xfs_log_recover.c 104 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_sb.h"
  26. #include "xfs_ag.h"
  27. #include "xfs_mount.h"
  28. #include "xfs_error.h"
  29. #include "xfs_bmap_btree.h"
  30. #include "xfs_alloc_btree.h"
  31. #include "xfs_ialloc_btree.h"
  32. #include "xfs_dinode.h"
  33. #include "xfs_inode.h"
  34. #include "xfs_inode_item.h"
  35. #include "xfs_alloc.h"
  36. #include "xfs_ialloc.h"
  37. #include "xfs_log_priv.h"
  38. #include "xfs_buf_item.h"
  39. #include "xfs_log_recover.h"
  40. #include "xfs_extfree_item.h"
  41. #include "xfs_trans_priv.h"
  42. #include "xfs_quota.h"
  43. #include "xfs_rw.h"
  44. #include "xfs_utils.h"
  45. #include "xfs_trace.h"
  46. STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
  47. STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
  48. #if defined(DEBUG)
  49. STATIC void xlog_recover_check_summary(xlog_t *);
  50. #else
  51. #define xlog_recover_check_summary(log)
  52. #endif
  53. /*
  54. * This structure is used during recovery to record the buf log items which
  55. * have been canceled and should not be replayed.
  56. */
  57. struct xfs_buf_cancel {
  58. xfs_daddr_t bc_blkno;
  59. uint bc_len;
  60. int bc_refcount;
  61. struct list_head bc_list;
  62. };
  63. /*
  64. * Sector aligned buffer routines for buffer create/read/write/access
  65. */
  66. /*
  67. * Verify the given count of basic blocks is valid number of blocks
  68. * to specify for an operation involving the given XFS log buffer.
  69. * Returns nonzero if the count is valid, 0 otherwise.
  70. */
  71. static inline int
  72. xlog_buf_bbcount_valid(
  73. xlog_t *log,
  74. int bbcount)
  75. {
  76. return bbcount > 0 && bbcount <= log->l_logBBsize;
  77. }
  78. /*
  79. * Allocate a buffer to hold log data. The buffer needs to be able
  80. * to map to a range of nbblks basic blocks at any valid (basic
  81. * block) offset within the log.
  82. */
  83. STATIC xfs_buf_t *
  84. xlog_get_bp(
  85. xlog_t *log,
  86. int nbblks)
  87. {
  88. struct xfs_buf *bp;
  89. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  90. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  91. nbblks);
  92. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  93. return NULL;
  94. }
  95. /*
  96. * We do log I/O in units of log sectors (a power-of-2
  97. * multiple of the basic block size), so we round up the
  98. * requested size to accommodate the basic blocks required
  99. * for complete log sectors.
  100. *
  101. * In addition, the buffer may be used for a non-sector-
  102. * aligned block offset, in which case an I/O of the
  103. * requested size could extend beyond the end of the
  104. * buffer. If the requested size is only 1 basic block it
  105. * will never straddle a sector boundary, so this won't be
  106. * an issue. Nor will this be a problem if the log I/O is
  107. * done in basic blocks (sector size 1). But otherwise we
  108. * extend the buffer by one extra log sector to ensure
  109. * there's space to accommodate this possibility.
  110. */
  111. if (nbblks > 1 && log->l_sectBBsize > 1)
  112. nbblks += log->l_sectBBsize;
  113. nbblks = round_up(nbblks, log->l_sectBBsize);
  114. bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, BBTOB(nbblks), 0);
  115. if (bp)
  116. xfs_buf_unlock(bp);
  117. return bp;
  118. }
  119. STATIC void
  120. xlog_put_bp(
  121. xfs_buf_t *bp)
  122. {
  123. xfs_buf_free(bp);
  124. }
  125. /*
  126. * Return the address of the start of the given block number's data
  127. * in a log buffer. The buffer covers a log sector-aligned region.
  128. */
  129. STATIC xfs_caddr_t
  130. xlog_align(
  131. xlog_t *log,
  132. xfs_daddr_t blk_no,
  133. int nbblks,
  134. xfs_buf_t *bp)
  135. {
  136. xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
  137. ASSERT(BBTOB(offset + nbblks) <= XFS_BUF_SIZE(bp));
  138. return XFS_BUF_PTR(bp) + BBTOB(offset);
  139. }
  140. /*
  141. * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
  142. */
  143. STATIC int
  144. xlog_bread_noalign(
  145. xlog_t *log,
  146. xfs_daddr_t blk_no,
  147. int nbblks,
  148. xfs_buf_t *bp)
  149. {
  150. int error;
  151. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  152. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  153. nbblks);
  154. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  155. return EFSCORRUPTED;
  156. }
  157. blk_no = round_down(blk_no, log->l_sectBBsize);
  158. nbblks = round_up(nbblks, log->l_sectBBsize);
  159. ASSERT(nbblks > 0);
  160. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  161. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  162. XFS_BUF_READ(bp);
  163. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  164. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  165. xfsbdstrat(log->l_mp, bp);
  166. error = xfs_buf_iowait(bp);
  167. if (error)
  168. xfs_ioerror_alert("xlog_bread", log->l_mp,
  169. bp, XFS_BUF_ADDR(bp));
  170. return error;
  171. }
  172. STATIC int
  173. xlog_bread(
  174. xlog_t *log,
  175. xfs_daddr_t blk_no,
  176. int nbblks,
  177. xfs_buf_t *bp,
  178. xfs_caddr_t *offset)
  179. {
  180. int error;
  181. error = xlog_bread_noalign(log, blk_no, nbblks, bp);
  182. if (error)
  183. return error;
  184. *offset = xlog_align(log, blk_no, nbblks, bp);
  185. return 0;
  186. }
  187. /*
  188. * Read at an offset into the buffer. Returns with the buffer in it's original
  189. * state regardless of the result of the read.
  190. */
  191. STATIC int
  192. xlog_bread_offset(
  193. xlog_t *log,
  194. xfs_daddr_t blk_no, /* block to read from */
  195. int nbblks, /* blocks to read */
  196. xfs_buf_t *bp,
  197. xfs_caddr_t offset)
  198. {
  199. xfs_caddr_t orig_offset = XFS_BUF_PTR(bp);
  200. int orig_len = bp->b_buffer_length;
  201. int error, error2;
  202. error = XFS_BUF_SET_PTR(bp, offset, BBTOB(nbblks));
  203. if (error)
  204. return error;
  205. error = xlog_bread_noalign(log, blk_no, nbblks, bp);
  206. /* must reset buffer pointer even on error */
  207. error2 = XFS_BUF_SET_PTR(bp, orig_offset, orig_len);
  208. if (error)
  209. return error;
  210. return error2;
  211. }
  212. /*
  213. * Write out the buffer at the given block for the given number of blocks.
  214. * The buffer is kept locked across the write and is returned locked.
  215. * This can only be used for synchronous log writes.
  216. */
  217. STATIC int
  218. xlog_bwrite(
  219. xlog_t *log,
  220. xfs_daddr_t blk_no,
  221. int nbblks,
  222. xfs_buf_t *bp)
  223. {
  224. int error;
  225. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  226. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  227. nbblks);
  228. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  229. return EFSCORRUPTED;
  230. }
  231. blk_no = round_down(blk_no, log->l_sectBBsize);
  232. nbblks = round_up(nbblks, log->l_sectBBsize);
  233. ASSERT(nbblks > 0);
  234. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  235. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  236. XFS_BUF_ZEROFLAGS(bp);
  237. XFS_BUF_HOLD(bp);
  238. xfs_buf_lock(bp);
  239. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  240. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  241. if ((error = xfs_bwrite(log->l_mp, bp)))
  242. xfs_ioerror_alert("xlog_bwrite", log->l_mp,
  243. bp, XFS_BUF_ADDR(bp));
  244. return error;
  245. }
  246. #ifdef DEBUG
  247. /*
  248. * dump debug superblock and log record information
  249. */
  250. STATIC void
  251. xlog_header_check_dump(
  252. xfs_mount_t *mp,
  253. xlog_rec_header_t *head)
  254. {
  255. xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
  256. __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
  257. xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
  258. &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
  259. }
  260. #else
  261. #define xlog_header_check_dump(mp, head)
  262. #endif
  263. /*
  264. * check log record header for recovery
  265. */
  266. STATIC int
  267. xlog_header_check_recover(
  268. xfs_mount_t *mp,
  269. xlog_rec_header_t *head)
  270. {
  271. ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
  272. /*
  273. * IRIX doesn't write the h_fmt field and leaves it zeroed
  274. * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
  275. * a dirty log created in IRIX.
  276. */
  277. if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
  278. xfs_warn(mp,
  279. "dirty log written in incompatible format - can't recover");
  280. xlog_header_check_dump(mp, head);
  281. XFS_ERROR_REPORT("xlog_header_check_recover(1)",
  282. XFS_ERRLEVEL_HIGH, mp);
  283. return XFS_ERROR(EFSCORRUPTED);
  284. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  285. xfs_warn(mp,
  286. "dirty log entry has mismatched uuid - can't recover");
  287. xlog_header_check_dump(mp, head);
  288. XFS_ERROR_REPORT("xlog_header_check_recover(2)",
  289. XFS_ERRLEVEL_HIGH, mp);
  290. return XFS_ERROR(EFSCORRUPTED);
  291. }
  292. return 0;
  293. }
  294. /*
  295. * read the head block of the log and check the header
  296. */
  297. STATIC int
  298. xlog_header_check_mount(
  299. xfs_mount_t *mp,
  300. xlog_rec_header_t *head)
  301. {
  302. ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
  303. if (uuid_is_nil(&head->h_fs_uuid)) {
  304. /*
  305. * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
  306. * h_fs_uuid is nil, we assume this log was last mounted
  307. * by IRIX and continue.
  308. */
  309. xfs_warn(mp, "nil uuid in log - IRIX style log");
  310. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  311. xfs_warn(mp, "log has mismatched uuid - can't recover");
  312. xlog_header_check_dump(mp, head);
  313. XFS_ERROR_REPORT("xlog_header_check_mount",
  314. XFS_ERRLEVEL_HIGH, mp);
  315. return XFS_ERROR(EFSCORRUPTED);
  316. }
  317. return 0;
  318. }
  319. STATIC void
  320. xlog_recover_iodone(
  321. struct xfs_buf *bp)
  322. {
  323. if (bp->b_error) {
  324. /*
  325. * We're not going to bother about retrying
  326. * this during recovery. One strike!
  327. */
  328. xfs_ioerror_alert("xlog_recover_iodone",
  329. bp->b_target->bt_mount, bp,
  330. XFS_BUF_ADDR(bp));
  331. xfs_force_shutdown(bp->b_target->bt_mount,
  332. SHUTDOWN_META_IO_ERROR);
  333. }
  334. bp->b_iodone = NULL;
  335. xfs_buf_ioend(bp, 0);
  336. }
  337. /*
  338. * This routine finds (to an approximation) the first block in the physical
  339. * log which contains the given cycle. It uses a binary search algorithm.
  340. * Note that the algorithm can not be perfect because the disk will not
  341. * necessarily be perfect.
  342. */
  343. STATIC int
  344. xlog_find_cycle_start(
  345. xlog_t *log,
  346. xfs_buf_t *bp,
  347. xfs_daddr_t first_blk,
  348. xfs_daddr_t *last_blk,
  349. uint cycle)
  350. {
  351. xfs_caddr_t offset;
  352. xfs_daddr_t mid_blk;
  353. xfs_daddr_t end_blk;
  354. uint mid_cycle;
  355. int error;
  356. end_blk = *last_blk;
  357. mid_blk = BLK_AVG(first_blk, end_blk);
  358. while (mid_blk != first_blk && mid_blk != end_blk) {
  359. error = xlog_bread(log, mid_blk, 1, bp, &offset);
  360. if (error)
  361. return error;
  362. mid_cycle = xlog_get_cycle(offset);
  363. if (mid_cycle == cycle)
  364. end_blk = mid_blk; /* last_half_cycle == mid_cycle */
  365. else
  366. first_blk = mid_blk; /* first_half_cycle == mid_cycle */
  367. mid_blk = BLK_AVG(first_blk, end_blk);
  368. }
  369. ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
  370. (mid_blk == end_blk && mid_blk-1 == first_blk));
  371. *last_blk = end_blk;
  372. return 0;
  373. }
  374. /*
  375. * Check that a range of blocks does not contain stop_on_cycle_no.
  376. * Fill in *new_blk with the block offset where such a block is
  377. * found, or with -1 (an invalid block number) if there is no such
  378. * block in the range. The scan needs to occur from front to back
  379. * and the pointer into the region must be updated since a later
  380. * routine will need to perform another test.
  381. */
  382. STATIC int
  383. xlog_find_verify_cycle(
  384. xlog_t *log,
  385. xfs_daddr_t start_blk,
  386. int nbblks,
  387. uint stop_on_cycle_no,
  388. xfs_daddr_t *new_blk)
  389. {
  390. xfs_daddr_t i, j;
  391. uint cycle;
  392. xfs_buf_t *bp;
  393. xfs_daddr_t bufblks;
  394. xfs_caddr_t buf = NULL;
  395. int error = 0;
  396. /*
  397. * Greedily allocate a buffer big enough to handle the full
  398. * range of basic blocks we'll be examining. If that fails,
  399. * try a smaller size. We need to be able to read at least
  400. * a log sector, or we're out of luck.
  401. */
  402. bufblks = 1 << ffs(nbblks);
  403. while (!(bp = xlog_get_bp(log, bufblks))) {
  404. bufblks >>= 1;
  405. if (bufblks < log->l_sectBBsize)
  406. return ENOMEM;
  407. }
  408. for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
  409. int bcount;
  410. bcount = min(bufblks, (start_blk + nbblks - i));
  411. error = xlog_bread(log, i, bcount, bp, &buf);
  412. if (error)
  413. goto out;
  414. for (j = 0; j < bcount; j++) {
  415. cycle = xlog_get_cycle(buf);
  416. if (cycle == stop_on_cycle_no) {
  417. *new_blk = i+j;
  418. goto out;
  419. }
  420. buf += BBSIZE;
  421. }
  422. }
  423. *new_blk = -1;
  424. out:
  425. xlog_put_bp(bp);
  426. return error;
  427. }
  428. /*
  429. * Potentially backup over partial log record write.
  430. *
  431. * In the typical case, last_blk is the number of the block directly after
  432. * a good log record. Therefore, we subtract one to get the block number
  433. * of the last block in the given buffer. extra_bblks contains the number
  434. * of blocks we would have read on a previous read. This happens when the
  435. * last log record is split over the end of the physical log.
  436. *
  437. * extra_bblks is the number of blocks potentially verified on a previous
  438. * call to this routine.
  439. */
  440. STATIC int
  441. xlog_find_verify_log_record(
  442. xlog_t *log,
  443. xfs_daddr_t start_blk,
  444. xfs_daddr_t *last_blk,
  445. int extra_bblks)
  446. {
  447. xfs_daddr_t i;
  448. xfs_buf_t *bp;
  449. xfs_caddr_t offset = NULL;
  450. xlog_rec_header_t *head = NULL;
  451. int error = 0;
  452. int smallmem = 0;
  453. int num_blks = *last_blk - start_blk;
  454. int xhdrs;
  455. ASSERT(start_blk != 0 || *last_blk != start_blk);
  456. if (!(bp = xlog_get_bp(log, num_blks))) {
  457. if (!(bp = xlog_get_bp(log, 1)))
  458. return ENOMEM;
  459. smallmem = 1;
  460. } else {
  461. error = xlog_bread(log, start_blk, num_blks, bp, &offset);
  462. if (error)
  463. goto out;
  464. offset += ((num_blks - 1) << BBSHIFT);
  465. }
  466. for (i = (*last_blk) - 1; i >= 0; i--) {
  467. if (i < start_blk) {
  468. /* valid log record not found */
  469. xfs_warn(log->l_mp,
  470. "Log inconsistent (didn't find previous header)");
  471. ASSERT(0);
  472. error = XFS_ERROR(EIO);
  473. goto out;
  474. }
  475. if (smallmem) {
  476. error = xlog_bread(log, i, 1, bp, &offset);
  477. if (error)
  478. goto out;
  479. }
  480. head = (xlog_rec_header_t *)offset;
  481. if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
  482. break;
  483. if (!smallmem)
  484. offset -= BBSIZE;
  485. }
  486. /*
  487. * We hit the beginning of the physical log & still no header. Return
  488. * to caller. If caller can handle a return of -1, then this routine
  489. * will be called again for the end of the physical log.
  490. */
  491. if (i == -1) {
  492. error = -1;
  493. goto out;
  494. }
  495. /*
  496. * We have the final block of the good log (the first block
  497. * of the log record _before_ the head. So we check the uuid.
  498. */
  499. if ((error = xlog_header_check_mount(log->l_mp, head)))
  500. goto out;
  501. /*
  502. * We may have found a log record header before we expected one.
  503. * last_blk will be the 1st block # with a given cycle #. We may end
  504. * up reading an entire log record. In this case, we don't want to
  505. * reset last_blk. Only when last_blk points in the middle of a log
  506. * record do we update last_blk.
  507. */
  508. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  509. uint h_size = be32_to_cpu(head->h_size);
  510. xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
  511. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  512. xhdrs++;
  513. } else {
  514. xhdrs = 1;
  515. }
  516. if (*last_blk - i + extra_bblks !=
  517. BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
  518. *last_blk = i;
  519. out:
  520. xlog_put_bp(bp);
  521. return error;
  522. }
  523. /*
  524. * Head is defined to be the point of the log where the next log write
  525. * write could go. This means that incomplete LR writes at the end are
  526. * eliminated when calculating the head. We aren't guaranteed that previous
  527. * LR have complete transactions. We only know that a cycle number of
  528. * current cycle number -1 won't be present in the log if we start writing
  529. * from our current block number.
  530. *
  531. * last_blk contains the block number of the first block with a given
  532. * cycle number.
  533. *
  534. * Return: zero if normal, non-zero if error.
  535. */
  536. STATIC int
  537. xlog_find_head(
  538. xlog_t *log,
  539. xfs_daddr_t *return_head_blk)
  540. {
  541. xfs_buf_t *bp;
  542. xfs_caddr_t offset;
  543. xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
  544. int num_scan_bblks;
  545. uint first_half_cycle, last_half_cycle;
  546. uint stop_on_cycle;
  547. int error, log_bbnum = log->l_logBBsize;
  548. /* Is the end of the log device zeroed? */
  549. if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
  550. *return_head_blk = first_blk;
  551. /* Is the whole lot zeroed? */
  552. if (!first_blk) {
  553. /* Linux XFS shouldn't generate totally zeroed logs -
  554. * mkfs etc write a dummy unmount record to a fresh
  555. * log so we can store the uuid in there
  556. */
  557. xfs_warn(log->l_mp, "totally zeroed log");
  558. }
  559. return 0;
  560. } else if (error) {
  561. xfs_warn(log->l_mp, "empty log check failed");
  562. return error;
  563. }
  564. first_blk = 0; /* get cycle # of 1st block */
  565. bp = xlog_get_bp(log, 1);
  566. if (!bp)
  567. return ENOMEM;
  568. error = xlog_bread(log, 0, 1, bp, &offset);
  569. if (error)
  570. goto bp_err;
  571. first_half_cycle = xlog_get_cycle(offset);
  572. last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
  573. error = xlog_bread(log, last_blk, 1, bp, &offset);
  574. if (error)
  575. goto bp_err;
  576. last_half_cycle = xlog_get_cycle(offset);
  577. ASSERT(last_half_cycle != 0);
  578. /*
  579. * If the 1st half cycle number is equal to the last half cycle number,
  580. * then the entire log is stamped with the same cycle number. In this
  581. * case, head_blk can't be set to zero (which makes sense). The below
  582. * math doesn't work out properly with head_blk equal to zero. Instead,
  583. * we set it to log_bbnum which is an invalid block number, but this
  584. * value makes the math correct. If head_blk doesn't changed through
  585. * all the tests below, *head_blk is set to zero at the very end rather
  586. * than log_bbnum. In a sense, log_bbnum and zero are the same block
  587. * in a circular file.
  588. */
  589. if (first_half_cycle == last_half_cycle) {
  590. /*
  591. * In this case we believe that the entire log should have
  592. * cycle number last_half_cycle. We need to scan backwards
  593. * from the end verifying that there are no holes still
  594. * containing last_half_cycle - 1. If we find such a hole,
  595. * then the start of that hole will be the new head. The
  596. * simple case looks like
  597. * x | x ... | x - 1 | x
  598. * Another case that fits this picture would be
  599. * x | x + 1 | x ... | x
  600. * In this case the head really is somewhere at the end of the
  601. * log, as one of the latest writes at the beginning was
  602. * incomplete.
  603. * One more case is
  604. * x | x + 1 | x ... | x - 1 | x
  605. * This is really the combination of the above two cases, and
  606. * the head has to end up at the start of the x-1 hole at the
  607. * end of the log.
  608. *
  609. * In the 256k log case, we will read from the beginning to the
  610. * end of the log and search for cycle numbers equal to x-1.
  611. * We don't worry about the x+1 blocks that we encounter,
  612. * because we know that they cannot be the head since the log
  613. * started with x.
  614. */
  615. head_blk = log_bbnum;
  616. stop_on_cycle = last_half_cycle - 1;
  617. } else {
  618. /*
  619. * In this case we want to find the first block with cycle
  620. * number matching last_half_cycle. We expect the log to be
  621. * some variation on
  622. * x + 1 ... | x ... | x
  623. * The first block with cycle number x (last_half_cycle) will
  624. * be where the new head belongs. First we do a binary search
  625. * for the first occurrence of last_half_cycle. The binary
  626. * search may not be totally accurate, so then we scan back
  627. * from there looking for occurrences of last_half_cycle before
  628. * us. If that backwards scan wraps around the beginning of
  629. * the log, then we look for occurrences of last_half_cycle - 1
  630. * at the end of the log. The cases we're looking for look
  631. * like
  632. * v binary search stopped here
  633. * x + 1 ... | x | x + 1 | x ... | x
  634. * ^ but we want to locate this spot
  635. * or
  636. * <---------> less than scan distance
  637. * x + 1 ... | x ... | x - 1 | x
  638. * ^ we want to locate this spot
  639. */
  640. stop_on_cycle = last_half_cycle;
  641. if ((error = xlog_find_cycle_start(log, bp, first_blk,
  642. &head_blk, last_half_cycle)))
  643. goto bp_err;
  644. }
  645. /*
  646. * Now validate the answer. Scan back some number of maximum possible
  647. * blocks and make sure each one has the expected cycle number. The
  648. * maximum is determined by the total possible amount of buffering
  649. * in the in-core log. The following number can be made tighter if
  650. * we actually look at the block size of the filesystem.
  651. */
  652. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  653. if (head_blk >= num_scan_bblks) {
  654. /*
  655. * We are guaranteed that the entire check can be performed
  656. * in one buffer.
  657. */
  658. start_blk = head_blk - num_scan_bblks;
  659. if ((error = xlog_find_verify_cycle(log,
  660. start_blk, num_scan_bblks,
  661. stop_on_cycle, &new_blk)))
  662. goto bp_err;
  663. if (new_blk != -1)
  664. head_blk = new_blk;
  665. } else { /* need to read 2 parts of log */
  666. /*
  667. * We are going to scan backwards in the log in two parts.
  668. * First we scan the physical end of the log. In this part
  669. * of the log, we are looking for blocks with cycle number
  670. * last_half_cycle - 1.
  671. * If we find one, then we know that the log starts there, as
  672. * we've found a hole that didn't get written in going around
  673. * the end of the physical log. The simple case for this is
  674. * x + 1 ... | x ... | x - 1 | x
  675. * <---------> less than scan distance
  676. * If all of the blocks at the end of the log have cycle number
  677. * last_half_cycle, then we check the blocks at the start of
  678. * the log looking for occurrences of last_half_cycle. If we
  679. * find one, then our current estimate for the location of the
  680. * first occurrence of last_half_cycle is wrong and we move
  681. * back to the hole we've found. This case looks like
  682. * x + 1 ... | x | x + 1 | x ...
  683. * ^ binary search stopped here
  684. * Another case we need to handle that only occurs in 256k
  685. * logs is
  686. * x + 1 ... | x ... | x+1 | x ...
  687. * ^ binary search stops here
  688. * In a 256k log, the scan at the end of the log will see the
  689. * x + 1 blocks. We need to skip past those since that is
  690. * certainly not the head of the log. By searching for
  691. * last_half_cycle-1 we accomplish that.
  692. */
  693. ASSERT(head_blk <= INT_MAX &&
  694. (xfs_daddr_t) num_scan_bblks >= head_blk);
  695. start_blk = log_bbnum - (num_scan_bblks - head_blk);
  696. if ((error = xlog_find_verify_cycle(log, start_blk,
  697. num_scan_bblks - (int)head_blk,
  698. (stop_on_cycle - 1), &new_blk)))
  699. goto bp_err;
  700. if (new_blk != -1) {
  701. head_blk = new_blk;
  702. goto validate_head;
  703. }
  704. /*
  705. * Scan beginning of log now. The last part of the physical
  706. * log is good. This scan needs to verify that it doesn't find
  707. * the last_half_cycle.
  708. */
  709. start_blk = 0;
  710. ASSERT(head_blk <= INT_MAX);
  711. if ((error = xlog_find_verify_cycle(log,
  712. start_blk, (int)head_blk,
  713. stop_on_cycle, &new_blk)))
  714. goto bp_err;
  715. if (new_blk != -1)
  716. head_blk = new_blk;
  717. }
  718. validate_head:
  719. /*
  720. * Now we need to make sure head_blk is not pointing to a block in
  721. * the middle of a log record.
  722. */
  723. num_scan_bblks = XLOG_REC_SHIFT(log);
  724. if (head_blk >= num_scan_bblks) {
  725. start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
  726. /* start ptr at last block ptr before head_blk */
  727. if ((error = xlog_find_verify_log_record(log, start_blk,
  728. &head_blk, 0)) == -1) {
  729. error = XFS_ERROR(EIO);
  730. goto bp_err;
  731. } else if (error)
  732. goto bp_err;
  733. } else {
  734. start_blk = 0;
  735. ASSERT(head_blk <= INT_MAX);
  736. if ((error = xlog_find_verify_log_record(log, start_blk,
  737. &head_blk, 0)) == -1) {
  738. /* We hit the beginning of the log during our search */
  739. start_blk = log_bbnum - (num_scan_bblks - head_blk);
  740. new_blk = log_bbnum;
  741. ASSERT(start_blk <= INT_MAX &&
  742. (xfs_daddr_t) log_bbnum-start_blk >= 0);
  743. ASSERT(head_blk <= INT_MAX);
  744. if ((error = xlog_find_verify_log_record(log,
  745. start_blk, &new_blk,
  746. (int)head_blk)) == -1) {
  747. error = XFS_ERROR(EIO);
  748. goto bp_err;
  749. } else if (error)
  750. goto bp_err;
  751. if (new_blk != log_bbnum)
  752. head_blk = new_blk;
  753. } else if (error)
  754. goto bp_err;
  755. }
  756. xlog_put_bp(bp);
  757. if (head_blk == log_bbnum)
  758. *return_head_blk = 0;
  759. else
  760. *return_head_blk = head_blk;
  761. /*
  762. * When returning here, we have a good block number. Bad block
  763. * means that during a previous crash, we didn't have a clean break
  764. * from cycle number N to cycle number N-1. In this case, we need
  765. * to find the first block with cycle number N-1.
  766. */
  767. return 0;
  768. bp_err:
  769. xlog_put_bp(bp);
  770. if (error)
  771. xfs_warn(log->l_mp, "failed to find log head");
  772. return error;
  773. }
  774. /*
  775. * Find the sync block number or the tail of the log.
  776. *
  777. * This will be the block number of the last record to have its
  778. * associated buffers synced to disk. Every log record header has
  779. * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
  780. * to get a sync block number. The only concern is to figure out which
  781. * log record header to believe.
  782. *
  783. * The following algorithm uses the log record header with the largest
  784. * lsn. The entire log record does not need to be valid. We only care
  785. * that the header is valid.
  786. *
  787. * We could speed up search by using current head_blk buffer, but it is not
  788. * available.
  789. */
  790. STATIC int
  791. xlog_find_tail(
  792. xlog_t *log,
  793. xfs_daddr_t *head_blk,
  794. xfs_daddr_t *tail_blk)
  795. {
  796. xlog_rec_header_t *rhead;
  797. xlog_op_header_t *op_head;
  798. xfs_caddr_t offset = NULL;
  799. xfs_buf_t *bp;
  800. int error, i, found;
  801. xfs_daddr_t umount_data_blk;
  802. xfs_daddr_t after_umount_blk;
  803. xfs_lsn_t tail_lsn;
  804. int hblks;
  805. found = 0;
  806. /*
  807. * Find previous log record
  808. */
  809. if ((error = xlog_find_head(log, head_blk)))
  810. return error;
  811. bp = xlog_get_bp(log, 1);
  812. if (!bp)
  813. return ENOMEM;
  814. if (*head_blk == 0) { /* special case */
  815. error = xlog_bread(log, 0, 1, bp, &offset);
  816. if (error)
  817. goto done;
  818. if (xlog_get_cycle(offset) == 0) {
  819. *tail_blk = 0;
  820. /* leave all other log inited values alone */
  821. goto done;
  822. }
  823. }
  824. /*
  825. * Search backwards looking for log record header block
  826. */
  827. ASSERT(*head_blk < INT_MAX);
  828. for (i = (int)(*head_blk) - 1; i >= 0; i--) {
  829. error = xlog_bread(log, i, 1, bp, &offset);
  830. if (error)
  831. goto done;
  832. if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
  833. found = 1;
  834. break;
  835. }
  836. }
  837. /*
  838. * If we haven't found the log record header block, start looking
  839. * again from the end of the physical log. XXXmiken: There should be
  840. * a check here to make sure we didn't search more than N blocks in
  841. * the previous code.
  842. */
  843. if (!found) {
  844. for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
  845. error = xlog_bread(log, i, 1, bp, &offset);
  846. if (error)
  847. goto done;
  848. if (*(__be32 *)offset ==
  849. cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
  850. found = 2;
  851. break;
  852. }
  853. }
  854. }
  855. if (!found) {
  856. xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
  857. ASSERT(0);
  858. return XFS_ERROR(EIO);
  859. }
  860. /* find blk_no of tail of log */
  861. rhead = (xlog_rec_header_t *)offset;
  862. *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
  863. /*
  864. * Reset log values according to the state of the log when we
  865. * crashed. In the case where head_blk == 0, we bump curr_cycle
  866. * one because the next write starts a new cycle rather than
  867. * continuing the cycle of the last good log record. At this
  868. * point we have guaranteed that all partial log records have been
  869. * accounted for. Therefore, we know that the last good log record
  870. * written was complete and ended exactly on the end boundary
  871. * of the physical log.
  872. */
  873. log->l_prev_block = i;
  874. log->l_curr_block = (int)*head_blk;
  875. log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
  876. if (found == 2)
  877. log->l_curr_cycle++;
  878. atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
  879. atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
  880. xlog_assign_grant_head(&log->l_grant_reserve_head, log->l_curr_cycle,
  881. BBTOB(log->l_curr_block));
  882. xlog_assign_grant_head(&log->l_grant_write_head, log->l_curr_cycle,
  883. BBTOB(log->l_curr_block));
  884. /*
  885. * Look for unmount record. If we find it, then we know there
  886. * was a clean unmount. Since 'i' could be the last block in
  887. * the physical log, we convert to a log block before comparing
  888. * to the head_blk.
  889. *
  890. * Save the current tail lsn to use to pass to
  891. * xlog_clear_stale_blocks() below. We won't want to clear the
  892. * unmount record if there is one, so we pass the lsn of the
  893. * unmount record rather than the block after it.
  894. */
  895. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  896. int h_size = be32_to_cpu(rhead->h_size);
  897. int h_version = be32_to_cpu(rhead->h_version);
  898. if ((h_version & XLOG_VERSION_2) &&
  899. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  900. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  901. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  902. hblks++;
  903. } else {
  904. hblks = 1;
  905. }
  906. } else {
  907. hblks = 1;
  908. }
  909. after_umount_blk = (i + hblks + (int)
  910. BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
  911. tail_lsn = atomic64_read(&log->l_tail_lsn);
  912. if (*head_blk == after_umount_blk &&
  913. be32_to_cpu(rhead->h_num_logops) == 1) {
  914. umount_data_blk = (i + hblks) % log->l_logBBsize;
  915. error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
  916. if (error)
  917. goto done;
  918. op_head = (xlog_op_header_t *)offset;
  919. if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
  920. /*
  921. * Set tail and last sync so that newly written
  922. * log records will point recovery to after the
  923. * current unmount record.
  924. */
  925. xlog_assign_atomic_lsn(&log->l_tail_lsn,
  926. log->l_curr_cycle, after_umount_blk);
  927. xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
  928. log->l_curr_cycle, after_umount_blk);
  929. *tail_blk = after_umount_blk;
  930. /*
  931. * Note that the unmount was clean. If the unmount
  932. * was not clean, we need to know this to rebuild the
  933. * superblock counters from the perag headers if we
  934. * have a filesystem using non-persistent counters.
  935. */
  936. log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
  937. }
  938. }
  939. /*
  940. * Make sure that there are no blocks in front of the head
  941. * with the same cycle number as the head. This can happen
  942. * because we allow multiple outstanding log writes concurrently,
  943. * and the later writes might make it out before earlier ones.
  944. *
  945. * We use the lsn from before modifying it so that we'll never
  946. * overwrite the unmount record after a clean unmount.
  947. *
  948. * Do this only if we are going to recover the filesystem
  949. *
  950. * NOTE: This used to say "if (!readonly)"
  951. * However on Linux, we can & do recover a read-only filesystem.
  952. * We only skip recovery if NORECOVERY is specified on mount,
  953. * in which case we would not be here.
  954. *
  955. * But... if the -device- itself is readonly, just skip this.
  956. * We can't recover this device anyway, so it won't matter.
  957. */
  958. if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
  959. error = xlog_clear_stale_blocks(log, tail_lsn);
  960. done:
  961. xlog_put_bp(bp);
  962. if (error)
  963. xfs_warn(log->l_mp, "failed to locate log tail");
  964. return error;
  965. }
  966. /*
  967. * Is the log zeroed at all?
  968. *
  969. * The last binary search should be changed to perform an X block read
  970. * once X becomes small enough. You can then search linearly through
  971. * the X blocks. This will cut down on the number of reads we need to do.
  972. *
  973. * If the log is partially zeroed, this routine will pass back the blkno
  974. * of the first block with cycle number 0. It won't have a complete LR
  975. * preceding it.
  976. *
  977. * Return:
  978. * 0 => the log is completely written to
  979. * -1 => use *blk_no as the first block of the log
  980. * >0 => error has occurred
  981. */
  982. STATIC int
  983. xlog_find_zeroed(
  984. xlog_t *log,
  985. xfs_daddr_t *blk_no)
  986. {
  987. xfs_buf_t *bp;
  988. xfs_caddr_t offset;
  989. uint first_cycle, last_cycle;
  990. xfs_daddr_t new_blk, last_blk, start_blk;
  991. xfs_daddr_t num_scan_bblks;
  992. int error, log_bbnum = log->l_logBBsize;
  993. *blk_no = 0;
  994. /* check totally zeroed log */
  995. bp = xlog_get_bp(log, 1);
  996. if (!bp)
  997. return ENOMEM;
  998. error = xlog_bread(log, 0, 1, bp, &offset);
  999. if (error)
  1000. goto bp_err;
  1001. first_cycle = xlog_get_cycle(offset);
  1002. if (first_cycle == 0) { /* completely zeroed log */
  1003. *blk_no = 0;
  1004. xlog_put_bp(bp);
  1005. return -1;
  1006. }
  1007. /* check partially zeroed log */
  1008. error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
  1009. if (error)
  1010. goto bp_err;
  1011. last_cycle = xlog_get_cycle(offset);
  1012. if (last_cycle != 0) { /* log completely written to */
  1013. xlog_put_bp(bp);
  1014. return 0;
  1015. } else if (first_cycle != 1) {
  1016. /*
  1017. * If the cycle of the last block is zero, the cycle of
  1018. * the first block must be 1. If it's not, maybe we're
  1019. * not looking at a log... Bail out.
  1020. */
  1021. xfs_warn(log->l_mp,
  1022. "Log inconsistent or not a log (last==0, first!=1)");
  1023. return XFS_ERROR(EINVAL);
  1024. }
  1025. /* we have a partially zeroed log */
  1026. last_blk = log_bbnum-1;
  1027. if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
  1028. goto bp_err;
  1029. /*
  1030. * Validate the answer. Because there is no way to guarantee that
  1031. * the entire log is made up of log records which are the same size,
  1032. * we scan over the defined maximum blocks. At this point, the maximum
  1033. * is not chosen to mean anything special. XXXmiken
  1034. */
  1035. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  1036. ASSERT(num_scan_bblks <= INT_MAX);
  1037. if (last_blk < num_scan_bblks)
  1038. num_scan_bblks = last_blk;
  1039. start_blk = last_blk - num_scan_bblks;
  1040. /*
  1041. * We search for any instances of cycle number 0 that occur before
  1042. * our current estimate of the head. What we're trying to detect is
  1043. * 1 ... | 0 | 1 | 0...
  1044. * ^ binary search ends here
  1045. */
  1046. if ((error = xlog_find_verify_cycle(log, start_blk,
  1047. (int)num_scan_bblks, 0, &new_blk)))
  1048. goto bp_err;
  1049. if (new_blk != -1)
  1050. last_blk = new_blk;
  1051. /*
  1052. * Potentially backup over partial log record write. We don't need
  1053. * to search the end of the log because we know it is zero.
  1054. */
  1055. if ((error = xlog_find_verify_log_record(log, start_blk,
  1056. &last_blk, 0)) == -1) {
  1057. error = XFS_ERROR(EIO);
  1058. goto bp_err;
  1059. } else if (error)
  1060. goto bp_err;
  1061. *blk_no = last_blk;
  1062. bp_err:
  1063. xlog_put_bp(bp);
  1064. if (error)
  1065. return error;
  1066. return -1;
  1067. }
  1068. /*
  1069. * These are simple subroutines used by xlog_clear_stale_blocks() below
  1070. * to initialize a buffer full of empty log record headers and write
  1071. * them into the log.
  1072. */
  1073. STATIC void
  1074. xlog_add_record(
  1075. xlog_t *log,
  1076. xfs_caddr_t buf,
  1077. int cycle,
  1078. int block,
  1079. int tail_cycle,
  1080. int tail_block)
  1081. {
  1082. xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
  1083. memset(buf, 0, BBSIZE);
  1084. recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
  1085. recp->h_cycle = cpu_to_be32(cycle);
  1086. recp->h_version = cpu_to_be32(
  1087. xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
  1088. recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
  1089. recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
  1090. recp->h_fmt = cpu_to_be32(XLOG_FMT);
  1091. memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
  1092. }
  1093. STATIC int
  1094. xlog_write_log_records(
  1095. xlog_t *log,
  1096. int cycle,
  1097. int start_block,
  1098. int blocks,
  1099. int tail_cycle,
  1100. int tail_block)
  1101. {
  1102. xfs_caddr_t offset;
  1103. xfs_buf_t *bp;
  1104. int balign, ealign;
  1105. int sectbb = log->l_sectBBsize;
  1106. int end_block = start_block + blocks;
  1107. int bufblks;
  1108. int error = 0;
  1109. int i, j = 0;
  1110. /*
  1111. * Greedily allocate a buffer big enough to handle the full
  1112. * range of basic blocks to be written. If that fails, try
  1113. * a smaller size. We need to be able to write at least a
  1114. * log sector, or we're out of luck.
  1115. */
  1116. bufblks = 1 << ffs(blocks);
  1117. while (!(bp = xlog_get_bp(log, bufblks))) {
  1118. bufblks >>= 1;
  1119. if (bufblks < sectbb)
  1120. return ENOMEM;
  1121. }
  1122. /* We may need to do a read at the start to fill in part of
  1123. * the buffer in the starting sector not covered by the first
  1124. * write below.
  1125. */
  1126. balign = round_down(start_block, sectbb);
  1127. if (balign != start_block) {
  1128. error = xlog_bread_noalign(log, start_block, 1, bp);
  1129. if (error)
  1130. goto out_put_bp;
  1131. j = start_block - balign;
  1132. }
  1133. for (i = start_block; i < end_block; i += bufblks) {
  1134. int bcount, endcount;
  1135. bcount = min(bufblks, end_block - start_block);
  1136. endcount = bcount - j;
  1137. /* We may need to do a read at the end to fill in part of
  1138. * the buffer in the final sector not covered by the write.
  1139. * If this is the same sector as the above read, skip it.
  1140. */
  1141. ealign = round_down(end_block, sectbb);
  1142. if (j == 0 && (start_block + endcount > ealign)) {
  1143. offset = XFS_BUF_PTR(bp) + BBTOB(ealign - start_block);
  1144. error = xlog_bread_offset(log, ealign, sectbb,
  1145. bp, offset);
  1146. if (error)
  1147. break;
  1148. }
  1149. offset = xlog_align(log, start_block, endcount, bp);
  1150. for (; j < endcount; j++) {
  1151. xlog_add_record(log, offset, cycle, i+j,
  1152. tail_cycle, tail_block);
  1153. offset += BBSIZE;
  1154. }
  1155. error = xlog_bwrite(log, start_block, endcount, bp);
  1156. if (error)
  1157. break;
  1158. start_block += endcount;
  1159. j = 0;
  1160. }
  1161. out_put_bp:
  1162. xlog_put_bp(bp);
  1163. return error;
  1164. }
  1165. /*
  1166. * This routine is called to blow away any incomplete log writes out
  1167. * in front of the log head. We do this so that we won't become confused
  1168. * if we come up, write only a little bit more, and then crash again.
  1169. * If we leave the partial log records out there, this situation could
  1170. * cause us to think those partial writes are valid blocks since they
  1171. * have the current cycle number. We get rid of them by overwriting them
  1172. * with empty log records with the old cycle number rather than the
  1173. * current one.
  1174. *
  1175. * The tail lsn is passed in rather than taken from
  1176. * the log so that we will not write over the unmount record after a
  1177. * clean unmount in a 512 block log. Doing so would leave the log without
  1178. * any valid log records in it until a new one was written. If we crashed
  1179. * during that time we would not be able to recover.
  1180. */
  1181. STATIC int
  1182. xlog_clear_stale_blocks(
  1183. xlog_t *log,
  1184. xfs_lsn_t tail_lsn)
  1185. {
  1186. int tail_cycle, head_cycle;
  1187. int tail_block, head_block;
  1188. int tail_distance, max_distance;
  1189. int distance;
  1190. int error;
  1191. tail_cycle = CYCLE_LSN(tail_lsn);
  1192. tail_block = BLOCK_LSN(tail_lsn);
  1193. head_cycle = log->l_curr_cycle;
  1194. head_block = log->l_curr_block;
  1195. /*
  1196. * Figure out the distance between the new head of the log
  1197. * and the tail. We want to write over any blocks beyond the
  1198. * head that we may have written just before the crash, but
  1199. * we don't want to overwrite the tail of the log.
  1200. */
  1201. if (head_cycle == tail_cycle) {
  1202. /*
  1203. * The tail is behind the head in the physical log,
  1204. * so the distance from the head to the tail is the
  1205. * distance from the head to the end of the log plus
  1206. * the distance from the beginning of the log to the
  1207. * tail.
  1208. */
  1209. if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
  1210. XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
  1211. XFS_ERRLEVEL_LOW, log->l_mp);
  1212. return XFS_ERROR(EFSCORRUPTED);
  1213. }
  1214. tail_distance = tail_block + (log->l_logBBsize - head_block);
  1215. } else {
  1216. /*
  1217. * The head is behind the tail in the physical log,
  1218. * so the distance from the head to the tail is just
  1219. * the tail block minus the head block.
  1220. */
  1221. if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
  1222. XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
  1223. XFS_ERRLEVEL_LOW, log->l_mp);
  1224. return XFS_ERROR(EFSCORRUPTED);
  1225. }
  1226. tail_distance = tail_block - head_block;
  1227. }
  1228. /*
  1229. * If the head is right up against the tail, we can't clear
  1230. * anything.
  1231. */
  1232. if (tail_distance <= 0) {
  1233. ASSERT(tail_distance == 0);
  1234. return 0;
  1235. }
  1236. max_distance = XLOG_TOTAL_REC_SHIFT(log);
  1237. /*
  1238. * Take the smaller of the maximum amount of outstanding I/O
  1239. * we could have and the distance to the tail to clear out.
  1240. * We take the smaller so that we don't overwrite the tail and
  1241. * we don't waste all day writing from the head to the tail
  1242. * for no reason.
  1243. */
  1244. max_distance = MIN(max_distance, tail_distance);
  1245. if ((head_block + max_distance) <= log->l_logBBsize) {
  1246. /*
  1247. * We can stomp all the blocks we need to without
  1248. * wrapping around the end of the log. Just do it
  1249. * in a single write. Use the cycle number of the
  1250. * current cycle minus one so that the log will look like:
  1251. * n ... | n - 1 ...
  1252. */
  1253. error = xlog_write_log_records(log, (head_cycle - 1),
  1254. head_block, max_distance, tail_cycle,
  1255. tail_block);
  1256. if (error)
  1257. return error;
  1258. } else {
  1259. /*
  1260. * We need to wrap around the end of the physical log in
  1261. * order to clear all the blocks. Do it in two separate
  1262. * I/Os. The first write should be from the head to the
  1263. * end of the physical log, and it should use the current
  1264. * cycle number minus one just like above.
  1265. */
  1266. distance = log->l_logBBsize - head_block;
  1267. error = xlog_write_log_records(log, (head_cycle - 1),
  1268. head_block, distance, tail_cycle,
  1269. tail_block);
  1270. if (error)
  1271. return error;
  1272. /*
  1273. * Now write the blocks at the start of the physical log.
  1274. * This writes the remainder of the blocks we want to clear.
  1275. * It uses the current cycle number since we're now on the
  1276. * same cycle as the head so that we get:
  1277. * n ... n ... | n - 1 ...
  1278. * ^^^^^ blocks we're writing
  1279. */
  1280. distance = max_distance - (log->l_logBBsize - head_block);
  1281. error = xlog_write_log_records(log, head_cycle, 0, distance,
  1282. tail_cycle, tail_block);
  1283. if (error)
  1284. return error;
  1285. }
  1286. return 0;
  1287. }
  1288. /******************************************************************************
  1289. *
  1290. * Log recover routines
  1291. *
  1292. ******************************************************************************
  1293. */
  1294. STATIC xlog_recover_t *
  1295. xlog_recover_find_tid(
  1296. struct hlist_head *head,
  1297. xlog_tid_t tid)
  1298. {
  1299. xlog_recover_t *trans;
  1300. struct hlist_node *n;
  1301. hlist_for_each_entry(trans, n, head, r_list) {
  1302. if (trans->r_log_tid == tid)
  1303. return trans;
  1304. }
  1305. return NULL;
  1306. }
  1307. STATIC void
  1308. xlog_recover_new_tid(
  1309. struct hlist_head *head,
  1310. xlog_tid_t tid,
  1311. xfs_lsn_t lsn)
  1312. {
  1313. xlog_recover_t *trans;
  1314. trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
  1315. trans->r_log_tid = tid;
  1316. trans->r_lsn = lsn;
  1317. INIT_LIST_HEAD(&trans->r_itemq);
  1318. INIT_HLIST_NODE(&trans->r_list);
  1319. hlist_add_head(&trans->r_list, head);
  1320. }
  1321. STATIC void
  1322. xlog_recover_add_item(
  1323. struct list_head *head)
  1324. {
  1325. xlog_recover_item_t *item;
  1326. item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
  1327. INIT_LIST_HEAD(&item->ri_list);
  1328. list_add_tail(&item->ri_list, head);
  1329. }
  1330. STATIC int
  1331. xlog_recover_add_to_cont_trans(
  1332. struct log *log,
  1333. xlog_recover_t *trans,
  1334. xfs_caddr_t dp,
  1335. int len)
  1336. {
  1337. xlog_recover_item_t *item;
  1338. xfs_caddr_t ptr, old_ptr;
  1339. int old_len;
  1340. if (list_empty(&trans->r_itemq)) {
  1341. /* finish copying rest of trans header */
  1342. xlog_recover_add_item(&trans->r_itemq);
  1343. ptr = (xfs_caddr_t) &trans->r_theader +
  1344. sizeof(xfs_trans_header_t) - len;
  1345. memcpy(ptr, dp, len); /* d, s, l */
  1346. return 0;
  1347. }
  1348. /* take the tail entry */
  1349. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  1350. old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
  1351. old_len = item->ri_buf[item->ri_cnt-1].i_len;
  1352. ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
  1353. memcpy(&ptr[old_len], dp, len); /* d, s, l */
  1354. item->ri_buf[item->ri_cnt-1].i_len += len;
  1355. item->ri_buf[item->ri_cnt-1].i_addr = ptr;
  1356. trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
  1357. return 0;
  1358. }
  1359. /*
  1360. * The next region to add is the start of a new region. It could be
  1361. * a whole region or it could be the first part of a new region. Because
  1362. * of this, the assumption here is that the type and size fields of all
  1363. * format structures fit into the first 32 bits of the structure.
  1364. *
  1365. * This works because all regions must be 32 bit aligned. Therefore, we
  1366. * either have both fields or we have neither field. In the case we have
  1367. * neither field, the data part of the region is zero length. We only have
  1368. * a log_op_header and can throw away the header since a new one will appear
  1369. * later. If we have at least 4 bytes, then we can determine how many regions
  1370. * will appear in the current log item.
  1371. */
  1372. STATIC int
  1373. xlog_recover_add_to_trans(
  1374. struct log *log,
  1375. xlog_recover_t *trans,
  1376. xfs_caddr_t dp,
  1377. int len)
  1378. {
  1379. xfs_inode_log_format_t *in_f; /* any will do */
  1380. xlog_recover_item_t *item;
  1381. xfs_caddr_t ptr;
  1382. if (!len)
  1383. return 0;
  1384. if (list_empty(&trans->r_itemq)) {
  1385. /* we need to catch log corruptions here */
  1386. if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
  1387. xfs_warn(log->l_mp, "%s: bad header magic number",
  1388. __func__);
  1389. ASSERT(0);
  1390. return XFS_ERROR(EIO);
  1391. }
  1392. if (len == sizeof(xfs_trans_header_t))
  1393. xlog_recover_add_item(&trans->r_itemq);
  1394. memcpy(&trans->r_theader, dp, len); /* d, s, l */
  1395. return 0;
  1396. }
  1397. ptr = kmem_alloc(len, KM_SLEEP);
  1398. memcpy(ptr, dp, len);
  1399. in_f = (xfs_inode_log_format_t *)ptr;
  1400. /* take the tail entry */
  1401. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  1402. if (item->ri_total != 0 &&
  1403. item->ri_total == item->ri_cnt) {
  1404. /* tail item is in use, get a new one */
  1405. xlog_recover_add_item(&trans->r_itemq);
  1406. item = list_entry(trans->r_itemq.prev,
  1407. xlog_recover_item_t, ri_list);
  1408. }
  1409. if (item->ri_total == 0) { /* first region to be added */
  1410. if (in_f->ilf_size == 0 ||
  1411. in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
  1412. xfs_warn(log->l_mp,
  1413. "bad number of regions (%d) in inode log format",
  1414. in_f->ilf_size);
  1415. ASSERT(0);
  1416. return XFS_ERROR(EIO);
  1417. }
  1418. item->ri_total = in_f->ilf_size;
  1419. item->ri_buf =
  1420. kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
  1421. KM_SLEEP);
  1422. }
  1423. ASSERT(item->ri_total > item->ri_cnt);
  1424. /* Description region is ri_buf[0] */
  1425. item->ri_buf[item->ri_cnt].i_addr = ptr;
  1426. item->ri_buf[item->ri_cnt].i_len = len;
  1427. item->ri_cnt++;
  1428. trace_xfs_log_recover_item_add(log, trans, item, 0);
  1429. return 0;
  1430. }
  1431. /*
  1432. * Sort the log items in the transaction. Cancelled buffers need
  1433. * to be put first so they are processed before any items that might
  1434. * modify the buffers. If they are cancelled, then the modifications
  1435. * don't need to be replayed.
  1436. */
  1437. STATIC int
  1438. xlog_recover_reorder_trans(
  1439. struct log *log,
  1440. xlog_recover_t *trans,
  1441. int pass)
  1442. {
  1443. xlog_recover_item_t *item, *n;
  1444. LIST_HEAD(sort_list);
  1445. list_splice_init(&trans->r_itemq, &sort_list);
  1446. list_for_each_entry_safe(item, n, &sort_list, ri_list) {
  1447. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1448. switch (ITEM_TYPE(item)) {
  1449. case XFS_LI_BUF:
  1450. if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
  1451. trace_xfs_log_recover_item_reorder_head(log,
  1452. trans, item, pass);
  1453. list_move(&item->ri_list, &trans->r_itemq);
  1454. break;
  1455. }
  1456. case XFS_LI_INODE:
  1457. case XFS_LI_DQUOT:
  1458. case XFS_LI_QUOTAOFF:
  1459. case XFS_LI_EFD:
  1460. case XFS_LI_EFI:
  1461. trace_xfs_log_recover_item_reorder_tail(log,
  1462. trans, item, pass);
  1463. list_move_tail(&item->ri_list, &trans->r_itemq);
  1464. break;
  1465. default:
  1466. xfs_warn(log->l_mp,
  1467. "%s: unrecognized type of log operation",
  1468. __func__);
  1469. ASSERT(0);
  1470. return XFS_ERROR(EIO);
  1471. }
  1472. }
  1473. ASSERT(list_empty(&sort_list));
  1474. return 0;
  1475. }
  1476. /*
  1477. * Build up the table of buf cancel records so that we don't replay
  1478. * cancelled data in the second pass. For buffer records that are
  1479. * not cancel records, there is nothing to do here so we just return.
  1480. *
  1481. * If we get a cancel record which is already in the table, this indicates
  1482. * that the buffer was cancelled multiple times. In order to ensure
  1483. * that during pass 2 we keep the record in the table until we reach its
  1484. * last occurrence in the log, we keep a reference count in the cancel
  1485. * record in the table to tell us how many times we expect to see this
  1486. * record during the second pass.
  1487. */
  1488. STATIC int
  1489. xlog_recover_buffer_pass1(
  1490. struct log *log,
  1491. xlog_recover_item_t *item)
  1492. {
  1493. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1494. struct list_head *bucket;
  1495. struct xfs_buf_cancel *bcp;
  1496. /*
  1497. * If this isn't a cancel buffer item, then just return.
  1498. */
  1499. if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
  1500. trace_xfs_log_recover_buf_not_cancel(log, buf_f);
  1501. return 0;
  1502. }
  1503. /*
  1504. * Insert an xfs_buf_cancel record into the hash table of them.
  1505. * If there is already an identical record, bump its reference count.
  1506. */
  1507. bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
  1508. list_for_each_entry(bcp, bucket, bc_list) {
  1509. if (bcp->bc_blkno == buf_f->blf_blkno &&
  1510. bcp->bc_len == buf_f->blf_len) {
  1511. bcp->bc_refcount++;
  1512. trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
  1513. return 0;
  1514. }
  1515. }
  1516. bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
  1517. bcp->bc_blkno = buf_f->blf_blkno;
  1518. bcp->bc_len = buf_f->blf_len;
  1519. bcp->bc_refcount = 1;
  1520. list_add_tail(&bcp->bc_list, bucket);
  1521. trace_xfs_log_recover_buf_cancel_add(log, buf_f);
  1522. return 0;
  1523. }
  1524. /*
  1525. * Check to see whether the buffer being recovered has a corresponding
  1526. * entry in the buffer cancel record table. If it does then return 1
  1527. * so that it will be cancelled, otherwise return 0. If the buffer is
  1528. * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
  1529. * the refcount on the entry in the table and remove it from the table
  1530. * if this is the last reference.
  1531. *
  1532. * We remove the cancel record from the table when we encounter its
  1533. * last occurrence in the log so that if the same buffer is re-used
  1534. * again after its last cancellation we actually replay the changes
  1535. * made at that point.
  1536. */
  1537. STATIC int
  1538. xlog_check_buffer_cancelled(
  1539. struct log *log,
  1540. xfs_daddr_t blkno,
  1541. uint len,
  1542. ushort flags)
  1543. {
  1544. struct list_head *bucket;
  1545. struct xfs_buf_cancel *bcp;
  1546. if (log->l_buf_cancel_table == NULL) {
  1547. /*
  1548. * There is nothing in the table built in pass one,
  1549. * so this buffer must not be cancelled.
  1550. */
  1551. ASSERT(!(flags & XFS_BLF_CANCEL));
  1552. return 0;
  1553. }
  1554. /*
  1555. * Search for an entry in the cancel table that matches our buffer.
  1556. */
  1557. bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
  1558. list_for_each_entry(bcp, bucket, bc_list) {
  1559. if (bcp->bc_blkno == blkno && bcp->bc_len == len)
  1560. goto found;
  1561. }
  1562. /*
  1563. * We didn't find a corresponding entry in the table, so return 0 so
  1564. * that the buffer is NOT cancelled.
  1565. */
  1566. ASSERT(!(flags & XFS_BLF_CANCEL));
  1567. return 0;
  1568. found:
  1569. /*
  1570. * We've go a match, so return 1 so that the recovery of this buffer
  1571. * is cancelled. If this buffer is actually a buffer cancel log
  1572. * item, then decrement the refcount on the one in the table and
  1573. * remove it if this is the last reference.
  1574. */
  1575. if (flags & XFS_BLF_CANCEL) {
  1576. if (--bcp->bc_refcount == 0) {
  1577. list_del(&bcp->bc_list);
  1578. kmem_free(bcp);
  1579. }
  1580. }
  1581. return 1;
  1582. }
  1583. /*
  1584. * Perform recovery for a buffer full of inodes. In these buffers, the only
  1585. * data which should be recovered is that which corresponds to the
  1586. * di_next_unlinked pointers in the on disk inode structures. The rest of the
  1587. * data for the inodes is always logged through the inodes themselves rather
  1588. * than the inode buffer and is recovered in xlog_recover_inode_pass2().
  1589. *
  1590. * The only time when buffers full of inodes are fully recovered is when the
  1591. * buffer is full of newly allocated inodes. In this case the buffer will
  1592. * not be marked as an inode buffer and so will be sent to
  1593. * xlog_recover_do_reg_buffer() below during recovery.
  1594. */
  1595. STATIC int
  1596. xlog_recover_do_inode_buffer(
  1597. struct xfs_mount *mp,
  1598. xlog_recover_item_t *item,
  1599. struct xfs_buf *bp,
  1600. xfs_buf_log_format_t *buf_f)
  1601. {
  1602. int i;
  1603. int item_index = 0;
  1604. int bit = 0;
  1605. int nbits = 0;
  1606. int reg_buf_offset = 0;
  1607. int reg_buf_bytes = 0;
  1608. int next_unlinked_offset;
  1609. int inodes_per_buf;
  1610. xfs_agino_t *logged_nextp;
  1611. xfs_agino_t *buffer_nextp;
  1612. trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
  1613. inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
  1614. for (i = 0; i < inodes_per_buf; i++) {
  1615. next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
  1616. offsetof(xfs_dinode_t, di_next_unlinked);
  1617. while (next_unlinked_offset >=
  1618. (reg_buf_offset + reg_buf_bytes)) {
  1619. /*
  1620. * The next di_next_unlinked field is beyond
  1621. * the current logged region. Find the next
  1622. * logged region that contains or is beyond
  1623. * the current di_next_unlinked field.
  1624. */
  1625. bit += nbits;
  1626. bit = xfs_next_bit(buf_f->blf_data_map,
  1627. buf_f->blf_map_size, bit);
  1628. /*
  1629. * If there are no more logged regions in the
  1630. * buffer, then we're done.
  1631. */
  1632. if (bit == -1)
  1633. return 0;
  1634. nbits = xfs_contig_bits(buf_f->blf_data_map,
  1635. buf_f->blf_map_size, bit);
  1636. ASSERT(nbits > 0);
  1637. reg_buf_offset = bit << XFS_BLF_SHIFT;
  1638. reg_buf_bytes = nbits << XFS_BLF_SHIFT;
  1639. item_index++;
  1640. }
  1641. /*
  1642. * If the current logged region starts after the current
  1643. * di_next_unlinked field, then move on to the next
  1644. * di_next_unlinked field.
  1645. */
  1646. if (next_unlinked_offset < reg_buf_offset)
  1647. continue;
  1648. ASSERT(item->ri_buf[item_index].i_addr != NULL);
  1649. ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
  1650. ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
  1651. /*
  1652. * The current logged region contains a copy of the
  1653. * current di_next_unlinked field. Extract its value
  1654. * and copy it to the buffer copy.
  1655. */
  1656. logged_nextp = item->ri_buf[item_index].i_addr +
  1657. next_unlinked_offset - reg_buf_offset;
  1658. if (unlikely(*logged_nextp == 0)) {
  1659. xfs_alert(mp,
  1660. "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
  1661. "Trying to replay bad (0) inode di_next_unlinked field.",
  1662. item, bp);
  1663. XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
  1664. XFS_ERRLEVEL_LOW, mp);
  1665. return XFS_ERROR(EFSCORRUPTED);
  1666. }
  1667. buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
  1668. next_unlinked_offset);
  1669. *buffer_nextp = *logged_nextp;
  1670. }
  1671. return 0;
  1672. }
  1673. /*
  1674. * Perform a 'normal' buffer recovery. Each logged region of the
  1675. * buffer should be copied over the corresponding region in the
  1676. * given buffer. The bitmap in the buf log format structure indicates
  1677. * where to place the logged data.
  1678. */
  1679. STATIC void
  1680. xlog_recover_do_reg_buffer(
  1681. struct xfs_mount *mp,
  1682. xlog_recover_item_t *item,
  1683. struct xfs_buf *bp,
  1684. xfs_buf_log_format_t *buf_f)
  1685. {
  1686. int i;
  1687. int bit;
  1688. int nbits;
  1689. int error;
  1690. trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
  1691. bit = 0;
  1692. i = 1; /* 0 is the buf format structure */
  1693. while (1) {
  1694. bit = xfs_next_bit(buf_f->blf_data_map,
  1695. buf_f->blf_map_size, bit);
  1696. if (bit == -1)
  1697. break;
  1698. nbits = xfs_contig_bits(buf_f->blf_data_map,
  1699. buf_f->blf_map_size, bit);
  1700. ASSERT(nbits > 0);
  1701. ASSERT(item->ri_buf[i].i_addr != NULL);
  1702. ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
  1703. ASSERT(XFS_BUF_COUNT(bp) >=
  1704. ((uint)bit << XFS_BLF_SHIFT)+(nbits<<XFS_BLF_SHIFT));
  1705. /*
  1706. * Do a sanity check if this is a dquot buffer. Just checking
  1707. * the first dquot in the buffer should do. XXXThis is
  1708. * probably a good thing to do for other buf types also.
  1709. */
  1710. error = 0;
  1711. if (buf_f->blf_flags &
  1712. (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
  1713. if (item->ri_buf[i].i_addr == NULL) {
  1714. xfs_alert(mp,
  1715. "XFS: NULL dquot in %s.", __func__);
  1716. goto next;
  1717. }
  1718. if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
  1719. xfs_alert(mp,
  1720. "XFS: dquot too small (%d) in %s.",
  1721. item->ri_buf[i].i_len, __func__);
  1722. goto next;
  1723. }
  1724. error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
  1725. -1, 0, XFS_QMOPT_DOWARN,
  1726. "dquot_buf_recover");
  1727. if (error)
  1728. goto next;
  1729. }
  1730. memcpy(xfs_buf_offset(bp,
  1731. (uint)bit << XFS_BLF_SHIFT), /* dest */
  1732. item->ri_buf[i].i_addr, /* source */
  1733. nbits<<XFS_BLF_SHIFT); /* length */
  1734. next:
  1735. i++;
  1736. bit += nbits;
  1737. }
  1738. /* Shouldn't be any more regions */
  1739. ASSERT(i == item->ri_total);
  1740. }
  1741. /*
  1742. * Do some primitive error checking on ondisk dquot data structures.
  1743. */
  1744. int
  1745. xfs_qm_dqcheck(
  1746. struct xfs_mount *mp,
  1747. xfs_disk_dquot_t *ddq,
  1748. xfs_dqid_t id,
  1749. uint type, /* used only when IO_dorepair is true */
  1750. uint flags,
  1751. char *str)
  1752. {
  1753. xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
  1754. int errs = 0;
  1755. /*
  1756. * We can encounter an uninitialized dquot buffer for 2 reasons:
  1757. * 1. If we crash while deleting the quotainode(s), and those blks got
  1758. * used for user data. This is because we take the path of regular
  1759. * file deletion; however, the size field of quotainodes is never
  1760. * updated, so all the tricks that we play in itruncate_finish
  1761. * don't quite matter.
  1762. *
  1763. * 2. We don't play the quota buffers when there's a quotaoff logitem.
  1764. * But the allocation will be replayed so we'll end up with an
  1765. * uninitialized quota block.
  1766. *
  1767. * This is all fine; things are still consistent, and we haven't lost
  1768. * any quota information. Just don't complain about bad dquot blks.
  1769. */
  1770. if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
  1771. if (flags & XFS_QMOPT_DOWARN)
  1772. xfs_alert(mp,
  1773. "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
  1774. str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
  1775. errs++;
  1776. }
  1777. if (ddq->d_version != XFS_DQUOT_VERSION) {
  1778. if (flags & XFS_QMOPT_DOWARN)
  1779. xfs_alert(mp,
  1780. "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
  1781. str, id, ddq->d_version, XFS_DQUOT_VERSION);
  1782. errs++;
  1783. }
  1784. if (ddq->d_flags != XFS_DQ_USER &&
  1785. ddq->d_flags != XFS_DQ_PROJ &&
  1786. ddq->d_flags != XFS_DQ_GROUP) {
  1787. if (flags & XFS_QMOPT_DOWARN)
  1788. xfs_alert(mp,
  1789. "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
  1790. str, id, ddq->d_flags);
  1791. errs++;
  1792. }
  1793. if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
  1794. if (flags & XFS_QMOPT_DOWARN)
  1795. xfs_alert(mp,
  1796. "%s : ondisk-dquot 0x%p, ID mismatch: "
  1797. "0x%x expected, found id 0x%x",
  1798. str, ddq, id, be32_to_cpu(ddq->d_id));
  1799. errs++;
  1800. }
  1801. if (!errs && ddq->d_id) {
  1802. if (ddq->d_blk_softlimit &&
  1803. be64_to_cpu(ddq->d_bcount) >=
  1804. be64_to_cpu(ddq->d_blk_softlimit)) {
  1805. if (!ddq->d_btimer) {
  1806. if (flags & XFS_QMOPT_DOWARN)
  1807. xfs_alert(mp,
  1808. "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
  1809. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1810. errs++;
  1811. }
  1812. }
  1813. if (ddq->d_ino_softlimit &&
  1814. be64_to_cpu(ddq->d_icount) >=
  1815. be64_to_cpu(ddq->d_ino_softlimit)) {
  1816. if (!ddq->d_itimer) {
  1817. if (flags & XFS_QMOPT_DOWARN)
  1818. xfs_alert(mp,
  1819. "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
  1820. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1821. errs++;
  1822. }
  1823. }
  1824. if (ddq->d_rtb_softlimit &&
  1825. be64_to_cpu(ddq->d_rtbcount) >=
  1826. be64_to_cpu(ddq->d_rtb_softlimit)) {
  1827. if (!ddq->d_rtbtimer) {
  1828. if (flags & XFS_QMOPT_DOWARN)
  1829. xfs_alert(mp,
  1830. "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
  1831. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1832. errs++;
  1833. }
  1834. }
  1835. }
  1836. if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
  1837. return errs;
  1838. if (flags & XFS_QMOPT_DOWARN)
  1839. xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
  1840. /*
  1841. * Typically, a repair is only requested by quotacheck.
  1842. */
  1843. ASSERT(id != -1);
  1844. ASSERT(flags & XFS_QMOPT_DQREPAIR);
  1845. memset(d, 0, sizeof(xfs_dqblk_t));
  1846. d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
  1847. d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
  1848. d->dd_diskdq.d_flags = type;
  1849. d->dd_diskdq.d_id = cpu_to_be32(id);
  1850. return errs;
  1851. }
  1852. /*
  1853. * Perform a dquot buffer recovery.
  1854. * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
  1855. * (ie. USR or GRP), then just toss this buffer away; don't recover it.
  1856. * Else, treat it as a regular buffer and do recovery.
  1857. */
  1858. STATIC void
  1859. xlog_recover_do_dquot_buffer(
  1860. xfs_mount_t *mp,
  1861. xlog_t *log,
  1862. xlog_recover_item_t *item,
  1863. xfs_buf_t *bp,
  1864. xfs_buf_log_format_t *buf_f)
  1865. {
  1866. uint type;
  1867. trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
  1868. /*
  1869. * Filesystems are required to send in quota flags at mount time.
  1870. */
  1871. if (mp->m_qflags == 0) {
  1872. return;
  1873. }
  1874. type = 0;
  1875. if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
  1876. type |= XFS_DQ_USER;
  1877. if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
  1878. type |= XFS_DQ_PROJ;
  1879. if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
  1880. type |= XFS_DQ_GROUP;
  1881. /*
  1882. * This type of quotas was turned off, so ignore this buffer
  1883. */
  1884. if (log->l_quotaoffs_flag & type)
  1885. return;
  1886. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  1887. }
  1888. /*
  1889. * This routine replays a modification made to a buffer at runtime.
  1890. * There are actually two types of buffer, regular and inode, which
  1891. * are handled differently. Inode buffers are handled differently
  1892. * in that we only recover a specific set of data from them, namely
  1893. * the inode di_next_unlinked fields. This is because all other inode
  1894. * data is actually logged via inode records and any data we replay
  1895. * here which overlaps that may be stale.
  1896. *
  1897. * When meta-data buffers are freed at run time we log a buffer item
  1898. * with the XFS_BLF_CANCEL bit set to indicate that previous copies
  1899. * of the buffer in the log should not be replayed at recovery time.
  1900. * This is so that if the blocks covered by the buffer are reused for
  1901. * file data before we crash we don't end up replaying old, freed
  1902. * meta-data into a user's file.
  1903. *
  1904. * To handle the cancellation of buffer log items, we make two passes
  1905. * over the log during recovery. During the first we build a table of
  1906. * those buffers which have been cancelled, and during the second we
  1907. * only replay those buffers which do not have corresponding cancel
  1908. * records in the table. See xlog_recover_do_buffer_pass[1,2] above
  1909. * for more details on the implementation of the table of cancel records.
  1910. */
  1911. STATIC int
  1912. xlog_recover_buffer_pass2(
  1913. xlog_t *log,
  1914. xlog_recover_item_t *item)
  1915. {
  1916. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1917. xfs_mount_t *mp = log->l_mp;
  1918. xfs_buf_t *bp;
  1919. int error;
  1920. uint buf_flags;
  1921. /*
  1922. * In this pass we only want to recover all the buffers which have
  1923. * not been cancelled and are not cancellation buffers themselves.
  1924. */
  1925. if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
  1926. buf_f->blf_len, buf_f->blf_flags)) {
  1927. trace_xfs_log_recover_buf_cancel(log, buf_f);
  1928. return 0;
  1929. }
  1930. trace_xfs_log_recover_buf_recover(log, buf_f);
  1931. buf_flags = XBF_LOCK;
  1932. if (!(buf_f->blf_flags & XFS_BLF_INODE_BUF))
  1933. buf_flags |= XBF_MAPPED;
  1934. bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
  1935. buf_flags);
  1936. error = xfs_buf_geterror(bp);
  1937. if (error) {
  1938. xfs_ioerror_alert("xlog_recover_do..(read#1)", mp,
  1939. bp, buf_f->blf_blkno);
  1940. xfs_buf_relse(bp);
  1941. return error;
  1942. }
  1943. if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
  1944. error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
  1945. } else if (buf_f->blf_flags &
  1946. (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
  1947. xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
  1948. } else {
  1949. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  1950. }
  1951. if (error)
  1952. return XFS_ERROR(error);
  1953. /*
  1954. * Perform delayed write on the buffer. Asynchronous writes will be
  1955. * slower when taking into account all the buffers to be flushed.
  1956. *
  1957. * Also make sure that only inode buffers with good sizes stay in
  1958. * the buffer cache. The kernel moves inodes in buffers of 1 block
  1959. * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
  1960. * buffers in the log can be a different size if the log was generated
  1961. * by an older kernel using unclustered inode buffers or a newer kernel
  1962. * running with a different inode cluster size. Regardless, if the
  1963. * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
  1964. * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
  1965. * the buffer out of the buffer cache so that the buffer won't
  1966. * overlap with future reads of those inodes.
  1967. */
  1968. if (XFS_DINODE_MAGIC ==
  1969. be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
  1970. (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
  1971. (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
  1972. XFS_BUF_STALE(bp);
  1973. error = xfs_bwrite(mp, bp);
  1974. } else {
  1975. ASSERT(bp->b_target->bt_mount == mp);
  1976. bp->b_iodone = xlog_recover_iodone;
  1977. xfs_bdwrite(mp, bp);
  1978. }
  1979. return (error);
  1980. }
  1981. STATIC int
  1982. xlog_recover_inode_pass2(
  1983. xlog_t *log,
  1984. xlog_recover_item_t *item)
  1985. {
  1986. xfs_inode_log_format_t *in_f;
  1987. xfs_mount_t *mp = log->l_mp;
  1988. xfs_buf_t *bp;
  1989. xfs_dinode_t *dip;
  1990. int len;
  1991. xfs_caddr_t src;
  1992. xfs_caddr_t dest;
  1993. int error;
  1994. int attr_index;
  1995. uint fields;
  1996. xfs_icdinode_t *dicp;
  1997. int need_free = 0;
  1998. if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
  1999. in_f = item->ri_buf[0].i_addr;
  2000. } else {
  2001. in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
  2002. need_free = 1;
  2003. error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
  2004. if (error)
  2005. goto error;
  2006. }
  2007. /*
  2008. * Inode buffers can be freed, look out for it,
  2009. * and do not replay the inode.
  2010. */
  2011. if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
  2012. in_f->ilf_len, 0)) {
  2013. error = 0;
  2014. trace_xfs_log_recover_inode_cancel(log, in_f);
  2015. goto error;
  2016. }
  2017. trace_xfs_log_recover_inode_recover(log, in_f);
  2018. bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
  2019. XBF_LOCK);
  2020. error = xfs_buf_geterror(bp);
  2021. if (error) {
  2022. xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
  2023. bp, in_f->ilf_blkno);
  2024. xfs_buf_relse(bp);
  2025. goto error;
  2026. }
  2027. ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
  2028. dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
  2029. /*
  2030. * Make sure the place we're flushing out to really looks
  2031. * like an inode!
  2032. */
  2033. if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
  2034. xfs_buf_relse(bp);
  2035. xfs_alert(mp,
  2036. "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
  2037. __func__, dip, bp, in_f->ilf_ino);
  2038. XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
  2039. XFS_ERRLEVEL_LOW, mp);
  2040. error = EFSCORRUPTED;
  2041. goto error;
  2042. }
  2043. dicp = item->ri_buf[1].i_addr;
  2044. if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
  2045. xfs_buf_relse(bp);
  2046. xfs_alert(mp,
  2047. "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
  2048. __func__, item, in_f->ilf_ino);
  2049. XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
  2050. XFS_ERRLEVEL_LOW, mp);
  2051. error = EFSCORRUPTED;
  2052. goto error;
  2053. }
  2054. /* Skip replay when the on disk inode is newer than the log one */
  2055. if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
  2056. /*
  2057. * Deal with the wrap case, DI_MAX_FLUSH is less
  2058. * than smaller numbers
  2059. */
  2060. if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
  2061. dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
  2062. /* do nothing */
  2063. } else {
  2064. xfs_buf_relse(bp);
  2065. trace_xfs_log_recover_inode_skip(log, in_f);
  2066. error = 0;
  2067. goto error;
  2068. }
  2069. }
  2070. /* Take the opportunity to reset the flush iteration count */
  2071. dicp->di_flushiter = 0;
  2072. if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
  2073. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2074. (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
  2075. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
  2076. XFS_ERRLEVEL_LOW, mp, dicp);
  2077. xfs_buf_relse(bp);
  2078. xfs_alert(mp,
  2079. "%s: Bad regular inode log record, rec ptr 0x%p, "
  2080. "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2081. __func__, item, dip, bp, in_f->ilf_ino);
  2082. error = EFSCORRUPTED;
  2083. goto error;
  2084. }
  2085. } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
  2086. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2087. (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
  2088. (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
  2089. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
  2090. XFS_ERRLEVEL_LOW, mp, dicp);
  2091. xfs_buf_relse(bp);
  2092. xfs_alert(mp,
  2093. "%s: Bad dir inode log record, rec ptr 0x%p, "
  2094. "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2095. __func__, item, dip, bp, in_f->ilf_ino);
  2096. error = EFSCORRUPTED;
  2097. goto error;
  2098. }
  2099. }
  2100. if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
  2101. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
  2102. XFS_ERRLEVEL_LOW, mp, dicp);
  2103. xfs_buf_relse(bp);
  2104. xfs_alert(mp,
  2105. "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
  2106. "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
  2107. __func__, item, dip, bp, in_f->ilf_ino,
  2108. dicp->di_nextents + dicp->di_anextents,
  2109. dicp->di_nblocks);
  2110. error = EFSCORRUPTED;
  2111. goto error;
  2112. }
  2113. if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
  2114. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
  2115. XFS_ERRLEVEL_LOW, mp, dicp);
  2116. xfs_buf_relse(bp);
  2117. xfs_alert(mp,
  2118. "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
  2119. "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
  2120. item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
  2121. error = EFSCORRUPTED;
  2122. goto error;
  2123. }
  2124. if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
  2125. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
  2126. XFS_ERRLEVEL_LOW, mp, dicp);
  2127. xfs_buf_relse(bp);
  2128. xfs_alert(mp,
  2129. "%s: Bad inode log record length %d, rec ptr 0x%p",
  2130. __func__, item->ri_buf[1].i_len, item);
  2131. error = EFSCORRUPTED;
  2132. goto error;
  2133. }
  2134. /* The core is in in-core format */
  2135. xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
  2136. /* the rest is in on-disk format */
  2137. if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
  2138. memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
  2139. item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
  2140. item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
  2141. }
  2142. fields = in_f->ilf_fields;
  2143. switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
  2144. case XFS_ILOG_DEV:
  2145. xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
  2146. break;
  2147. case XFS_ILOG_UUID:
  2148. memcpy(XFS_DFORK_DPTR(dip),
  2149. &in_f->ilf_u.ilfu_uuid,
  2150. sizeof(uuid_t));
  2151. break;
  2152. }
  2153. if (in_f->ilf_size == 2)
  2154. goto write_inode_buffer;
  2155. len = item->ri_buf[2].i_len;
  2156. src = item->ri_buf[2].i_addr;
  2157. ASSERT(in_f->ilf_size <= 4);
  2158. ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
  2159. ASSERT(!(fields & XFS_ILOG_DFORK) ||
  2160. (len == in_f->ilf_dsize));
  2161. switch (fields & XFS_ILOG_DFORK) {
  2162. case XFS_ILOG_DDATA:
  2163. case XFS_ILOG_DEXT:
  2164. memcpy(XFS_DFORK_DPTR(dip), src, len);
  2165. break;
  2166. case XFS_ILOG_DBROOT:
  2167. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
  2168. (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
  2169. XFS_DFORK_DSIZE(dip, mp));
  2170. break;
  2171. default:
  2172. /*
  2173. * There are no data fork flags set.
  2174. */
  2175. ASSERT((fields & XFS_ILOG_DFORK) == 0);
  2176. break;
  2177. }
  2178. /*
  2179. * If we logged any attribute data, recover it. There may or
  2180. * may not have been any other non-core data logged in this
  2181. * transaction.
  2182. */
  2183. if (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2184. if (in_f->ilf_fields & XFS_ILOG_DFORK) {
  2185. attr_index = 3;
  2186. } else {
  2187. attr_index = 2;
  2188. }
  2189. len = item->ri_buf[attr_index].i_len;
  2190. src = item->ri_buf[attr_index].i_addr;
  2191. ASSERT(len == in_f->ilf_asize);
  2192. switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2193. case XFS_ILOG_ADATA:
  2194. case XFS_ILOG_AEXT:
  2195. dest = XFS_DFORK_APTR(dip);
  2196. ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
  2197. memcpy(dest, src, len);
  2198. break;
  2199. case XFS_ILOG_ABROOT:
  2200. dest = XFS_DFORK_APTR(dip);
  2201. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
  2202. len, (xfs_bmdr_block_t*)dest,
  2203. XFS_DFORK_ASIZE(dip, mp));
  2204. break;
  2205. default:
  2206. xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
  2207. ASSERT(0);
  2208. xfs_buf_relse(bp);
  2209. error = EIO;
  2210. goto error;
  2211. }
  2212. }
  2213. write_inode_buffer:
  2214. ASSERT(bp->b_target->bt_mount == mp);
  2215. bp->b_iodone = xlog_recover_iodone;
  2216. xfs_bdwrite(mp, bp);
  2217. error:
  2218. if (need_free)
  2219. kmem_free(in_f);
  2220. return XFS_ERROR(error);
  2221. }
  2222. /*
  2223. * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
  2224. * structure, so that we know not to do any dquot item or dquot buffer recovery,
  2225. * of that type.
  2226. */
  2227. STATIC int
  2228. xlog_recover_quotaoff_pass1(
  2229. xlog_t *log,
  2230. xlog_recover_item_t *item)
  2231. {
  2232. xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
  2233. ASSERT(qoff_f);
  2234. /*
  2235. * The logitem format's flag tells us if this was user quotaoff,
  2236. * group/project quotaoff or both.
  2237. */
  2238. if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
  2239. log->l_quotaoffs_flag |= XFS_DQ_USER;
  2240. if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
  2241. log->l_quotaoffs_flag |= XFS_DQ_PROJ;
  2242. if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
  2243. log->l_quotaoffs_flag |= XFS_DQ_GROUP;
  2244. return (0);
  2245. }
  2246. /*
  2247. * Recover a dquot record
  2248. */
  2249. STATIC int
  2250. xlog_recover_dquot_pass2(
  2251. xlog_t *log,
  2252. xlog_recover_item_t *item)
  2253. {
  2254. xfs_mount_t *mp = log->l_mp;
  2255. xfs_buf_t *bp;
  2256. struct xfs_disk_dquot *ddq, *recddq;
  2257. int error;
  2258. xfs_dq_logformat_t *dq_f;
  2259. uint type;
  2260. /*
  2261. * Filesystems are required to send in quota flags at mount time.
  2262. */
  2263. if (mp->m_qflags == 0)
  2264. return (0);
  2265. recddq = item->ri_buf[1].i_addr;
  2266. if (recddq == NULL) {
  2267. xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
  2268. return XFS_ERROR(EIO);
  2269. }
  2270. if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
  2271. xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
  2272. item->ri_buf[1].i_len, __func__);
  2273. return XFS_ERROR(EIO);
  2274. }
  2275. /*
  2276. * This type of quotas was turned off, so ignore this record.
  2277. */
  2278. type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
  2279. ASSERT(type);
  2280. if (log->l_quotaoffs_flag & type)
  2281. return (0);
  2282. /*
  2283. * At this point we know that quota was _not_ turned off.
  2284. * Since the mount flags are not indicating to us otherwise, this
  2285. * must mean that quota is on, and the dquot needs to be replayed.
  2286. * Remember that we may not have fully recovered the superblock yet,
  2287. * so we can't do the usual trick of looking at the SB quota bits.
  2288. *
  2289. * The other possibility, of course, is that the quota subsystem was
  2290. * removed since the last mount - ENOSYS.
  2291. */
  2292. dq_f = item->ri_buf[0].i_addr;
  2293. ASSERT(dq_f);
  2294. error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2295. "xlog_recover_dquot_pass2 (log copy)");
  2296. if (error)
  2297. return XFS_ERROR(EIO);
  2298. ASSERT(dq_f->qlf_len == 1);
  2299. error = xfs_read_buf(mp, mp->m_ddev_targp,
  2300. dq_f->qlf_blkno,
  2301. XFS_FSB_TO_BB(mp, dq_f->qlf_len),
  2302. 0, &bp);
  2303. if (error) {
  2304. xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
  2305. bp, dq_f->qlf_blkno);
  2306. return error;
  2307. }
  2308. ASSERT(bp);
  2309. ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
  2310. /*
  2311. * At least the magic num portion should be on disk because this
  2312. * was among a chunk of dquots created earlier, and we did some
  2313. * minimal initialization then.
  2314. */
  2315. error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2316. "xlog_recover_dquot_pass2");
  2317. if (error) {
  2318. xfs_buf_relse(bp);
  2319. return XFS_ERROR(EIO);
  2320. }
  2321. memcpy(ddq, recddq, item->ri_buf[1].i_len);
  2322. ASSERT(dq_f->qlf_size == 2);
  2323. ASSERT(bp->b_target->bt_mount == mp);
  2324. bp->b_iodone = xlog_recover_iodone;
  2325. xfs_bdwrite(mp, bp);
  2326. return (0);
  2327. }
  2328. /*
  2329. * This routine is called to create an in-core extent free intent
  2330. * item from the efi format structure which was logged on disk.
  2331. * It allocates an in-core efi, copies the extents from the format
  2332. * structure into it, and adds the efi to the AIL with the given
  2333. * LSN.
  2334. */
  2335. STATIC int
  2336. xlog_recover_efi_pass2(
  2337. xlog_t *log,
  2338. xlog_recover_item_t *item,
  2339. xfs_lsn_t lsn)
  2340. {
  2341. int error;
  2342. xfs_mount_t *mp = log->l_mp;
  2343. xfs_efi_log_item_t *efip;
  2344. xfs_efi_log_format_t *efi_formatp;
  2345. efi_formatp = item->ri_buf[0].i_addr;
  2346. efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
  2347. if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
  2348. &(efip->efi_format)))) {
  2349. xfs_efi_item_free(efip);
  2350. return error;
  2351. }
  2352. atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
  2353. spin_lock(&log->l_ailp->xa_lock);
  2354. /*
  2355. * xfs_trans_ail_update() drops the AIL lock.
  2356. */
  2357. xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
  2358. return 0;
  2359. }
  2360. /*
  2361. * This routine is called when an efd format structure is found in
  2362. * a committed transaction in the log. It's purpose is to cancel
  2363. * the corresponding efi if it was still in the log. To do this
  2364. * it searches the AIL for the efi with an id equal to that in the
  2365. * efd format structure. If we find it, we remove the efi from the
  2366. * AIL and free it.
  2367. */
  2368. STATIC int
  2369. xlog_recover_efd_pass2(
  2370. xlog_t *log,
  2371. xlog_recover_item_t *item)
  2372. {
  2373. xfs_efd_log_format_t *efd_formatp;
  2374. xfs_efi_log_item_t *efip = NULL;
  2375. xfs_log_item_t *lip;
  2376. __uint64_t efi_id;
  2377. struct xfs_ail_cursor cur;
  2378. struct xfs_ail *ailp = log->l_ailp;
  2379. efd_formatp = item->ri_buf[0].i_addr;
  2380. ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
  2381. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
  2382. (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
  2383. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
  2384. efi_id = efd_formatp->efd_efi_id;
  2385. /*
  2386. * Search for the efi with the id in the efd format structure
  2387. * in the AIL.
  2388. */
  2389. spin_lock(&ailp->xa_lock);
  2390. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2391. while (lip != NULL) {
  2392. if (lip->li_type == XFS_LI_EFI) {
  2393. efip = (xfs_efi_log_item_t *)lip;
  2394. if (efip->efi_format.efi_id == efi_id) {
  2395. /*
  2396. * xfs_trans_ail_delete() drops the
  2397. * AIL lock.
  2398. */
  2399. xfs_trans_ail_delete(ailp, lip);
  2400. xfs_efi_item_free(efip);
  2401. spin_lock(&ailp->xa_lock);
  2402. break;
  2403. }
  2404. }
  2405. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2406. }
  2407. xfs_trans_ail_cursor_done(ailp, &cur);
  2408. spin_unlock(&ailp->xa_lock);
  2409. return 0;
  2410. }
  2411. /*
  2412. * Free up any resources allocated by the transaction
  2413. *
  2414. * Remember that EFIs, EFDs, and IUNLINKs are handled later.
  2415. */
  2416. STATIC void
  2417. xlog_recover_free_trans(
  2418. struct xlog_recover *trans)
  2419. {
  2420. xlog_recover_item_t *item, *n;
  2421. int i;
  2422. list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
  2423. /* Free the regions in the item. */
  2424. list_del(&item->ri_list);
  2425. for (i = 0; i < item->ri_cnt; i++)
  2426. kmem_free(item->ri_buf[i].i_addr);
  2427. /* Free the item itself */
  2428. kmem_free(item->ri_buf);
  2429. kmem_free(item);
  2430. }
  2431. /* Free the transaction recover structure */
  2432. kmem_free(trans);
  2433. }
  2434. STATIC int
  2435. xlog_recover_commit_pass1(
  2436. struct log *log,
  2437. struct xlog_recover *trans,
  2438. xlog_recover_item_t *item)
  2439. {
  2440. trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
  2441. switch (ITEM_TYPE(item)) {
  2442. case XFS_LI_BUF:
  2443. return xlog_recover_buffer_pass1(log, item);
  2444. case XFS_LI_QUOTAOFF:
  2445. return xlog_recover_quotaoff_pass1(log, item);
  2446. case XFS_LI_INODE:
  2447. case XFS_LI_EFI:
  2448. case XFS_LI_EFD:
  2449. case XFS_LI_DQUOT:
  2450. /* nothing to do in pass 1 */
  2451. return 0;
  2452. default:
  2453. xfs_warn(log->l_mp, "%s: invalid item type (%d)",
  2454. __func__, ITEM_TYPE(item));
  2455. ASSERT(0);
  2456. return XFS_ERROR(EIO);
  2457. }
  2458. }
  2459. STATIC int
  2460. xlog_recover_commit_pass2(
  2461. struct log *log,
  2462. struct xlog_recover *trans,
  2463. xlog_recover_item_t *item)
  2464. {
  2465. trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
  2466. switch (ITEM_TYPE(item)) {
  2467. case XFS_LI_BUF:
  2468. return xlog_recover_buffer_pass2(log, item);
  2469. case XFS_LI_INODE:
  2470. return xlog_recover_inode_pass2(log, item);
  2471. case XFS_LI_EFI:
  2472. return xlog_recover_efi_pass2(log, item, trans->r_lsn);
  2473. case XFS_LI_EFD:
  2474. return xlog_recover_efd_pass2(log, item);
  2475. case XFS_LI_DQUOT:
  2476. return xlog_recover_dquot_pass2(log, item);
  2477. case XFS_LI_QUOTAOFF:
  2478. /* nothing to do in pass2 */
  2479. return 0;
  2480. default:
  2481. xfs_warn(log->l_mp, "%s: invalid item type (%d)",
  2482. __func__, ITEM_TYPE(item));
  2483. ASSERT(0);
  2484. return XFS_ERROR(EIO);
  2485. }
  2486. }
  2487. /*
  2488. * Perform the transaction.
  2489. *
  2490. * If the transaction modifies a buffer or inode, do it now. Otherwise,
  2491. * EFIs and EFDs get queued up by adding entries into the AIL for them.
  2492. */
  2493. STATIC int
  2494. xlog_recover_commit_trans(
  2495. struct log *log,
  2496. struct xlog_recover *trans,
  2497. int pass)
  2498. {
  2499. int error = 0;
  2500. xlog_recover_item_t *item;
  2501. hlist_del(&trans->r_list);
  2502. error = xlog_recover_reorder_trans(log, trans, pass);
  2503. if (error)
  2504. return error;
  2505. list_for_each_entry(item, &trans->r_itemq, ri_list) {
  2506. if (pass == XLOG_RECOVER_PASS1)
  2507. error = xlog_recover_commit_pass1(log, trans, item);
  2508. else
  2509. error = xlog_recover_commit_pass2(log, trans, item);
  2510. if (error)
  2511. return error;
  2512. }
  2513. xlog_recover_free_trans(trans);
  2514. return 0;
  2515. }
  2516. STATIC int
  2517. xlog_recover_unmount_trans(
  2518. struct log *log,
  2519. xlog_recover_t *trans)
  2520. {
  2521. /* Do nothing now */
  2522. xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
  2523. return 0;
  2524. }
  2525. /*
  2526. * There are two valid states of the r_state field. 0 indicates that the
  2527. * transaction structure is in a normal state. We have either seen the
  2528. * start of the transaction or the last operation we added was not a partial
  2529. * operation. If the last operation we added to the transaction was a
  2530. * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
  2531. *
  2532. * NOTE: skip LRs with 0 data length.
  2533. */
  2534. STATIC int
  2535. xlog_recover_process_data(
  2536. xlog_t *log,
  2537. struct hlist_head rhash[],
  2538. xlog_rec_header_t *rhead,
  2539. xfs_caddr_t dp,
  2540. int pass)
  2541. {
  2542. xfs_caddr_t lp;
  2543. int num_logops;
  2544. xlog_op_header_t *ohead;
  2545. xlog_recover_t *trans;
  2546. xlog_tid_t tid;
  2547. int error;
  2548. unsigned long hash;
  2549. uint flags;
  2550. lp = dp + be32_to_cpu(rhead->h_len);
  2551. num_logops = be32_to_cpu(rhead->h_num_logops);
  2552. /* check the log format matches our own - else we can't recover */
  2553. if (xlog_header_check_recover(log->l_mp, rhead))
  2554. return (XFS_ERROR(EIO));
  2555. while ((dp < lp) && num_logops) {
  2556. ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
  2557. ohead = (xlog_op_header_t *)dp;
  2558. dp += sizeof(xlog_op_header_t);
  2559. if (ohead->oh_clientid != XFS_TRANSACTION &&
  2560. ohead->oh_clientid != XFS_LOG) {
  2561. xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
  2562. __func__, ohead->oh_clientid);
  2563. ASSERT(0);
  2564. return (XFS_ERROR(EIO));
  2565. }
  2566. tid = be32_to_cpu(ohead->oh_tid);
  2567. hash = XLOG_RHASH(tid);
  2568. trans = xlog_recover_find_tid(&rhash[hash], tid);
  2569. if (trans == NULL) { /* not found; add new tid */
  2570. if (ohead->oh_flags & XLOG_START_TRANS)
  2571. xlog_recover_new_tid(&rhash[hash], tid,
  2572. be64_to_cpu(rhead->h_lsn));
  2573. } else {
  2574. if (dp + be32_to_cpu(ohead->oh_len) > lp) {
  2575. xfs_warn(log->l_mp, "%s: bad length 0x%x",
  2576. __func__, be32_to_cpu(ohead->oh_len));
  2577. WARN_ON(1);
  2578. return (XFS_ERROR(EIO));
  2579. }
  2580. flags = ohead->oh_flags & ~XLOG_END_TRANS;
  2581. if (flags & XLOG_WAS_CONT_TRANS)
  2582. flags &= ~XLOG_CONTINUE_TRANS;
  2583. switch (flags) {
  2584. case XLOG_COMMIT_TRANS:
  2585. error = xlog_recover_commit_trans(log,
  2586. trans, pass);
  2587. break;
  2588. case XLOG_UNMOUNT_TRANS:
  2589. error = xlog_recover_unmount_trans(log, trans);
  2590. break;
  2591. case XLOG_WAS_CONT_TRANS:
  2592. error = xlog_recover_add_to_cont_trans(log,
  2593. trans, dp,
  2594. be32_to_cpu(ohead->oh_len));
  2595. break;
  2596. case XLOG_START_TRANS:
  2597. xfs_warn(log->l_mp, "%s: bad transaction",
  2598. __func__);
  2599. ASSERT(0);
  2600. error = XFS_ERROR(EIO);
  2601. break;
  2602. case 0:
  2603. case XLOG_CONTINUE_TRANS:
  2604. error = xlog_recover_add_to_trans(log, trans,
  2605. dp, be32_to_cpu(ohead->oh_len));
  2606. break;
  2607. default:
  2608. xfs_warn(log->l_mp, "%s: bad flag 0x%x",
  2609. __func__, flags);
  2610. ASSERT(0);
  2611. error = XFS_ERROR(EIO);
  2612. break;
  2613. }
  2614. if (error)
  2615. return error;
  2616. }
  2617. dp += be32_to_cpu(ohead->oh_len);
  2618. num_logops--;
  2619. }
  2620. return 0;
  2621. }
  2622. /*
  2623. * Process an extent free intent item that was recovered from
  2624. * the log. We need to free the extents that it describes.
  2625. */
  2626. STATIC int
  2627. xlog_recover_process_efi(
  2628. xfs_mount_t *mp,
  2629. xfs_efi_log_item_t *efip)
  2630. {
  2631. xfs_efd_log_item_t *efdp;
  2632. xfs_trans_t *tp;
  2633. int i;
  2634. int error = 0;
  2635. xfs_extent_t *extp;
  2636. xfs_fsblock_t startblock_fsb;
  2637. ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
  2638. /*
  2639. * First check the validity of the extents described by the
  2640. * EFI. If any are bad, then assume that all are bad and
  2641. * just toss the EFI.
  2642. */
  2643. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2644. extp = &(efip->efi_format.efi_extents[i]);
  2645. startblock_fsb = XFS_BB_TO_FSB(mp,
  2646. XFS_FSB_TO_DADDR(mp, extp->ext_start));
  2647. if ((startblock_fsb == 0) ||
  2648. (extp->ext_len == 0) ||
  2649. (startblock_fsb >= mp->m_sb.sb_dblocks) ||
  2650. (extp->ext_len >= mp->m_sb.sb_agblocks)) {
  2651. /*
  2652. * This will pull the EFI from the AIL and
  2653. * free the memory associated with it.
  2654. */
  2655. xfs_efi_release(efip, efip->efi_format.efi_nextents);
  2656. return XFS_ERROR(EIO);
  2657. }
  2658. }
  2659. tp = xfs_trans_alloc(mp, 0);
  2660. error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
  2661. if (error)
  2662. goto abort_error;
  2663. efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
  2664. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2665. extp = &(efip->efi_format.efi_extents[i]);
  2666. error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
  2667. if (error)
  2668. goto abort_error;
  2669. xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
  2670. extp->ext_len);
  2671. }
  2672. set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
  2673. error = xfs_trans_commit(tp, 0);
  2674. return error;
  2675. abort_error:
  2676. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2677. return error;
  2678. }
  2679. /*
  2680. * When this is called, all of the EFIs which did not have
  2681. * corresponding EFDs should be in the AIL. What we do now
  2682. * is free the extents associated with each one.
  2683. *
  2684. * Since we process the EFIs in normal transactions, they
  2685. * will be removed at some point after the commit. This prevents
  2686. * us from just walking down the list processing each one.
  2687. * We'll use a flag in the EFI to skip those that we've already
  2688. * processed and use the AIL iteration mechanism's generation
  2689. * count to try to speed this up at least a bit.
  2690. *
  2691. * When we start, we know that the EFIs are the only things in
  2692. * the AIL. As we process them, however, other items are added
  2693. * to the AIL. Since everything added to the AIL must come after
  2694. * everything already in the AIL, we stop processing as soon as
  2695. * we see something other than an EFI in the AIL.
  2696. */
  2697. STATIC int
  2698. xlog_recover_process_efis(
  2699. xlog_t *log)
  2700. {
  2701. xfs_log_item_t *lip;
  2702. xfs_efi_log_item_t *efip;
  2703. int error = 0;
  2704. struct xfs_ail_cursor cur;
  2705. struct xfs_ail *ailp;
  2706. ailp = log->l_ailp;
  2707. spin_lock(&ailp->xa_lock);
  2708. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2709. while (lip != NULL) {
  2710. /*
  2711. * We're done when we see something other than an EFI.
  2712. * There should be no EFIs left in the AIL now.
  2713. */
  2714. if (lip->li_type != XFS_LI_EFI) {
  2715. #ifdef DEBUG
  2716. for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
  2717. ASSERT(lip->li_type != XFS_LI_EFI);
  2718. #endif
  2719. break;
  2720. }
  2721. /*
  2722. * Skip EFIs that we've already processed.
  2723. */
  2724. efip = (xfs_efi_log_item_t *)lip;
  2725. if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
  2726. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2727. continue;
  2728. }
  2729. spin_unlock(&ailp->xa_lock);
  2730. error = xlog_recover_process_efi(log->l_mp, efip);
  2731. spin_lock(&ailp->xa_lock);
  2732. if (error)
  2733. goto out;
  2734. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2735. }
  2736. out:
  2737. xfs_trans_ail_cursor_done(ailp, &cur);
  2738. spin_unlock(&ailp->xa_lock);
  2739. return error;
  2740. }
  2741. /*
  2742. * This routine performs a transaction to null out a bad inode pointer
  2743. * in an agi unlinked inode hash bucket.
  2744. */
  2745. STATIC void
  2746. xlog_recover_clear_agi_bucket(
  2747. xfs_mount_t *mp,
  2748. xfs_agnumber_t agno,
  2749. int bucket)
  2750. {
  2751. xfs_trans_t *tp;
  2752. xfs_agi_t *agi;
  2753. xfs_buf_t *agibp;
  2754. int offset;
  2755. int error;
  2756. tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
  2757. error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
  2758. 0, 0, 0);
  2759. if (error)
  2760. goto out_abort;
  2761. error = xfs_read_agi(mp, tp, agno, &agibp);
  2762. if (error)
  2763. goto out_abort;
  2764. agi = XFS_BUF_TO_AGI(agibp);
  2765. agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
  2766. offset = offsetof(xfs_agi_t, agi_unlinked) +
  2767. (sizeof(xfs_agino_t) * bucket);
  2768. xfs_trans_log_buf(tp, agibp, offset,
  2769. (offset + sizeof(xfs_agino_t) - 1));
  2770. error = xfs_trans_commit(tp, 0);
  2771. if (error)
  2772. goto out_error;
  2773. return;
  2774. out_abort:
  2775. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2776. out_error:
  2777. xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
  2778. return;
  2779. }
  2780. STATIC xfs_agino_t
  2781. xlog_recover_process_one_iunlink(
  2782. struct xfs_mount *mp,
  2783. xfs_agnumber_t agno,
  2784. xfs_agino_t agino,
  2785. int bucket)
  2786. {
  2787. struct xfs_buf *ibp;
  2788. struct xfs_dinode *dip;
  2789. struct xfs_inode *ip;
  2790. xfs_ino_t ino;
  2791. int error;
  2792. ino = XFS_AGINO_TO_INO(mp, agno, agino);
  2793. error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
  2794. if (error)
  2795. goto fail;
  2796. /*
  2797. * Get the on disk inode to find the next inode in the bucket.
  2798. */
  2799. error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
  2800. if (error)
  2801. goto fail_iput;
  2802. ASSERT(ip->i_d.di_nlink == 0);
  2803. ASSERT(ip->i_d.di_mode != 0);
  2804. /* setup for the next pass */
  2805. agino = be32_to_cpu(dip->di_next_unlinked);
  2806. xfs_buf_relse(ibp);
  2807. /*
  2808. * Prevent any DMAPI event from being sent when the reference on
  2809. * the inode is dropped.
  2810. */
  2811. ip->i_d.di_dmevmask = 0;
  2812. IRELE(ip);
  2813. return agino;
  2814. fail_iput:
  2815. IRELE(ip);
  2816. fail:
  2817. /*
  2818. * We can't read in the inode this bucket points to, or this inode
  2819. * is messed up. Just ditch this bucket of inodes. We will lose
  2820. * some inodes and space, but at least we won't hang.
  2821. *
  2822. * Call xlog_recover_clear_agi_bucket() to perform a transaction to
  2823. * clear the inode pointer in the bucket.
  2824. */
  2825. xlog_recover_clear_agi_bucket(mp, agno, bucket);
  2826. return NULLAGINO;
  2827. }
  2828. /*
  2829. * xlog_iunlink_recover
  2830. *
  2831. * This is called during recovery to process any inodes which
  2832. * we unlinked but not freed when the system crashed. These
  2833. * inodes will be on the lists in the AGI blocks. What we do
  2834. * here is scan all the AGIs and fully truncate and free any
  2835. * inodes found on the lists. Each inode is removed from the
  2836. * lists when it has been fully truncated and is freed. The
  2837. * freeing of the inode and its removal from the list must be
  2838. * atomic.
  2839. */
  2840. STATIC void
  2841. xlog_recover_process_iunlinks(
  2842. xlog_t *log)
  2843. {
  2844. xfs_mount_t *mp;
  2845. xfs_agnumber_t agno;
  2846. xfs_agi_t *agi;
  2847. xfs_buf_t *agibp;
  2848. xfs_agino_t agino;
  2849. int bucket;
  2850. int error;
  2851. uint mp_dmevmask;
  2852. mp = log->l_mp;
  2853. /*
  2854. * Prevent any DMAPI event from being sent while in this function.
  2855. */
  2856. mp_dmevmask = mp->m_dmevmask;
  2857. mp->m_dmevmask = 0;
  2858. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  2859. /*
  2860. * Find the agi for this ag.
  2861. */
  2862. error = xfs_read_agi(mp, NULL, agno, &agibp);
  2863. if (error) {
  2864. /*
  2865. * AGI is b0rked. Don't process it.
  2866. *
  2867. * We should probably mark the filesystem as corrupt
  2868. * after we've recovered all the ag's we can....
  2869. */
  2870. continue;
  2871. }
  2872. agi = XFS_BUF_TO_AGI(agibp);
  2873. for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
  2874. agino = be32_to_cpu(agi->agi_unlinked[bucket]);
  2875. while (agino != NULLAGINO) {
  2876. /*
  2877. * Release the agi buffer so that it can
  2878. * be acquired in the normal course of the
  2879. * transaction to truncate and free the inode.
  2880. */
  2881. xfs_buf_relse(agibp);
  2882. agino = xlog_recover_process_one_iunlink(mp,
  2883. agno, agino, bucket);
  2884. /*
  2885. * Reacquire the agibuffer and continue around
  2886. * the loop. This should never fail as we know
  2887. * the buffer was good earlier on.
  2888. */
  2889. error = xfs_read_agi(mp, NULL, agno, &agibp);
  2890. ASSERT(error == 0);
  2891. agi = XFS_BUF_TO_AGI(agibp);
  2892. }
  2893. }
  2894. /*
  2895. * Release the buffer for the current agi so we can
  2896. * go on to the next one.
  2897. */
  2898. xfs_buf_relse(agibp);
  2899. }
  2900. mp->m_dmevmask = mp_dmevmask;
  2901. }
  2902. #ifdef DEBUG
  2903. STATIC void
  2904. xlog_pack_data_checksum(
  2905. xlog_t *log,
  2906. xlog_in_core_t *iclog,
  2907. int size)
  2908. {
  2909. int i;
  2910. __be32 *up;
  2911. uint chksum = 0;
  2912. up = (__be32 *)iclog->ic_datap;
  2913. /* divide length by 4 to get # words */
  2914. for (i = 0; i < (size >> 2); i++) {
  2915. chksum ^= be32_to_cpu(*up);
  2916. up++;
  2917. }
  2918. iclog->ic_header.h_chksum = cpu_to_be32(chksum);
  2919. }
  2920. #else
  2921. #define xlog_pack_data_checksum(log, iclog, size)
  2922. #endif
  2923. /*
  2924. * Stamp cycle number in every block
  2925. */
  2926. void
  2927. xlog_pack_data(
  2928. xlog_t *log,
  2929. xlog_in_core_t *iclog,
  2930. int roundoff)
  2931. {
  2932. int i, j, k;
  2933. int size = iclog->ic_offset + roundoff;
  2934. __be32 cycle_lsn;
  2935. xfs_caddr_t dp;
  2936. xlog_pack_data_checksum(log, iclog, size);
  2937. cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
  2938. dp = iclog->ic_datap;
  2939. for (i = 0; i < BTOBB(size) &&
  2940. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  2941. iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
  2942. *(__be32 *)dp = cycle_lsn;
  2943. dp += BBSIZE;
  2944. }
  2945. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  2946. xlog_in_core_2_t *xhdr = iclog->ic_data;
  2947. for ( ; i < BTOBB(size); i++) {
  2948. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  2949. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  2950. xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
  2951. *(__be32 *)dp = cycle_lsn;
  2952. dp += BBSIZE;
  2953. }
  2954. for (i = 1; i < log->l_iclog_heads; i++) {
  2955. xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
  2956. }
  2957. }
  2958. }
  2959. STATIC void
  2960. xlog_unpack_data(
  2961. xlog_rec_header_t *rhead,
  2962. xfs_caddr_t dp,
  2963. xlog_t *log)
  2964. {
  2965. int i, j, k;
  2966. for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
  2967. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  2968. *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
  2969. dp += BBSIZE;
  2970. }
  2971. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  2972. xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
  2973. for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
  2974. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  2975. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  2976. *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
  2977. dp += BBSIZE;
  2978. }
  2979. }
  2980. }
  2981. STATIC int
  2982. xlog_valid_rec_header(
  2983. xlog_t *log,
  2984. xlog_rec_header_t *rhead,
  2985. xfs_daddr_t blkno)
  2986. {
  2987. int hlen;
  2988. if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
  2989. XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
  2990. XFS_ERRLEVEL_LOW, log->l_mp);
  2991. return XFS_ERROR(EFSCORRUPTED);
  2992. }
  2993. if (unlikely(
  2994. (!rhead->h_version ||
  2995. (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
  2996. xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
  2997. __func__, be32_to_cpu(rhead->h_version));
  2998. return XFS_ERROR(EIO);
  2999. }
  3000. /* LR body must have data or it wouldn't have been written */
  3001. hlen = be32_to_cpu(rhead->h_len);
  3002. if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
  3003. XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
  3004. XFS_ERRLEVEL_LOW, log->l_mp);
  3005. return XFS_ERROR(EFSCORRUPTED);
  3006. }
  3007. if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
  3008. XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
  3009. XFS_ERRLEVEL_LOW, log->l_mp);
  3010. return XFS_ERROR(EFSCORRUPTED);
  3011. }
  3012. return 0;
  3013. }
  3014. /*
  3015. * Read the log from tail to head and process the log records found.
  3016. * Handle the two cases where the tail and head are in the same cycle
  3017. * and where the active portion of the log wraps around the end of
  3018. * the physical log separately. The pass parameter is passed through
  3019. * to the routines called to process the data and is not looked at
  3020. * here.
  3021. */
  3022. STATIC int
  3023. xlog_do_recovery_pass(
  3024. xlog_t *log,
  3025. xfs_daddr_t head_blk,
  3026. xfs_daddr_t tail_blk,
  3027. int pass)
  3028. {
  3029. xlog_rec_header_t *rhead;
  3030. xfs_daddr_t blk_no;
  3031. xfs_caddr_t offset;
  3032. xfs_buf_t *hbp, *dbp;
  3033. int error = 0, h_size;
  3034. int bblks, split_bblks;
  3035. int hblks, split_hblks, wrapped_hblks;
  3036. struct hlist_head rhash[XLOG_RHASH_SIZE];
  3037. ASSERT(head_blk != tail_blk);
  3038. /*
  3039. * Read the header of the tail block and get the iclog buffer size from
  3040. * h_size. Use this to tell how many sectors make up the log header.
  3041. */
  3042. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3043. /*
  3044. * When using variable length iclogs, read first sector of
  3045. * iclog header and extract the header size from it. Get a
  3046. * new hbp that is the correct size.
  3047. */
  3048. hbp = xlog_get_bp(log, 1);
  3049. if (!hbp)
  3050. return ENOMEM;
  3051. error = xlog_bread(log, tail_blk, 1, hbp, &offset);
  3052. if (error)
  3053. goto bread_err1;
  3054. rhead = (xlog_rec_header_t *)offset;
  3055. error = xlog_valid_rec_header(log, rhead, tail_blk);
  3056. if (error)
  3057. goto bread_err1;
  3058. h_size = be32_to_cpu(rhead->h_size);
  3059. if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
  3060. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  3061. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  3062. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  3063. hblks++;
  3064. xlog_put_bp(hbp);
  3065. hbp = xlog_get_bp(log, hblks);
  3066. } else {
  3067. hblks = 1;
  3068. }
  3069. } else {
  3070. ASSERT(log->l_sectBBsize == 1);
  3071. hblks = 1;
  3072. hbp = xlog_get_bp(log, 1);
  3073. h_size = XLOG_BIG_RECORD_BSIZE;
  3074. }
  3075. if (!hbp)
  3076. return ENOMEM;
  3077. dbp = xlog_get_bp(log, BTOBB(h_size));
  3078. if (!dbp) {
  3079. xlog_put_bp(hbp);
  3080. return ENOMEM;
  3081. }
  3082. memset(rhash, 0, sizeof(rhash));
  3083. if (tail_blk <= head_blk) {
  3084. for (blk_no = tail_blk; blk_no < head_blk; ) {
  3085. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3086. if (error)
  3087. goto bread_err2;
  3088. rhead = (xlog_rec_header_t *)offset;
  3089. error = xlog_valid_rec_header(log, rhead, blk_no);
  3090. if (error)
  3091. goto bread_err2;
  3092. /* blocks in data section */
  3093. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3094. error = xlog_bread(log, blk_no + hblks, bblks, dbp,
  3095. &offset);
  3096. if (error)
  3097. goto bread_err2;
  3098. xlog_unpack_data(rhead, offset, log);
  3099. if ((error = xlog_recover_process_data(log,
  3100. rhash, rhead, offset, pass)))
  3101. goto bread_err2;
  3102. blk_no += bblks + hblks;
  3103. }
  3104. } else {
  3105. /*
  3106. * Perform recovery around the end of the physical log.
  3107. * When the head is not on the same cycle number as the tail,
  3108. * we can't do a sequential recovery as above.
  3109. */
  3110. blk_no = tail_blk;
  3111. while (blk_no < log->l_logBBsize) {
  3112. /*
  3113. * Check for header wrapping around physical end-of-log
  3114. */
  3115. offset = XFS_BUF_PTR(hbp);
  3116. split_hblks = 0;
  3117. wrapped_hblks = 0;
  3118. if (blk_no + hblks <= log->l_logBBsize) {
  3119. /* Read header in one read */
  3120. error = xlog_bread(log, blk_no, hblks, hbp,
  3121. &offset);
  3122. if (error)
  3123. goto bread_err2;
  3124. } else {
  3125. /* This LR is split across physical log end */
  3126. if (blk_no != log->l_logBBsize) {
  3127. /* some data before physical log end */
  3128. ASSERT(blk_no <= INT_MAX);
  3129. split_hblks = log->l_logBBsize - (int)blk_no;
  3130. ASSERT(split_hblks > 0);
  3131. error = xlog_bread(log, blk_no,
  3132. split_hblks, hbp,
  3133. &offset);
  3134. if (error)
  3135. goto bread_err2;
  3136. }
  3137. /*
  3138. * Note: this black magic still works with
  3139. * large sector sizes (non-512) only because:
  3140. * - we increased the buffer size originally
  3141. * by 1 sector giving us enough extra space
  3142. * for the second read;
  3143. * - the log start is guaranteed to be sector
  3144. * aligned;
  3145. * - we read the log end (LR header start)
  3146. * _first_, then the log start (LR header end)
  3147. * - order is important.
  3148. */
  3149. wrapped_hblks = hblks - split_hblks;
  3150. error = xlog_bread_offset(log, 0,
  3151. wrapped_hblks, hbp,
  3152. offset + BBTOB(split_hblks));
  3153. if (error)
  3154. goto bread_err2;
  3155. }
  3156. rhead = (xlog_rec_header_t *)offset;
  3157. error = xlog_valid_rec_header(log, rhead,
  3158. split_hblks ? blk_no : 0);
  3159. if (error)
  3160. goto bread_err2;
  3161. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3162. blk_no += hblks;
  3163. /* Read in data for log record */
  3164. if (blk_no + bblks <= log->l_logBBsize) {
  3165. error = xlog_bread(log, blk_no, bblks, dbp,
  3166. &offset);
  3167. if (error)
  3168. goto bread_err2;
  3169. } else {
  3170. /* This log record is split across the
  3171. * physical end of log */
  3172. offset = XFS_BUF_PTR(dbp);
  3173. split_bblks = 0;
  3174. if (blk_no != log->l_logBBsize) {
  3175. /* some data is before the physical
  3176. * end of log */
  3177. ASSERT(!wrapped_hblks);
  3178. ASSERT(blk_no <= INT_MAX);
  3179. split_bblks =
  3180. log->l_logBBsize - (int)blk_no;
  3181. ASSERT(split_bblks > 0);
  3182. error = xlog_bread(log, blk_no,
  3183. split_bblks, dbp,
  3184. &offset);
  3185. if (error)
  3186. goto bread_err2;
  3187. }
  3188. /*
  3189. * Note: this black magic still works with
  3190. * large sector sizes (non-512) only because:
  3191. * - we increased the buffer size originally
  3192. * by 1 sector giving us enough extra space
  3193. * for the second read;
  3194. * - the log start is guaranteed to be sector
  3195. * aligned;
  3196. * - we read the log end (LR header start)
  3197. * _first_, then the log start (LR header end)
  3198. * - order is important.
  3199. */
  3200. error = xlog_bread_offset(log, 0,
  3201. bblks - split_bblks, hbp,
  3202. offset + BBTOB(split_bblks));
  3203. if (error)
  3204. goto bread_err2;
  3205. }
  3206. xlog_unpack_data(rhead, offset, log);
  3207. if ((error = xlog_recover_process_data(log, rhash,
  3208. rhead, offset, pass)))
  3209. goto bread_err2;
  3210. blk_no += bblks;
  3211. }
  3212. ASSERT(blk_no >= log->l_logBBsize);
  3213. blk_no -= log->l_logBBsize;
  3214. /* read first part of physical log */
  3215. while (blk_no < head_blk) {
  3216. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3217. if (error)
  3218. goto bread_err2;
  3219. rhead = (xlog_rec_header_t *)offset;
  3220. error = xlog_valid_rec_header(log, rhead, blk_no);
  3221. if (error)
  3222. goto bread_err2;
  3223. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3224. error = xlog_bread(log, blk_no+hblks, bblks, dbp,
  3225. &offset);
  3226. if (error)
  3227. goto bread_err2;
  3228. xlog_unpack_data(rhead, offset, log);
  3229. if ((error = xlog_recover_process_data(log, rhash,
  3230. rhead, offset, pass)))
  3231. goto bread_err2;
  3232. blk_no += bblks + hblks;
  3233. }
  3234. }
  3235. bread_err2:
  3236. xlog_put_bp(dbp);
  3237. bread_err1:
  3238. xlog_put_bp(hbp);
  3239. return error;
  3240. }
  3241. /*
  3242. * Do the recovery of the log. We actually do this in two phases.
  3243. * The two passes are necessary in order to implement the function
  3244. * of cancelling a record written into the log. The first pass
  3245. * determines those things which have been cancelled, and the
  3246. * second pass replays log items normally except for those which
  3247. * have been cancelled. The handling of the replay and cancellations
  3248. * takes place in the log item type specific routines.
  3249. *
  3250. * The table of items which have cancel records in the log is allocated
  3251. * and freed at this level, since only here do we know when all of
  3252. * the log recovery has been completed.
  3253. */
  3254. STATIC int
  3255. xlog_do_log_recovery(
  3256. xlog_t *log,
  3257. xfs_daddr_t head_blk,
  3258. xfs_daddr_t tail_blk)
  3259. {
  3260. int error, i;
  3261. ASSERT(head_blk != tail_blk);
  3262. /*
  3263. * First do a pass to find all of the cancelled buf log items.
  3264. * Store them in the buf_cancel_table for use in the second pass.
  3265. */
  3266. log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
  3267. sizeof(struct list_head),
  3268. KM_SLEEP);
  3269. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3270. INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
  3271. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3272. XLOG_RECOVER_PASS1);
  3273. if (error != 0) {
  3274. kmem_free(log->l_buf_cancel_table);
  3275. log->l_buf_cancel_table = NULL;
  3276. return error;
  3277. }
  3278. /*
  3279. * Then do a second pass to actually recover the items in the log.
  3280. * When it is complete free the table of buf cancel items.
  3281. */
  3282. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3283. XLOG_RECOVER_PASS2);
  3284. #ifdef DEBUG
  3285. if (!error) {
  3286. int i;
  3287. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3288. ASSERT(list_empty(&log->l_buf_cancel_table[i]));
  3289. }
  3290. #endif /* DEBUG */
  3291. kmem_free(log->l_buf_cancel_table);
  3292. log->l_buf_cancel_table = NULL;
  3293. return error;
  3294. }
  3295. /*
  3296. * Do the actual recovery
  3297. */
  3298. STATIC int
  3299. xlog_do_recover(
  3300. xlog_t *log,
  3301. xfs_daddr_t head_blk,
  3302. xfs_daddr_t tail_blk)
  3303. {
  3304. int error;
  3305. xfs_buf_t *bp;
  3306. xfs_sb_t *sbp;
  3307. /*
  3308. * First replay the images in the log.
  3309. */
  3310. error = xlog_do_log_recovery(log, head_blk, tail_blk);
  3311. if (error) {
  3312. return error;
  3313. }
  3314. XFS_bflush(log->l_mp->m_ddev_targp);
  3315. /*
  3316. * If IO errors happened during recovery, bail out.
  3317. */
  3318. if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
  3319. return (EIO);
  3320. }
  3321. /*
  3322. * We now update the tail_lsn since much of the recovery has completed
  3323. * and there may be space available to use. If there were no extent
  3324. * or iunlinks, we can free up the entire log and set the tail_lsn to
  3325. * be the last_sync_lsn. This was set in xlog_find_tail to be the
  3326. * lsn of the last known good LR on disk. If there are extent frees
  3327. * or iunlinks they will have some entries in the AIL; so we look at
  3328. * the AIL to determine how to set the tail_lsn.
  3329. */
  3330. xlog_assign_tail_lsn(log->l_mp);
  3331. /*
  3332. * Now that we've finished replaying all buffer and inode
  3333. * updates, re-read in the superblock.
  3334. */
  3335. bp = xfs_getsb(log->l_mp, 0);
  3336. XFS_BUF_UNDONE(bp);
  3337. ASSERT(!(XFS_BUF_ISWRITE(bp)));
  3338. ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
  3339. XFS_BUF_READ(bp);
  3340. XFS_BUF_UNASYNC(bp);
  3341. xfsbdstrat(log->l_mp, bp);
  3342. error = xfs_buf_iowait(bp);
  3343. if (error) {
  3344. xfs_ioerror_alert("xlog_do_recover",
  3345. log->l_mp, bp, XFS_BUF_ADDR(bp));
  3346. ASSERT(0);
  3347. xfs_buf_relse(bp);
  3348. return error;
  3349. }
  3350. /* Convert superblock from on-disk format */
  3351. sbp = &log->l_mp->m_sb;
  3352. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
  3353. ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
  3354. ASSERT(xfs_sb_good_version(sbp));
  3355. xfs_buf_relse(bp);
  3356. /* We've re-read the superblock so re-initialize per-cpu counters */
  3357. xfs_icsb_reinit_counters(log->l_mp);
  3358. xlog_recover_check_summary(log);
  3359. /* Normal transactions can now occur */
  3360. log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
  3361. return 0;
  3362. }
  3363. /*
  3364. * Perform recovery and re-initialize some log variables in xlog_find_tail.
  3365. *
  3366. * Return error or zero.
  3367. */
  3368. int
  3369. xlog_recover(
  3370. xlog_t *log)
  3371. {
  3372. xfs_daddr_t head_blk, tail_blk;
  3373. int error;
  3374. /* find the tail of the log */
  3375. if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
  3376. return error;
  3377. if (tail_blk != head_blk) {
  3378. /* There used to be a comment here:
  3379. *
  3380. * disallow recovery on read-only mounts. note -- mount
  3381. * checks for ENOSPC and turns it into an intelligent
  3382. * error message.
  3383. * ...but this is no longer true. Now, unless you specify
  3384. * NORECOVERY (in which case this function would never be
  3385. * called), we just go ahead and recover. We do this all
  3386. * under the vfs layer, so we can get away with it unless
  3387. * the device itself is read-only, in which case we fail.
  3388. */
  3389. if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
  3390. return error;
  3391. }
  3392. xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
  3393. log->l_mp->m_logname ? log->l_mp->m_logname
  3394. : "internal");
  3395. error = xlog_do_recover(log, head_blk, tail_blk);
  3396. log->l_flags |= XLOG_RECOVERY_NEEDED;
  3397. }
  3398. return error;
  3399. }
  3400. /*
  3401. * In the first part of recovery we replay inodes and buffers and build
  3402. * up the list of extent free items which need to be processed. Here
  3403. * we process the extent free items and clean up the on disk unlinked
  3404. * inode lists. This is separated from the first part of recovery so
  3405. * that the root and real-time bitmap inodes can be read in from disk in
  3406. * between the two stages. This is necessary so that we can free space
  3407. * in the real-time portion of the file system.
  3408. */
  3409. int
  3410. xlog_recover_finish(
  3411. xlog_t *log)
  3412. {
  3413. /*
  3414. * Now we're ready to do the transactions needed for the
  3415. * rest of recovery. Start with completing all the extent
  3416. * free intent records and then process the unlinked inode
  3417. * lists. At this point, we essentially run in normal mode
  3418. * except that we're still performing recovery actions
  3419. * rather than accepting new requests.
  3420. */
  3421. if (log->l_flags & XLOG_RECOVERY_NEEDED) {
  3422. int error;
  3423. error = xlog_recover_process_efis(log);
  3424. if (error) {
  3425. xfs_alert(log->l_mp, "Failed to recover EFIs");
  3426. return error;
  3427. }
  3428. /*
  3429. * Sync the log to get all the EFIs out of the AIL.
  3430. * This isn't absolutely necessary, but it helps in
  3431. * case the unlink transactions would have problems
  3432. * pushing the EFIs out of the way.
  3433. */
  3434. xfs_log_force(log->l_mp, XFS_LOG_SYNC);
  3435. xlog_recover_process_iunlinks(log);
  3436. xlog_recover_check_summary(log);
  3437. xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
  3438. log->l_mp->m_logname ? log->l_mp->m_logname
  3439. : "internal");
  3440. log->l_flags &= ~XLOG_RECOVERY_NEEDED;
  3441. } else {
  3442. xfs_info(log->l_mp, "Ending clean mount");
  3443. }
  3444. return 0;
  3445. }
  3446. #if defined(DEBUG)
  3447. /*
  3448. * Read all of the agf and agi counters and check that they
  3449. * are consistent with the superblock counters.
  3450. */
  3451. void
  3452. xlog_recover_check_summary(
  3453. xlog_t *log)
  3454. {
  3455. xfs_mount_t *mp;
  3456. xfs_agf_t *agfp;
  3457. xfs_buf_t *agfbp;
  3458. xfs_buf_t *agibp;
  3459. xfs_agnumber_t agno;
  3460. __uint64_t freeblks;
  3461. __uint64_t itotal;
  3462. __uint64_t ifree;
  3463. int error;
  3464. mp = log->l_mp;
  3465. freeblks = 0LL;
  3466. itotal = 0LL;
  3467. ifree = 0LL;
  3468. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  3469. error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
  3470. if (error) {
  3471. xfs_alert(mp, "%s agf read failed agno %d error %d",
  3472. __func__, agno, error);
  3473. } else {
  3474. agfp = XFS_BUF_TO_AGF(agfbp);
  3475. freeblks += be32_to_cpu(agfp->agf_freeblks) +
  3476. be32_to_cpu(agfp->agf_flcount);
  3477. xfs_buf_relse(agfbp);
  3478. }
  3479. error = xfs_read_agi(mp, NULL, agno, &agibp);
  3480. if (error) {
  3481. xfs_alert(mp, "%s agi read failed agno %d error %d",
  3482. __func__, agno, error);
  3483. } else {
  3484. struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
  3485. itotal += be32_to_cpu(agi->agi_count);
  3486. ifree += be32_to_cpu(agi->agi_freecount);
  3487. xfs_buf_relse(agibp);
  3488. }
  3489. }
  3490. }
  3491. #endif /* DEBUG */