dm-thin-metadata.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569
  1. /*
  2. * Copyright (C) 2011 Red Hat, Inc.
  3. *
  4. * This file is released under the GPL.
  5. */
  6. #include "dm-thin-metadata.h"
  7. #include "persistent-data/dm-btree.h"
  8. #include "persistent-data/dm-space-map.h"
  9. #include "persistent-data/dm-space-map-disk.h"
  10. #include "persistent-data/dm-transaction-manager.h"
  11. #include <linux/list.h>
  12. #include <linux/device-mapper.h>
  13. #include <linux/workqueue.h>
  14. /*--------------------------------------------------------------------------
  15. * As far as the metadata goes, there is:
  16. *
  17. * - A superblock in block zero, taking up fewer than 512 bytes for
  18. * atomic writes.
  19. *
  20. * - A space map managing the metadata blocks.
  21. *
  22. * - A space map managing the data blocks.
  23. *
  24. * - A btree mapping our internal thin dev ids onto struct disk_device_details.
  25. *
  26. * - A hierarchical btree, with 2 levels which effectively maps (thin
  27. * dev id, virtual block) -> block_time. Block time is a 64-bit
  28. * field holding the time in the low 24 bits, and block in the top 48
  29. * bits.
  30. *
  31. * BTrees consist solely of btree_nodes, that fill a block. Some are
  32. * internal nodes, as such their values are a __le64 pointing to other
  33. * nodes. Leaf nodes can store data of any reasonable size (ie. much
  34. * smaller than the block size). The nodes consist of the header,
  35. * followed by an array of keys, followed by an array of values. We have
  36. * to binary search on the keys so they're all held together to help the
  37. * cpu cache.
  38. *
  39. * Space maps have 2 btrees:
  40. *
  41. * - One maps a uint64_t onto a struct index_entry. Which points to a
  42. * bitmap block, and has some details about how many free entries there
  43. * are etc.
  44. *
  45. * - The bitmap blocks have a header (for the checksum). Then the rest
  46. * of the block is pairs of bits. With the meaning being:
  47. *
  48. * 0 - ref count is 0
  49. * 1 - ref count is 1
  50. * 2 - ref count is 2
  51. * 3 - ref count is higher than 2
  52. *
  53. * - If the count is higher than 2 then the ref count is entered in a
  54. * second btree that directly maps the block_address to a uint32_t ref
  55. * count.
  56. *
  57. * The space map metadata variant doesn't have a bitmaps btree. Instead
  58. * it has one single blocks worth of index_entries. This avoids
  59. * recursive issues with the bitmap btree needing to allocate space in
  60. * order to insert. With a small data block size such as 64k the
  61. * metadata support data devices that are hundreds of terrabytes.
  62. *
  63. * The space maps allocate space linearly from front to back. Space that
  64. * is freed in a transaction is never recycled within that transaction.
  65. * To try and avoid fragmenting _free_ space the allocator always goes
  66. * back and fills in gaps.
  67. *
  68. * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
  69. * from the block manager.
  70. *--------------------------------------------------------------------------*/
  71. #define DM_MSG_PREFIX "thin metadata"
  72. #define THIN_SUPERBLOCK_MAGIC 27022010
  73. #define THIN_SUPERBLOCK_LOCATION 0
  74. #define THIN_VERSION 1
  75. #define THIN_METADATA_CACHE_SIZE 64
  76. #define SECTOR_TO_BLOCK_SHIFT 3
  77. /*
  78. * 3 for btree insert +
  79. * 2 for btree lookup used within space map
  80. */
  81. #define THIN_MAX_CONCURRENT_LOCKS 5
  82. /* This should be plenty */
  83. #define SPACE_MAP_ROOT_SIZE 128
  84. /*
  85. * Little endian on-disk superblock and device details.
  86. */
  87. struct thin_disk_superblock {
  88. __le32 csum; /* Checksum of superblock except for this field. */
  89. __le32 flags;
  90. __le64 blocknr; /* This block number, dm_block_t. */
  91. __u8 uuid[16];
  92. __le64 magic;
  93. __le32 version;
  94. __le32 time;
  95. __le64 trans_id;
  96. /*
  97. * Root held by userspace transactions.
  98. */
  99. __le64 held_root;
  100. __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
  101. __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
  102. /*
  103. * 2-level btree mapping (dev_id, (dev block, time)) -> data block
  104. */
  105. __le64 data_mapping_root;
  106. /*
  107. * Device detail root mapping dev_id -> device_details
  108. */
  109. __le64 device_details_root;
  110. __le32 data_block_size; /* In 512-byte sectors. */
  111. __le32 metadata_block_size; /* In 512-byte sectors. */
  112. __le64 metadata_nr_blocks;
  113. __le32 compat_flags;
  114. __le32 compat_ro_flags;
  115. __le32 incompat_flags;
  116. } __packed;
  117. struct disk_device_details {
  118. __le64 mapped_blocks;
  119. __le64 transaction_id; /* When created. */
  120. __le32 creation_time;
  121. __le32 snapshotted_time;
  122. } __packed;
  123. struct dm_pool_metadata {
  124. struct hlist_node hash;
  125. struct block_device *bdev;
  126. struct dm_block_manager *bm;
  127. struct dm_space_map *metadata_sm;
  128. struct dm_space_map *data_sm;
  129. struct dm_transaction_manager *tm;
  130. struct dm_transaction_manager *nb_tm;
  131. /*
  132. * Two-level btree.
  133. * First level holds thin_dev_t.
  134. * Second level holds mappings.
  135. */
  136. struct dm_btree_info info;
  137. /*
  138. * Non-blocking version of the above.
  139. */
  140. struct dm_btree_info nb_info;
  141. /*
  142. * Just the top level for deleting whole devices.
  143. */
  144. struct dm_btree_info tl_info;
  145. /*
  146. * Just the bottom level for creating new devices.
  147. */
  148. struct dm_btree_info bl_info;
  149. /*
  150. * Describes the device details btree.
  151. */
  152. struct dm_btree_info details_info;
  153. struct rw_semaphore root_lock;
  154. uint32_t time;
  155. dm_block_t root;
  156. dm_block_t details_root;
  157. struct list_head thin_devices;
  158. uint64_t trans_id;
  159. unsigned long flags;
  160. sector_t data_block_size;
  161. };
  162. struct dm_thin_device {
  163. struct list_head list;
  164. struct dm_pool_metadata *pmd;
  165. dm_thin_id id;
  166. int open_count;
  167. int changed;
  168. uint64_t mapped_blocks;
  169. uint64_t transaction_id;
  170. uint32_t creation_time;
  171. uint32_t snapshotted_time;
  172. };
  173. /*----------------------------------------------------------------
  174. * superblock validator
  175. *--------------------------------------------------------------*/
  176. #define SUPERBLOCK_CSUM_XOR 160774
  177. static void sb_prepare_for_write(struct dm_block_validator *v,
  178. struct dm_block *b,
  179. size_t block_size)
  180. {
  181. struct thin_disk_superblock *disk_super = dm_block_data(b);
  182. disk_super->blocknr = cpu_to_le64(dm_block_location(b));
  183. disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
  184. block_size - sizeof(__le32),
  185. SUPERBLOCK_CSUM_XOR));
  186. }
  187. static int sb_check(struct dm_block_validator *v,
  188. struct dm_block *b,
  189. size_t block_size)
  190. {
  191. struct thin_disk_superblock *disk_super = dm_block_data(b);
  192. __le32 csum_le;
  193. if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
  194. DMERR("sb_check failed: blocknr %llu: "
  195. "wanted %llu", le64_to_cpu(disk_super->blocknr),
  196. (unsigned long long)dm_block_location(b));
  197. return -ENOTBLK;
  198. }
  199. if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
  200. DMERR("sb_check failed: magic %llu: "
  201. "wanted %llu", le64_to_cpu(disk_super->magic),
  202. (unsigned long long)THIN_SUPERBLOCK_MAGIC);
  203. return -EILSEQ;
  204. }
  205. csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
  206. block_size - sizeof(__le32),
  207. SUPERBLOCK_CSUM_XOR));
  208. if (csum_le != disk_super->csum) {
  209. DMERR("sb_check failed: csum %u: wanted %u",
  210. le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
  211. return -EILSEQ;
  212. }
  213. return 0;
  214. }
  215. static struct dm_block_validator sb_validator = {
  216. .name = "superblock",
  217. .prepare_for_write = sb_prepare_for_write,
  218. .check = sb_check
  219. };
  220. /*----------------------------------------------------------------
  221. * Methods for the btree value types
  222. *--------------------------------------------------------------*/
  223. static uint64_t pack_block_time(dm_block_t b, uint32_t t)
  224. {
  225. return (b << 24) | t;
  226. }
  227. static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
  228. {
  229. *b = v >> 24;
  230. *t = v & ((1 << 24) - 1);
  231. }
  232. static void data_block_inc(void *context, void *value_le)
  233. {
  234. struct dm_space_map *sm = context;
  235. __le64 v_le;
  236. uint64_t b;
  237. uint32_t t;
  238. memcpy(&v_le, value_le, sizeof(v_le));
  239. unpack_block_time(le64_to_cpu(v_le), &b, &t);
  240. dm_sm_inc_block(sm, b);
  241. }
  242. static void data_block_dec(void *context, void *value_le)
  243. {
  244. struct dm_space_map *sm = context;
  245. __le64 v_le;
  246. uint64_t b;
  247. uint32_t t;
  248. memcpy(&v_le, value_le, sizeof(v_le));
  249. unpack_block_time(le64_to_cpu(v_le), &b, &t);
  250. dm_sm_dec_block(sm, b);
  251. }
  252. static int data_block_equal(void *context, void *value1_le, void *value2_le)
  253. {
  254. __le64 v1_le, v2_le;
  255. uint64_t b1, b2;
  256. uint32_t t;
  257. memcpy(&v1_le, value1_le, sizeof(v1_le));
  258. memcpy(&v2_le, value2_le, sizeof(v2_le));
  259. unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
  260. unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
  261. return b1 == b2;
  262. }
  263. static void subtree_inc(void *context, void *value)
  264. {
  265. struct dm_btree_info *info = context;
  266. __le64 root_le;
  267. uint64_t root;
  268. memcpy(&root_le, value, sizeof(root_le));
  269. root = le64_to_cpu(root_le);
  270. dm_tm_inc(info->tm, root);
  271. }
  272. static void subtree_dec(void *context, void *value)
  273. {
  274. struct dm_btree_info *info = context;
  275. __le64 root_le;
  276. uint64_t root;
  277. memcpy(&root_le, value, sizeof(root_le));
  278. root = le64_to_cpu(root_le);
  279. if (dm_btree_del(info, root))
  280. DMERR("btree delete failed\n");
  281. }
  282. static int subtree_equal(void *context, void *value1_le, void *value2_le)
  283. {
  284. __le64 v1_le, v2_le;
  285. memcpy(&v1_le, value1_le, sizeof(v1_le));
  286. memcpy(&v2_le, value2_le, sizeof(v2_le));
  287. return v1_le == v2_le;
  288. }
  289. /*----------------------------------------------------------------*/
  290. static int superblock_lock_zero(struct dm_pool_metadata *pmd,
  291. struct dm_block **sblock)
  292. {
  293. return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  294. &sb_validator, sblock);
  295. }
  296. static int superblock_lock(struct dm_pool_metadata *pmd,
  297. struct dm_block **sblock)
  298. {
  299. return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  300. &sb_validator, sblock);
  301. }
  302. static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
  303. {
  304. int r;
  305. unsigned i;
  306. struct dm_block *b;
  307. __le64 *data_le, zero = cpu_to_le64(0);
  308. unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
  309. /*
  310. * We can't use a validator here - it may be all zeroes.
  311. */
  312. r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
  313. if (r)
  314. return r;
  315. data_le = dm_block_data(b);
  316. *result = 1;
  317. for (i = 0; i < block_size; i++) {
  318. if (data_le[i] != zero) {
  319. *result = 0;
  320. break;
  321. }
  322. }
  323. return dm_bm_unlock(b);
  324. }
  325. static void __setup_btree_details(struct dm_pool_metadata *pmd)
  326. {
  327. pmd->info.tm = pmd->tm;
  328. pmd->info.levels = 2;
  329. pmd->info.value_type.context = pmd->data_sm;
  330. pmd->info.value_type.size = sizeof(__le64);
  331. pmd->info.value_type.inc = data_block_inc;
  332. pmd->info.value_type.dec = data_block_dec;
  333. pmd->info.value_type.equal = data_block_equal;
  334. memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
  335. pmd->nb_info.tm = pmd->nb_tm;
  336. pmd->tl_info.tm = pmd->tm;
  337. pmd->tl_info.levels = 1;
  338. pmd->tl_info.value_type.context = &pmd->info;
  339. pmd->tl_info.value_type.size = sizeof(__le64);
  340. pmd->tl_info.value_type.inc = subtree_inc;
  341. pmd->tl_info.value_type.dec = subtree_dec;
  342. pmd->tl_info.value_type.equal = subtree_equal;
  343. pmd->bl_info.tm = pmd->tm;
  344. pmd->bl_info.levels = 1;
  345. pmd->bl_info.value_type.context = pmd->data_sm;
  346. pmd->bl_info.value_type.size = sizeof(__le64);
  347. pmd->bl_info.value_type.inc = data_block_inc;
  348. pmd->bl_info.value_type.dec = data_block_dec;
  349. pmd->bl_info.value_type.equal = data_block_equal;
  350. pmd->details_info.tm = pmd->tm;
  351. pmd->details_info.levels = 1;
  352. pmd->details_info.value_type.context = NULL;
  353. pmd->details_info.value_type.size = sizeof(struct disk_device_details);
  354. pmd->details_info.value_type.inc = NULL;
  355. pmd->details_info.value_type.dec = NULL;
  356. pmd->details_info.value_type.equal = NULL;
  357. }
  358. static int __write_initial_superblock(struct dm_pool_metadata *pmd)
  359. {
  360. int r;
  361. struct dm_block *sblock;
  362. size_t metadata_len, data_len;
  363. struct thin_disk_superblock *disk_super;
  364. sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
  365. if (bdev_size > THIN_METADATA_MAX_SECTORS)
  366. bdev_size = THIN_METADATA_MAX_SECTORS;
  367. r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
  368. if (r < 0)
  369. return r;
  370. r = dm_sm_root_size(pmd->data_sm, &data_len);
  371. if (r < 0)
  372. return r;
  373. r = dm_sm_commit(pmd->data_sm);
  374. if (r < 0)
  375. return r;
  376. r = dm_tm_pre_commit(pmd->tm);
  377. if (r < 0)
  378. return r;
  379. r = superblock_lock_zero(pmd, &sblock);
  380. if (r)
  381. return r;
  382. disk_super = dm_block_data(sblock);
  383. disk_super->flags = 0;
  384. memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
  385. disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
  386. disk_super->version = cpu_to_le32(THIN_VERSION);
  387. disk_super->time = 0;
  388. disk_super->trans_id = 0;
  389. disk_super->held_root = 0;
  390. r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root,
  391. metadata_len);
  392. if (r < 0)
  393. goto bad_locked;
  394. r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root,
  395. data_len);
  396. if (r < 0)
  397. goto bad_locked;
  398. disk_super->data_mapping_root = cpu_to_le64(pmd->root);
  399. disk_super->device_details_root = cpu_to_le64(pmd->details_root);
  400. disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
  401. disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
  402. disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
  403. return dm_tm_commit(pmd->tm, sblock);
  404. bad_locked:
  405. dm_bm_unlock(sblock);
  406. return r;
  407. }
  408. static int __format_metadata(struct dm_pool_metadata *pmd)
  409. {
  410. int r;
  411. r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  412. &pmd->tm, &pmd->metadata_sm);
  413. if (r < 0) {
  414. DMERR("tm_create_with_sm failed");
  415. return r;
  416. }
  417. pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
  418. if (IS_ERR(pmd->data_sm)) {
  419. DMERR("sm_disk_create failed");
  420. r = PTR_ERR(pmd->data_sm);
  421. goto bad;
  422. }
  423. pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
  424. if (!pmd->nb_tm) {
  425. DMERR("could not create clone tm");
  426. r = -ENOMEM;
  427. goto bad_data_sm;
  428. }
  429. __setup_btree_details(pmd);
  430. r = dm_btree_empty(&pmd->info, &pmd->root);
  431. if (r < 0)
  432. goto bad_data_sm;
  433. r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
  434. if (r < 0) {
  435. DMERR("couldn't create devices root");
  436. goto bad_data_sm;
  437. }
  438. r = __write_initial_superblock(pmd);
  439. if (r)
  440. goto bad_data_sm;
  441. return 0;
  442. bad_data_sm:
  443. dm_sm_destroy(pmd->data_sm);
  444. bad:
  445. dm_tm_destroy(pmd->tm);
  446. dm_sm_destroy(pmd->metadata_sm);
  447. return r;
  448. }
  449. static int __open_metadata(struct dm_pool_metadata *pmd)
  450. {
  451. int r;
  452. struct dm_block *sblock;
  453. struct thin_disk_superblock *disk_super;
  454. r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  455. &sb_validator, &sblock);
  456. if (r < 0) {
  457. DMERR("couldn't read superblock");
  458. return r;
  459. }
  460. disk_super = dm_block_data(sblock);
  461. r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  462. disk_super->metadata_space_map_root,
  463. sizeof(disk_super->metadata_space_map_root),
  464. &pmd->tm, &pmd->metadata_sm);
  465. if (r < 0) {
  466. DMERR("tm_open_with_sm failed");
  467. dm_bm_unlock(sblock);
  468. return r;
  469. }
  470. pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
  471. sizeof(disk_super->data_space_map_root));
  472. if (IS_ERR(pmd->data_sm)) {
  473. DMERR("sm_disk_open failed");
  474. dm_bm_unlock(sblock);
  475. r = PTR_ERR(pmd->data_sm);
  476. goto bad;
  477. }
  478. dm_bm_unlock(sblock);
  479. pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
  480. if (!pmd->nb_tm) {
  481. DMERR("could not create clone tm");
  482. r = -ENOMEM;
  483. goto bad_data_sm;
  484. }
  485. __setup_btree_details(pmd);
  486. bad_data_sm:
  487. dm_sm_destroy(pmd->data_sm);
  488. bad:
  489. dm_tm_destroy(pmd->tm);
  490. dm_sm_destroy(pmd->metadata_sm);
  491. return r;
  492. }
  493. static int __open_or_format_metadata(struct dm_pool_metadata *pmd)
  494. {
  495. int r, unformatted;
  496. r = __superblock_all_zeroes(pmd->bm, &unformatted);
  497. if (r)
  498. return r;
  499. if (unformatted)
  500. return __format_metadata(pmd);
  501. else
  502. return __open_metadata(pmd);
  503. }
  504. static int __create_persistent_data_objects(struct dm_pool_metadata *pmd)
  505. {
  506. int r;
  507. pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE,
  508. THIN_METADATA_CACHE_SIZE,
  509. THIN_MAX_CONCURRENT_LOCKS);
  510. if (IS_ERR(pmd->bm)) {
  511. DMERR("could not create block manager");
  512. return PTR_ERR(pmd->bm);
  513. }
  514. r = __open_or_format_metadata(pmd);
  515. if (r)
  516. dm_block_manager_destroy(pmd->bm);
  517. return r;
  518. }
  519. static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
  520. {
  521. dm_sm_destroy(pmd->data_sm);
  522. dm_sm_destroy(pmd->metadata_sm);
  523. dm_tm_destroy(pmd->nb_tm);
  524. dm_tm_destroy(pmd->tm);
  525. dm_block_manager_destroy(pmd->bm);
  526. }
  527. static int __begin_transaction(struct dm_pool_metadata *pmd)
  528. {
  529. int r;
  530. u32 features;
  531. struct thin_disk_superblock *disk_super;
  532. struct dm_block *sblock;
  533. /*
  534. * We re-read the superblock every time. Shouldn't need to do this
  535. * really.
  536. */
  537. r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  538. &sb_validator, &sblock);
  539. if (r)
  540. return r;
  541. disk_super = dm_block_data(sblock);
  542. pmd->time = le32_to_cpu(disk_super->time);
  543. pmd->root = le64_to_cpu(disk_super->data_mapping_root);
  544. pmd->details_root = le64_to_cpu(disk_super->device_details_root);
  545. pmd->trans_id = le64_to_cpu(disk_super->trans_id);
  546. pmd->flags = le32_to_cpu(disk_super->flags);
  547. pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
  548. features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
  549. if (features) {
  550. DMERR("could not access metadata due to "
  551. "unsupported optional features (%lx).",
  552. (unsigned long)features);
  553. r = -EINVAL;
  554. goto out;
  555. }
  556. /*
  557. * Check for read-only metadata to skip the following RDWR checks.
  558. */
  559. if (get_disk_ro(pmd->bdev->bd_disk))
  560. goto out;
  561. features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
  562. if (features) {
  563. DMERR("could not access metadata RDWR due to "
  564. "unsupported optional features (%lx).",
  565. (unsigned long)features);
  566. r = -EINVAL;
  567. }
  568. out:
  569. dm_bm_unlock(sblock);
  570. return r;
  571. }
  572. static int __write_changed_details(struct dm_pool_metadata *pmd)
  573. {
  574. int r;
  575. struct dm_thin_device *td, *tmp;
  576. struct disk_device_details details;
  577. uint64_t key;
  578. list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
  579. if (!td->changed)
  580. continue;
  581. key = td->id;
  582. details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
  583. details.transaction_id = cpu_to_le64(td->transaction_id);
  584. details.creation_time = cpu_to_le32(td->creation_time);
  585. details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
  586. __dm_bless_for_disk(&details);
  587. r = dm_btree_insert(&pmd->details_info, pmd->details_root,
  588. &key, &details, &pmd->details_root);
  589. if (r)
  590. return r;
  591. if (td->open_count)
  592. td->changed = 0;
  593. else {
  594. list_del(&td->list);
  595. kfree(td);
  596. }
  597. }
  598. return 0;
  599. }
  600. static int __commit_transaction(struct dm_pool_metadata *pmd)
  601. {
  602. /*
  603. * FIXME: Associated pool should be made read-only on failure.
  604. */
  605. int r;
  606. size_t metadata_len, data_len;
  607. struct thin_disk_superblock *disk_super;
  608. struct dm_block *sblock;
  609. /*
  610. * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
  611. */
  612. BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
  613. r = __write_changed_details(pmd);
  614. if (r < 0)
  615. return r;
  616. r = dm_sm_commit(pmd->data_sm);
  617. if (r < 0)
  618. return r;
  619. r = dm_tm_pre_commit(pmd->tm);
  620. if (r < 0)
  621. return r;
  622. r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
  623. if (r < 0)
  624. return r;
  625. r = dm_sm_root_size(pmd->data_sm, &data_len);
  626. if (r < 0)
  627. return r;
  628. r = superblock_lock(pmd, &sblock);
  629. if (r)
  630. return r;
  631. disk_super = dm_block_data(sblock);
  632. disk_super->time = cpu_to_le32(pmd->time);
  633. disk_super->data_mapping_root = cpu_to_le64(pmd->root);
  634. disk_super->device_details_root = cpu_to_le64(pmd->details_root);
  635. disk_super->trans_id = cpu_to_le64(pmd->trans_id);
  636. disk_super->flags = cpu_to_le32(pmd->flags);
  637. r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root,
  638. metadata_len);
  639. if (r < 0)
  640. goto out_locked;
  641. r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root,
  642. data_len);
  643. if (r < 0)
  644. goto out_locked;
  645. return dm_tm_commit(pmd->tm, sblock);
  646. out_locked:
  647. dm_bm_unlock(sblock);
  648. return r;
  649. }
  650. struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
  651. sector_t data_block_size)
  652. {
  653. int r;
  654. struct dm_pool_metadata *pmd;
  655. pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
  656. if (!pmd) {
  657. DMERR("could not allocate metadata struct");
  658. return ERR_PTR(-ENOMEM);
  659. }
  660. init_rwsem(&pmd->root_lock);
  661. pmd->time = 0;
  662. INIT_LIST_HEAD(&pmd->thin_devices);
  663. pmd->bdev = bdev;
  664. pmd->data_block_size = data_block_size;
  665. r = __create_persistent_data_objects(pmd);
  666. if (r) {
  667. kfree(pmd);
  668. return ERR_PTR(r);
  669. }
  670. r = __begin_transaction(pmd);
  671. if (r < 0) {
  672. if (dm_pool_metadata_close(pmd) < 0)
  673. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  674. return ERR_PTR(r);
  675. }
  676. return pmd;
  677. }
  678. int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
  679. {
  680. int r;
  681. unsigned open_devices = 0;
  682. struct dm_thin_device *td, *tmp;
  683. down_read(&pmd->root_lock);
  684. list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
  685. if (td->open_count)
  686. open_devices++;
  687. else {
  688. list_del(&td->list);
  689. kfree(td);
  690. }
  691. }
  692. up_read(&pmd->root_lock);
  693. if (open_devices) {
  694. DMERR("attempt to close pmd when %u device(s) are still open",
  695. open_devices);
  696. return -EBUSY;
  697. }
  698. r = __commit_transaction(pmd);
  699. if (r < 0)
  700. DMWARN("%s: __commit_transaction() failed, error = %d",
  701. __func__, r);
  702. __destroy_persistent_data_objects(pmd);
  703. kfree(pmd);
  704. return 0;
  705. }
  706. /*
  707. * __open_device: Returns @td corresponding to device with id @dev,
  708. * creating it if @create is set and incrementing @td->open_count.
  709. * On failure, @td is undefined.
  710. */
  711. static int __open_device(struct dm_pool_metadata *pmd,
  712. dm_thin_id dev, int create,
  713. struct dm_thin_device **td)
  714. {
  715. int r, changed = 0;
  716. struct dm_thin_device *td2;
  717. uint64_t key = dev;
  718. struct disk_device_details details_le;
  719. /*
  720. * If the device is already open, return it.
  721. */
  722. list_for_each_entry(td2, &pmd->thin_devices, list)
  723. if (td2->id == dev) {
  724. /*
  725. * May not create an already-open device.
  726. */
  727. if (create)
  728. return -EEXIST;
  729. td2->open_count++;
  730. *td = td2;
  731. return 0;
  732. }
  733. /*
  734. * Check the device exists.
  735. */
  736. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  737. &key, &details_le);
  738. if (r) {
  739. if (r != -ENODATA || !create)
  740. return r;
  741. /*
  742. * Create new device.
  743. */
  744. changed = 1;
  745. details_le.mapped_blocks = 0;
  746. details_le.transaction_id = cpu_to_le64(pmd->trans_id);
  747. details_le.creation_time = cpu_to_le32(pmd->time);
  748. details_le.snapshotted_time = cpu_to_le32(pmd->time);
  749. }
  750. *td = kmalloc(sizeof(**td), GFP_NOIO);
  751. if (!*td)
  752. return -ENOMEM;
  753. (*td)->pmd = pmd;
  754. (*td)->id = dev;
  755. (*td)->open_count = 1;
  756. (*td)->changed = changed;
  757. (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
  758. (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
  759. (*td)->creation_time = le32_to_cpu(details_le.creation_time);
  760. (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
  761. list_add(&(*td)->list, &pmd->thin_devices);
  762. return 0;
  763. }
  764. static void __close_device(struct dm_thin_device *td)
  765. {
  766. --td->open_count;
  767. }
  768. static int __create_thin(struct dm_pool_metadata *pmd,
  769. dm_thin_id dev)
  770. {
  771. int r;
  772. dm_block_t dev_root;
  773. uint64_t key = dev;
  774. struct disk_device_details details_le;
  775. struct dm_thin_device *td;
  776. __le64 value;
  777. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  778. &key, &details_le);
  779. if (!r)
  780. return -EEXIST;
  781. /*
  782. * Create an empty btree for the mappings.
  783. */
  784. r = dm_btree_empty(&pmd->bl_info, &dev_root);
  785. if (r)
  786. return r;
  787. /*
  788. * Insert it into the main mapping tree.
  789. */
  790. value = cpu_to_le64(dev_root);
  791. __dm_bless_for_disk(&value);
  792. r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
  793. if (r) {
  794. dm_btree_del(&pmd->bl_info, dev_root);
  795. return r;
  796. }
  797. r = __open_device(pmd, dev, 1, &td);
  798. if (r) {
  799. dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  800. dm_btree_del(&pmd->bl_info, dev_root);
  801. return r;
  802. }
  803. __close_device(td);
  804. return r;
  805. }
  806. int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
  807. {
  808. int r;
  809. down_write(&pmd->root_lock);
  810. r = __create_thin(pmd, dev);
  811. up_write(&pmd->root_lock);
  812. return r;
  813. }
  814. static int __set_snapshot_details(struct dm_pool_metadata *pmd,
  815. struct dm_thin_device *snap,
  816. dm_thin_id origin, uint32_t time)
  817. {
  818. int r;
  819. struct dm_thin_device *td;
  820. r = __open_device(pmd, origin, 0, &td);
  821. if (r)
  822. return r;
  823. td->changed = 1;
  824. td->snapshotted_time = time;
  825. snap->mapped_blocks = td->mapped_blocks;
  826. snap->snapshotted_time = time;
  827. __close_device(td);
  828. return 0;
  829. }
  830. static int __create_snap(struct dm_pool_metadata *pmd,
  831. dm_thin_id dev, dm_thin_id origin)
  832. {
  833. int r;
  834. dm_block_t origin_root;
  835. uint64_t key = origin, dev_key = dev;
  836. struct dm_thin_device *td;
  837. struct disk_device_details details_le;
  838. __le64 value;
  839. /* check this device is unused */
  840. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  841. &dev_key, &details_le);
  842. if (!r)
  843. return -EEXIST;
  844. /* find the mapping tree for the origin */
  845. r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
  846. if (r)
  847. return r;
  848. origin_root = le64_to_cpu(value);
  849. /* clone the origin, an inc will do */
  850. dm_tm_inc(pmd->tm, origin_root);
  851. /* insert into the main mapping tree */
  852. value = cpu_to_le64(origin_root);
  853. __dm_bless_for_disk(&value);
  854. key = dev;
  855. r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
  856. if (r) {
  857. dm_tm_dec(pmd->tm, origin_root);
  858. return r;
  859. }
  860. pmd->time++;
  861. r = __open_device(pmd, dev, 1, &td);
  862. if (r)
  863. goto bad;
  864. r = __set_snapshot_details(pmd, td, origin, pmd->time);
  865. __close_device(td);
  866. if (r)
  867. goto bad;
  868. return 0;
  869. bad:
  870. dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  871. dm_btree_remove(&pmd->details_info, pmd->details_root,
  872. &key, &pmd->details_root);
  873. return r;
  874. }
  875. int dm_pool_create_snap(struct dm_pool_metadata *pmd,
  876. dm_thin_id dev,
  877. dm_thin_id origin)
  878. {
  879. int r;
  880. down_write(&pmd->root_lock);
  881. r = __create_snap(pmd, dev, origin);
  882. up_write(&pmd->root_lock);
  883. return r;
  884. }
  885. static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
  886. {
  887. int r;
  888. uint64_t key = dev;
  889. struct dm_thin_device *td;
  890. /* TODO: failure should mark the transaction invalid */
  891. r = __open_device(pmd, dev, 0, &td);
  892. if (r)
  893. return r;
  894. if (td->open_count > 1) {
  895. __close_device(td);
  896. return -EBUSY;
  897. }
  898. list_del(&td->list);
  899. kfree(td);
  900. r = dm_btree_remove(&pmd->details_info, pmd->details_root,
  901. &key, &pmd->details_root);
  902. if (r)
  903. return r;
  904. r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  905. if (r)
  906. return r;
  907. return 0;
  908. }
  909. int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
  910. dm_thin_id dev)
  911. {
  912. int r;
  913. down_write(&pmd->root_lock);
  914. r = __delete_device(pmd, dev);
  915. up_write(&pmd->root_lock);
  916. return r;
  917. }
  918. int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
  919. uint64_t current_id,
  920. uint64_t new_id)
  921. {
  922. down_write(&pmd->root_lock);
  923. if (pmd->trans_id != current_id) {
  924. up_write(&pmd->root_lock);
  925. DMERR("mismatched transaction id");
  926. return -EINVAL;
  927. }
  928. pmd->trans_id = new_id;
  929. up_write(&pmd->root_lock);
  930. return 0;
  931. }
  932. int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
  933. uint64_t *result)
  934. {
  935. down_read(&pmd->root_lock);
  936. *result = pmd->trans_id;
  937. up_read(&pmd->root_lock);
  938. return 0;
  939. }
  940. static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
  941. {
  942. int r, inc;
  943. struct thin_disk_superblock *disk_super;
  944. struct dm_block *copy, *sblock;
  945. dm_block_t held_root;
  946. /*
  947. * Copy the superblock.
  948. */
  949. dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
  950. r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
  951. &sb_validator, &copy, &inc);
  952. if (r)
  953. return r;
  954. BUG_ON(!inc);
  955. held_root = dm_block_location(copy);
  956. disk_super = dm_block_data(copy);
  957. if (le64_to_cpu(disk_super->held_root)) {
  958. DMWARN("Pool metadata snapshot already exists: release this before taking another.");
  959. dm_tm_dec(pmd->tm, held_root);
  960. dm_tm_unlock(pmd->tm, copy);
  961. return -EBUSY;
  962. }
  963. /*
  964. * Wipe the spacemap since we're not publishing this.
  965. */
  966. memset(&disk_super->data_space_map_root, 0,
  967. sizeof(disk_super->data_space_map_root));
  968. memset(&disk_super->metadata_space_map_root, 0,
  969. sizeof(disk_super->metadata_space_map_root));
  970. /*
  971. * Increment the data structures that need to be preserved.
  972. */
  973. dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
  974. dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
  975. dm_tm_unlock(pmd->tm, copy);
  976. /*
  977. * Write the held root into the superblock.
  978. */
  979. r = superblock_lock(pmd, &sblock);
  980. if (r) {
  981. dm_tm_dec(pmd->tm, held_root);
  982. return r;
  983. }
  984. disk_super = dm_block_data(sblock);
  985. disk_super->held_root = cpu_to_le64(held_root);
  986. dm_bm_unlock(sblock);
  987. return 0;
  988. }
  989. int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
  990. {
  991. int r;
  992. down_write(&pmd->root_lock);
  993. r = __reserve_metadata_snap(pmd);
  994. up_write(&pmd->root_lock);
  995. return r;
  996. }
  997. static int __release_metadata_snap(struct dm_pool_metadata *pmd)
  998. {
  999. int r;
  1000. struct thin_disk_superblock *disk_super;
  1001. struct dm_block *sblock, *copy;
  1002. dm_block_t held_root;
  1003. r = superblock_lock(pmd, &sblock);
  1004. if (r)
  1005. return r;
  1006. disk_super = dm_block_data(sblock);
  1007. held_root = le64_to_cpu(disk_super->held_root);
  1008. disk_super->held_root = cpu_to_le64(0);
  1009. dm_bm_unlock(sblock);
  1010. if (!held_root) {
  1011. DMWARN("No pool metadata snapshot found: nothing to release.");
  1012. return -EINVAL;
  1013. }
  1014. r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
  1015. if (r)
  1016. return r;
  1017. disk_super = dm_block_data(copy);
  1018. dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->data_mapping_root));
  1019. dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->device_details_root));
  1020. dm_sm_dec_block(pmd->metadata_sm, held_root);
  1021. return dm_tm_unlock(pmd->tm, copy);
  1022. }
  1023. int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
  1024. {
  1025. int r;
  1026. down_write(&pmd->root_lock);
  1027. r = __release_metadata_snap(pmd);
  1028. up_write(&pmd->root_lock);
  1029. return r;
  1030. }
  1031. static int __get_metadata_snap(struct dm_pool_metadata *pmd,
  1032. dm_block_t *result)
  1033. {
  1034. int r;
  1035. struct thin_disk_superblock *disk_super;
  1036. struct dm_block *sblock;
  1037. r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  1038. &sb_validator, &sblock);
  1039. if (r)
  1040. return r;
  1041. disk_super = dm_block_data(sblock);
  1042. *result = le64_to_cpu(disk_super->held_root);
  1043. return dm_bm_unlock(sblock);
  1044. }
  1045. int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
  1046. dm_block_t *result)
  1047. {
  1048. int r;
  1049. down_read(&pmd->root_lock);
  1050. r = __get_metadata_snap(pmd, result);
  1051. up_read(&pmd->root_lock);
  1052. return r;
  1053. }
  1054. int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
  1055. struct dm_thin_device **td)
  1056. {
  1057. int r;
  1058. down_write(&pmd->root_lock);
  1059. r = __open_device(pmd, dev, 0, td);
  1060. up_write(&pmd->root_lock);
  1061. return r;
  1062. }
  1063. int dm_pool_close_thin_device(struct dm_thin_device *td)
  1064. {
  1065. down_write(&td->pmd->root_lock);
  1066. __close_device(td);
  1067. up_write(&td->pmd->root_lock);
  1068. return 0;
  1069. }
  1070. dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
  1071. {
  1072. return td->id;
  1073. }
  1074. static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
  1075. {
  1076. return td->snapshotted_time > time;
  1077. }
  1078. int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
  1079. int can_block, struct dm_thin_lookup_result *result)
  1080. {
  1081. int r;
  1082. uint64_t block_time = 0;
  1083. __le64 value;
  1084. struct dm_pool_metadata *pmd = td->pmd;
  1085. dm_block_t keys[2] = { td->id, block };
  1086. if (can_block) {
  1087. down_read(&pmd->root_lock);
  1088. r = dm_btree_lookup(&pmd->info, pmd->root, keys, &value);
  1089. if (!r)
  1090. block_time = le64_to_cpu(value);
  1091. up_read(&pmd->root_lock);
  1092. } else if (down_read_trylock(&pmd->root_lock)) {
  1093. r = dm_btree_lookup(&pmd->nb_info, pmd->root, keys, &value);
  1094. if (!r)
  1095. block_time = le64_to_cpu(value);
  1096. up_read(&pmd->root_lock);
  1097. } else
  1098. return -EWOULDBLOCK;
  1099. if (!r) {
  1100. dm_block_t exception_block;
  1101. uint32_t exception_time;
  1102. unpack_block_time(block_time, &exception_block,
  1103. &exception_time);
  1104. result->block = exception_block;
  1105. result->shared = __snapshotted_since(td, exception_time);
  1106. }
  1107. return r;
  1108. }
  1109. static int __insert(struct dm_thin_device *td, dm_block_t block,
  1110. dm_block_t data_block)
  1111. {
  1112. int r, inserted;
  1113. __le64 value;
  1114. struct dm_pool_metadata *pmd = td->pmd;
  1115. dm_block_t keys[2] = { td->id, block };
  1116. value = cpu_to_le64(pack_block_time(data_block, pmd->time));
  1117. __dm_bless_for_disk(&value);
  1118. r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
  1119. &pmd->root, &inserted);
  1120. if (r)
  1121. return r;
  1122. if (inserted) {
  1123. td->mapped_blocks++;
  1124. td->changed = 1;
  1125. }
  1126. return 0;
  1127. }
  1128. int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
  1129. dm_block_t data_block)
  1130. {
  1131. int r;
  1132. down_write(&td->pmd->root_lock);
  1133. r = __insert(td, block, data_block);
  1134. up_write(&td->pmd->root_lock);
  1135. return r;
  1136. }
  1137. static int __remove(struct dm_thin_device *td, dm_block_t block)
  1138. {
  1139. int r;
  1140. struct dm_pool_metadata *pmd = td->pmd;
  1141. dm_block_t keys[2] = { td->id, block };
  1142. r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
  1143. if (r)
  1144. return r;
  1145. td->mapped_blocks--;
  1146. td->changed = 1;
  1147. return 0;
  1148. }
  1149. int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
  1150. {
  1151. int r;
  1152. down_write(&td->pmd->root_lock);
  1153. r = __remove(td, block);
  1154. up_write(&td->pmd->root_lock);
  1155. return r;
  1156. }
  1157. int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
  1158. {
  1159. int r;
  1160. down_write(&pmd->root_lock);
  1161. r = dm_sm_new_block(pmd->data_sm, result);
  1162. up_write(&pmd->root_lock);
  1163. return r;
  1164. }
  1165. int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
  1166. {
  1167. int r;
  1168. down_write(&pmd->root_lock);
  1169. r = __commit_transaction(pmd);
  1170. if (r <= 0)
  1171. goto out;
  1172. /*
  1173. * Open the next transaction.
  1174. */
  1175. r = __begin_transaction(pmd);
  1176. out:
  1177. up_write(&pmd->root_lock);
  1178. return r;
  1179. }
  1180. int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
  1181. {
  1182. int r;
  1183. down_read(&pmd->root_lock);
  1184. r = dm_sm_get_nr_free(pmd->data_sm, result);
  1185. up_read(&pmd->root_lock);
  1186. return r;
  1187. }
  1188. int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
  1189. dm_block_t *result)
  1190. {
  1191. int r;
  1192. down_read(&pmd->root_lock);
  1193. r = dm_sm_get_nr_free(pmd->metadata_sm, result);
  1194. up_read(&pmd->root_lock);
  1195. return r;
  1196. }
  1197. int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
  1198. dm_block_t *result)
  1199. {
  1200. int r;
  1201. down_read(&pmd->root_lock);
  1202. r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
  1203. up_read(&pmd->root_lock);
  1204. return r;
  1205. }
  1206. int dm_pool_get_data_block_size(struct dm_pool_metadata *pmd, sector_t *result)
  1207. {
  1208. down_read(&pmd->root_lock);
  1209. *result = pmd->data_block_size;
  1210. up_read(&pmd->root_lock);
  1211. return 0;
  1212. }
  1213. int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
  1214. {
  1215. int r;
  1216. down_read(&pmd->root_lock);
  1217. r = dm_sm_get_nr_blocks(pmd->data_sm, result);
  1218. up_read(&pmd->root_lock);
  1219. return r;
  1220. }
  1221. int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
  1222. {
  1223. struct dm_pool_metadata *pmd = td->pmd;
  1224. down_read(&pmd->root_lock);
  1225. *result = td->mapped_blocks;
  1226. up_read(&pmd->root_lock);
  1227. return 0;
  1228. }
  1229. static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
  1230. {
  1231. int r;
  1232. __le64 value_le;
  1233. dm_block_t thin_root;
  1234. struct dm_pool_metadata *pmd = td->pmd;
  1235. r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
  1236. if (r)
  1237. return r;
  1238. thin_root = le64_to_cpu(value_le);
  1239. return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
  1240. }
  1241. int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
  1242. dm_block_t *result)
  1243. {
  1244. int r;
  1245. struct dm_pool_metadata *pmd = td->pmd;
  1246. down_read(&pmd->root_lock);
  1247. r = __highest_block(td, result);
  1248. up_read(&pmd->root_lock);
  1249. return r;
  1250. }
  1251. static int __resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
  1252. {
  1253. int r;
  1254. dm_block_t old_count;
  1255. r = dm_sm_get_nr_blocks(pmd->data_sm, &old_count);
  1256. if (r)
  1257. return r;
  1258. if (new_count == old_count)
  1259. return 0;
  1260. if (new_count < old_count) {
  1261. DMERR("cannot reduce size of data device");
  1262. return -EINVAL;
  1263. }
  1264. return dm_sm_extend(pmd->data_sm, new_count - old_count);
  1265. }
  1266. int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
  1267. {
  1268. int r;
  1269. down_write(&pmd->root_lock);
  1270. r = __resize_data_dev(pmd, new_count);
  1271. up_write(&pmd->root_lock);
  1272. return r;
  1273. }