mmu.h 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391
  1. /*
  2. * PowerPC memory management structures
  3. *
  4. * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
  5. * PPC64 rework.
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #ifndef _PPC64_MMU_H_
  13. #define _PPC64_MMU_H_
  14. #include <linux/config.h>
  15. #include <asm/ppc_asm.h> /* for ASM_CONST */
  16. #include <asm/page.h>
  17. /*
  18. * Segment table
  19. */
  20. #define STE_ESID_V 0x80
  21. #define STE_ESID_KS 0x20
  22. #define STE_ESID_KP 0x10
  23. #define STE_ESID_N 0x08
  24. #define STE_VSID_SHIFT 12
  25. /* Location of cpu0's segment table */
  26. #define STAB0_PAGE 0x6
  27. #define STAB0_PHYS_ADDR (STAB0_PAGE<<12)
  28. #ifndef __ASSEMBLY__
  29. extern char initial_stab[];
  30. #endif /* ! __ASSEMBLY */
  31. /*
  32. * SLB
  33. */
  34. #define SLB_NUM_BOLTED 3
  35. #define SLB_CACHE_ENTRIES 8
  36. /* Bits in the SLB ESID word */
  37. #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
  38. /* Bits in the SLB VSID word */
  39. #define SLB_VSID_SHIFT 12
  40. #define SLB_VSID_B ASM_CONST(0xc000000000000000)
  41. #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
  42. #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
  43. #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
  44. #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
  45. #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
  46. #define SLB_VSID_L ASM_CONST(0x0000000000000100)
  47. #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
  48. #define SLB_VSID_LP ASM_CONST(0x0000000000000030)
  49. #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
  50. #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
  51. #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
  52. #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
  53. #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
  54. #define SLB_VSID_KERNEL (SLB_VSID_KP)
  55. #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
  56. #define SLBIE_C (0x08000000)
  57. /*
  58. * Hash table
  59. */
  60. #define HPTES_PER_GROUP 8
  61. #define HPTE_V_AVPN_SHIFT 7
  62. #define HPTE_V_AVPN ASM_CONST(0xffffffffffffff80)
  63. #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
  64. #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & HPTE_V_AVPN))
  65. #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
  66. #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
  67. #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
  68. #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
  69. #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
  70. #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
  71. #define HPTE_R_TS ASM_CONST(0x4000000000000000)
  72. #define HPTE_R_RPN_SHIFT 12
  73. #define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000)
  74. #define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff)
  75. #define HPTE_R_PP ASM_CONST(0x0000000000000003)
  76. #define HPTE_R_N ASM_CONST(0x0000000000000004)
  77. /* Values for PP (assumes Ks=0, Kp=1) */
  78. /* pp0 will always be 0 for linux */
  79. #define PP_RWXX 0 /* Supervisor read/write, User none */
  80. #define PP_RWRX 1 /* Supervisor read/write, User read */
  81. #define PP_RWRW 2 /* Supervisor read/write, User read/write */
  82. #define PP_RXRX 3 /* Supervisor read, User read */
  83. #ifndef __ASSEMBLY__
  84. typedef struct {
  85. unsigned long v;
  86. unsigned long r;
  87. } hpte_t;
  88. extern hpte_t *htab_address;
  89. extern unsigned long htab_hash_mask;
  90. /*
  91. * Page size definition
  92. *
  93. * shift : is the "PAGE_SHIFT" value for that page size
  94. * sllp : is a bit mask with the value of SLB L || LP to be or'ed
  95. * directly to a slbmte "vsid" value
  96. * penc : is the HPTE encoding mask for the "LP" field:
  97. *
  98. */
  99. struct mmu_psize_def
  100. {
  101. unsigned int shift; /* number of bits */
  102. unsigned int penc; /* HPTE encoding */
  103. unsigned int tlbiel; /* tlbiel supported for that page size */
  104. unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
  105. unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
  106. };
  107. #endif /* __ASSEMBLY__ */
  108. /*
  109. * The kernel use the constants below to index in the page sizes array.
  110. * The use of fixed constants for this purpose is better for performances
  111. * of the low level hash refill handlers.
  112. *
  113. * A non supported page size has a "shift" field set to 0
  114. *
  115. * Any new page size being implemented can get a new entry in here. Whether
  116. * the kernel will use it or not is a different matter though. The actual page
  117. * size used by hugetlbfs is not defined here and may be made variable
  118. */
  119. #define MMU_PAGE_4K 0 /* 4K */
  120. #define MMU_PAGE_64K 1 /* 64K */
  121. #define MMU_PAGE_64K_AP 2 /* 64K Admixed (in a 4K segment) */
  122. #define MMU_PAGE_1M 3 /* 1M */
  123. #define MMU_PAGE_16M 4 /* 16M */
  124. #define MMU_PAGE_16G 5 /* 16G */
  125. #define MMU_PAGE_COUNT 6
  126. #ifndef __ASSEMBLY__
  127. /*
  128. * The current system page sizes
  129. */
  130. extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
  131. extern int mmu_linear_psize;
  132. extern int mmu_virtual_psize;
  133. #ifdef CONFIG_HUGETLB_PAGE
  134. /*
  135. * The page size index of the huge pages for use by hugetlbfs
  136. */
  137. extern int mmu_huge_psize;
  138. #endif /* CONFIG_HUGETLB_PAGE */
  139. /*
  140. * This function sets the AVPN and L fields of the HPTE appropriately
  141. * for the page size
  142. */
  143. static inline unsigned long hpte_encode_v(unsigned long va, int psize)
  144. {
  145. unsigned long v =
  146. v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm);
  147. v <<= HPTE_V_AVPN_SHIFT;
  148. if (psize != MMU_PAGE_4K)
  149. v |= HPTE_V_LARGE;
  150. return v;
  151. }
  152. /*
  153. * This function sets the ARPN, and LP fields of the HPTE appropriately
  154. * for the page size. We assume the pa is already "clean" that is properly
  155. * aligned for the requested page size
  156. */
  157. static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
  158. {
  159. unsigned long r;
  160. /* A 4K page needs no special encoding */
  161. if (psize == MMU_PAGE_4K)
  162. return pa & HPTE_R_RPN;
  163. else {
  164. unsigned int penc = mmu_psize_defs[psize].penc;
  165. unsigned int shift = mmu_psize_defs[psize].shift;
  166. return (pa & ~((1ul << shift) - 1)) | (penc << 12);
  167. }
  168. return r;
  169. }
  170. /*
  171. * This hashes a virtual address for a 256Mb segment only for now
  172. */
  173. static inline unsigned long hpt_hash(unsigned long va, unsigned int shift)
  174. {
  175. return ((va >> 28) & 0x7fffffffffUL) ^ ((va & 0x0fffffffUL) >> shift);
  176. }
  177. extern int __hash_page_4K(unsigned long ea, unsigned long access,
  178. unsigned long vsid, pte_t *ptep, unsigned long trap,
  179. unsigned int local);
  180. extern int __hash_page_64K(unsigned long ea, unsigned long access,
  181. unsigned long vsid, pte_t *ptep, unsigned long trap,
  182. unsigned int local);
  183. struct mm_struct;
  184. extern int hash_huge_page(struct mm_struct *mm, unsigned long access,
  185. unsigned long ea, unsigned long vsid, int local);
  186. extern void htab_finish_init(void);
  187. extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
  188. unsigned long pstart, unsigned long mode,
  189. int psize);
  190. extern void hpte_init_native(void);
  191. extern void hpte_init_lpar(void);
  192. extern void hpte_init_iSeries(void);
  193. extern long pSeries_lpar_hpte_insert(unsigned long hpte_group,
  194. unsigned long va, unsigned long prpn,
  195. unsigned long rflags,
  196. unsigned long vflags, int psize);
  197. extern long native_hpte_insert(unsigned long hpte_group,
  198. unsigned long va, unsigned long prpn,
  199. unsigned long rflags,
  200. unsigned long vflags, int psize);
  201. extern long iSeries_hpte_insert(unsigned long hpte_group,
  202. unsigned long va, unsigned long prpn,
  203. unsigned long rflags,
  204. unsigned long vflags, int psize);
  205. extern void stabs_alloc(void);
  206. extern void slb_initialize(void);
  207. #endif /* __ASSEMBLY__ */
  208. /*
  209. * VSID allocation
  210. *
  211. * We first generate a 36-bit "proto-VSID". For kernel addresses this
  212. * is equal to the ESID, for user addresses it is:
  213. * (context << 15) | (esid & 0x7fff)
  214. *
  215. * The two forms are distinguishable because the top bit is 0 for user
  216. * addresses, whereas the top two bits are 1 for kernel addresses.
  217. * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
  218. * now.
  219. *
  220. * The proto-VSIDs are then scrambled into real VSIDs with the
  221. * multiplicative hash:
  222. *
  223. * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
  224. * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
  225. * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
  226. *
  227. * This scramble is only well defined for proto-VSIDs below
  228. * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
  229. * reserved. VSID_MULTIPLIER is prime, so in particular it is
  230. * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
  231. * Because the modulus is 2^n-1 we can compute it efficiently without
  232. * a divide or extra multiply (see below).
  233. *
  234. * This scheme has several advantages over older methods:
  235. *
  236. * - We have VSIDs allocated for every kernel address
  237. * (i.e. everything above 0xC000000000000000), except the very top
  238. * segment, which simplifies several things.
  239. *
  240. * - We allow for 15 significant bits of ESID and 20 bits of
  241. * context for user addresses. i.e. 8T (43 bits) of address space for
  242. * up to 1M contexts (although the page table structure and context
  243. * allocation will need changes to take advantage of this).
  244. *
  245. * - The scramble function gives robust scattering in the hash
  246. * table (at least based on some initial results). The previous
  247. * method was more susceptible to pathological cases giving excessive
  248. * hash collisions.
  249. */
  250. /*
  251. * WARNING - If you change these you must make sure the asm
  252. * implementations in slb_allocate (slb_low.S), do_stab_bolted
  253. * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
  254. *
  255. * You'll also need to change the precomputed VSID values in head.S
  256. * which are used by the iSeries firmware.
  257. */
  258. #define VSID_MULTIPLIER ASM_CONST(200730139) /* 28-bit prime */
  259. #define VSID_BITS 36
  260. #define VSID_MODULUS ((1UL<<VSID_BITS)-1)
  261. #define CONTEXT_BITS 19
  262. #define USER_ESID_BITS 16
  263. #define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
  264. /*
  265. * This macro generates asm code to compute the VSID scramble
  266. * function. Used in slb_allocate() and do_stab_bolted. The function
  267. * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
  268. *
  269. * rt = register continaing the proto-VSID and into which the
  270. * VSID will be stored
  271. * rx = scratch register (clobbered)
  272. *
  273. * - rt and rx must be different registers
  274. * - The answer will end up in the low 36 bits of rt. The higher
  275. * bits may contain other garbage, so you may need to mask the
  276. * result.
  277. */
  278. #define ASM_VSID_SCRAMBLE(rt, rx) \
  279. lis rx,VSID_MULTIPLIER@h; \
  280. ori rx,rx,VSID_MULTIPLIER@l; \
  281. mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
  282. \
  283. srdi rx,rt,VSID_BITS; \
  284. clrldi rt,rt,(64-VSID_BITS); \
  285. add rt,rt,rx; /* add high and low bits */ \
  286. /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
  287. * 2^36-1+2^28-1. That in particular means that if r3 >= \
  288. * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
  289. * the bit clear, r3 already has the answer we want, if it \
  290. * doesn't, the answer is the low 36 bits of r3+1. So in all \
  291. * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
  292. addi rx,rt,1; \
  293. srdi rx,rx,VSID_BITS; /* extract 2^36 bit */ \
  294. add rt,rt,rx
  295. #ifndef __ASSEMBLY__
  296. typedef unsigned long mm_context_id_t;
  297. typedef struct {
  298. mm_context_id_t id;
  299. #ifdef CONFIG_HUGETLB_PAGE
  300. u16 low_htlb_areas, high_htlb_areas;
  301. #endif
  302. } mm_context_t;
  303. static inline unsigned long vsid_scramble(unsigned long protovsid)
  304. {
  305. #if 0
  306. /* The code below is equivalent to this function for arguments
  307. * < 2^VSID_BITS, which is all this should ever be called
  308. * with. However gcc is not clever enough to compute the
  309. * modulus (2^n-1) without a second multiply. */
  310. return ((protovsid * VSID_MULTIPLIER) % VSID_MODULUS);
  311. #else /* 1 */
  312. unsigned long x;
  313. x = protovsid * VSID_MULTIPLIER;
  314. x = (x >> VSID_BITS) + (x & VSID_MODULUS);
  315. return (x + ((x+1) >> VSID_BITS)) & VSID_MODULUS;
  316. #endif /* 1 */
  317. }
  318. /* This is only valid for addresses >= KERNELBASE */
  319. static inline unsigned long get_kernel_vsid(unsigned long ea)
  320. {
  321. return vsid_scramble(ea >> SID_SHIFT);
  322. }
  323. /* This is only valid for user addresses (which are below 2^41) */
  324. static inline unsigned long get_vsid(unsigned long context, unsigned long ea)
  325. {
  326. return vsid_scramble((context << USER_ESID_BITS)
  327. | (ea >> SID_SHIFT));
  328. }
  329. #define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER) % VSID_MODULUS)
  330. #define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea))
  331. #endif /* __ASSEMBLY */
  332. #endif /* _PPC64_MMU_H_ */