d->send_covered, d->tmpmask);
  6018. break;
  6019. #endif
  6020. #ifdef CONFIG_SCHED_BOOK
  6021. case SD_LV_BOOK: /* set up book groups */
  6022. cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
  6023. if (cpu == cpumask_first(d->this_book_map))
  6024. init_sched_build_groups(d->this_book_map, cpu_map,
  6025. &cpu_to_book_group,
  6026. d->send_covered, d->tmpmask);
  6027. break;
  6028. #endif
  6029. case SD_LV_CPU: /* set up physical groups */
  6030. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  6031. if (!cpumask_empty(d->nodemask))
  6032. init_sched_build_groups(d->nodemask, cpu_map,
  6033. &cpu_to_phys_group,
  6034. d->send_covered, d->tmpmask);
  6035. break;
  6036. #ifdef CONFIG_NUMA
  6037. case SD_LV_ALLNODES:
  6038. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  6039. d->send_covered, d->tmpmask);
  6040. break;
  6041. #endif
  6042. default:
  6043. break;
  6044. }
  6045. }
  6046. /*
  6047. * Build sched domains for a given set of cpus and attach the sched domains
  6048. * to the individual cpus
  6049. */
  6050. static int __build_sched_domains(const struct cpumask *cpu_map,
  6051. struct sched_domain_attr *attr)
  6052. {
  6053. enum s_alloc alloc_state = sa_none;
  6054. struct s_data d;
  6055. struct sched_domain *sd;
  6056. int i;
  6057. #ifdef CONFIG_NUMA
  6058. d.sd_allnodes = 0;
  6059. #endif
  6060. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6061. if (alloc_state != sa_rootdomain)
  6062. goto error;
  6063. alloc_state = sa_sched_groups;
  6064. /*
  6065. * Set up domains for cpus specified by the cpu_map.
  6066. */
  6067. for_each_cpu(i, cpu_map) {
  6068. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6069. cpu_map);
  6070. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6071. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6072. sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
  6073. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6074. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6075. }
  6076. for_each_cpu(i, cpu_map) {
  6077. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6078. build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
  6079. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6080. }
  6081. /* Set up physical groups */
  6082. for (i = 0; i < nr_node_ids; i++)
  6083. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6084. #ifdef CONFIG_NUMA
  6085. /* Set up node groups */
  6086. if (d.sd_allnodes)
  6087. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6088. for (i = 0; i < nr_node_ids; i++)
  6089. if (build_numa_sched_groups(&d, cpu_map, i))
  6090. goto error;
  6091. #endif
  6092. /* Calculate CPU power for physical packages and nodes */
  6093. #ifdef CONFIG_SCHED_SMT
  6094. for_each_cpu(i, cpu_map) {
  6095. sd = &per_cpu(cpu_domains, i).sd;
  6096. init_sched_groups_power(i, sd);
  6097. }
  6098. #endif
  6099. #ifdef CONFIG_SCHED_MC
  6100. for_each_cpu(i, cpu_map) {
  6101. sd = &per_cpu(core_domains, i).sd;
  6102. init_sched_groups_power(i, sd);
  6103. }
  6104. #endif
  6105. #ifdef CONFIG_SCHED_BOOK
  6106. for_each_cpu(i, cpu_map) {
  6107. sd = &per_cpu(book_domains, i).sd;
  6108. init_sched_groups_power(i, sd);
  6109. }
  6110. #endif
  6111. for_each_cpu(i, cpu_map) {
  6112. sd = &per_cpu(phys_domains, i).sd;
  6113. init_sched_groups_power(i, sd);
  6114. }
  6115. #ifdef CONFIG_NUMA
  6116. for (i = 0; i < nr_node_ids; i++)
  6117. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6118. if (d.sd_allnodes) {
  6119. struct sched_group *sg;
  6120. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6121. d.tmpmask);
  6122. init_numa_sched_groups_power(sg);
  6123. }
  6124. #endif
  6125. /* Attach the domains */
  6126. for_each_cpu(i, cpu_map) {
  6127. #ifdef CONFIG_SCHED_SMT
  6128. sd = &per_cpu(cpu_domains, i).sd;
  6129. #elif defined(CONFIG_SCHED_MC)
  6130. sd = &per_cpu(core_domains, i).sd;
  6131. #elif defined(CONFIG_SCHED_BOOK)
  6132. sd = &per_cpu(book_domains, i).sd;
  6133. #else
  6134. sd = &per_cpu(phys_domains, i).sd;
  6135. #endif
  6136. cpu_attach_domain(sd, d.rd, i);
  6137. }
  6138. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6139. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6140. return 0;
  6141. error:
  6142. __free_domain_allocs(&d, alloc_state, cpu_map);
  6143. return -ENOMEM;
  6144. }
  6145. static int build_sched_domains(const struct cpumask *cpu_map)
  6146. {
  6147. return __build_sched_domains(cpu_map, NULL);
  6148. }
  6149. static cpumask_var_t *doms_cur; /* current sched domains */
  6150. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6151. static struct sched_domain_attr *dattr_cur;
  6152. /* attribues of custom domains in 'doms_cur' */
  6153. /*
  6154. * Special case: If a kmalloc of a doms_cur partition (array of
  6155. * cpumask) fails, then fallback to a single sched domain,
  6156. * as determined by the single cpumask fallback_doms.
  6157. */
  6158. static cpumask_var_t fallback_doms;
  6159. /*
  6160. * arch_update_cpu_topology lets virtualized architectures update the
  6161. * cpu core maps. It is supposed to return 1 if the topology changed
  6162. * or 0 if it stayed the same.
  6163. */
  6164. int __attribute__((weak)) arch_update_cpu_topology(void)
  6165. {
  6166. return 0;
  6167. }
  6168. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6169. {
  6170. int i;
  6171. cpumask_var_t *doms;
  6172. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6173. if (!doms)
  6174. return NULL;
  6175. for (i = 0; i < ndoms; i++) {
  6176. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6177. free_sched_domains(doms, i);
  6178. return NULL;
  6179. }
  6180. }
  6181. return doms;
  6182. }
  6183. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6184. {
  6185. unsigned int i;
  6186. for (i = 0; i < ndoms; i++)
  6187. free_cpumask_var(doms[i]);
  6188. kfree(doms);
  6189. }
  6190. /*
  6191. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6192. * For now this just excludes isolated cpus, but could be used to
  6193. * exclude other special cases in the future.
  6194. */
  6195. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6196. {
  6197. int err;
  6198. arch_update_cpu_topology();
  6199. ndoms_cur = 1;
  6200. doms_cur = alloc_sched_domains(ndoms_cur);
  6201. if (!doms_cur)
  6202. doms_cur = &fallback_doms;
  6203. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6204. dattr_cur = NULL;
  6205. err = build_sched_domains(doms_cur[0]);
  6206. register_sched_domain_sysctl();
  6207. return err;
  6208. }
  6209. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6210. struct cpumask *tmpmask)
  6211. {
  6212. free_sched_groups(cpu_map, tmpmask);
  6213. }
  6214. /*
  6215. * Detach sched domains from a group of cpus specified in cpu_map
  6216. * These cpus will now be attached to the NULL domain
  6217. */
  6218. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6219. {
  6220. /* Save because hotplug lock held. */
  6221. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6222. int i;
  6223. for_each_cpu(i, cpu_map)
  6224. cpu_attach_domain(NULL, &def_root_domain, i);
  6225. synchronize_sched();
  6226. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6227. }
  6228. /* handle null as "default" */
  6229. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6230. struct sched_domain_attr *new, int idx_new)
  6231. {
  6232. struct sched_domain_attr tmp;
  6233. /* fast path */
  6234. if (!new && !cur)
  6235. return 1;
  6236. tmp = SD_ATTR_INIT;
  6237. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6238. new ? (new + idx_new) : &tmp,
  6239. sizeof(struct sched_domain_attr));
  6240. }
  6241. /*
  6242. * Partition sched domains as specified by the 'ndoms_new'
  6243. * cpumasks in the array doms_new[] of cpumasks. This compares
  6244. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6245. * It destroys each deleted domain and builds each new domain.
  6246. *
  6247. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6248. * The masks don't intersect (don't overlap.) We should setup one
  6249. * sched domain for each mask. CPUs not in any of the cpumasks will
  6250. * not be load balanced. If the same cpumask appears both in the
  6251. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6252. * it as it is.
  6253. *
  6254. * The passed in 'doms_new' should be allocated using
  6255. * alloc_sched_domains. This routine takes ownership of it and will
  6256. * free_sched_domains it when done with it. If the caller failed the
  6257. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6258. * and partition_sched_domains() will fallback to the single partition
  6259. * 'fallback_doms', it also forces the domains to be rebuilt.
  6260. *
  6261. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6262. * ndoms_new == 0 is a special case for destroying existing domains,
  6263. * and it will not create the default domain.
  6264. *
  6265. * Call with hotplug lock held
  6266. */
  6267. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6268. struct sched_domain_attr *dattr_new)
  6269. {
  6270. int i, j, n;
  6271. int new_topology;
  6272. mutex_lock(&sched_domains_mutex);
  6273. /* always unregister in case we don't destroy any domains */
  6274. unregister_sched_domain_sysctl();
  6275. /* Let architecture update cpu core mappings. */
  6276. new_topology = arch_update_cpu_topology();
  6277. n = doms_new ? ndoms_new : 0;
  6278. /* Destroy deleted domains */
  6279. for (i = 0; i < ndoms_cur; i++) {
  6280. for (j = 0; j < n && !new_topology; j++) {
  6281. if (cpumask_equal(doms_cur[i], doms_new[j])
  6282. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6283. goto match1;
  6284. }
  6285. /* no match - a current sched domain not in new doms_new[] */
  6286. detach_destroy_domains(doms_cur[i]);
  6287. match1:
  6288. ;
  6289. }
  6290. if (doms_new == NULL) {
  6291. ndoms_cur = 0;
  6292. doms_new = &fallback_doms;
  6293. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6294. WARN_ON_ONCE(dattr_new);
  6295. }
  6296. /* Build new domains */
  6297. for (i = 0; i < ndoms_new; i++) {
  6298. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6299. if (cpumask_equal(doms_new[i], doms_cur[j])
  6300. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6301. goto match2;
  6302. }
  6303. /* no match - add a new doms_new */
  6304. __build_sched_domains(doms_new[i],
  6305. dattr_new ? dattr_new + i : NULL);
  6306. match2:
  6307. ;
  6308. }
  6309. /* Remember the new sched domains */
  6310. if (doms_cur != &fallback_doms)
  6311. free_sched_domains(doms_cur, ndoms_cur);
  6312. kfree(dattr_cur); /* kfree(NULL) is safe */
  6313. doms_cur = doms_new;
  6314. dattr_cur = dattr_new;
  6315. ndoms_cur = ndoms_new;
  6316. register_sched_domain_sysctl();
  6317. mutex_unlock(&sched_domains_mutex);
  6318. }
  6319. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6320. static void arch_reinit_sched_domains(void)
  6321. {
  6322. get_online_cpus();
  6323. /* Destroy domains first to force the rebuild */
  6324. partition_sched_domains(0, NULL, NULL);
  6325. rebuild_sched_domains();
  6326. put_online_cpus();
  6327. }
  6328. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6329. {
  6330. unsigned int level = 0;
  6331. if (sscanf(buf, "%u", &level) != 1)
  6332. return -EINVAL;
  6333. /*
  6334. * level is always be positive so don't check for
  6335. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6336. * What happens on 0 or 1 byte write,
  6337. * need to check for count as well?
  6338. */
  6339. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6340. return -EINVAL;
  6341. if (smt)
  6342. sched_smt_power_savings = level;
  6343. else
  6344. sched_mc_power_savings = level;
  6345. arch_reinit_sched_domains();
  6346. return count;
  6347. }
  6348. #ifdef CONFIG_SCHED_MC
  6349. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6350. struct sysdev_class_attribute *attr,
  6351. char *page)
  6352. {
  6353. return sprintf(page, "%u\n", sched_mc_power_savings);
  6354. }
  6355. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6356. struct sysdev_class_attribute *attr,
  6357. const char *buf, size_t count)
  6358. {
  6359. return sched_power_savings_store(buf, count, 0);
  6360. }
  6361. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6362. sched_mc_power_savings_show,
  6363. sched_mc_power_savings_store);
  6364. #endif
  6365. #ifdef CONFIG_SCHED_SMT
  6366. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6367. struct sysdev_class_attribute *attr,
  6368. char *page)
  6369. {
  6370. return sprintf(page, "%u\n", sched_smt_power_savings);
  6371. }
  6372. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6373. struct sysdev_class_attribute *attr,
  6374. const char *buf, size_t count)
  6375. {
  6376. return sched_power_savings_store(buf, count, 1);
  6377. }
  6378. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6379. sched_smt_power_savings_show,
  6380. sched_smt_power_savings_store);
  6381. #endif
  6382. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6383. {
  6384. int err = 0;
  6385. #ifdef CONFIG_SCHED_SMT
  6386. if (smt_capable())
  6387. err = sysfs_create_file(&cls->kset.kobj,
  6388. &attr_sched_smt_power_savings.attr);
  6389. #endif
  6390. #ifdef CONFIG_SCHED_MC
  6391. if (!err && mc_capable())
  6392. err = sysfs_create_file(&cls->kset.kobj,
  6393. &attr_sched_mc_power_savings.attr);
  6394. #endif
  6395. return err;
  6396. }
  6397. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6398. /*
  6399. * Update cpusets according to cpu_active mask. If cpusets are
  6400. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6401. * around partition_sched_domains().
  6402. */
  6403. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6404. void *hcpu)
  6405. {
  6406. switch (action & ~CPU_TASKS_FROZEN) {
  6407. case CPU_ONLINE:
  6408. case CPU_DOWN_FAILED:
  6409. cpuset_update_active_cpus();
  6410. return NOTIFY_OK;
  6411. default:
  6412. return NOTIFY_DONE;
  6413. }
  6414. }
  6415. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6416. void *hcpu)
  6417. {
  6418. switch (action & ~CPU_TASKS_FROZEN) {
  6419. case CPU_DOWN_PREPARE:
  6420. cpuset_update_active_cpus();
  6421. return NOTIFY_OK;
  6422. default:
  6423. return NOTIFY_DONE;
  6424. }
  6425. }
  6426. static int update_runtime(struct notifier_block *nfb,
  6427. unsigned long action, void *hcpu)
  6428. {
  6429. int cpu = (int)(long)hcpu;
  6430. switch (action) {
  6431. case CPU_DOWN_PREPARE:
  6432. case CPU_DOWN_PREPARE_FROZEN:
  6433. disable_runtime(cpu_rq(cpu));
  6434. return NOTIFY_OK;
  6435. case CPU_DOWN_FAILED:
  6436. case CPU_DOWN_FAILED_FROZEN:
  6437. case CPU_ONLINE:
  6438. case CPU_ONLINE_FROZEN:
  6439. enable_runtime(cpu_rq(cpu));
  6440. return NOTIFY_OK;
  6441. default:
  6442. return NOTIFY_DONE;
  6443. }
  6444. }
  6445. void __init sched_init_smp(void)
  6446. {
  6447. cpumask_var_t non_isolated_cpus;
  6448. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6449. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6450. #if defined(CONFIG_NUMA)
  6451. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6452. GFP_KERNEL);
  6453. BUG_ON(sched_group_nodes_bycpu == NULL);
  6454. #endif
  6455. get_online_cpus();
  6456. mutex_lock(&sched_domains_mutex);
  6457. arch_init_sched_domains(cpu_active_mask);
  6458. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6459. if (cpumask_empty(non_isolated_cpus))
  6460. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6461. mutex_unlock(&sched_domains_mutex);
  6462. put_online_cpus();
  6463. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6464. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6465. /* RT runtime code needs to handle some hotplug events */
  6466. hotcpu_notifier(update_runtime, 0);
  6467. init_hrtick();
  6468. /* Move init over to a non-isolated CPU */
  6469. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6470. BUG();
  6471. sched_init_granularity();
  6472. free_cpumask_var(non_isolated_cpus);
  6473. init_sched_rt_class();
  6474. }
  6475. #else
  6476. void __init sched_init_smp(void)
  6477. {
  6478. sched_init_granularity();
  6479. }
  6480. #endif /* CONFIG_SMP */
  6481. const_debug unsigned int sysctl_timer_migration = 1;
  6482. int in_sched_functions(unsigned long addr)
  6483. {
  6484. return in_lock_functions(addr) ||
  6485. (addr >= (unsigned long)__sched_text_start
  6486. && addr < (unsigned long)__sched_text_end);
  6487. }
  6488. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6489. {
  6490. cfs_rq->tasks_timeline = RB_ROOT;
  6491. INIT_LIST_HEAD(&cfs_rq->tasks);
  6492. #ifdef CONFIG_FAIR_GROUP_SCHED
  6493. cfs_rq->rq = rq;
  6494. #endif
  6495. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6496. }
  6497. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6498. {
  6499. struct rt_prio_array *array;
  6500. int i;
  6501. array = &rt_rq->active;
  6502. for (i = 0; i < MAX_RT_PRIO; i++) {
  6503. INIT_LIST_HEAD(array->queue + i);
  6504. __clear_bit(i, array->bitmap);
  6505. }
  6506. /* delimiter for bitsearch: */
  6507. __set_bit(MAX_RT_PRIO, array->bitmap);
  6508. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6509. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6510. #ifdef CONFIG_SMP
  6511. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6512. #endif
  6513. #endif
  6514. #ifdef CONFIG_SMP
  6515. rt_rq->rt_nr_migratory = 0;
  6516. rt_rq->overloaded = 0;
  6517. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6518. #endif
  6519. rt_rq->rt_time = 0;
  6520. rt_rq->rt_throttled = 0;
  6521. rt_rq->rt_runtime = 0;
  6522. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6523. #ifdef CONFIG_RT_GROUP_SCHED
  6524. rt_rq->rt_nr_boosted = 0;
  6525. rt_rq->rq = rq;
  6526. #endif
  6527. }
  6528. #ifdef CONFIG_FAIR_GROUP_SCHED
  6529. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6530. struct sched_entity *se, int cpu,
  6531. struct sched_entity *parent)
  6532. {
  6533. struct rq *rq = cpu_rq(cpu);
  6534. tg->cfs_rq[cpu] = cfs_rq;
  6535. init_cfs_rq(cfs_rq, rq);
  6536. cfs_rq->tg = tg;
  6537. tg->se[cpu] = se;
  6538. /* se could be NULL for init_task_group */
  6539. if (!se)
  6540. return;
  6541. if (!parent)
  6542. se->cfs_rq = &rq->cfs;
  6543. else
  6544. se->cfs_rq = parent->my_q;
  6545. se->my_q = cfs_rq;
  6546. update_load_set(&se->load, 0);
  6547. se->parent = parent;
  6548. }
  6549. #endif
  6550. #ifdef CONFIG_RT_GROUP_SCHED
  6551. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6552. struct sched_rt_entity *rt_se, int cpu,
  6553. struct sched_rt_entity *parent)
  6554. {
  6555. struct rq *rq = cpu_rq(cpu);
  6556. tg->rt_rq[cpu] = rt_rq;
  6557. init_rt_rq(rt_rq, rq);
  6558. rt_rq->tg = tg;
  6559. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6560. tg->rt_se[cpu] = rt_se;
  6561. if (!rt_se)
  6562. return;
  6563. if (!parent)
  6564. rt_se->rt_rq = &rq->rt;
  6565. else
  6566. rt_se->rt_rq = parent->my_q;
  6567. rt_se->my_q = rt_rq;
  6568. rt_se->parent = parent;
  6569. INIT_LIST_HEAD(&rt_se->run_list);
  6570. }
  6571. #endif
  6572. void __init sched_init(void)
  6573. {
  6574. int i, j;
  6575. unsigned long alloc_size = 0, ptr;
  6576. #ifdef CONFIG_FAIR_GROUP_SCHED
  6577. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6578. #endif
  6579. #ifdef CONFIG_RT_GROUP_SCHED
  6580. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6581. #endif
  6582. #ifdef CONFIG_CPUMASK_OFFSTACK
  6583. alloc_size += num_possible_cpus() * cpumask_size();
  6584. #endif
  6585. if (alloc_size) {
  6586. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6587. #ifdef CONFIG_FAIR_GROUP_SCHED
  6588. init_task_group.se = (struct sched_entity **)ptr;
  6589. ptr += nr_cpu_ids * sizeof(void **);
  6590. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6591. ptr += nr_cpu_ids * sizeof(void **);
  6592. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6593. #ifdef CONFIG_RT_GROUP_SCHED
  6594. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6595. ptr += nr_cpu_ids * sizeof(void **);
  6596. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6597. ptr += nr_cpu_ids * sizeof(void **);
  6598. #endif /* CONFIG_RT_GROUP_SCHED */
  6599. #ifdef CONFIG_CPUMASK_OFFSTACK
  6600. for_each_possible_cpu(i) {
  6601. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6602. ptr += cpumask_size();
  6603. }
  6604. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6605. }
  6606. #ifdef CONFIG_SMP
  6607. init_defrootdomain();
  6608. #endif
  6609. init_rt_bandwidth(&def_rt_bandwidth,
  6610. global_rt_period(), global_rt_runtime());
  6611. #ifdef CONFIG_RT_GROUP_SCHED
  6612. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6613. global_rt_period(), global_rt_runtime());
  6614. #endif /* CONFIG_RT_GROUP_SCHED */
  6615. #ifdef CONFIG_CGROUP_SCHED
  6616. list_add(&init_task_group.list, &task_groups);
  6617. INIT_LIST_HEAD(&init_task_group.children);
  6618. #endif /* CONFIG_CGROUP_SCHED */
  6619. for_each_possible_cpu(i) {
  6620. struct rq *rq;
  6621. rq = cpu_rq(i);
  6622. raw_spin_lock_init(&rq->lock);
  6623. rq->nr_running = 0;
  6624. rq->calc_load_active = 0;
  6625. rq->calc_load_update = jiffies + LOAD_FREQ;
  6626. init_cfs_rq(&rq->cfs, rq);
  6627. init_rt_rq(&rq->rt, rq);
  6628. #ifdef CONFIG_FAIR_GROUP_SCHED
  6629. init_task_group.shares = init_task_group_load;
  6630. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6631. #ifdef CONFIG_CGROUP_SCHED
  6632. /*
  6633. * How much cpu bandwidth does init_task_group get?
  6634. *
  6635. * In case of task-groups formed thr' the cgroup filesystem, it
  6636. * gets 100% of the cpu resources in the system. This overall
  6637. * system cpu resource is divided among the tasks of
  6638. * init_task_group and its child task-groups in a fair manner,
  6639. * based on each entity's (task or task-group's) weight
  6640. * (se->load.weight).
  6641. *
  6642. * In other words, if init_task_group has 10 tasks of weight
  6643. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6644. * then A0's share of the cpu resource is:
  6645. *
  6646. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6647. *
  6648. * We achieve this by letting init_task_group's tasks sit
  6649. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6650. */
  6651. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, NULL);
  6652. #endif
  6653. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6654. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6655. #ifdef CONFIG_RT_GROUP_SCHED
  6656. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6657. #ifdef CONFIG_CGROUP_SCHED
  6658. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, NULL);
  6659. #endif
  6660. #endif
  6661. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6662. rq->cpu_load[j] = 0;
  6663. rq->last_load_update_tick = jiffies;
  6664. #ifdef CONFIG_SMP
  6665. rq->sd = NULL;
  6666. rq->rd = NULL;
  6667. rq->cpu_power = SCHED_LOAD_SCALE;
  6668. rq->post_schedule = 0;
  6669. rq->active_balance = 0;
  6670. rq->next_balance = jiffies;
  6671. rq->push_cpu = 0;
  6672. rq->cpu = i;
  6673. rq->online = 0;
  6674. rq->idle_stamp = 0;
  6675. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6676. rq_attach_root(rq, &def_root_domain);
  6677. #ifdef CONFIG_NO_HZ
  6678. rq->nohz_balance_kick = 0;
  6679. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  6680. #endif
  6681. #endif
  6682. init_rq_hrtick(rq);
  6683. atomic_set(&rq->nr_iowait, 0);
  6684. }
  6685. set_load_weight(&init_task);
  6686. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6687. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6688. #endif
  6689. #ifdef CONFIG_SMP
  6690. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6691. #endif
  6692. #ifdef CONFIG_RT_MUTEXES
  6693. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6694. #endif
  6695. /*
  6696. * The boot idle thread does lazy MMU switching as well:
  6697. */
  6698. atomic_inc(&init_mm.mm_count);
  6699. enter_lazy_tlb(&init_mm, current);
  6700. /*
  6701. * Make us the idle thread. Technically, schedule() should not be
  6702. * called from this thread, however somewhere below it might be,
  6703. * but because we are the idle thread, we just pick up running again
  6704. * when this runqueue becomes "idle".
  6705. */
  6706. init_idle(current, smp_processor_id());
  6707. calc_load_update = jiffies + LOAD_FREQ;
  6708. /*
  6709. * During early bootup we pretend to be a normal task:
  6710. */
  6711. current->sched_class = &fair_sched_class;
  6712. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6713. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6714. #ifdef CONFIG_SMP
  6715. #ifdef CONFIG_NO_HZ
  6716. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  6717. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  6718. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  6719. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  6720. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  6721. #endif
  6722. /* May be allocated at isolcpus cmdline parse time */
  6723. if (cpu_isolated_map == NULL)
  6724. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6725. #endif /* SMP */
  6726. perf_event_init();
  6727. scheduler_running = 1;
  6728. }
  6729. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6730. static inline int preempt_count_equals(int preempt_offset)
  6731. {
  6732. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6733. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  6734. }
  6735. void __might_sleep(const char *file, int line, int preempt_offset)
  6736. {
  6737. #ifdef in_atomic
  6738. static unsigned long prev_jiffy; /* ratelimiting */
  6739. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6740. system_state != SYSTEM_RUNNING || oops_in_progress)
  6741. return;
  6742. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6743. return;
  6744. prev_jiffy = jiffies;
  6745. printk(KERN_ERR
  6746. "BUG: sleeping function called from invalid context at %s:%d\n",
  6747. file, line);
  6748. printk(KERN_ERR
  6749. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6750. in_atomic(), irqs_disabled(),
  6751. current->pid, current->comm);
  6752. debug_show_held_locks(current);
  6753. if (irqs_disabled())
  6754. print_irqtrace_events(current);
  6755. dump_stack();
  6756. #endif
  6757. }
  6758. EXPORT_SYMBOL(__might_sleep);
  6759. #endif
  6760. #ifdef CONFIG_MAGIC_SYSRQ
  6761. static void normalize_task(struct rq *rq, struct task_struct *p)
  6762. {
  6763. int on_rq;
  6764. on_rq = p->se.on_rq;
  6765. if (on_rq)
  6766. deactivate_task(rq, p, 0);
  6767. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6768. if (on_rq) {
  6769. activate_task(rq, p, 0);
  6770. resched_task(rq->curr);
  6771. }
  6772. }
  6773. void normalize_rt_tasks(void)
  6774. {
  6775. struct task_struct *g, *p;
  6776. unsigned long flags;
  6777. struct rq *rq;
  6778. read_lock_irqsave(&tasklist_lock, flags);
  6779. do_each_thread(g, p) {
  6780. /*
  6781. * Only normalize user tasks:
  6782. */
  6783. if (!p->mm)
  6784. continue;
  6785. p->se.exec_start = 0;
  6786. #ifdef CONFIG_SCHEDSTATS
  6787. p->se.statistics.wait_start = 0;
  6788. p->se.statistics.sleep_start = 0;
  6789. p->se.statistics.block_start = 0;
  6790. #endif
  6791. if (!rt_task(p)) {
  6792. /*
  6793. * Renice negative nice level userspace
  6794. * tasks back to 0:
  6795. */
  6796. if (TASK_NICE(p) < 0 && p->mm)
  6797. set_user_nice(p, 0);
  6798. continue;
  6799. }
  6800. raw_spin_lock(&p->pi_lock);
  6801. rq = __task_rq_lock(p);
  6802. normalize_task(rq, p);
  6803. __task_rq_unlock(rq);
  6804. raw_spin_unlock(&p->pi_lock);
  6805. } while_each_thread(g, p);
  6806. read_unlock_irqrestore(&tasklist_lock, flags);
  6807. }
  6808. #endif /* CONFIG_MAGIC_SYSRQ */
  6809. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6810. /*
  6811. * These functions are only useful for the IA64 MCA handling, or kdb.
  6812. *
  6813. * They can only be called when the whole system has been
  6814. * stopped - every CPU needs to be quiescent, and no scheduling
  6815. * activity can take place. Using them for anything else would
  6816. * be a serious bug, and as a result, they aren't even visible
  6817. * under any other configuration.
  6818. */
  6819. /**
  6820. * curr_task - return the current task for a given cpu.
  6821. * @cpu: the processor in question.
  6822. *
  6823. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6824. */
  6825. struct task_struct *curr_task(int cpu)
  6826. {
  6827. return cpu_curr(cpu);
  6828. }
  6829. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6830. #ifdef CONFIG_IA64
  6831. /**
  6832. * set_curr_task - set the current task for a given cpu.
  6833. * @cpu: the processor in question.
  6834. * @p: the task pointer to set.
  6835. *
  6836. * Description: This function must only be used when non-maskable interrupts
  6837. * are serviced on a separate stack. It allows the architecture to switch the
  6838. * notion of the current task on a cpu in a non-blocking manner. This function
  6839. * must be called with all CPU's synchronized, and interrupts disabled, the
  6840. * and caller must save the original value of the current task (see
  6841. * curr_task() above) and restore that value before reenabling interrupts and
  6842. * re-starting the system.
  6843. *
  6844. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6845. */
  6846. void set_curr_task(int cpu, struct task_struct *p)
  6847. {
  6848. cpu_curr(cpu) = p;
  6849. }
  6850. #endif
  6851. #ifdef CONFIG_FAIR_GROUP_SCHED
  6852. static void free_fair_sched_group(struct task_group *tg)
  6853. {
  6854. int i;
  6855. for_each_possible_cpu(i) {
  6856. if (tg->cfs_rq)
  6857. kfree(tg->cfs_rq[i]);
  6858. if (tg->se)
  6859. kfree(tg->se[i]);
  6860. }
  6861. kfree(tg->cfs_rq);
  6862. kfree(tg->se);
  6863. }
  6864. static
  6865. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6866. {
  6867. struct cfs_rq *cfs_rq;
  6868. struct sched_entity *se;
  6869. struct rq *rq;
  6870. int i;
  6871. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6872. if (!tg->cfs_rq)
  6873. goto err;
  6874. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6875. if (!tg->se)
  6876. goto err;
  6877. tg->shares = NICE_0_LOAD;
  6878. for_each_possible_cpu(i) {
  6879. rq = cpu_rq(i);
  6880. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  6881. GFP_KERNEL, cpu_to_node(i));
  6882. if (!cfs_rq)
  6883. goto err;
  6884. se = kzalloc_node(sizeof(struct sched_entity),
  6885. GFP_KERNEL, cpu_to_node(i));
  6886. if (!se)
  6887. goto err_free_rq;
  6888. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  6889. }
  6890. return 1;
  6891. err_free_rq:
  6892. kfree(cfs_rq);
  6893. err:
  6894. return 0;
  6895. }
  6896. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6897. {
  6898. struct rq *rq = cpu_rq(cpu);
  6899. unsigned long flags;
  6900. int i;
  6901. /*
  6902. * Only empty task groups can be destroyed; so we can speculatively
  6903. * check on_list without danger of it being re-added.
  6904. */
  6905. if (!tg->cfs_rq[cpu]->on_list)
  6906. return;
  6907. raw_spin_lock_irqsave(&rq->lock, flags);
  6908. list_del_leaf_cfs_rq(tg->cfs_rq[i]);
  6909. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6910. }
  6911. #else /* !CONFG_FAIR_GROUP_SCHED */
  6912. static inline void free_fair_sched_group(struct task_group *tg)
  6913. {
  6914. }
  6915. static inline
  6916. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6917. {
  6918. return 1;
  6919. }
  6920. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6921. {
  6922. }
  6923. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6924. #ifdef CONFIG_RT_GROUP_SCHED
  6925. static void free_rt_sched_group(struct task_group *tg)
  6926. {
  6927. int i;
  6928. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6929. for_each_possible_cpu(i) {
  6930. if (tg->rt_rq)
  6931. kfree(tg->rt_rq[i]);
  6932. if (tg->rt_se)
  6933. kfree(tg->rt_se[i]);
  6934. }
  6935. kfree(tg->rt_rq);
  6936. kfree(tg->rt_se);
  6937. }
  6938. static
  6939. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6940. {
  6941. struct rt_rq *rt_rq;
  6942. struct sched_rt_entity *rt_se;
  6943. struct rq *rq;
  6944. int i;
  6945. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6946. if (!tg->rt_rq)
  6947. goto err;
  6948. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6949. if (!tg->rt_se)
  6950. goto err;
  6951. init_rt_bandwidth(&tg->rt_bandwidth,
  6952. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6953. for_each_possible_cpu(i) {
  6954. rq = cpu_rq(i);
  6955. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  6956. GFP_KERNEL, cpu_to_node(i));
  6957. if (!rt_rq)
  6958. goto err;
  6959. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  6960. GFP_KERNEL, cpu_to_node(i));
  6961. if (!rt_se)
  6962. goto err_free_rq;
  6963. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  6964. }
  6965. return 1;
  6966. err_free_rq:
  6967. kfree(rt_rq);
  6968. err:
  6969. return 0;
  6970. }
  6971. #else /* !CONFIG_RT_GROUP_SCHED */
  6972. static inline void free_rt_sched_group(struct task_group *tg)
  6973. {
  6974. }
  6975. static inline
  6976. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6977. {
  6978. return 1;
  6979. }
  6980. #endif /* CONFIG_RT_GROUP_SCHED */
  6981. #ifdef CONFIG_CGROUP_SCHED
  6982. static void free_sched_group(struct task_group *tg)
  6983. {
  6984. free_fair_sched_group(tg);
  6985. free_rt_sched_group(tg);
  6986. kfree(tg);
  6987. }
  6988. /* allocate runqueue etc for a new task group */
  6989. struct task_group *sched_create_group(struct task_group *parent)
  6990. {
  6991. struct task_group *tg;
  6992. unsigned long flags;
  6993. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6994. if (!tg)
  6995. return ERR_PTR(-ENOMEM);
  6996. if (!alloc_fair_sched_group(tg, parent))
  6997. goto err;
  6998. if (!alloc_rt_sched_group(tg, parent))
  6999. goto err;
  7000. spin_lock_irqsave(&task_group_lock, flags);
  7001. list_add_rcu(&tg->list, &task_groups);
  7002. WARN_ON(!parent); /* root should already exist */
  7003. tg->parent = parent;
  7004. INIT_LIST_HEAD(&tg->children);
  7005. list_add_rcu(&tg->siblings, &parent->children);
  7006. spin_unlock_irqrestore(&task_group_lock, flags);
  7007. return tg;
  7008. err:
  7009. free_sched_group(tg);
  7010. return ERR_PTR(-ENOMEM);
  7011. }
  7012. /* rcu callback to free various structures associated with a task group */
  7013. static void free_sched_group_rcu(struct rcu_head *rhp)
  7014. {
  7015. /* now it should be safe to free those cfs_rqs */
  7016. free_sched_group(container_of(rhp, struct task_group, rcu));
  7017. }
  7018. /* Destroy runqueue etc associated with a task group */
  7019. void sched_destroy_group(struct task_group *tg)
  7020. {
  7021. unsigned long flags;
  7022. int i;
  7023. /* end participation in shares distribution */
  7024. for_each_possible_cpu(i)
  7025. unregister_fair_sched_group(tg, i);
  7026. spin_lock_irqsave(&task_group_lock, flags);
  7027. list_del_rcu(&tg->list);
  7028. list_del_rcu(&tg->siblings);
  7029. spin_unlock_irqrestore(&task_group_lock, flags);
  7030. /* wait for possible concurrent references to cfs_rqs complete */
  7031. call_rcu(&tg->rcu, free_sched_group_rcu);
  7032. }
  7033. /* change task's runqueue when it moves between groups.
  7034. * The caller of this function should have put the task in its new group
  7035. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7036. * reflect its new group.
  7037. */
  7038. void sched_move_task(struct task_struct *tsk)
  7039. {
  7040. int on_rq, running;
  7041. unsigned long flags;
  7042. struct rq *rq;
  7043. rq = task_rq_lock(tsk, &flags);
  7044. running = task_current(rq, tsk);
  7045. on_rq = tsk->se.on_rq;
  7046. if (on_rq)
  7047. dequeue_task(rq, tsk, 0);
  7048. if (unlikely(running))
  7049. tsk->sched_class->put_prev_task(rq, tsk);
  7050. #ifdef CONFIG_FAIR_GROUP_SCHED
  7051. if (tsk->sched_class->task_move_group)
  7052. tsk->sched_class->task_move_group(tsk, on_rq);
  7053. else
  7054. #endif
  7055. set_task_rq(tsk, task_cpu(tsk));
  7056. if (unlikely(running))
  7057. tsk->sched_class->set_curr_task(rq);
  7058. if (on_rq)
  7059. enqueue_task(rq, tsk, 0);
  7060. task_rq_unlock(rq, &flags);
  7061. }
  7062. #endif /* CONFIG_CGROUP_SCHED */
  7063. #ifdef CONFIG_FAIR_GROUP_SCHED
  7064. static DEFINE_MUTEX(shares_mutex);
  7065. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7066. {
  7067. int i;
  7068. unsigned long flags;
  7069. /*
  7070. * We can't change the weight of the root cgroup.
  7071. */
  7072. if (!tg->se[0])
  7073. return -EINVAL;
  7074. if (shares < MIN_SHARES)
  7075. shares = MIN_SHARES;
  7076. else if (shares > MAX_SHARES)
  7077. shares = MAX_SHARES;
  7078. mutex_lock(&shares_mutex);
  7079. if (tg->shares == shares)
  7080. goto done;
  7081. tg->shares = shares;
  7082. for_each_possible_cpu(i) {
  7083. struct rq *rq = cpu_rq(i);
  7084. struct sched_entity *se;
  7085. se = tg->se[i];
  7086. /* Propagate contribution to hierarchy */
  7087. raw_spin_lock_irqsave(&rq->lock, flags);
  7088. for_each_sched_entity(se)
  7089. update_cfs_shares(group_cfs_rq(se), 0);
  7090. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7091. }
  7092. done:
  7093. mutex_unlock(&shares_mutex);
  7094. return 0;
  7095. }
  7096. unsigned long sched_group_shares(struct task_group *tg)
  7097. {
  7098. return tg->shares;
  7099. }
  7100. #endif
  7101. #ifdef CONFIG_RT_GROUP_SCHED
  7102. /*
  7103. * Ensure that the real time constraints are schedulable.
  7104. */
  7105. static DEFINE_MUTEX(rt_constraints_mutex);
  7106. static unsigned long to_ratio(u64 period, u64 runtime)
  7107. {
  7108. if (runtime == RUNTIME_INF)
  7109. return 1ULL << 20;
  7110. return div64_u64(runtime << 20, period);
  7111. }
  7112. /* Must be called with tasklist_lock held */
  7113. static inline int tg_has_rt_tasks(struct task_group *tg)
  7114. {
  7115. struct task_struct *g, *p;
  7116. do_each_thread(g, p) {
  7117. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7118. return 1;
  7119. } while_each_thread(g, p);
  7120. return 0;
  7121. }
  7122. struct rt_schedulable_data {
  7123. struct task_group *tg;
  7124. u64 rt_period;
  7125. u64 rt_runtime;
  7126. };
  7127. static int tg_schedulable(struct task_group *tg, void *data)
  7128. {
  7129. struct rt_schedulable_data *d = data;
  7130. struct task_group *child;
  7131. unsigned long total, sum = 0;
  7132. u64 period, runtime;
  7133. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7134. runtime = tg->rt_bandwidth.rt_runtime;
  7135. if (tg == d->tg) {
  7136. period = d->rt_period;
  7137. runtime = d->rt_runtime;
  7138. }
  7139. /*
  7140. * Cannot have more runtime than the period.
  7141. */
  7142. if (runtime > period && runtime != RUNTIME_INF)
  7143. return -EINVAL;
  7144. /*
  7145. * Ensure we don't starve existing RT tasks.
  7146. */
  7147. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7148. return -EBUSY;
  7149. total = to_ratio(period, runtime);
  7150. /*
  7151. * Nobody can have more than the global setting allows.
  7152. */
  7153. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7154. return -EINVAL;
  7155. /*
  7156. * The sum of our children's runtime should not exceed our own.
  7157. */
  7158. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7159. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7160. runtime = child->rt_bandwidth.rt_runtime;
  7161. if (child == d->tg) {
  7162. period = d->rt_period;
  7163. runtime = d->rt_runtime;
  7164. }
  7165. sum += to_ratio(period, runtime);
  7166. }
  7167. if (sum > total)
  7168. return -EINVAL;
  7169. return 0;
  7170. }
  7171. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7172. {
  7173. struct rt_schedulable_data data = {
  7174. .tg = tg,
  7175. .rt_period = period,
  7176. .rt_runtime = runtime,
  7177. };
  7178. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7179. }
  7180. static int tg_set_bandwidth(struct task_group *tg,
  7181. u64 rt_period, u64 rt_runtime)
  7182. {
  7183. int i, err = 0;
  7184. mutex_lock(&rt_constraints_mutex);
  7185. read_lock(&tasklist_lock);
  7186. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7187. if (err)
  7188. goto unlock;
  7189. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7190. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7191. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7192. for_each_possible_cpu(i) {
  7193. struct rt_rq *rt_rq = tg->rt_rq[i];
  7194. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7195. rt_rq->rt_runtime = rt_runtime;
  7196. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7197. }
  7198. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7199. unlock:
  7200. read_unlock(&tasklist_lock);
  7201. mutex_unlock(&rt_constraints_mutex);
  7202. return err;
  7203. }
  7204. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7205. {
  7206. u64 rt_runtime, rt_period;
  7207. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7208. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7209. if (rt_runtime_us < 0)
  7210. rt_runtime = RUNTIME_INF;
  7211. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7212. }
  7213. long sched_group_rt_runtime(struct task_group *tg)
  7214. {
  7215. u64 rt_runtime_us;
  7216. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7217. return -1;
  7218. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7219. do_div(rt_runtime_us, NSEC_PER_USEC);
  7220. return rt_runtime_us;
  7221. }
  7222. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7223. {
  7224. u64 rt_runtime, rt_period;
  7225. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7226. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7227. if (rt_period == 0)
  7228. return -EINVAL;
  7229. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7230. }
  7231. long sched_group_rt_period(struct task_group *tg)
  7232. {
  7233. u64 rt_period_us;
  7234. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7235. do_div(rt_period_us, NSEC_PER_USEC);
  7236. return rt_period_us;
  7237. }
  7238. static int sched_rt_global_constraints(void)
  7239. {
  7240. u64 runtime, period;
  7241. int ret = 0;
  7242. if (sysctl_sched_rt_period <= 0)
  7243. return -EINVAL;
  7244. runtime = global_rt_runtime();
  7245. period = global_rt_period();
  7246. /*
  7247. * Sanity check on the sysctl variables.
  7248. */
  7249. if (runtime > period && runtime != RUNTIME_INF)
  7250. return -EINVAL;
  7251. mutex_lock(&rt_constraints_mutex);
  7252. read_lock(&tasklist_lock);
  7253. ret = __rt_schedulable(NULL, 0, 0);
  7254. read_unlock(&tasklist_lock);
  7255. mutex_unlock(&rt_constraints_mutex);
  7256. return ret;
  7257. }
  7258. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7259. {
  7260. /* Don't accept realtime tasks when there is no way for them to run */
  7261. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7262. return 0;
  7263. return 1;
  7264. }
  7265. #else /* !CONFIG_RT_GROUP_SCHED */
  7266. static int sched_rt_global_constraints(void)
  7267. {
  7268. unsigned long flags;
  7269. int i;
  7270. if (sysctl_sched_rt_period <= 0)
  7271. return -EINVAL;
  7272. /*
  7273. * There's always some RT tasks in the root group
  7274. * -- migration, kstopmachine etc..
  7275. */
  7276. if (sysctl_sched_rt_runtime == 0)
  7277. return -EBUSY;
  7278. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7279. for_each_possible_cpu(i) {
  7280. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7281. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7282. rt_rq->rt_runtime = global_rt_runtime();
  7283. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7284. }
  7285. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7286. return 0;
  7287. }
  7288. #endif /* CONFIG_RT_GROUP_SCHED */
  7289. int sched_rt_handler(struct ctl_table *table, int write,
  7290. void __user *buffer, size_t *lenp,
  7291. loff_t *ppos)
  7292. {
  7293. int ret;
  7294. int old_period, old_runtime;
  7295. static DEFINE_MUTEX(mutex);
  7296. mutex_lock(&mutex);
  7297. old_period = sysctl_sched_rt_period;
  7298. old_runtime = sysctl_sched_rt_runtime;
  7299. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7300. if (!ret && write) {
  7301. ret = sched_rt_global_constraints();
  7302. if (ret) {
  7303. sysctl_sched_rt_period = old_period;
  7304. sysctl_sched_rt_runtime = old_runtime;
  7305. } else {
  7306. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7307. def_rt_bandwidth.rt_period =
  7308. ns_to_ktime(global_rt_period());
  7309. }
  7310. }
  7311. mutex_unlock(&mutex);
  7312. return ret;
  7313. }
  7314. #ifdef CONFIG_CGROUP_SCHED
  7315. /* return corresponding task_group object of a cgroup */
  7316. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7317. {
  7318. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7319. struct task_group, css);
  7320. }
  7321. static struct cgroup_subsys_state *
  7322. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7323. {
  7324. struct task_group *tg, *parent;
  7325. if (!cgrp->parent) {
  7326. /* This is early initialization for the top cgroup */
  7327. return &init_task_group.css;
  7328. }
  7329. parent = cgroup_tg(cgrp->parent);
  7330. tg = sched_create_group(parent);
  7331. if (IS_ERR(tg))
  7332. return ERR_PTR(-ENOMEM);
  7333. return &tg->css;
  7334. }
  7335. static void
  7336. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7337. {
  7338. struct task_group *tg = cgroup_tg(cgrp);
  7339. sched_destroy_group(tg);
  7340. }
  7341. static int
  7342. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7343. {
  7344. #ifdef CONFIG_RT_GROUP_SCHED
  7345. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7346. return -EINVAL;
  7347. #else
  7348. /* We don't support RT-tasks being in separate groups */
  7349. if (tsk->sched_class != &fair_sched_class)
  7350. return -EINVAL;
  7351. #endif
  7352. return 0;
  7353. }
  7354. static int
  7355. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7356. struct task_struct *tsk, bool threadgroup)
  7357. {
  7358. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7359. if (retval)
  7360. return retval;
  7361. if (threadgroup) {
  7362. struct task_struct *c;
  7363. rcu_read_lock();
  7364. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7365. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7366. if (retval) {
  7367. rcu_read_unlock();
  7368. return retval;
  7369. }
  7370. }
  7371. rcu_read_unlock();
  7372. }
  7373. return 0;
  7374. }
  7375. static void
  7376. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7377. struct cgroup *old_cont, struct task_struct *tsk,
  7378. bool threadgroup)
  7379. {
  7380. sched_move_task(tsk);
  7381. if (threadgroup) {
  7382. struct task_struct *c;
  7383. rcu_read_lock();
  7384. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7385. sched_move_task(c);
  7386. }
  7387. rcu_read_unlock();
  7388. }
  7389. }
  7390. #ifdef CONFIG_FAIR_GROUP_SCHED
  7391. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7392. u64 shareval)
  7393. {
  7394. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7395. }
  7396. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7397. {
  7398. struct task_group *tg = cgroup_tg(cgrp);
  7399. return (u64) tg->shares;
  7400. }
  7401. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7402. #ifdef CONFIG_RT_GROUP_SCHED
  7403. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7404. s64 val)
  7405. {
  7406. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7407. }
  7408. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7409. {
  7410. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7411. }
  7412. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7413. u64 rt_period_us)
  7414. {
  7415. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7416. }
  7417. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7418. {
  7419. return sched_group_rt_period(cgroup_tg(cgrp));
  7420. }
  7421. #endif /* CONFIG_RT_GROUP_SCHED */
  7422. static struct cftype cpu_files[] = {
  7423. #ifdef CONFIG_FAIR_GROUP_SCHED
  7424. {
  7425. .name = "shares",
  7426. .read_u64 = cpu_shares_read_u64,
  7427. .write_u64 = cpu_shares_write_u64,
  7428. },
  7429. #endif
  7430. #ifdef CONFIG_RT_GROUP_SCHED
  7431. {
  7432. .name = "rt_runtime_us",
  7433. .read_s64 = cpu_rt_runtime_read,
  7434. .write_s64 = cpu_rt_runtime_write,
  7435. },
  7436. {
  7437. .name = "rt_period_us",
  7438. .read_u64 = cpu_rt_period_read_uint,
  7439. .write_u64 = cpu_rt_period_write_uint,
  7440. },
  7441. #endif
  7442. };
  7443. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7444. {
  7445. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7446. }
  7447. struct cgroup_subsys cpu_cgroup_subsys = {
  7448. .name = "cpu",
  7449. .create = cpu_cgroup_create,
  7450. .destroy = cpu_cgroup_destroy,
  7451. .can_attach = cpu_cgroup_can_attach,
  7452. .attach = cpu_cgroup_attach,
  7453. .populate = cpu_cgroup_populate,
  7454. .subsys_id = cpu_cgroup_subsys_id,
  7455. .early_init = 1,
  7456. };
  7457. #endif /* CONFIG_CGROUP_SCHED */
  7458. #ifdef CONFIG_CGROUP_CPUACCT
  7459. /*
  7460. * CPU accounting code for task groups.
  7461. *
  7462. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7463. * (balbir@in.ibm.com).
  7464. */
  7465. /* track cpu usage of a group of tasks and its child groups */
  7466. struct cpuacct {
  7467. struct cgroup_subsys_state css;
  7468. /* cpuusage holds pointer to a u64-type object on every cpu */
  7469. u64 __percpu *cpuusage;
  7470. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7471. struct cpuacct *parent;
  7472. };
  7473. struct cgroup_subsys cpuacct_subsys;
  7474. /* return cpu accounting group corresponding to this container */
  7475. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7476. {
  7477. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7478. struct cpuacct, css);
  7479. }
  7480. /* return cpu accounting group to which this task belongs */
  7481. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7482. {
  7483. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7484. struct cpuacct, css);
  7485. }
  7486. /* create a new cpu accounting group */
  7487. static struct cgroup_subsys_state *cpuacct_create(
  7488. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7489. {
  7490. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7491. int i;
  7492. if (!ca)
  7493. goto out;
  7494. ca->cpuusage = alloc_percpu(u64);
  7495. if (!ca->cpuusage)
  7496. goto out_free_ca;
  7497. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7498. if (percpu_counter_init(&ca->cpustat[i], 0))
  7499. goto out_free_counters;
  7500. if (cgrp->parent)
  7501. ca->parent = cgroup_ca(cgrp->parent);
  7502. return &ca->css;
  7503. out_free_counters:
  7504. while (--i >= 0)
  7505. percpu_counter_destroy(&ca->cpustat[i]);
  7506. free_percpu(ca->cpuusage);
  7507. out_free_ca:
  7508. kfree(ca);
  7509. out:
  7510. return ERR_PTR(-ENOMEM);
  7511. }
  7512. /* destroy an existing cpu accounting group */
  7513. static void
  7514. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7515. {
  7516. struct cpuacct *ca = cgroup_ca(cgrp);
  7517. int i;
  7518. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7519. percpu_counter_destroy(&ca->cpustat[i]);
  7520. free_percpu(ca->cpuusage);
  7521. kfree(ca);
  7522. }
  7523. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7524. {
  7525. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7526. u64 data;
  7527. #ifndef CONFIG_64BIT
  7528. /*
  7529. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7530. */
  7531. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7532. data = *cpuusage;
  7533. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7534. #else
  7535. data = *cpuusage;
  7536. #endif
  7537. return data;
  7538. }
  7539. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7540. {
  7541. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7542. #ifndef CONFIG_64BIT
  7543. /*
  7544. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7545. */
  7546. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7547. *cpuusage = val;
  7548. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7549. #else
  7550. *cpuusage = val;
  7551. #endif
  7552. }
  7553. /* return total cpu usage (in nanoseconds) of a group */
  7554. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7555. {
  7556. struct cpuacct *ca = cgroup_ca(cgrp);
  7557. u64 totalcpuusage = 0;
  7558. int i;
  7559. for_each_present_cpu(i)
  7560. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7561. return totalcpuusage;
  7562. }
  7563. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7564. u64 reset)
  7565. {
  7566. struct cpuacct *ca = cgroup_ca(cgrp);
  7567. int err = 0;
  7568. int i;
  7569. if (reset) {
  7570. err = -EINVAL;
  7571. goto out;
  7572. }
  7573. for_each_present_cpu(i)
  7574. cpuacct_cpuusage_write(ca, i, 0);
  7575. out:
  7576. return err;
  7577. }
  7578. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7579. struct seq_file *m)
  7580. {
  7581. struct cpuacct *ca = cgroup_ca(cgroup);
  7582. u64 percpu;
  7583. int i;
  7584. for_each_present_cpu(i) {
  7585. percpu = cpuacct_cpuusage_read(ca, i);
  7586. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7587. }
  7588. seq_printf(m, "\n");
  7589. return 0;
  7590. }
  7591. static const char *cpuacct_stat_desc[] = {
  7592. [CPUACCT_STAT_USER] = "user",
  7593. [CPUACCT_STAT_SYSTEM] = "system",
  7594. };
  7595. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7596. struct cgroup_map_cb *cb)
  7597. {
  7598. struct cpuacct *ca = cgroup_ca(cgrp);
  7599. int i;
  7600. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7601. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7602. val = cputime64_to_clock_t(val);
  7603. cb->fill(cb, cpuacct_stat_desc[i], val);
  7604. }
  7605. return 0;
  7606. }
  7607. static struct cftype files[] = {
  7608. {
  7609. .name = "usage",
  7610. .read_u64 = cpuusage_read,
  7611. .write_u64 = cpuusage_write,
  7612. },
  7613. {
  7614. .name = "usage_percpu",
  7615. .read_seq_string = cpuacct_percpu_seq_read,
  7616. },
  7617. {
  7618. .name = "stat",
  7619. .read_map = cpuacct_stats_show,
  7620. },
  7621. };
  7622. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7623. {
  7624. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7625. }
  7626. /*
  7627. * charge this task's execution time to its accounting group.
  7628. *
  7629. * called with rq->lock held.
  7630. */
  7631. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7632. {
  7633. struct cpuacct *ca;
  7634. int cpu;
  7635. if (unlikely(!cpuacct_subsys.active))
  7636. return;
  7637. cpu = task_cpu(tsk);
  7638. rcu_read_lock();
  7639. ca = task_ca(tsk);
  7640. for (; ca; ca = ca->parent) {
  7641. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7642. *cpuusage += cputime;
  7643. }
  7644. rcu_read_unlock();
  7645. }
  7646. /*
  7647. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7648. * in cputime_t units. As a result, cpuacct_update_stats calls
  7649. * percpu_counter_add with values large enough to always overflow the
  7650. * per cpu batch limit causing bad SMP scalability.
  7651. *
  7652. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7653. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7654. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7655. */
  7656. #ifdef CONFIG_SMP
  7657. #define CPUACCT_BATCH \
  7658. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7659. #else
  7660. #define CPUACCT_BATCH 0
  7661. #endif
  7662. /*
  7663. * Charge the system/user time to the task's accounting group.
  7664. */
  7665. static void cpuacct_update_stats(struct task_struct *tsk,
  7666. enum cpuacct_stat_index idx, cputime_t val)
  7667. {
  7668. struct cpuacct *ca;
  7669. int batch = CPUACCT_BATCH;
  7670. if (unlikely(!cpuacct_subsys.active))
  7671. return;
  7672. rcu_read_lock();
  7673. ca = task_ca(tsk);
  7674. do {
  7675. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7676. ca = ca->parent;
  7677. } while (ca);
  7678. rcu_read_unlock();
  7679. }
  7680. struct cgroup_subsys cpuacct_subsys = {
  7681. .name = "cpuacct",
  7682. .create = cpuacct_create,
  7683. .destroy = cpuacct_destroy,
  7684. .populate = cpuacct_populate,
  7685. .subsys_id = cpuacct_subsys_id,
  7686. };
  7687. #endif /* CONFIG_CGROUP_CPUACCT */
  7688. #ifndef CONFIG_SMP
  7689. void synchronize_sched_expedited(void)
  7690. {
  7691. barrier();
  7692. }
  7693. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7694. #else /* #ifndef CONFIG_SMP */
  7695. static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
  7696. static int synchronize_sched_expedited_cpu_stop(void *data)
  7697. {
  7698. /*
  7699. * There must be a full memory barrier on each affected CPU
  7700. * between the time that try_stop_cpus() is called and the
  7701. * time that it returns.
  7702. *
  7703. * In the current initial implementation of cpu_stop, the
  7704. * above condition is already met when the control reaches
  7705. * this point and the following smp_mb() is not strictly
  7706. * necessary. Do smp_mb() anyway for documentation and
  7707. * robustness against future implementation changes.
  7708. */
  7709. smp_mb(); /* See above comment block. */
  7710. return 0;
  7711. }
  7712. /*
  7713. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  7714. * approach to force grace period to end quickly. This consumes
  7715. * significant time on all CPUs, and is thus not recommended for
  7716. * any sort of common-case code.
  7717. *
  7718. * Note that it is illegal to call this function while holding any
  7719. * lock that is acquired by a CPU-hotplug notifier. Failing to
  7720. * observe this restriction will result in deadlock.
  7721. */
  7722. void synchronize_sched_expedited(void)
  7723. {
  7724. int snap, trycount = 0;
  7725. smp_mb(); /* ensure prior mod happens before capturing snap. */
  7726. snap = atomic_read(&synchronize_sched_expedited_count) + 1;
  7727. get_online_cpus();
  7728. while (try_stop_cpus(cpu_online_mask,
  7729. synchronize_sched_expedited_cpu_stop,
  7730. NULL) == -EAGAIN) {
  7731. put_online_cpus();
  7732. if (trycount++ < 10)
  7733. udelay(trycount * num_online_cpus());
  7734. else {
  7735. synchronize_sched();
  7736. return;
  7737. }
  7738. if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
  7739. smp_mb(); /* ensure test happens before caller kfree */
  7740. return;
  7741. }
  7742. get_online_cpus();
  7743. }
  7744. atomic_inc(&synchronize_sched_expedited_count);
  7745. smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
  7746. put_online_cpus();
  7747. }
  7748. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7749. #endif /* #else #ifndef CONFIG_SMP */