intel_pm.c 140 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. #define FORCEWAKE_ACK_TIMEOUT_MS 2
  33. /* FBC, or Frame Buffer Compression, is a technique employed to compress the
  34. * framebuffer contents in-memory, aiming at reducing the required bandwidth
  35. * during in-memory transfers and, therefore, reduce the power packet.
  36. *
  37. * The benefits of FBC are mostly visible with solid backgrounds and
  38. * variation-less patterns.
  39. *
  40. * FBC-related functionality can be enabled by the means of the
  41. * i915.i915_enable_fbc parameter
  42. */
  43. static bool intel_crtc_active(struct drm_crtc *crtc)
  44. {
  45. /* Be paranoid as we can arrive here with only partial
  46. * state retrieved from the hardware during setup.
  47. */
  48. return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
  49. }
  50. static void i8xx_disable_fbc(struct drm_device *dev)
  51. {
  52. struct drm_i915_private *dev_priv = dev->dev_private;
  53. u32 fbc_ctl;
  54. /* Disable compression */
  55. fbc_ctl = I915_READ(FBC_CONTROL);
  56. if ((fbc_ctl & FBC_CTL_EN) == 0)
  57. return;
  58. fbc_ctl &= ~FBC_CTL_EN;
  59. I915_WRITE(FBC_CONTROL, fbc_ctl);
  60. /* Wait for compressing bit to clear */
  61. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  62. DRM_DEBUG_KMS("FBC idle timed out\n");
  63. return;
  64. }
  65. DRM_DEBUG_KMS("disabled FBC\n");
  66. }
  67. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  68. {
  69. struct drm_device *dev = crtc->dev;
  70. struct drm_i915_private *dev_priv = dev->dev_private;
  71. struct drm_framebuffer *fb = crtc->fb;
  72. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  73. struct drm_i915_gem_object *obj = intel_fb->obj;
  74. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  75. int cfb_pitch;
  76. int plane, i;
  77. u32 fbc_ctl, fbc_ctl2;
  78. cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
  79. if (fb->pitches[0] < cfb_pitch)
  80. cfb_pitch = fb->pitches[0];
  81. /* FBC_CTL wants 64B units */
  82. cfb_pitch = (cfb_pitch / 64) - 1;
  83. plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  84. /* Clear old tags */
  85. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  86. I915_WRITE(FBC_TAG + (i * 4), 0);
  87. /* Set it up... */
  88. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  89. fbc_ctl2 |= plane;
  90. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  91. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  92. /* enable it... */
  93. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  94. if (IS_I945GM(dev))
  95. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  96. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  97. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  98. fbc_ctl |= obj->fence_reg;
  99. I915_WRITE(FBC_CONTROL, fbc_ctl);
  100. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
  101. cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
  102. }
  103. static bool i8xx_fbc_enabled(struct drm_device *dev)
  104. {
  105. struct drm_i915_private *dev_priv = dev->dev_private;
  106. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  107. }
  108. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  109. {
  110. struct drm_device *dev = crtc->dev;
  111. struct drm_i915_private *dev_priv = dev->dev_private;
  112. struct drm_framebuffer *fb = crtc->fb;
  113. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  114. struct drm_i915_gem_object *obj = intel_fb->obj;
  115. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  116. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  117. unsigned long stall_watermark = 200;
  118. u32 dpfc_ctl;
  119. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  120. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  121. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  122. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  123. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  124. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  125. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  126. /* enable it... */
  127. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  128. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  129. }
  130. static void g4x_disable_fbc(struct drm_device *dev)
  131. {
  132. struct drm_i915_private *dev_priv = dev->dev_private;
  133. u32 dpfc_ctl;
  134. /* Disable compression */
  135. dpfc_ctl = I915_READ(DPFC_CONTROL);
  136. if (dpfc_ctl & DPFC_CTL_EN) {
  137. dpfc_ctl &= ~DPFC_CTL_EN;
  138. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  139. DRM_DEBUG_KMS("disabled FBC\n");
  140. }
  141. }
  142. static bool g4x_fbc_enabled(struct drm_device *dev)
  143. {
  144. struct drm_i915_private *dev_priv = dev->dev_private;
  145. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  146. }
  147. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  148. {
  149. struct drm_i915_private *dev_priv = dev->dev_private;
  150. u32 blt_ecoskpd;
  151. /* Make sure blitter notifies FBC of writes */
  152. gen6_gt_force_wake_get(dev_priv);
  153. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  154. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  155. GEN6_BLITTER_LOCK_SHIFT;
  156. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  157. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  158. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  159. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  160. GEN6_BLITTER_LOCK_SHIFT);
  161. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  162. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  163. gen6_gt_force_wake_put(dev_priv);
  164. }
  165. static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  166. {
  167. struct drm_device *dev = crtc->dev;
  168. struct drm_i915_private *dev_priv = dev->dev_private;
  169. struct drm_framebuffer *fb = crtc->fb;
  170. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  171. struct drm_i915_gem_object *obj = intel_fb->obj;
  172. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  173. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  174. unsigned long stall_watermark = 200;
  175. u32 dpfc_ctl;
  176. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  177. dpfc_ctl &= DPFC_RESERVED;
  178. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  179. /* Set persistent mode for front-buffer rendering, ala X. */
  180. dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
  181. dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
  182. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  183. I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  184. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  185. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  186. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  187. I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
  188. /* enable it... */
  189. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  190. if (IS_GEN6(dev)) {
  191. I915_WRITE(SNB_DPFC_CTL_SA,
  192. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  193. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  194. sandybridge_blit_fbc_update(dev);
  195. }
  196. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  197. }
  198. static void ironlake_disable_fbc(struct drm_device *dev)
  199. {
  200. struct drm_i915_private *dev_priv = dev->dev_private;
  201. u32 dpfc_ctl;
  202. /* Disable compression */
  203. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  204. if (dpfc_ctl & DPFC_CTL_EN) {
  205. dpfc_ctl &= ~DPFC_CTL_EN;
  206. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  207. if (IS_IVYBRIDGE(dev))
  208. /* WaFbcDisableDpfcClockGating */
  209. I915_WRITE(ILK_DSPCLK_GATE_D,
  210. I915_READ(ILK_DSPCLK_GATE_D) &
  211. ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
  212. DRM_DEBUG_KMS("disabled FBC\n");
  213. }
  214. }
  215. static bool ironlake_fbc_enabled(struct drm_device *dev)
  216. {
  217. struct drm_i915_private *dev_priv = dev->dev_private;
  218. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  219. }
  220. static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  221. {
  222. struct drm_device *dev = crtc->dev;
  223. struct drm_i915_private *dev_priv = dev->dev_private;
  224. struct drm_framebuffer *fb = crtc->fb;
  225. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  226. struct drm_i915_gem_object *obj = intel_fb->obj;
  227. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  228. I915_WRITE(IVB_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
  229. I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
  230. IVB_DPFC_CTL_FENCE_EN |
  231. intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
  232. /* WaFbcAsynchFlipDisableFbcQueue */
  233. I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
  234. /* WaFbcDisableDpfcClockGating */
  235. I915_WRITE(ILK_DSPCLK_GATE_D,
  236. I915_READ(ILK_DSPCLK_GATE_D) |
  237. ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
  238. I915_WRITE(SNB_DPFC_CTL_SA,
  239. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  240. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  241. sandybridge_blit_fbc_update(dev);
  242. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  243. }
  244. bool intel_fbc_enabled(struct drm_device *dev)
  245. {
  246. struct drm_i915_private *dev_priv = dev->dev_private;
  247. if (!dev_priv->display.fbc_enabled)
  248. return false;
  249. return dev_priv->display.fbc_enabled(dev);
  250. }
  251. static void intel_fbc_work_fn(struct work_struct *__work)
  252. {
  253. struct intel_fbc_work *work =
  254. container_of(to_delayed_work(__work),
  255. struct intel_fbc_work, work);
  256. struct drm_device *dev = work->crtc->dev;
  257. struct drm_i915_private *dev_priv = dev->dev_private;
  258. mutex_lock(&dev->struct_mutex);
  259. if (work == dev_priv->fbc_work) {
  260. /* Double check that we haven't switched fb without cancelling
  261. * the prior work.
  262. */
  263. if (work->crtc->fb == work->fb) {
  264. dev_priv->display.enable_fbc(work->crtc,
  265. work->interval);
  266. dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
  267. dev_priv->cfb_fb = work->crtc->fb->base.id;
  268. dev_priv->cfb_y = work->crtc->y;
  269. }
  270. dev_priv->fbc_work = NULL;
  271. }
  272. mutex_unlock(&dev->struct_mutex);
  273. kfree(work);
  274. }
  275. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  276. {
  277. if (dev_priv->fbc_work == NULL)
  278. return;
  279. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  280. /* Synchronisation is provided by struct_mutex and checking of
  281. * dev_priv->fbc_work, so we can perform the cancellation
  282. * entirely asynchronously.
  283. */
  284. if (cancel_delayed_work(&dev_priv->fbc_work->work))
  285. /* tasklet was killed before being run, clean up */
  286. kfree(dev_priv->fbc_work);
  287. /* Mark the work as no longer wanted so that if it does
  288. * wake-up (because the work was already running and waiting
  289. * for our mutex), it will discover that is no longer
  290. * necessary to run.
  291. */
  292. dev_priv->fbc_work = NULL;
  293. }
  294. void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  295. {
  296. struct intel_fbc_work *work;
  297. struct drm_device *dev = crtc->dev;
  298. struct drm_i915_private *dev_priv = dev->dev_private;
  299. if (!dev_priv->display.enable_fbc)
  300. return;
  301. intel_cancel_fbc_work(dev_priv);
  302. work = kzalloc(sizeof *work, GFP_KERNEL);
  303. if (work == NULL) {
  304. dev_priv->display.enable_fbc(crtc, interval);
  305. return;
  306. }
  307. work->crtc = crtc;
  308. work->fb = crtc->fb;
  309. work->interval = interval;
  310. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  311. dev_priv->fbc_work = work;
  312. DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
  313. /* Delay the actual enabling to let pageflipping cease and the
  314. * display to settle before starting the compression. Note that
  315. * this delay also serves a second purpose: it allows for a
  316. * vblank to pass after disabling the FBC before we attempt
  317. * to modify the control registers.
  318. *
  319. * A more complicated solution would involve tracking vblanks
  320. * following the termination of the page-flipping sequence
  321. * and indeed performing the enable as a co-routine and not
  322. * waiting synchronously upon the vblank.
  323. */
  324. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  325. }
  326. void intel_disable_fbc(struct drm_device *dev)
  327. {
  328. struct drm_i915_private *dev_priv = dev->dev_private;
  329. intel_cancel_fbc_work(dev_priv);
  330. if (!dev_priv->display.disable_fbc)
  331. return;
  332. dev_priv->display.disable_fbc(dev);
  333. dev_priv->cfb_plane = -1;
  334. }
  335. /**
  336. * intel_update_fbc - enable/disable FBC as needed
  337. * @dev: the drm_device
  338. *
  339. * Set up the framebuffer compression hardware at mode set time. We
  340. * enable it if possible:
  341. * - plane A only (on pre-965)
  342. * - no pixel mulitply/line duplication
  343. * - no alpha buffer discard
  344. * - no dual wide
  345. * - framebuffer <= 2048 in width, 1536 in height
  346. *
  347. * We can't assume that any compression will take place (worst case),
  348. * so the compressed buffer has to be the same size as the uncompressed
  349. * one. It also must reside (along with the line length buffer) in
  350. * stolen memory.
  351. *
  352. * We need to enable/disable FBC on a global basis.
  353. */
  354. void intel_update_fbc(struct drm_device *dev)
  355. {
  356. struct drm_i915_private *dev_priv = dev->dev_private;
  357. struct drm_crtc *crtc = NULL, *tmp_crtc;
  358. struct intel_crtc *intel_crtc;
  359. struct drm_framebuffer *fb;
  360. struct intel_framebuffer *intel_fb;
  361. struct drm_i915_gem_object *obj;
  362. int enable_fbc;
  363. if (!i915_powersave)
  364. return;
  365. if (!I915_HAS_FBC(dev))
  366. return;
  367. /*
  368. * If FBC is already on, we just have to verify that we can
  369. * keep it that way...
  370. * Need to disable if:
  371. * - more than one pipe is active
  372. * - changing FBC params (stride, fence, mode)
  373. * - new fb is too large to fit in compressed buffer
  374. * - going to an unsupported config (interlace, pixel multiply, etc.)
  375. */
  376. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  377. if (intel_crtc_active(tmp_crtc) &&
  378. !to_intel_crtc(tmp_crtc)->primary_disabled) {
  379. if (crtc) {
  380. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  381. dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
  382. goto out_disable;
  383. }
  384. crtc = tmp_crtc;
  385. }
  386. }
  387. if (!crtc || crtc->fb == NULL) {
  388. DRM_DEBUG_KMS("no output, disabling\n");
  389. dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
  390. goto out_disable;
  391. }
  392. intel_crtc = to_intel_crtc(crtc);
  393. fb = crtc->fb;
  394. intel_fb = to_intel_framebuffer(fb);
  395. obj = intel_fb->obj;
  396. enable_fbc = i915_enable_fbc;
  397. if (enable_fbc < 0) {
  398. DRM_DEBUG_KMS("fbc set to per-chip default\n");
  399. enable_fbc = 1;
  400. if (INTEL_INFO(dev)->gen <= 7)
  401. enable_fbc = 0;
  402. }
  403. if (!enable_fbc) {
  404. DRM_DEBUG_KMS("fbc disabled per module param\n");
  405. dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
  406. goto out_disable;
  407. }
  408. if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
  409. (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
  410. DRM_DEBUG_KMS("mode incompatible with compression, "
  411. "disabling\n");
  412. dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
  413. goto out_disable;
  414. }
  415. if ((crtc->mode.hdisplay > 2048) ||
  416. (crtc->mode.vdisplay > 1536)) {
  417. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  418. dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
  419. goto out_disable;
  420. }
  421. if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
  422. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  423. dev_priv->no_fbc_reason = FBC_BAD_PLANE;
  424. goto out_disable;
  425. }
  426. /* The use of a CPU fence is mandatory in order to detect writes
  427. * by the CPU to the scanout and trigger updates to the FBC.
  428. */
  429. if (obj->tiling_mode != I915_TILING_X ||
  430. obj->fence_reg == I915_FENCE_REG_NONE) {
  431. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  432. dev_priv->no_fbc_reason = FBC_NOT_TILED;
  433. goto out_disable;
  434. }
  435. /* If the kernel debugger is active, always disable compression */
  436. if (in_dbg_master())
  437. goto out_disable;
  438. if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
  439. DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
  440. dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
  441. goto out_disable;
  442. }
  443. /* If the scanout has not changed, don't modify the FBC settings.
  444. * Note that we make the fundamental assumption that the fb->obj
  445. * cannot be unpinned (and have its GTT offset and fence revoked)
  446. * without first being decoupled from the scanout and FBC disabled.
  447. */
  448. if (dev_priv->cfb_plane == intel_crtc->plane &&
  449. dev_priv->cfb_fb == fb->base.id &&
  450. dev_priv->cfb_y == crtc->y)
  451. return;
  452. if (intel_fbc_enabled(dev)) {
  453. /* We update FBC along two paths, after changing fb/crtc
  454. * configuration (modeswitching) and after page-flipping
  455. * finishes. For the latter, we know that not only did
  456. * we disable the FBC at the start of the page-flip
  457. * sequence, but also more than one vblank has passed.
  458. *
  459. * For the former case of modeswitching, it is possible
  460. * to switch between two FBC valid configurations
  461. * instantaneously so we do need to disable the FBC
  462. * before we can modify its control registers. We also
  463. * have to wait for the next vblank for that to take
  464. * effect. However, since we delay enabling FBC we can
  465. * assume that a vblank has passed since disabling and
  466. * that we can safely alter the registers in the deferred
  467. * callback.
  468. *
  469. * In the scenario that we go from a valid to invalid
  470. * and then back to valid FBC configuration we have
  471. * no strict enforcement that a vblank occurred since
  472. * disabling the FBC. However, along all current pipe
  473. * disabling paths we do need to wait for a vblank at
  474. * some point. And we wait before enabling FBC anyway.
  475. */
  476. DRM_DEBUG_KMS("disabling active FBC for update\n");
  477. intel_disable_fbc(dev);
  478. }
  479. intel_enable_fbc(crtc, 500);
  480. return;
  481. out_disable:
  482. /* Multiple disables should be harmless */
  483. if (intel_fbc_enabled(dev)) {
  484. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  485. intel_disable_fbc(dev);
  486. }
  487. i915_gem_stolen_cleanup_compression(dev);
  488. }
  489. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  490. {
  491. drm_i915_private_t *dev_priv = dev->dev_private;
  492. u32 tmp;
  493. tmp = I915_READ(CLKCFG);
  494. switch (tmp & CLKCFG_FSB_MASK) {
  495. case CLKCFG_FSB_533:
  496. dev_priv->fsb_freq = 533; /* 133*4 */
  497. break;
  498. case CLKCFG_FSB_800:
  499. dev_priv->fsb_freq = 800; /* 200*4 */
  500. break;
  501. case CLKCFG_FSB_667:
  502. dev_priv->fsb_freq = 667; /* 167*4 */
  503. break;
  504. case CLKCFG_FSB_400:
  505. dev_priv->fsb_freq = 400; /* 100*4 */
  506. break;
  507. }
  508. switch (tmp & CLKCFG_MEM_MASK) {
  509. case CLKCFG_MEM_533:
  510. dev_priv->mem_freq = 533;
  511. break;
  512. case CLKCFG_MEM_667:
  513. dev_priv->mem_freq = 667;
  514. break;
  515. case CLKCFG_MEM_800:
  516. dev_priv->mem_freq = 800;
  517. break;
  518. }
  519. /* detect pineview DDR3 setting */
  520. tmp = I915_READ(CSHRDDR3CTL);
  521. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  522. }
  523. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  524. {
  525. drm_i915_private_t *dev_priv = dev->dev_private;
  526. u16 ddrpll, csipll;
  527. ddrpll = I915_READ16(DDRMPLL1);
  528. csipll = I915_READ16(CSIPLL0);
  529. switch (ddrpll & 0xff) {
  530. case 0xc:
  531. dev_priv->mem_freq = 800;
  532. break;
  533. case 0x10:
  534. dev_priv->mem_freq = 1066;
  535. break;
  536. case 0x14:
  537. dev_priv->mem_freq = 1333;
  538. break;
  539. case 0x18:
  540. dev_priv->mem_freq = 1600;
  541. break;
  542. default:
  543. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  544. ddrpll & 0xff);
  545. dev_priv->mem_freq = 0;
  546. break;
  547. }
  548. dev_priv->ips.r_t = dev_priv->mem_freq;
  549. switch (csipll & 0x3ff) {
  550. case 0x00c:
  551. dev_priv->fsb_freq = 3200;
  552. break;
  553. case 0x00e:
  554. dev_priv->fsb_freq = 3733;
  555. break;
  556. case 0x010:
  557. dev_priv->fsb_freq = 4266;
  558. break;
  559. case 0x012:
  560. dev_priv->fsb_freq = 4800;
  561. break;
  562. case 0x014:
  563. dev_priv->fsb_freq = 5333;
  564. break;
  565. case 0x016:
  566. dev_priv->fsb_freq = 5866;
  567. break;
  568. case 0x018:
  569. dev_priv->fsb_freq = 6400;
  570. break;
  571. default:
  572. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  573. csipll & 0x3ff);
  574. dev_priv->fsb_freq = 0;
  575. break;
  576. }
  577. if (dev_priv->fsb_freq == 3200) {
  578. dev_priv->ips.c_m = 0;
  579. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  580. dev_priv->ips.c_m = 1;
  581. } else {
  582. dev_priv->ips.c_m = 2;
  583. }
  584. }
  585. static const struct cxsr_latency cxsr_latency_table[] = {
  586. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  587. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  588. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  589. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  590. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  591. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  592. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  593. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  594. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  595. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  596. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  597. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  598. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  599. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  600. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  601. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  602. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  603. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  604. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  605. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  606. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  607. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  608. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  609. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  610. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  611. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  612. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  613. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  614. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  615. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  616. };
  617. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  618. int is_ddr3,
  619. int fsb,
  620. int mem)
  621. {
  622. const struct cxsr_latency *latency;
  623. int i;
  624. if (fsb == 0 || mem == 0)
  625. return NULL;
  626. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  627. latency = &cxsr_latency_table[i];
  628. if (is_desktop == latency->is_desktop &&
  629. is_ddr3 == latency->is_ddr3 &&
  630. fsb == latency->fsb_freq && mem == latency->mem_freq)
  631. return latency;
  632. }
  633. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  634. return NULL;
  635. }
  636. static void pineview_disable_cxsr(struct drm_device *dev)
  637. {
  638. struct drm_i915_private *dev_priv = dev->dev_private;
  639. /* deactivate cxsr */
  640. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  641. }
  642. /*
  643. * Latency for FIFO fetches is dependent on several factors:
  644. * - memory configuration (speed, channels)
  645. * - chipset
  646. * - current MCH state
  647. * It can be fairly high in some situations, so here we assume a fairly
  648. * pessimal value. It's a tradeoff between extra memory fetches (if we
  649. * set this value too high, the FIFO will fetch frequently to stay full)
  650. * and power consumption (set it too low to save power and we might see
  651. * FIFO underruns and display "flicker").
  652. *
  653. * A value of 5us seems to be a good balance; safe for very low end
  654. * platforms but not overly aggressive on lower latency configs.
  655. */
  656. static const int latency_ns = 5000;
  657. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  658. {
  659. struct drm_i915_private *dev_priv = dev->dev_private;
  660. uint32_t dsparb = I915_READ(DSPARB);
  661. int size;
  662. size = dsparb & 0x7f;
  663. if (plane)
  664. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  665. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  666. plane ? "B" : "A", size);
  667. return size;
  668. }
  669. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  670. {
  671. struct drm_i915_private *dev_priv = dev->dev_private;
  672. uint32_t dsparb = I915_READ(DSPARB);
  673. int size;
  674. size = dsparb & 0x1ff;
  675. if (plane)
  676. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  677. size >>= 1; /* Convert to cachelines */
  678. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  679. plane ? "B" : "A", size);
  680. return size;
  681. }
  682. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  683. {
  684. struct drm_i915_private *dev_priv = dev->dev_private;
  685. uint32_t dsparb = I915_READ(DSPARB);
  686. int size;
  687. size = dsparb & 0x7f;
  688. size >>= 2; /* Convert to cachelines */
  689. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  690. plane ? "B" : "A",
  691. size);
  692. return size;
  693. }
  694. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  695. {
  696. struct drm_i915_private *dev_priv = dev->dev_private;
  697. uint32_t dsparb = I915_READ(DSPARB);
  698. int size;
  699. size = dsparb & 0x7f;
  700. size >>= 1; /* Convert to cachelines */
  701. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  702. plane ? "B" : "A", size);
  703. return size;
  704. }
  705. /* Pineview has different values for various configs */
  706. static const struct intel_watermark_params pineview_display_wm = {
  707. PINEVIEW_DISPLAY_FIFO,
  708. PINEVIEW_MAX_WM,
  709. PINEVIEW_DFT_WM,
  710. PINEVIEW_GUARD_WM,
  711. PINEVIEW_FIFO_LINE_SIZE
  712. };
  713. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  714. PINEVIEW_DISPLAY_FIFO,
  715. PINEVIEW_MAX_WM,
  716. PINEVIEW_DFT_HPLLOFF_WM,
  717. PINEVIEW_GUARD_WM,
  718. PINEVIEW_FIFO_LINE_SIZE
  719. };
  720. static const struct intel_watermark_params pineview_cursor_wm = {
  721. PINEVIEW_CURSOR_FIFO,
  722. PINEVIEW_CURSOR_MAX_WM,
  723. PINEVIEW_CURSOR_DFT_WM,
  724. PINEVIEW_CURSOR_GUARD_WM,
  725. PINEVIEW_FIFO_LINE_SIZE,
  726. };
  727. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  728. PINEVIEW_CURSOR_FIFO,
  729. PINEVIEW_CURSOR_MAX_WM,
  730. PINEVIEW_CURSOR_DFT_WM,
  731. PINEVIEW_CURSOR_GUARD_WM,
  732. PINEVIEW_FIFO_LINE_SIZE
  733. };
  734. static const struct intel_watermark_params g4x_wm_info = {
  735. G4X_FIFO_SIZE,
  736. G4X_MAX_WM,
  737. G4X_MAX_WM,
  738. 2,
  739. G4X_FIFO_LINE_SIZE,
  740. };
  741. static const struct intel_watermark_params g4x_cursor_wm_info = {
  742. I965_CURSOR_FIFO,
  743. I965_CURSOR_MAX_WM,
  744. I965_CURSOR_DFT_WM,
  745. 2,
  746. G4X_FIFO_LINE_SIZE,
  747. };
  748. static const struct intel_watermark_params valleyview_wm_info = {
  749. VALLEYVIEW_FIFO_SIZE,
  750. VALLEYVIEW_MAX_WM,
  751. VALLEYVIEW_MAX_WM,
  752. 2,
  753. G4X_FIFO_LINE_SIZE,
  754. };
  755. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  756. I965_CURSOR_FIFO,
  757. VALLEYVIEW_CURSOR_MAX_WM,
  758. I965_CURSOR_DFT_WM,
  759. 2,
  760. G4X_FIFO_LINE_SIZE,
  761. };
  762. static const struct intel_watermark_params i965_cursor_wm_info = {
  763. I965_CURSOR_FIFO,
  764. I965_CURSOR_MAX_WM,
  765. I965_CURSOR_DFT_WM,
  766. 2,
  767. I915_FIFO_LINE_SIZE,
  768. };
  769. static const struct intel_watermark_params i945_wm_info = {
  770. I945_FIFO_SIZE,
  771. I915_MAX_WM,
  772. 1,
  773. 2,
  774. I915_FIFO_LINE_SIZE
  775. };
  776. static const struct intel_watermark_params i915_wm_info = {
  777. I915_FIFO_SIZE,
  778. I915_MAX_WM,
  779. 1,
  780. 2,
  781. I915_FIFO_LINE_SIZE
  782. };
  783. static const struct intel_watermark_params i855_wm_info = {
  784. I855GM_FIFO_SIZE,
  785. I915_MAX_WM,
  786. 1,
  787. 2,
  788. I830_FIFO_LINE_SIZE
  789. };
  790. static const struct intel_watermark_params i830_wm_info = {
  791. I830_FIFO_SIZE,
  792. I915_MAX_WM,
  793. 1,
  794. 2,
  795. I830_FIFO_LINE_SIZE
  796. };
  797. static const struct intel_watermark_params ironlake_display_wm_info = {
  798. ILK_DISPLAY_FIFO,
  799. ILK_DISPLAY_MAXWM,
  800. ILK_DISPLAY_DFTWM,
  801. 2,
  802. ILK_FIFO_LINE_SIZE
  803. };
  804. static const struct intel_watermark_params ironlake_cursor_wm_info = {
  805. ILK_CURSOR_FIFO,
  806. ILK_CURSOR_MAXWM,
  807. ILK_CURSOR_DFTWM,
  808. 2,
  809. ILK_FIFO_LINE_SIZE
  810. };
  811. static const struct intel_watermark_params ironlake_display_srwm_info = {
  812. ILK_DISPLAY_SR_FIFO,
  813. ILK_DISPLAY_MAX_SRWM,
  814. ILK_DISPLAY_DFT_SRWM,
  815. 2,
  816. ILK_FIFO_LINE_SIZE
  817. };
  818. static const struct intel_watermark_params ironlake_cursor_srwm_info = {
  819. ILK_CURSOR_SR_FIFO,
  820. ILK_CURSOR_MAX_SRWM,
  821. ILK_CURSOR_DFT_SRWM,
  822. 2,
  823. ILK_FIFO_LINE_SIZE
  824. };
  825. static const struct intel_watermark_params sandybridge_display_wm_info = {
  826. SNB_DISPLAY_FIFO,
  827. SNB_DISPLAY_MAXWM,
  828. SNB_DISPLAY_DFTWM,
  829. 2,
  830. SNB_FIFO_LINE_SIZE
  831. };
  832. static const struct intel_watermark_params sandybridge_cursor_wm_info = {
  833. SNB_CURSOR_FIFO,
  834. SNB_CURSOR_MAXWM,
  835. SNB_CURSOR_DFTWM,
  836. 2,
  837. SNB_FIFO_LINE_SIZE
  838. };
  839. static const struct intel_watermark_params sandybridge_display_srwm_info = {
  840. SNB_DISPLAY_SR_FIFO,
  841. SNB_DISPLAY_MAX_SRWM,
  842. SNB_DISPLAY_DFT_SRWM,
  843. 2,
  844. SNB_FIFO_LINE_SIZE
  845. };
  846. static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
  847. SNB_CURSOR_SR_FIFO,
  848. SNB_CURSOR_MAX_SRWM,
  849. SNB_CURSOR_DFT_SRWM,
  850. 2,
  851. SNB_FIFO_LINE_SIZE
  852. };
  853. /**
  854. * intel_calculate_wm - calculate watermark level
  855. * @clock_in_khz: pixel clock
  856. * @wm: chip FIFO params
  857. * @pixel_size: display pixel size
  858. * @latency_ns: memory latency for the platform
  859. *
  860. * Calculate the watermark level (the level at which the display plane will
  861. * start fetching from memory again). Each chip has a different display
  862. * FIFO size and allocation, so the caller needs to figure that out and pass
  863. * in the correct intel_watermark_params structure.
  864. *
  865. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  866. * on the pixel size. When it reaches the watermark level, it'll start
  867. * fetching FIFO line sized based chunks from memory until the FIFO fills
  868. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  869. * will occur, and a display engine hang could result.
  870. */
  871. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  872. const struct intel_watermark_params *wm,
  873. int fifo_size,
  874. int pixel_size,
  875. unsigned long latency_ns)
  876. {
  877. long entries_required, wm_size;
  878. /*
  879. * Note: we need to make sure we don't overflow for various clock &
  880. * latency values.
  881. * clocks go from a few thousand to several hundred thousand.
  882. * latency is usually a few thousand
  883. */
  884. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  885. 1000;
  886. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  887. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  888. wm_size = fifo_size - (entries_required + wm->guard_size);
  889. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  890. /* Don't promote wm_size to unsigned... */
  891. if (wm_size > (long)wm->max_wm)
  892. wm_size = wm->max_wm;
  893. if (wm_size <= 0)
  894. wm_size = wm->default_wm;
  895. return wm_size;
  896. }
  897. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  898. {
  899. struct drm_crtc *crtc, *enabled = NULL;
  900. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  901. if (intel_crtc_active(crtc)) {
  902. if (enabled)
  903. return NULL;
  904. enabled = crtc;
  905. }
  906. }
  907. return enabled;
  908. }
  909. static void pineview_update_wm(struct drm_device *dev)
  910. {
  911. struct drm_i915_private *dev_priv = dev->dev_private;
  912. struct drm_crtc *crtc;
  913. const struct cxsr_latency *latency;
  914. u32 reg;
  915. unsigned long wm;
  916. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  917. dev_priv->fsb_freq, dev_priv->mem_freq);
  918. if (!latency) {
  919. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  920. pineview_disable_cxsr(dev);
  921. return;
  922. }
  923. crtc = single_enabled_crtc(dev);
  924. if (crtc) {
  925. int clock = crtc->mode.clock;
  926. int pixel_size = crtc->fb->bits_per_pixel / 8;
  927. /* Display SR */
  928. wm = intel_calculate_wm(clock, &pineview_display_wm,
  929. pineview_display_wm.fifo_size,
  930. pixel_size, latency->display_sr);
  931. reg = I915_READ(DSPFW1);
  932. reg &= ~DSPFW_SR_MASK;
  933. reg |= wm << DSPFW_SR_SHIFT;
  934. I915_WRITE(DSPFW1, reg);
  935. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  936. /* cursor SR */
  937. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  938. pineview_display_wm.fifo_size,
  939. pixel_size, latency->cursor_sr);
  940. reg = I915_READ(DSPFW3);
  941. reg &= ~DSPFW_CURSOR_SR_MASK;
  942. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  943. I915_WRITE(DSPFW3, reg);
  944. /* Display HPLL off SR */
  945. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  946. pineview_display_hplloff_wm.fifo_size,
  947. pixel_size, latency->display_hpll_disable);
  948. reg = I915_READ(DSPFW3);
  949. reg &= ~DSPFW_HPLL_SR_MASK;
  950. reg |= wm & DSPFW_HPLL_SR_MASK;
  951. I915_WRITE(DSPFW3, reg);
  952. /* cursor HPLL off SR */
  953. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  954. pineview_display_hplloff_wm.fifo_size,
  955. pixel_size, latency->cursor_hpll_disable);
  956. reg = I915_READ(DSPFW3);
  957. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  958. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  959. I915_WRITE(DSPFW3, reg);
  960. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  961. /* activate cxsr */
  962. I915_WRITE(DSPFW3,
  963. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  964. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  965. } else {
  966. pineview_disable_cxsr(dev);
  967. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  968. }
  969. }
  970. static bool g4x_compute_wm0(struct drm_device *dev,
  971. int plane,
  972. const struct intel_watermark_params *display,
  973. int display_latency_ns,
  974. const struct intel_watermark_params *cursor,
  975. int cursor_latency_ns,
  976. int *plane_wm,
  977. int *cursor_wm)
  978. {
  979. struct drm_crtc *crtc;
  980. int htotal, hdisplay, clock, pixel_size;
  981. int line_time_us, line_count;
  982. int entries, tlb_miss;
  983. crtc = intel_get_crtc_for_plane(dev, plane);
  984. if (!intel_crtc_active(crtc)) {
  985. *cursor_wm = cursor->guard_size;
  986. *plane_wm = display->guard_size;
  987. return false;
  988. }
  989. htotal = crtc->mode.htotal;
  990. hdisplay = crtc->mode.hdisplay;
  991. clock = crtc->mode.clock;
  992. pixel_size = crtc->fb->bits_per_pixel / 8;
  993. /* Use the small buffer method to calculate plane watermark */
  994. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  995. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  996. if (tlb_miss > 0)
  997. entries += tlb_miss;
  998. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  999. *plane_wm = entries + display->guard_size;
  1000. if (*plane_wm > (int)display->max_wm)
  1001. *plane_wm = display->max_wm;
  1002. /* Use the large buffer method to calculate cursor watermark */
  1003. line_time_us = ((htotal * 1000) / clock);
  1004. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  1005. entries = line_count * 64 * pixel_size;
  1006. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  1007. if (tlb_miss > 0)
  1008. entries += tlb_miss;
  1009. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1010. *cursor_wm = entries + cursor->guard_size;
  1011. if (*cursor_wm > (int)cursor->max_wm)
  1012. *cursor_wm = (int)cursor->max_wm;
  1013. return true;
  1014. }
  1015. /*
  1016. * Check the wm result.
  1017. *
  1018. * If any calculated watermark values is larger than the maximum value that
  1019. * can be programmed into the associated watermark register, that watermark
  1020. * must be disabled.
  1021. */
  1022. static bool g4x_check_srwm(struct drm_device *dev,
  1023. int display_wm, int cursor_wm,
  1024. const struct intel_watermark_params *display,
  1025. const struct intel_watermark_params *cursor)
  1026. {
  1027. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  1028. display_wm, cursor_wm);
  1029. if (display_wm > display->max_wm) {
  1030. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  1031. display_wm, display->max_wm);
  1032. return false;
  1033. }
  1034. if (cursor_wm > cursor->max_wm) {
  1035. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  1036. cursor_wm, cursor->max_wm);
  1037. return false;
  1038. }
  1039. if (!(display_wm || cursor_wm)) {
  1040. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  1041. return false;
  1042. }
  1043. return true;
  1044. }
  1045. static bool g4x_compute_srwm(struct drm_device *dev,
  1046. int plane,
  1047. int latency_ns,
  1048. const struct intel_watermark_params *display,
  1049. const struct intel_watermark_params *cursor,
  1050. int *display_wm, int *cursor_wm)
  1051. {
  1052. struct drm_crtc *crtc;
  1053. int hdisplay, htotal, pixel_size, clock;
  1054. unsigned long line_time_us;
  1055. int line_count, line_size;
  1056. int small, large;
  1057. int entries;
  1058. if (!latency_ns) {
  1059. *display_wm = *cursor_wm = 0;
  1060. return false;
  1061. }
  1062. crtc = intel_get_crtc_for_plane(dev, plane);
  1063. hdisplay = crtc->mode.hdisplay;
  1064. htotal = crtc->mode.htotal;
  1065. clock = crtc->mode.clock;
  1066. pixel_size = crtc->fb->bits_per_pixel / 8;
  1067. line_time_us = (htotal * 1000) / clock;
  1068. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1069. line_size = hdisplay * pixel_size;
  1070. /* Use the minimum of the small and large buffer method for primary */
  1071. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1072. large = line_count * line_size;
  1073. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1074. *display_wm = entries + display->guard_size;
  1075. /* calculate the self-refresh watermark for display cursor */
  1076. entries = line_count * pixel_size * 64;
  1077. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1078. *cursor_wm = entries + cursor->guard_size;
  1079. return g4x_check_srwm(dev,
  1080. *display_wm, *cursor_wm,
  1081. display, cursor);
  1082. }
  1083. static bool vlv_compute_drain_latency(struct drm_device *dev,
  1084. int plane,
  1085. int *plane_prec_mult,
  1086. int *plane_dl,
  1087. int *cursor_prec_mult,
  1088. int *cursor_dl)
  1089. {
  1090. struct drm_crtc *crtc;
  1091. int clock, pixel_size;
  1092. int entries;
  1093. crtc = intel_get_crtc_for_plane(dev, plane);
  1094. if (!intel_crtc_active(crtc))
  1095. return false;
  1096. clock = crtc->mode.clock; /* VESA DOT Clock */
  1097. pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
  1098. entries = (clock / 1000) * pixel_size;
  1099. *plane_prec_mult = (entries > 256) ?
  1100. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1101. *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
  1102. pixel_size);
  1103. entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
  1104. *cursor_prec_mult = (entries > 256) ?
  1105. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1106. *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
  1107. return true;
  1108. }
  1109. /*
  1110. * Update drain latency registers of memory arbiter
  1111. *
  1112. * Valleyview SoC has a new memory arbiter and needs drain latency registers
  1113. * to be programmed. Each plane has a drain latency multiplier and a drain
  1114. * latency value.
  1115. */
  1116. static void vlv_update_drain_latency(struct drm_device *dev)
  1117. {
  1118. struct drm_i915_private *dev_priv = dev->dev_private;
  1119. int planea_prec, planea_dl, planeb_prec, planeb_dl;
  1120. int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
  1121. int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
  1122. either 16 or 32 */
  1123. /* For plane A, Cursor A */
  1124. if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
  1125. &cursor_prec_mult, &cursora_dl)) {
  1126. cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1127. DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
  1128. planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1129. DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
  1130. I915_WRITE(VLV_DDL1, cursora_prec |
  1131. (cursora_dl << DDL_CURSORA_SHIFT) |
  1132. planea_prec | planea_dl);
  1133. }
  1134. /* For plane B, Cursor B */
  1135. if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
  1136. &cursor_prec_mult, &cursorb_dl)) {
  1137. cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1138. DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
  1139. planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1140. DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
  1141. I915_WRITE(VLV_DDL2, cursorb_prec |
  1142. (cursorb_dl << DDL_CURSORB_SHIFT) |
  1143. planeb_prec | planeb_dl);
  1144. }
  1145. }
  1146. #define single_plane_enabled(mask) is_power_of_2(mask)
  1147. static void valleyview_update_wm(struct drm_device *dev)
  1148. {
  1149. static const int sr_latency_ns = 12000;
  1150. struct drm_i915_private *dev_priv = dev->dev_private;
  1151. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1152. int plane_sr, cursor_sr;
  1153. int ignore_plane_sr, ignore_cursor_sr;
  1154. unsigned int enabled = 0;
  1155. vlv_update_drain_latency(dev);
  1156. if (g4x_compute_wm0(dev, 0,
  1157. &valleyview_wm_info, latency_ns,
  1158. &valleyview_cursor_wm_info, latency_ns,
  1159. &planea_wm, &cursora_wm))
  1160. enabled |= 1;
  1161. if (g4x_compute_wm0(dev, 1,
  1162. &valleyview_wm_info, latency_ns,
  1163. &valleyview_cursor_wm_info, latency_ns,
  1164. &planeb_wm, &cursorb_wm))
  1165. enabled |= 2;
  1166. if (single_plane_enabled(enabled) &&
  1167. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1168. sr_latency_ns,
  1169. &valleyview_wm_info,
  1170. &valleyview_cursor_wm_info,
  1171. &plane_sr, &ignore_cursor_sr) &&
  1172. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1173. 2*sr_latency_ns,
  1174. &valleyview_wm_info,
  1175. &valleyview_cursor_wm_info,
  1176. &ignore_plane_sr, &cursor_sr)) {
  1177. I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
  1178. } else {
  1179. I915_WRITE(FW_BLC_SELF_VLV,
  1180. I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
  1181. plane_sr = cursor_sr = 0;
  1182. }
  1183. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1184. planea_wm, cursora_wm,
  1185. planeb_wm, cursorb_wm,
  1186. plane_sr, cursor_sr);
  1187. I915_WRITE(DSPFW1,
  1188. (plane_sr << DSPFW_SR_SHIFT) |
  1189. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1190. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1191. planea_wm);
  1192. I915_WRITE(DSPFW2,
  1193. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1194. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1195. I915_WRITE(DSPFW3,
  1196. (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
  1197. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1198. }
  1199. static void g4x_update_wm(struct drm_device *dev)
  1200. {
  1201. static const int sr_latency_ns = 12000;
  1202. struct drm_i915_private *dev_priv = dev->dev_private;
  1203. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1204. int plane_sr, cursor_sr;
  1205. unsigned int enabled = 0;
  1206. if (g4x_compute_wm0(dev, 0,
  1207. &g4x_wm_info, latency_ns,
  1208. &g4x_cursor_wm_info, latency_ns,
  1209. &planea_wm, &cursora_wm))
  1210. enabled |= 1;
  1211. if (g4x_compute_wm0(dev, 1,
  1212. &g4x_wm_info, latency_ns,
  1213. &g4x_cursor_wm_info, latency_ns,
  1214. &planeb_wm, &cursorb_wm))
  1215. enabled |= 2;
  1216. if (single_plane_enabled(enabled) &&
  1217. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1218. sr_latency_ns,
  1219. &g4x_wm_info,
  1220. &g4x_cursor_wm_info,
  1221. &plane_sr, &cursor_sr)) {
  1222. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1223. } else {
  1224. I915_WRITE(FW_BLC_SELF,
  1225. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  1226. plane_sr = cursor_sr = 0;
  1227. }
  1228. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1229. planea_wm, cursora_wm,
  1230. planeb_wm, cursorb_wm,
  1231. plane_sr, cursor_sr);
  1232. I915_WRITE(DSPFW1,
  1233. (plane_sr << DSPFW_SR_SHIFT) |
  1234. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1235. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1236. planea_wm);
  1237. I915_WRITE(DSPFW2,
  1238. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1239. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1240. /* HPLL off in SR has some issues on G4x... disable it */
  1241. I915_WRITE(DSPFW3,
  1242. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1243. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1244. }
  1245. static void i965_update_wm(struct drm_device *dev)
  1246. {
  1247. struct drm_i915_private *dev_priv = dev->dev_private;
  1248. struct drm_crtc *crtc;
  1249. int srwm = 1;
  1250. int cursor_sr = 16;
  1251. /* Calc sr entries for one plane configs */
  1252. crtc = single_enabled_crtc(dev);
  1253. if (crtc) {
  1254. /* self-refresh has much higher latency */
  1255. static const int sr_latency_ns = 12000;
  1256. int clock = crtc->mode.clock;
  1257. int htotal = crtc->mode.htotal;
  1258. int hdisplay = crtc->mode.hdisplay;
  1259. int pixel_size = crtc->fb->bits_per_pixel / 8;
  1260. unsigned long line_time_us;
  1261. int entries;
  1262. line_time_us = ((htotal * 1000) / clock);
  1263. /* Use ns/us then divide to preserve precision */
  1264. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1265. pixel_size * hdisplay;
  1266. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1267. srwm = I965_FIFO_SIZE - entries;
  1268. if (srwm < 0)
  1269. srwm = 1;
  1270. srwm &= 0x1ff;
  1271. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1272. entries, srwm);
  1273. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1274. pixel_size * 64;
  1275. entries = DIV_ROUND_UP(entries,
  1276. i965_cursor_wm_info.cacheline_size);
  1277. cursor_sr = i965_cursor_wm_info.fifo_size -
  1278. (entries + i965_cursor_wm_info.guard_size);
  1279. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1280. cursor_sr = i965_cursor_wm_info.max_wm;
  1281. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1282. "cursor %d\n", srwm, cursor_sr);
  1283. if (IS_CRESTLINE(dev))
  1284. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1285. } else {
  1286. /* Turn off self refresh if both pipes are enabled */
  1287. if (IS_CRESTLINE(dev))
  1288. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  1289. & ~FW_BLC_SELF_EN);
  1290. }
  1291. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1292. srwm);
  1293. /* 965 has limitations... */
  1294. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  1295. (8 << 16) | (8 << 8) | (8 << 0));
  1296. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  1297. /* update cursor SR watermark */
  1298. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1299. }
  1300. static void i9xx_update_wm(struct drm_device *dev)
  1301. {
  1302. struct drm_i915_private *dev_priv = dev->dev_private;
  1303. const struct intel_watermark_params *wm_info;
  1304. uint32_t fwater_lo;
  1305. uint32_t fwater_hi;
  1306. int cwm, srwm = 1;
  1307. int fifo_size;
  1308. int planea_wm, planeb_wm;
  1309. struct drm_crtc *crtc, *enabled = NULL;
  1310. if (IS_I945GM(dev))
  1311. wm_info = &i945_wm_info;
  1312. else if (!IS_GEN2(dev))
  1313. wm_info = &i915_wm_info;
  1314. else
  1315. wm_info = &i855_wm_info;
  1316. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1317. crtc = intel_get_crtc_for_plane(dev, 0);
  1318. if (intel_crtc_active(crtc)) {
  1319. int cpp = crtc->fb->bits_per_pixel / 8;
  1320. if (IS_GEN2(dev))
  1321. cpp = 4;
  1322. planea_wm = intel_calculate_wm(crtc->mode.clock,
  1323. wm_info, fifo_size, cpp,
  1324. latency_ns);
  1325. enabled = crtc;
  1326. } else
  1327. planea_wm = fifo_size - wm_info->guard_size;
  1328. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1329. crtc = intel_get_crtc_for_plane(dev, 1);
  1330. if (intel_crtc_active(crtc)) {
  1331. int cpp = crtc->fb->bits_per_pixel / 8;
  1332. if (IS_GEN2(dev))
  1333. cpp = 4;
  1334. planeb_wm = intel_calculate_wm(crtc->mode.clock,
  1335. wm_info, fifo_size, cpp,
  1336. latency_ns);
  1337. if (enabled == NULL)
  1338. enabled = crtc;
  1339. else
  1340. enabled = NULL;
  1341. } else
  1342. planeb_wm = fifo_size - wm_info->guard_size;
  1343. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1344. /*
  1345. * Overlay gets an aggressive default since video jitter is bad.
  1346. */
  1347. cwm = 2;
  1348. /* Play safe and disable self-refresh before adjusting watermarks. */
  1349. if (IS_I945G(dev) || IS_I945GM(dev))
  1350. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  1351. else if (IS_I915GM(dev))
  1352. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  1353. /* Calc sr entries for one plane configs */
  1354. if (HAS_FW_BLC(dev) && enabled) {
  1355. /* self-refresh has much higher latency */
  1356. static const int sr_latency_ns = 6000;
  1357. int clock = enabled->mode.clock;
  1358. int htotal = enabled->mode.htotal;
  1359. int hdisplay = enabled->mode.hdisplay;
  1360. int pixel_size = enabled->fb->bits_per_pixel / 8;
  1361. unsigned long line_time_us;
  1362. int entries;
  1363. line_time_us = (htotal * 1000) / clock;
  1364. /* Use ns/us then divide to preserve precision */
  1365. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1366. pixel_size * hdisplay;
  1367. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1368. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1369. srwm = wm_info->fifo_size - entries;
  1370. if (srwm < 0)
  1371. srwm = 1;
  1372. if (IS_I945G(dev) || IS_I945GM(dev))
  1373. I915_WRITE(FW_BLC_SELF,
  1374. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1375. else if (IS_I915GM(dev))
  1376. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1377. }
  1378. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1379. planea_wm, planeb_wm, cwm, srwm);
  1380. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1381. fwater_hi = (cwm & 0x1f);
  1382. /* Set request length to 8 cachelines per fetch */
  1383. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1384. fwater_hi = fwater_hi | (1 << 8);
  1385. I915_WRITE(FW_BLC, fwater_lo);
  1386. I915_WRITE(FW_BLC2, fwater_hi);
  1387. if (HAS_FW_BLC(dev)) {
  1388. if (enabled) {
  1389. if (IS_I945G(dev) || IS_I945GM(dev))
  1390. I915_WRITE(FW_BLC_SELF,
  1391. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  1392. else if (IS_I915GM(dev))
  1393. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  1394. DRM_DEBUG_KMS("memory self refresh enabled\n");
  1395. } else
  1396. DRM_DEBUG_KMS("memory self refresh disabled\n");
  1397. }
  1398. }
  1399. static void i830_update_wm(struct drm_device *dev)
  1400. {
  1401. struct drm_i915_private *dev_priv = dev->dev_private;
  1402. struct drm_crtc *crtc;
  1403. uint32_t fwater_lo;
  1404. int planea_wm;
  1405. crtc = single_enabled_crtc(dev);
  1406. if (crtc == NULL)
  1407. return;
  1408. planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
  1409. dev_priv->display.get_fifo_size(dev, 0),
  1410. 4, latency_ns);
  1411. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1412. fwater_lo |= (3<<8) | planea_wm;
  1413. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1414. I915_WRITE(FW_BLC, fwater_lo);
  1415. }
  1416. #define ILK_LP0_PLANE_LATENCY 700
  1417. #define ILK_LP0_CURSOR_LATENCY 1300
  1418. /*
  1419. * Check the wm result.
  1420. *
  1421. * If any calculated watermark values is larger than the maximum value that
  1422. * can be programmed into the associated watermark register, that watermark
  1423. * must be disabled.
  1424. */
  1425. static bool ironlake_check_srwm(struct drm_device *dev, int level,
  1426. int fbc_wm, int display_wm, int cursor_wm,
  1427. const struct intel_watermark_params *display,
  1428. const struct intel_watermark_params *cursor)
  1429. {
  1430. struct drm_i915_private *dev_priv = dev->dev_private;
  1431. DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
  1432. " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
  1433. if (fbc_wm > SNB_FBC_MAX_SRWM) {
  1434. DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
  1435. fbc_wm, SNB_FBC_MAX_SRWM, level);
  1436. /* fbc has it's own way to disable FBC WM */
  1437. I915_WRITE(DISP_ARB_CTL,
  1438. I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
  1439. return false;
  1440. } else if (INTEL_INFO(dev)->gen >= 6) {
  1441. /* enable FBC WM (except on ILK, where it must remain off) */
  1442. I915_WRITE(DISP_ARB_CTL,
  1443. I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
  1444. }
  1445. if (display_wm > display->max_wm) {
  1446. DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
  1447. display_wm, SNB_DISPLAY_MAX_SRWM, level);
  1448. return false;
  1449. }
  1450. if (cursor_wm > cursor->max_wm) {
  1451. DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
  1452. cursor_wm, SNB_CURSOR_MAX_SRWM, level);
  1453. return false;
  1454. }
  1455. if (!(fbc_wm || display_wm || cursor_wm)) {
  1456. DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
  1457. return false;
  1458. }
  1459. return true;
  1460. }
  1461. /*
  1462. * Compute watermark values of WM[1-3],
  1463. */
  1464. static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
  1465. int latency_ns,
  1466. const struct intel_watermark_params *display,
  1467. const struct intel_watermark_params *cursor,
  1468. int *fbc_wm, int *display_wm, int *cursor_wm)
  1469. {
  1470. struct drm_crtc *crtc;
  1471. unsigned long line_time_us;
  1472. int hdisplay, htotal, pixel_size, clock;
  1473. int line_count, line_size;
  1474. int small, large;
  1475. int entries;
  1476. if (!latency_ns) {
  1477. *fbc_wm = *display_wm = *cursor_wm = 0;
  1478. return false;
  1479. }
  1480. crtc = intel_get_crtc_for_plane(dev, plane);
  1481. hdisplay = crtc->mode.hdisplay;
  1482. htotal = crtc->mode.htotal;
  1483. clock = crtc->mode.clock;
  1484. pixel_size = crtc->fb->bits_per_pixel / 8;
  1485. line_time_us = (htotal * 1000) / clock;
  1486. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1487. line_size = hdisplay * pixel_size;
  1488. /* Use the minimum of the small and large buffer method for primary */
  1489. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1490. large = line_count * line_size;
  1491. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1492. *display_wm = entries + display->guard_size;
  1493. /*
  1494. * Spec says:
  1495. * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
  1496. */
  1497. *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
  1498. /* calculate the self-refresh watermark for display cursor */
  1499. entries = line_count * pixel_size * 64;
  1500. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1501. *cursor_wm = entries + cursor->guard_size;
  1502. return ironlake_check_srwm(dev, level,
  1503. *fbc_wm, *display_wm, *cursor_wm,
  1504. display, cursor);
  1505. }
  1506. static void ironlake_update_wm(struct drm_device *dev)
  1507. {
  1508. struct drm_i915_private *dev_priv = dev->dev_private;
  1509. int fbc_wm, plane_wm, cursor_wm;
  1510. unsigned int enabled;
  1511. enabled = 0;
  1512. if (g4x_compute_wm0(dev, 0,
  1513. &ironlake_display_wm_info,
  1514. ILK_LP0_PLANE_LATENCY,
  1515. &ironlake_cursor_wm_info,
  1516. ILK_LP0_CURSOR_LATENCY,
  1517. &plane_wm, &cursor_wm)) {
  1518. I915_WRITE(WM0_PIPEA_ILK,
  1519. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1520. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1521. " plane %d, " "cursor: %d\n",
  1522. plane_wm, cursor_wm);
  1523. enabled |= 1;
  1524. }
  1525. if (g4x_compute_wm0(dev, 1,
  1526. &ironlake_display_wm_info,
  1527. ILK_LP0_PLANE_LATENCY,
  1528. &ironlake_cursor_wm_info,
  1529. ILK_LP0_CURSOR_LATENCY,
  1530. &plane_wm, &cursor_wm)) {
  1531. I915_WRITE(WM0_PIPEB_ILK,
  1532. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1533. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1534. " plane %d, cursor: %d\n",
  1535. plane_wm, cursor_wm);
  1536. enabled |= 2;
  1537. }
  1538. /*
  1539. * Calculate and update the self-refresh watermark only when one
  1540. * display plane is used.
  1541. */
  1542. I915_WRITE(WM3_LP_ILK, 0);
  1543. I915_WRITE(WM2_LP_ILK, 0);
  1544. I915_WRITE(WM1_LP_ILK, 0);
  1545. if (!single_plane_enabled(enabled))
  1546. return;
  1547. enabled = ffs(enabled) - 1;
  1548. /* WM1 */
  1549. if (!ironlake_compute_srwm(dev, 1, enabled,
  1550. ILK_READ_WM1_LATENCY() * 500,
  1551. &ironlake_display_srwm_info,
  1552. &ironlake_cursor_srwm_info,
  1553. &fbc_wm, &plane_wm, &cursor_wm))
  1554. return;
  1555. I915_WRITE(WM1_LP_ILK,
  1556. WM1_LP_SR_EN |
  1557. (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1558. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1559. (plane_wm << WM1_LP_SR_SHIFT) |
  1560. cursor_wm);
  1561. /* WM2 */
  1562. if (!ironlake_compute_srwm(dev, 2, enabled,
  1563. ILK_READ_WM2_LATENCY() * 500,
  1564. &ironlake_display_srwm_info,
  1565. &ironlake_cursor_srwm_info,
  1566. &fbc_wm, &plane_wm, &cursor_wm))
  1567. return;
  1568. I915_WRITE(WM2_LP_ILK,
  1569. WM2_LP_EN |
  1570. (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1571. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1572. (plane_wm << WM1_LP_SR_SHIFT) |
  1573. cursor_wm);
  1574. /*
  1575. * WM3 is unsupported on ILK, probably because we don't have latency
  1576. * data for that power state
  1577. */
  1578. }
  1579. static void sandybridge_update_wm(struct drm_device *dev)
  1580. {
  1581. struct drm_i915_private *dev_priv = dev->dev_private;
  1582. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  1583. u32 val;
  1584. int fbc_wm, plane_wm, cursor_wm;
  1585. unsigned int enabled;
  1586. enabled = 0;
  1587. if (g4x_compute_wm0(dev, 0,
  1588. &sandybridge_display_wm_info, latency,
  1589. &sandybridge_cursor_wm_info, latency,
  1590. &plane_wm, &cursor_wm)) {
  1591. val = I915_READ(WM0_PIPEA_ILK);
  1592. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1593. I915_WRITE(WM0_PIPEA_ILK, val |
  1594. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1595. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1596. " plane %d, " "cursor: %d\n",
  1597. plane_wm, cursor_wm);
  1598. enabled |= 1;
  1599. }
  1600. if (g4x_compute_wm0(dev, 1,
  1601. &sandybridge_display_wm_info, latency,
  1602. &sandybridge_cursor_wm_info, latency,
  1603. &plane_wm, &cursor_wm)) {
  1604. val = I915_READ(WM0_PIPEB_ILK);
  1605. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1606. I915_WRITE(WM0_PIPEB_ILK, val |
  1607. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1608. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1609. " plane %d, cursor: %d\n",
  1610. plane_wm, cursor_wm);
  1611. enabled |= 2;
  1612. }
  1613. /*
  1614. * Calculate and update the self-refresh watermark only when one
  1615. * display plane is used.
  1616. *
  1617. * SNB support 3 levels of watermark.
  1618. *
  1619. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  1620. * and disabled in the descending order
  1621. *
  1622. */
  1623. I915_WRITE(WM3_LP_ILK, 0);
  1624. I915_WRITE(WM2_LP_ILK, 0);
  1625. I915_WRITE(WM1_LP_ILK, 0);
  1626. if (!single_plane_enabled(enabled) ||
  1627. dev_priv->sprite_scaling_enabled)
  1628. return;
  1629. enabled = ffs(enabled) - 1;
  1630. /* WM1 */
  1631. if (!ironlake_compute_srwm(dev, 1, enabled,
  1632. SNB_READ_WM1_LATENCY() * 500,
  1633. &sandybridge_display_srwm_info,
  1634. &sandybridge_cursor_srwm_info,
  1635. &fbc_wm, &plane_wm, &cursor_wm))
  1636. return;
  1637. I915_WRITE(WM1_LP_ILK,
  1638. WM1_LP_SR_EN |
  1639. (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1640. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1641. (plane_wm << WM1_LP_SR_SHIFT) |
  1642. cursor_wm);
  1643. /* WM2 */
  1644. if (!ironlake_compute_srwm(dev, 2, enabled,
  1645. SNB_READ_WM2_LATENCY() * 500,
  1646. &sandybridge_display_srwm_info,
  1647. &sandybridge_cursor_srwm_info,
  1648. &fbc_wm, &plane_wm, &cursor_wm))
  1649. return;
  1650. I915_WRITE(WM2_LP_ILK,
  1651. WM2_LP_EN |
  1652. (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1653. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1654. (plane_wm << WM1_LP_SR_SHIFT) |
  1655. cursor_wm);
  1656. /* WM3 */
  1657. if (!ironlake_compute_srwm(dev, 3, enabled,
  1658. SNB_READ_WM3_LATENCY() * 500,
  1659. &sandybridge_display_srwm_info,
  1660. &sandybridge_cursor_srwm_info,
  1661. &fbc_wm, &plane_wm, &cursor_wm))
  1662. return;
  1663. I915_WRITE(WM3_LP_ILK,
  1664. WM3_LP_EN |
  1665. (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1666. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1667. (plane_wm << WM1_LP_SR_SHIFT) |
  1668. cursor_wm);
  1669. }
  1670. static void ivybridge_update_wm(struct drm_device *dev)
  1671. {
  1672. struct drm_i915_private *dev_priv = dev->dev_private;
  1673. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  1674. u32 val;
  1675. int fbc_wm, plane_wm, cursor_wm;
  1676. int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
  1677. unsigned int enabled;
  1678. enabled = 0;
  1679. if (g4x_compute_wm0(dev, 0,
  1680. &sandybridge_display_wm_info, latency,
  1681. &sandybridge_cursor_wm_info, latency,
  1682. &plane_wm, &cursor_wm)) {
  1683. val = I915_READ(WM0_PIPEA_ILK);
  1684. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1685. I915_WRITE(WM0_PIPEA_ILK, val |
  1686. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1687. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1688. " plane %d, " "cursor: %d\n",
  1689. plane_wm, cursor_wm);
  1690. enabled |= 1;
  1691. }
  1692. if (g4x_compute_wm0(dev, 1,
  1693. &sandybridge_display_wm_info, latency,
  1694. &sandybridge_cursor_wm_info, latency,
  1695. &plane_wm, &cursor_wm)) {
  1696. val = I915_READ(WM0_PIPEB_ILK);
  1697. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1698. I915_WRITE(WM0_PIPEB_ILK, val |
  1699. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1700. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1701. " plane %d, cursor: %d\n",
  1702. plane_wm, cursor_wm);
  1703. enabled |= 2;
  1704. }
  1705. if (g4x_compute_wm0(dev, 2,
  1706. &sandybridge_display_wm_info, latency,
  1707. &sandybridge_cursor_wm_info, latency,
  1708. &plane_wm, &cursor_wm)) {
  1709. val = I915_READ(WM0_PIPEC_IVB);
  1710. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1711. I915_WRITE(WM0_PIPEC_IVB, val |
  1712. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1713. DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
  1714. " plane %d, cursor: %d\n",
  1715. plane_wm, cursor_wm);
  1716. enabled |= 3;
  1717. }
  1718. /*
  1719. * Calculate and update the self-refresh watermark only when one
  1720. * display plane is used.
  1721. *
  1722. * SNB support 3 levels of watermark.
  1723. *
  1724. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  1725. * and disabled in the descending order
  1726. *
  1727. */
  1728. I915_WRITE(WM3_LP_ILK, 0);
  1729. I915_WRITE(WM2_LP_ILK, 0);
  1730. I915_WRITE(WM1_LP_ILK, 0);
  1731. if (!single_plane_enabled(enabled) ||
  1732. dev_priv->sprite_scaling_enabled)
  1733. return;
  1734. enabled = ffs(enabled) - 1;
  1735. /* WM1 */
  1736. if (!ironlake_compute_srwm(dev, 1, enabled,
  1737. SNB_READ_WM1_LATENCY() * 500,
  1738. &sandybridge_display_srwm_info,
  1739. &sandybridge_cursor_srwm_info,
  1740. &fbc_wm, &plane_wm, &cursor_wm))
  1741. return;
  1742. I915_WRITE(WM1_LP_ILK,
  1743. WM1_LP_SR_EN |
  1744. (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1745. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1746. (plane_wm << WM1_LP_SR_SHIFT) |
  1747. cursor_wm);
  1748. /* WM2 */
  1749. if (!ironlake_compute_srwm(dev, 2, enabled,
  1750. SNB_READ_WM2_LATENCY() * 500,
  1751. &sandybridge_display_srwm_info,
  1752. &sandybridge_cursor_srwm_info,
  1753. &fbc_wm, &plane_wm, &cursor_wm))
  1754. return;
  1755. I915_WRITE(WM2_LP_ILK,
  1756. WM2_LP_EN |
  1757. (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1758. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1759. (plane_wm << WM1_LP_SR_SHIFT) |
  1760. cursor_wm);
  1761. /* WM3, note we have to correct the cursor latency */
  1762. if (!ironlake_compute_srwm(dev, 3, enabled,
  1763. SNB_READ_WM3_LATENCY() * 500,
  1764. &sandybridge_display_srwm_info,
  1765. &sandybridge_cursor_srwm_info,
  1766. &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
  1767. !ironlake_compute_srwm(dev, 3, enabled,
  1768. 2 * SNB_READ_WM3_LATENCY() * 500,
  1769. &sandybridge_display_srwm_info,
  1770. &sandybridge_cursor_srwm_info,
  1771. &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
  1772. return;
  1773. I915_WRITE(WM3_LP_ILK,
  1774. WM3_LP_EN |
  1775. (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1776. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1777. (plane_wm << WM1_LP_SR_SHIFT) |
  1778. cursor_wm);
  1779. }
  1780. static void
  1781. haswell_update_linetime_wm(struct drm_device *dev, int pipe,
  1782. struct drm_display_mode *mode)
  1783. {
  1784. struct drm_i915_private *dev_priv = dev->dev_private;
  1785. u32 temp;
  1786. temp = I915_READ(PIPE_WM_LINETIME(pipe));
  1787. temp &= ~PIPE_WM_LINETIME_MASK;
  1788. /* The WM are computed with base on how long it takes to fill a single
  1789. * row at the given clock rate, multiplied by 8.
  1790. * */
  1791. temp |= PIPE_WM_LINETIME_TIME(
  1792. ((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
  1793. /* IPS watermarks are only used by pipe A, and are ignored by
  1794. * pipes B and C. They are calculated similarly to the common
  1795. * linetime values, except that we are using CD clock frequency
  1796. * in MHz instead of pixel rate for the division.
  1797. *
  1798. * This is a placeholder for the IPS watermark calculation code.
  1799. */
  1800. I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
  1801. }
  1802. static bool
  1803. sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
  1804. uint32_t sprite_width, int pixel_size,
  1805. const struct intel_watermark_params *display,
  1806. int display_latency_ns, int *sprite_wm)
  1807. {
  1808. struct drm_crtc *crtc;
  1809. int clock;
  1810. int entries, tlb_miss;
  1811. crtc = intel_get_crtc_for_plane(dev, plane);
  1812. if (!intel_crtc_active(crtc)) {
  1813. *sprite_wm = display->guard_size;
  1814. return false;
  1815. }
  1816. clock = crtc->mode.clock;
  1817. /* Use the small buffer method to calculate the sprite watermark */
  1818. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  1819. tlb_miss = display->fifo_size*display->cacheline_size -
  1820. sprite_width * 8;
  1821. if (tlb_miss > 0)
  1822. entries += tlb_miss;
  1823. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  1824. *sprite_wm = entries + display->guard_size;
  1825. if (*sprite_wm > (int)display->max_wm)
  1826. *sprite_wm = display->max_wm;
  1827. return true;
  1828. }
  1829. static bool
  1830. sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
  1831. uint32_t sprite_width, int pixel_size,
  1832. const struct intel_watermark_params *display,
  1833. int latency_ns, int *sprite_wm)
  1834. {
  1835. struct drm_crtc *crtc;
  1836. unsigned long line_time_us;
  1837. int clock;
  1838. int line_count, line_size;
  1839. int small, large;
  1840. int entries;
  1841. if (!latency_ns) {
  1842. *sprite_wm = 0;
  1843. return false;
  1844. }
  1845. crtc = intel_get_crtc_for_plane(dev, plane);
  1846. clock = crtc->mode.clock;
  1847. if (!clock) {
  1848. *sprite_wm = 0;
  1849. return false;
  1850. }
  1851. line_time_us = (sprite_width * 1000) / clock;
  1852. if (!line_time_us) {
  1853. *sprite_wm = 0;
  1854. return false;
  1855. }
  1856. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1857. line_size = sprite_width * pixel_size;
  1858. /* Use the minimum of the small and large buffer method for primary */
  1859. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1860. large = line_count * line_size;
  1861. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1862. *sprite_wm = entries + display->guard_size;
  1863. return *sprite_wm > 0x3ff ? false : true;
  1864. }
  1865. static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
  1866. uint32_t sprite_width, int pixel_size)
  1867. {
  1868. struct drm_i915_private *dev_priv = dev->dev_private;
  1869. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  1870. u32 val;
  1871. int sprite_wm, reg;
  1872. int ret;
  1873. switch (pipe) {
  1874. case 0:
  1875. reg = WM0_PIPEA_ILK;
  1876. break;
  1877. case 1:
  1878. reg = WM0_PIPEB_ILK;
  1879. break;
  1880. case 2:
  1881. reg = WM0_PIPEC_IVB;
  1882. break;
  1883. default:
  1884. return; /* bad pipe */
  1885. }
  1886. ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
  1887. &sandybridge_display_wm_info,
  1888. latency, &sprite_wm);
  1889. if (!ret) {
  1890. DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
  1891. pipe_name(pipe));
  1892. return;
  1893. }
  1894. val = I915_READ(reg);
  1895. val &= ~WM0_PIPE_SPRITE_MASK;
  1896. I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
  1897. DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
  1898. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  1899. pixel_size,
  1900. &sandybridge_display_srwm_info,
  1901. SNB_READ_WM1_LATENCY() * 500,
  1902. &sprite_wm);
  1903. if (!ret) {
  1904. DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
  1905. pipe_name(pipe));
  1906. return;
  1907. }
  1908. I915_WRITE(WM1S_LP_ILK, sprite_wm);
  1909. /* Only IVB has two more LP watermarks for sprite */
  1910. if (!IS_IVYBRIDGE(dev))
  1911. return;
  1912. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  1913. pixel_size,
  1914. &sandybridge_display_srwm_info,
  1915. SNB_READ_WM2_LATENCY() * 500,
  1916. &sprite_wm);
  1917. if (!ret) {
  1918. DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
  1919. pipe_name(pipe));
  1920. return;
  1921. }
  1922. I915_WRITE(WM2S_LP_IVB, sprite_wm);
  1923. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  1924. pixel_size,
  1925. &sandybridge_display_srwm_info,
  1926. SNB_READ_WM3_LATENCY() * 500,
  1927. &sprite_wm);
  1928. if (!ret) {
  1929. DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
  1930. pipe_name(pipe));
  1931. return;
  1932. }
  1933. I915_WRITE(WM3S_LP_IVB, sprite_wm);
  1934. }
  1935. /**
  1936. * intel_update_watermarks - update FIFO watermark values based on current modes
  1937. *
  1938. * Calculate watermark values for the various WM regs based on current mode
  1939. * and plane configuration.
  1940. *
  1941. * There are several cases to deal with here:
  1942. * - normal (i.e. non-self-refresh)
  1943. * - self-refresh (SR) mode
  1944. * - lines are large relative to FIFO size (buffer can hold up to 2)
  1945. * - lines are small relative to FIFO size (buffer can hold more than 2
  1946. * lines), so need to account for TLB latency
  1947. *
  1948. * The normal calculation is:
  1949. * watermark = dotclock * bytes per pixel * latency
  1950. * where latency is platform & configuration dependent (we assume pessimal
  1951. * values here).
  1952. *
  1953. * The SR calculation is:
  1954. * watermark = (trunc(latency/line time)+1) * surface width *
  1955. * bytes per pixel
  1956. * where
  1957. * line time = htotal / dotclock
  1958. * surface width = hdisplay for normal plane and 64 for cursor
  1959. * and latency is assumed to be high, as above.
  1960. *
  1961. * The final value programmed to the register should always be rounded up,
  1962. * and include an extra 2 entries to account for clock crossings.
  1963. *
  1964. * We don't use the sprite, so we can ignore that. And on Crestline we have
  1965. * to set the non-SR watermarks to 8.
  1966. */
  1967. void intel_update_watermarks(struct drm_device *dev)
  1968. {
  1969. struct drm_i915_private *dev_priv = dev->dev_private;
  1970. if (dev_priv->display.update_wm)
  1971. dev_priv->display.update_wm(dev);
  1972. }
  1973. void intel_update_linetime_watermarks(struct drm_device *dev,
  1974. int pipe, struct drm_display_mode *mode)
  1975. {
  1976. struct drm_i915_private *dev_priv = dev->dev_private;
  1977. if (dev_priv->display.update_linetime_wm)
  1978. dev_priv->display.update_linetime_wm(dev, pipe, mode);
  1979. }
  1980. void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
  1981. uint32_t sprite_width, int pixel_size)
  1982. {
  1983. struct drm_i915_private *dev_priv = dev->dev_private;
  1984. if (dev_priv->display.update_sprite_wm)
  1985. dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
  1986. pixel_size);
  1987. }
  1988. static struct drm_i915_gem_object *
  1989. intel_alloc_context_page(struct drm_device *dev)
  1990. {
  1991. struct drm_i915_gem_object *ctx;
  1992. int ret;
  1993. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  1994. ctx = i915_gem_alloc_object(dev, 4096);
  1995. if (!ctx) {
  1996. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  1997. return NULL;
  1998. }
  1999. ret = i915_gem_object_pin(ctx, 4096, true, false);
  2000. if (ret) {
  2001. DRM_ERROR("failed to pin power context: %d\n", ret);
  2002. goto err_unref;
  2003. }
  2004. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  2005. if (ret) {
  2006. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  2007. goto err_unpin;
  2008. }
  2009. return ctx;
  2010. err_unpin:
  2011. i915_gem_object_unpin(ctx);
  2012. err_unref:
  2013. drm_gem_object_unreference(&ctx->base);
  2014. return NULL;
  2015. }
  2016. /**
  2017. * Lock protecting IPS related data structures
  2018. */
  2019. DEFINE_SPINLOCK(mchdev_lock);
  2020. /* Global for IPS driver to get at the current i915 device. Protected by
  2021. * mchdev_lock. */
  2022. static struct drm_i915_private *i915_mch_dev;
  2023. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  2024. {
  2025. struct drm_i915_private *dev_priv = dev->dev_private;
  2026. u16 rgvswctl;
  2027. assert_spin_locked(&mchdev_lock);
  2028. rgvswctl = I915_READ16(MEMSWCTL);
  2029. if (rgvswctl & MEMCTL_CMD_STS) {
  2030. DRM_DEBUG("gpu busy, RCS change rejected\n");
  2031. return false; /* still busy with another command */
  2032. }
  2033. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  2034. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  2035. I915_WRITE16(MEMSWCTL, rgvswctl);
  2036. POSTING_READ16(MEMSWCTL);
  2037. rgvswctl |= MEMCTL_CMD_STS;
  2038. I915_WRITE16(MEMSWCTL, rgvswctl);
  2039. return true;
  2040. }
  2041. static void ironlake_enable_drps(struct drm_device *dev)
  2042. {
  2043. struct drm_i915_private *dev_priv = dev->dev_private;
  2044. u32 rgvmodectl = I915_READ(MEMMODECTL);
  2045. u8 fmax, fmin, fstart, vstart;
  2046. spin_lock_irq(&mchdev_lock);
  2047. /* Enable temp reporting */
  2048. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  2049. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  2050. /* 100ms RC evaluation intervals */
  2051. I915_WRITE(RCUPEI, 100000);
  2052. I915_WRITE(RCDNEI, 100000);
  2053. /* Set max/min thresholds to 90ms and 80ms respectively */
  2054. I915_WRITE(RCBMAXAVG, 90000);
  2055. I915_WRITE(RCBMINAVG, 80000);
  2056. I915_WRITE(MEMIHYST, 1);
  2057. /* Set up min, max, and cur for interrupt handling */
  2058. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  2059. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  2060. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  2061. MEMMODE_FSTART_SHIFT;
  2062. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  2063. PXVFREQ_PX_SHIFT;
  2064. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  2065. dev_priv->ips.fstart = fstart;
  2066. dev_priv->ips.max_delay = fstart;
  2067. dev_priv->ips.min_delay = fmin;
  2068. dev_priv->ips.cur_delay = fstart;
  2069. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  2070. fmax, fmin, fstart);
  2071. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  2072. /*
  2073. * Interrupts will be enabled in ironlake_irq_postinstall
  2074. */
  2075. I915_WRITE(VIDSTART, vstart);
  2076. POSTING_READ(VIDSTART);
  2077. rgvmodectl |= MEMMODE_SWMODE_EN;
  2078. I915_WRITE(MEMMODECTL, rgvmodectl);
  2079. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  2080. DRM_ERROR("stuck trying to change perf mode\n");
  2081. mdelay(1);
  2082. ironlake_set_drps(dev, fstart);
  2083. dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  2084. I915_READ(0x112e0);
  2085. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  2086. dev_priv->ips.last_count2 = I915_READ(0x112f4);
  2087. getrawmonotonic(&dev_priv->ips.last_time2);
  2088. spin_unlock_irq(&mchdev_lock);
  2089. }
  2090. static void ironlake_disable_drps(struct drm_device *dev)
  2091. {
  2092. struct drm_i915_private *dev_priv = dev->dev_private;
  2093. u16 rgvswctl;
  2094. spin_lock_irq(&mchdev_lock);
  2095. rgvswctl = I915_READ16(MEMSWCTL);
  2096. /* Ack interrupts, disable EFC interrupt */
  2097. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  2098. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  2099. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  2100. I915_WRITE(DEIIR, DE_PCU_EVENT);
  2101. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  2102. /* Go back to the starting frequency */
  2103. ironlake_set_drps(dev, dev_priv->ips.fstart);
  2104. mdelay(1);
  2105. rgvswctl |= MEMCTL_CMD_STS;
  2106. I915_WRITE(MEMSWCTL, rgvswctl);
  2107. mdelay(1);
  2108. spin_unlock_irq(&mchdev_lock);
  2109. }
  2110. /* There's a funny hw issue where the hw returns all 0 when reading from
  2111. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  2112. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  2113. * all limits and the gpu stuck at whatever frequency it is at atm).
  2114. */
  2115. static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
  2116. {
  2117. u32 limits;
  2118. limits = 0;
  2119. if (*val >= dev_priv->rps.max_delay)
  2120. *val = dev_priv->rps.max_delay;
  2121. limits |= dev_priv->rps.max_delay << 24;
  2122. /* Only set the down limit when we've reached the lowest level to avoid
  2123. * getting more interrupts, otherwise leave this clear. This prevents a
  2124. * race in the hw when coming out of rc6: There's a tiny window where
  2125. * the hw runs at the minimal clock before selecting the desired
  2126. * frequency, if the down threshold expires in that window we will not
  2127. * receive a down interrupt. */
  2128. if (*val <= dev_priv->rps.min_delay) {
  2129. *val = dev_priv->rps.min_delay;
  2130. limits |= dev_priv->rps.min_delay << 16;
  2131. }
  2132. return limits;
  2133. }
  2134. void gen6_set_rps(struct drm_device *dev, u8 val)
  2135. {
  2136. struct drm_i915_private *dev_priv = dev->dev_private;
  2137. u32 limits = gen6_rps_limits(dev_priv, &val);
  2138. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2139. WARN_ON(val > dev_priv->rps.max_delay);
  2140. WARN_ON(val < dev_priv->rps.min_delay);
  2141. if (val == dev_priv->rps.cur_delay)
  2142. return;
  2143. if (IS_HASWELL(dev))
  2144. I915_WRITE(GEN6_RPNSWREQ,
  2145. HSW_FREQUENCY(val));
  2146. else
  2147. I915_WRITE(GEN6_RPNSWREQ,
  2148. GEN6_FREQUENCY(val) |
  2149. GEN6_OFFSET(0) |
  2150. GEN6_AGGRESSIVE_TURBO);
  2151. /* Make sure we continue to get interrupts
  2152. * until we hit the minimum or maximum frequencies.
  2153. */
  2154. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
  2155. POSTING_READ(GEN6_RPNSWREQ);
  2156. dev_priv->rps.cur_delay = val;
  2157. trace_intel_gpu_freq_change(val * 50);
  2158. }
  2159. void valleyview_set_rps(struct drm_device *dev, u8 val)
  2160. {
  2161. struct drm_i915_private *dev_priv = dev->dev_private;
  2162. unsigned long timeout = jiffies + msecs_to_jiffies(10);
  2163. u32 limits = gen6_rps_limits(dev_priv, &val);
  2164. u32 pval;
  2165. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2166. WARN_ON(val > dev_priv->rps.max_delay);
  2167. WARN_ON(val < dev_priv->rps.min_delay);
  2168. DRM_DEBUG_DRIVER("gpu freq request from %d to %d\n",
  2169. vlv_gpu_freq(dev_priv->mem_freq,
  2170. dev_priv->rps.cur_delay),
  2171. vlv_gpu_freq(dev_priv->mem_freq, val));
  2172. if (val == dev_priv->rps.cur_delay)
  2173. return;
  2174. valleyview_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  2175. do {
  2176. valleyview_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS, &pval);
  2177. if (time_after(jiffies, timeout)) {
  2178. DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
  2179. break;
  2180. }
  2181. udelay(10);
  2182. } while (pval & 1);
  2183. valleyview_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS, &pval);
  2184. if ((pval >> 8) != val)
  2185. DRM_DEBUG_DRIVER("punit overrode freq: %d requested, but got %d\n",
  2186. val, pval >> 8);
  2187. /* Make sure we continue to get interrupts
  2188. * until we hit the minimum or maximum frequencies.
  2189. */
  2190. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
  2191. dev_priv->rps.cur_delay = pval >> 8;
  2192. trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
  2193. }
  2194. static void gen6_disable_rps(struct drm_device *dev)
  2195. {
  2196. struct drm_i915_private *dev_priv = dev->dev_private;
  2197. I915_WRITE(GEN6_RC_CONTROL, 0);
  2198. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  2199. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  2200. I915_WRITE(GEN6_PMIER, 0);
  2201. /* Complete PM interrupt masking here doesn't race with the rps work
  2202. * item again unmasking PM interrupts because that is using a different
  2203. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  2204. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  2205. spin_lock_irq(&dev_priv->rps.lock);
  2206. dev_priv->rps.pm_iir = 0;
  2207. spin_unlock_irq(&dev_priv->rps.lock);
  2208. I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
  2209. }
  2210. static void valleyview_disable_rps(struct drm_device *dev)
  2211. {
  2212. struct drm_i915_private *dev_priv = dev->dev_private;
  2213. I915_WRITE(GEN6_RC_CONTROL, 0);
  2214. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  2215. I915_WRITE(GEN6_PMIER, 0);
  2216. /* Complete PM interrupt masking here doesn't race with the rps work
  2217. * item again unmasking PM interrupts because that is using a different
  2218. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  2219. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  2220. spin_lock_irq(&dev_priv->rps.lock);
  2221. dev_priv->rps.pm_iir = 0;
  2222. spin_unlock_irq(&dev_priv->rps.lock);
  2223. I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
  2224. if (dev_priv->vlv_pctx) {
  2225. drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
  2226. dev_priv->vlv_pctx = NULL;
  2227. }
  2228. }
  2229. int intel_enable_rc6(const struct drm_device *dev)
  2230. {
  2231. /* Respect the kernel parameter if it is set */
  2232. if (i915_enable_rc6 >= 0)
  2233. return i915_enable_rc6;
  2234. /* Disable RC6 on Ironlake */
  2235. if (INTEL_INFO(dev)->gen == 5)
  2236. return 0;
  2237. if (IS_HASWELL(dev)) {
  2238. DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
  2239. return INTEL_RC6_ENABLE;
  2240. }
  2241. /* snb/ivb have more than one rc6 state. */
  2242. if (INTEL_INFO(dev)->gen == 6) {
  2243. DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
  2244. return INTEL_RC6_ENABLE;
  2245. }
  2246. DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
  2247. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  2248. }
  2249. static void gen6_enable_rps(struct drm_device *dev)
  2250. {
  2251. struct drm_i915_private *dev_priv = dev->dev_private;
  2252. struct intel_ring_buffer *ring;
  2253. u32 rp_state_cap;
  2254. u32 gt_perf_status;
  2255. u32 rc6vids, pcu_mbox, rc6_mask = 0;
  2256. u32 gtfifodbg;
  2257. int rc6_mode;
  2258. int i, ret;
  2259. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2260. /* Here begins a magic sequence of register writes to enable
  2261. * auto-downclocking.
  2262. *
  2263. * Perhaps there might be some value in exposing these to
  2264. * userspace...
  2265. */
  2266. I915_WRITE(GEN6_RC_STATE, 0);
  2267. /* Clear the DBG now so we don't confuse earlier errors */
  2268. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  2269. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  2270. I915_WRITE(GTFIFODBG, gtfifodbg);
  2271. }
  2272. gen6_gt_force_wake_get(dev_priv);
  2273. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  2274. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  2275. /* In units of 50MHz */
  2276. dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
  2277. dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
  2278. dev_priv->rps.cur_delay = 0;
  2279. /* disable the counters and set deterministic thresholds */
  2280. I915_WRITE(GEN6_RC_CONTROL, 0);
  2281. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  2282. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  2283. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  2284. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  2285. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  2286. for_each_ring(ring, dev_priv, i)
  2287. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  2288. I915_WRITE(GEN6_RC_SLEEP, 0);
  2289. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  2290. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  2291. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  2292. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  2293. /* Check if we are enabling RC6 */
  2294. rc6_mode = intel_enable_rc6(dev_priv->dev);
  2295. if (rc6_mode & INTEL_RC6_ENABLE)
  2296. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  2297. /* We don't use those on Haswell */
  2298. if (!IS_HASWELL(dev)) {
  2299. if (rc6_mode & INTEL_RC6p_ENABLE)
  2300. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  2301. if (rc6_mode & INTEL_RC6pp_ENABLE)
  2302. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  2303. }
  2304. DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
  2305. (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
  2306. (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
  2307. (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
  2308. I915_WRITE(GEN6_RC_CONTROL,
  2309. rc6_mask |
  2310. GEN6_RC_CTL_EI_MODE(1) |
  2311. GEN6_RC_CTL_HW_ENABLE);
  2312. if (IS_HASWELL(dev)) {
  2313. I915_WRITE(GEN6_RPNSWREQ,
  2314. HSW_FREQUENCY(10));
  2315. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  2316. HSW_FREQUENCY(12));
  2317. } else {
  2318. I915_WRITE(GEN6_RPNSWREQ,
  2319. GEN6_FREQUENCY(10) |
  2320. GEN6_OFFSET(0) |
  2321. GEN6_AGGRESSIVE_TURBO);
  2322. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  2323. GEN6_FREQUENCY(12));
  2324. }
  2325. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  2326. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  2327. dev_priv->rps.max_delay << 24 |
  2328. dev_priv->rps.min_delay << 16);
  2329. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  2330. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  2331. I915_WRITE(GEN6_RP_UP_EI, 66000);
  2332. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  2333. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  2334. I915_WRITE(GEN6_RP_CONTROL,
  2335. GEN6_RP_MEDIA_TURBO |
  2336. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2337. GEN6_RP_MEDIA_IS_GFX |
  2338. GEN6_RP_ENABLE |
  2339. GEN6_RP_UP_BUSY_AVG |
  2340. (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
  2341. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  2342. if (!ret && (IS_GEN6(dev) || IS_IVYBRIDGE(dev))) {
  2343. pcu_mbox = 0;
  2344. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  2345. if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
  2346. DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
  2347. (dev_priv->rps.max_delay & 0xff) * 50,
  2348. (pcu_mbox & 0xff) * 50);
  2349. dev_priv->rps.hw_max = pcu_mbox & 0xff;
  2350. }
  2351. } else {
  2352. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  2353. }
  2354. gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
  2355. /* requires MSI enabled */
  2356. I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
  2357. spin_lock_irq(&dev_priv->rps.lock);
  2358. WARN_ON(dev_priv->rps.pm_iir != 0);
  2359. I915_WRITE(GEN6_PMIMR, 0);
  2360. spin_unlock_irq(&dev_priv->rps.lock);
  2361. /* enable all PM interrupts */
  2362. I915_WRITE(GEN6_PMINTRMSK, 0);
  2363. rc6vids = 0;
  2364. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  2365. if (IS_GEN6(dev) && ret) {
  2366. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  2367. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  2368. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  2369. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  2370. rc6vids &= 0xffff00;
  2371. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  2372. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  2373. if (ret)
  2374. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  2375. }
  2376. gen6_gt_force_wake_put(dev_priv);
  2377. }
  2378. static void gen6_update_ring_freq(struct drm_device *dev)
  2379. {
  2380. struct drm_i915_private *dev_priv = dev->dev_private;
  2381. int min_freq = 15;
  2382. unsigned int gpu_freq;
  2383. unsigned int max_ia_freq, min_ring_freq;
  2384. int scaling_factor = 180;
  2385. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2386. max_ia_freq = cpufreq_quick_get_max(0);
  2387. /*
  2388. * Default to measured freq if none found, PCU will ensure we don't go
  2389. * over
  2390. */
  2391. if (!max_ia_freq)
  2392. max_ia_freq = tsc_khz;
  2393. /* Convert from kHz to MHz */
  2394. max_ia_freq /= 1000;
  2395. min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
  2396. /* convert DDR frequency from units of 133.3MHz to bandwidth */
  2397. min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;
  2398. /*
  2399. * For each potential GPU frequency, load a ring frequency we'd like
  2400. * to use for memory access. We do this by specifying the IA frequency
  2401. * the PCU should use as a reference to determine the ring frequency.
  2402. */
  2403. for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
  2404. gpu_freq--) {
  2405. int diff = dev_priv->rps.max_delay - gpu_freq;
  2406. unsigned int ia_freq = 0, ring_freq = 0;
  2407. if (IS_HASWELL(dev)) {
  2408. ring_freq = (gpu_freq * 5 + 3) / 4;
  2409. ring_freq = max(min_ring_freq, ring_freq);
  2410. /* leave ia_freq as the default, chosen by cpufreq */
  2411. } else {
  2412. /* On older processors, there is no separate ring
  2413. * clock domain, so in order to boost the bandwidth
  2414. * of the ring, we need to upclock the CPU (ia_freq).
  2415. *
  2416. * For GPU frequencies less than 750MHz,
  2417. * just use the lowest ring freq.
  2418. */
  2419. if (gpu_freq < min_freq)
  2420. ia_freq = 800;
  2421. else
  2422. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  2423. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  2424. }
  2425. sandybridge_pcode_write(dev_priv,
  2426. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  2427. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  2428. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  2429. gpu_freq);
  2430. }
  2431. }
  2432. int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  2433. {
  2434. u32 val, rp0;
  2435. valleyview_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE, &val);
  2436. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  2437. /* Clamp to max */
  2438. rp0 = min_t(u32, rp0, 0xea);
  2439. return rp0;
  2440. }
  2441. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  2442. {
  2443. u32 val, rpe;
  2444. valleyview_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO, &val);
  2445. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  2446. valleyview_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI, &val);
  2447. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  2448. return rpe;
  2449. }
  2450. int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  2451. {
  2452. u32 val;
  2453. valleyview_punit_read(dev_priv, PUNIT_REG_GPU_LFM, &val);
  2454. return val & 0xff;
  2455. }
  2456. static void vlv_rps_timer_work(struct work_struct *work)
  2457. {
  2458. drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
  2459. rps.vlv_work.work);
  2460. /*
  2461. * Timer fired, we must be idle. Drop to min voltage state.
  2462. * Note: we use RPe here since it should match the
  2463. * Vmin we were shooting for. That should give us better
  2464. * perf when we come back out of RC6 than if we used the
  2465. * min freq available.
  2466. */
  2467. mutex_lock(&dev_priv->rps.hw_lock);
  2468. valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
  2469. mutex_unlock(&dev_priv->rps.hw_lock);
  2470. }
  2471. static void valleyview_setup_pctx(struct drm_device *dev)
  2472. {
  2473. struct drm_i915_private *dev_priv = dev->dev_private;
  2474. struct drm_i915_gem_object *pctx;
  2475. unsigned long pctx_paddr;
  2476. u32 pcbr;
  2477. int pctx_size = 24*1024;
  2478. pcbr = I915_READ(VLV_PCBR);
  2479. if (pcbr) {
  2480. /* BIOS set it up already, grab the pre-alloc'd space */
  2481. int pcbr_offset;
  2482. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  2483. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
  2484. pcbr_offset,
  2485. -1,
  2486. pctx_size);
  2487. goto out;
  2488. }
  2489. /*
  2490. * From the Gunit register HAS:
  2491. * The Gfx driver is expected to program this register and ensure
  2492. * proper allocation within Gfx stolen memory. For example, this
  2493. * register should be programmed such than the PCBR range does not
  2494. * overlap with other ranges, such as the frame buffer, protected
  2495. * memory, or any other relevant ranges.
  2496. */
  2497. pctx = i915_gem_object_create_stolen(dev, pctx_size);
  2498. if (!pctx) {
  2499. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  2500. return;
  2501. }
  2502. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  2503. I915_WRITE(VLV_PCBR, pctx_paddr);
  2504. out:
  2505. dev_priv->vlv_pctx = pctx;
  2506. }
  2507. static void valleyview_enable_rps(struct drm_device *dev)
  2508. {
  2509. struct drm_i915_private *dev_priv = dev->dev_private;
  2510. struct intel_ring_buffer *ring;
  2511. u32 gtfifodbg, val, rpe;
  2512. int i;
  2513. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2514. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  2515. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  2516. I915_WRITE(GTFIFODBG, gtfifodbg);
  2517. }
  2518. valleyview_setup_pctx(dev);
  2519. gen6_gt_force_wake_get(dev_priv);
  2520. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  2521. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  2522. I915_WRITE(GEN6_RP_UP_EI, 66000);
  2523. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  2524. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  2525. I915_WRITE(GEN6_RP_CONTROL,
  2526. GEN6_RP_MEDIA_TURBO |
  2527. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2528. GEN6_RP_MEDIA_IS_GFX |
  2529. GEN6_RP_ENABLE |
  2530. GEN6_RP_UP_BUSY_AVG |
  2531. GEN6_RP_DOWN_IDLE_CONT);
  2532. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  2533. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  2534. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  2535. for_each_ring(ring, dev_priv, i)
  2536. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  2537. I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
  2538. /* allows RC6 residency counter to work */
  2539. I915_WRITE(0x138104, _MASKED_BIT_ENABLE(0x3));
  2540. I915_WRITE(GEN6_RC_CONTROL,
  2541. GEN7_RC_CTL_TO_MODE);
  2542. valleyview_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS, &val);
  2543. switch ((val >> 6) & 3) {
  2544. case 0:
  2545. case 1:
  2546. dev_priv->mem_freq = 800;
  2547. break;
  2548. case 2:
  2549. dev_priv->mem_freq = 1066;
  2550. break;
  2551. case 3:
  2552. dev_priv->mem_freq = 1333;
  2553. break;
  2554. }
  2555. DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
  2556. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
  2557. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  2558. DRM_DEBUG_DRIVER("current GPU freq: %d\n",
  2559. vlv_gpu_freq(dev_priv->mem_freq, (val >> 8) & 0xff));
  2560. dev_priv->rps.cur_delay = (val >> 8) & 0xff;
  2561. dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
  2562. dev_priv->rps.hw_max = dev_priv->rps.max_delay;
  2563. DRM_DEBUG_DRIVER("max GPU freq: %d\n", vlv_gpu_freq(dev_priv->mem_freq,
  2564. dev_priv->rps.max_delay));
  2565. rpe = valleyview_rps_rpe_freq(dev_priv);
  2566. DRM_DEBUG_DRIVER("RPe GPU freq: %d\n",
  2567. vlv_gpu_freq(dev_priv->mem_freq, rpe));
  2568. dev_priv->rps.rpe_delay = rpe;
  2569. val = valleyview_rps_min_freq(dev_priv);
  2570. DRM_DEBUG_DRIVER("min GPU freq: %d\n", vlv_gpu_freq(dev_priv->mem_freq,
  2571. val));
  2572. dev_priv->rps.min_delay = val;
  2573. DRM_DEBUG_DRIVER("setting GPU freq to %d\n",
  2574. vlv_gpu_freq(dev_priv->mem_freq, rpe));
  2575. INIT_DELAYED_WORK(&dev_priv->rps.vlv_work, vlv_rps_timer_work);
  2576. valleyview_set_rps(dev_priv->dev, rpe);
  2577. /* requires MSI enabled */
  2578. I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
  2579. spin_lock_irq(&dev_priv->rps.lock);
  2580. WARN_ON(dev_priv->rps.pm_iir != 0);
  2581. I915_WRITE(GEN6_PMIMR, 0);
  2582. spin_unlock_irq(&dev_priv->rps.lock);
  2583. /* enable all PM interrupts */
  2584. I915_WRITE(GEN6_PMINTRMSK, 0);
  2585. gen6_gt_force_wake_put(dev_priv);
  2586. }
  2587. void ironlake_teardown_rc6(struct drm_device *dev)
  2588. {
  2589. struct drm_i915_private *dev_priv = dev->dev_private;
  2590. if (dev_priv->ips.renderctx) {
  2591. i915_gem_object_unpin(dev_priv->ips.renderctx);
  2592. drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
  2593. dev_priv->ips.renderctx = NULL;
  2594. }
  2595. if (dev_priv->ips.pwrctx) {
  2596. i915_gem_object_unpin(dev_priv->ips.pwrctx);
  2597. drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
  2598. dev_priv->ips.pwrctx = NULL;
  2599. }
  2600. }
  2601. static void ironlake_disable_rc6(struct drm_device *dev)
  2602. {
  2603. struct drm_i915_private *dev_priv = dev->dev_private;
  2604. if (I915_READ(PWRCTXA)) {
  2605. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  2606. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  2607. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  2608. 50);
  2609. I915_WRITE(PWRCTXA, 0);
  2610. POSTING_READ(PWRCTXA);
  2611. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  2612. POSTING_READ(RSTDBYCTL);
  2613. }
  2614. }
  2615. static int ironlake_setup_rc6(struct drm_device *dev)
  2616. {
  2617. struct drm_i915_private *dev_priv = dev->dev_private;
  2618. if (dev_priv->ips.renderctx == NULL)
  2619. dev_priv->ips.renderctx = intel_alloc_context_page(dev);
  2620. if (!dev_priv->ips.renderctx)
  2621. return -ENOMEM;
  2622. if (dev_priv->ips.pwrctx == NULL)
  2623. dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
  2624. if (!dev_priv->ips.pwrctx) {
  2625. ironlake_teardown_rc6(dev);
  2626. return -ENOMEM;
  2627. }
  2628. return 0;
  2629. }
  2630. static void ironlake_enable_rc6(struct drm_device *dev)
  2631. {
  2632. struct drm_i915_private *dev_priv = dev->dev_private;
  2633. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  2634. bool was_interruptible;
  2635. int ret;
  2636. /* rc6 disabled by default due to repeated reports of hanging during
  2637. * boot and resume.
  2638. */
  2639. if (!intel_enable_rc6(dev))
  2640. return;
  2641. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  2642. ret = ironlake_setup_rc6(dev);
  2643. if (ret)
  2644. return;
  2645. was_interruptible = dev_priv->mm.interruptible;
  2646. dev_priv->mm.interruptible = false;
  2647. /*
  2648. * GPU can automatically power down the render unit if given a page
  2649. * to save state.
  2650. */
  2651. ret = intel_ring_begin(ring, 6);
  2652. if (ret) {
  2653. ironlake_teardown_rc6(dev);
  2654. dev_priv->mm.interruptible = was_interruptible;
  2655. return;
  2656. }
  2657. intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  2658. intel_ring_emit(ring, MI_SET_CONTEXT);
  2659. intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
  2660. MI_MM_SPACE_GTT |
  2661. MI_SAVE_EXT_STATE_EN |
  2662. MI_RESTORE_EXT_STATE_EN |
  2663. MI_RESTORE_INHIBIT);
  2664. intel_ring_emit(ring, MI_SUSPEND_FLUSH);
  2665. intel_ring_emit(ring, MI_NOOP);
  2666. intel_ring_emit(ring, MI_FLUSH);
  2667. intel_ring_advance(ring);
  2668. /*
  2669. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  2670. * does an implicit flush, combined with MI_FLUSH above, it should be
  2671. * safe to assume that renderctx is valid
  2672. */
  2673. ret = intel_ring_idle(ring);
  2674. dev_priv->mm.interruptible = was_interruptible;
  2675. if (ret) {
  2676. DRM_ERROR("failed to enable ironlake power savings\n");
  2677. ironlake_teardown_rc6(dev);
  2678. return;
  2679. }
  2680. I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
  2681. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  2682. }
  2683. static unsigned long intel_pxfreq(u32 vidfreq)
  2684. {
  2685. unsigned long freq;
  2686. int div = (vidfreq & 0x3f0000) >> 16;
  2687. int post = (vidfreq & 0x3000) >> 12;
  2688. int pre = (vidfreq & 0x7);
  2689. if (!pre)
  2690. return 0;
  2691. freq = ((div * 133333) / ((1<<post) * pre));
  2692. return freq;
  2693. }
  2694. static const struct cparams {
  2695. u16 i;
  2696. u16 t;
  2697. u16 m;
  2698. u16 c;
  2699. } cparams[] = {
  2700. { 1, 1333, 301, 28664 },
  2701. { 1, 1066, 294, 24460 },
  2702. { 1, 800, 294, 25192 },
  2703. { 0, 1333, 276, 27605 },
  2704. { 0, 1066, 276, 27605 },
  2705. { 0, 800, 231, 23784 },
  2706. };
  2707. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  2708. {
  2709. u64 total_count, diff, ret;
  2710. u32 count1, count2, count3, m = 0, c = 0;
  2711. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  2712. int i;
  2713. assert_spin_locked(&mchdev_lock);
  2714. diff1 = now - dev_priv->ips.last_time1;
  2715. /* Prevent division-by-zero if we are asking too fast.
  2716. * Also, we don't get interesting results if we are polling
  2717. * faster than once in 10ms, so just return the saved value
  2718. * in such cases.
  2719. */
  2720. if (diff1 <= 10)
  2721. return dev_priv->ips.chipset_power;
  2722. count1 = I915_READ(DMIEC);
  2723. count2 = I915_READ(DDREC);
  2724. count3 = I915_READ(CSIEC);
  2725. total_count = count1 + count2 + count3;
  2726. /* FIXME: handle per-counter overflow */
  2727. if (total_count < dev_priv->ips.last_count1) {
  2728. diff = ~0UL - dev_priv->ips.last_count1;
  2729. diff += total_count;
  2730. } else {
  2731. diff = total_count - dev_priv->ips.last_count1;
  2732. }
  2733. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  2734. if (cparams[i].i == dev_priv->ips.c_m &&
  2735. cparams[i].t == dev_priv->ips.r_t) {
  2736. m = cparams[i].m;
  2737. c = cparams[i].c;
  2738. break;
  2739. }
  2740. }
  2741. diff = div_u64(diff, diff1);
  2742. ret = ((m * diff) + c);
  2743. ret = div_u64(ret, 10);
  2744. dev_priv->ips.last_count1 = total_count;
  2745. dev_priv->ips.last_time1 = now;
  2746. dev_priv->ips.chipset_power = ret;
  2747. return ret;
  2748. }
  2749. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  2750. {
  2751. unsigned long val;
  2752. if (dev_priv->info->gen != 5)
  2753. return 0;
  2754. spin_lock_irq(&mchdev_lock);
  2755. val = __i915_chipset_val(dev_priv);
  2756. spin_unlock_irq(&mchdev_lock);
  2757. return val;
  2758. }
  2759. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  2760. {
  2761. unsigned long m, x, b;
  2762. u32 tsfs;
  2763. tsfs = I915_READ(TSFS);
  2764. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  2765. x = I915_READ8(TR1);
  2766. b = tsfs & TSFS_INTR_MASK;
  2767. return ((m * x) / 127) - b;
  2768. }
  2769. static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  2770. {
  2771. static const struct v_table {
  2772. u16 vd; /* in .1 mil */
  2773. u16 vm; /* in .1 mil */
  2774. } v_table[] = {
  2775. { 0, 0, },
  2776. { 375, 0, },
  2777. { 500, 0, },
  2778. { 625, 0, },
  2779. { 750, 0, },
  2780. { 875, 0, },
  2781. { 1000, 0, },
  2782. { 1125, 0, },
  2783. { 4125, 3000, },
  2784. { 4125, 3000, },
  2785. { 4125, 3000, },
  2786. { 4125, 3000, },
  2787. { 4125, 3000, },
  2788. { 4125, 3000, },
  2789. { 4125, 3000, },
  2790. { 4125, 3000, },
  2791. { 4125, 3000, },
  2792. { 4125, 3000, },
  2793. { 4125, 3000, },
  2794. { 4125, 3000, },
  2795. { 4125, 3000, },
  2796. { 4125, 3000, },
  2797. { 4125, 3000, },
  2798. { 4125, 3000, },
  2799. { 4125, 3000, },
  2800. { 4125, 3000, },
  2801. { 4125, 3000, },
  2802. { 4125, 3000, },
  2803. { 4125, 3000, },
  2804. { 4125, 3000, },
  2805. { 4125, 3000, },
  2806. { 4125, 3000, },
  2807. { 4250, 3125, },
  2808. { 4375, 3250, },
  2809. { 4500, 3375, },
  2810. { 4625, 3500, },
  2811. { 4750, 3625, },
  2812. { 4875, 3750, },
  2813. { 5000, 3875, },
  2814. { 5125, 4000, },
  2815. { 5250, 4125, },
  2816. { 5375, 4250, },
  2817. { 5500, 4375, },
  2818. { 5625, 4500, },
  2819. { 5750, 4625, },
  2820. { 5875, 4750, },
  2821. { 6000, 4875, },
  2822. { 6125, 5000, },
  2823. { 6250, 5125, },
  2824. { 6375, 5250, },
  2825. { 6500, 5375, },
  2826. { 6625, 5500, },
  2827. { 6750, 5625, },
  2828. { 6875, 5750, },
  2829. { 7000, 5875, },
  2830. { 7125, 6000, },
  2831. { 7250, 6125, },
  2832. { 7375, 6250, },
  2833. { 7500, 6375, },
  2834. { 7625, 6500, },
  2835. { 7750, 6625, },
  2836. { 7875, 6750, },
  2837. { 8000, 6875, },
  2838. { 8125, 7000, },
  2839. { 8250, 7125, },
  2840. { 8375, 7250, },
  2841. { 8500, 7375, },
  2842. { 8625, 7500, },
  2843. { 8750, 7625, },
  2844. { 8875, 7750, },
  2845. { 9000, 7875, },
  2846. { 9125, 8000, },
  2847. { 9250, 8125, },
  2848. { 9375, 8250, },
  2849. { 9500, 8375, },
  2850. { 9625, 8500, },
  2851. { 9750, 8625, },
  2852. { 9875, 8750, },
  2853. { 10000, 8875, },
  2854. { 10125, 9000, },
  2855. { 10250, 9125, },
  2856. { 10375, 9250, },
  2857. { 10500, 9375, },
  2858. { 10625, 9500, },
  2859. { 10750, 9625, },
  2860. { 10875, 9750, },
  2861. { 11000, 9875, },
  2862. { 11125, 10000, },
  2863. { 11250, 10125, },
  2864. { 11375, 10250, },
  2865. { 11500, 10375, },
  2866. { 11625, 10500, },
  2867. { 11750, 10625, },
  2868. { 11875, 10750, },
  2869. { 12000, 10875, },
  2870. { 12125, 11000, },
  2871. { 12250, 11125, },
  2872. { 12375, 11250, },
  2873. { 12500, 11375, },
  2874. { 12625, 11500, },
  2875. { 12750, 11625, },
  2876. { 12875, 11750, },
  2877. { 13000, 11875, },
  2878. { 13125, 12000, },
  2879. { 13250, 12125, },
  2880. { 13375, 12250, },
  2881. { 13500, 12375, },
  2882. { 13625, 12500, },
  2883. { 13750, 12625, },
  2884. { 13875, 12750, },
  2885. { 14000, 12875, },
  2886. { 14125, 13000, },
  2887. { 14250, 13125, },
  2888. { 14375, 13250, },
  2889. { 14500, 13375, },
  2890. { 14625, 13500, },
  2891. { 14750, 13625, },
  2892. { 14875, 13750, },
  2893. { 15000, 13875, },
  2894. { 15125, 14000, },
  2895. { 15250, 14125, },
  2896. { 15375, 14250, },
  2897. { 15500, 14375, },
  2898. { 15625, 14500, },
  2899. { 15750, 14625, },
  2900. { 15875, 14750, },
  2901. { 16000, 14875, },
  2902. { 16125, 15000, },
  2903. };
  2904. if (dev_priv->info->is_mobile)
  2905. return v_table[pxvid].vm;
  2906. else
  2907. return v_table[pxvid].vd;
  2908. }
  2909. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  2910. {
  2911. struct timespec now, diff1;
  2912. u64 diff;
  2913. unsigned long diffms;
  2914. u32 count;
  2915. assert_spin_locked(&mchdev_lock);
  2916. getrawmonotonic(&now);
  2917. diff1 = timespec_sub(now, dev_priv->ips.last_time2);
  2918. /* Don't divide by 0 */
  2919. diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
  2920. if (!diffms)
  2921. return;
  2922. count = I915_READ(GFXEC);
  2923. if (count < dev_priv->ips.last_count2) {
  2924. diff = ~0UL - dev_priv->ips.last_count2;
  2925. diff += count;
  2926. } else {
  2927. diff = count - dev_priv->ips.last_count2;
  2928. }
  2929. dev_priv->ips.last_count2 = count;
  2930. dev_priv->ips.last_time2 = now;
  2931. /* More magic constants... */
  2932. diff = diff * 1181;
  2933. diff = div_u64(diff, diffms * 10);
  2934. dev_priv->ips.gfx_power = diff;
  2935. }
  2936. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  2937. {
  2938. if (dev_priv->info->gen != 5)
  2939. return;
  2940. spin_lock_irq(&mchdev_lock);
  2941. __i915_update_gfx_val(dev_priv);
  2942. spin_unlock_irq(&mchdev_lock);
  2943. }
  2944. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  2945. {
  2946. unsigned long t, corr, state1, corr2, state2;
  2947. u32 pxvid, ext_v;
  2948. assert_spin_locked(&mchdev_lock);
  2949. pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
  2950. pxvid = (pxvid >> 24) & 0x7f;
  2951. ext_v = pvid_to_extvid(dev_priv, pxvid);
  2952. state1 = ext_v;
  2953. t = i915_mch_val(dev_priv);
  2954. /* Revel in the empirically derived constants */
  2955. /* Correction factor in 1/100000 units */
  2956. if (t > 80)
  2957. corr = ((t * 2349) + 135940);
  2958. else if (t >= 50)
  2959. corr = ((t * 964) + 29317);
  2960. else /* < 50 */
  2961. corr = ((t * 301) + 1004);
  2962. corr = corr * ((150142 * state1) / 10000 - 78642);
  2963. corr /= 100000;
  2964. corr2 = (corr * dev_priv->ips.corr);
  2965. state2 = (corr2 * state1) / 10000;
  2966. state2 /= 100; /* convert to mW */
  2967. __i915_update_gfx_val(dev_priv);
  2968. return dev_priv->ips.gfx_power + state2;
  2969. }
  2970. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  2971. {
  2972. unsigned long val;
  2973. if (dev_priv->info->gen != 5)
  2974. return 0;
  2975. spin_lock_irq(&mchdev_lock);
  2976. val = __i915_gfx_val(dev_priv);
  2977. spin_unlock_irq(&mchdev_lock);
  2978. return val;
  2979. }
  2980. /**
  2981. * i915_read_mch_val - return value for IPS use
  2982. *
  2983. * Calculate and return a value for the IPS driver to use when deciding whether
  2984. * we have thermal and power headroom to increase CPU or GPU power budget.
  2985. */
  2986. unsigned long i915_read_mch_val(void)
  2987. {
  2988. struct drm_i915_private *dev_priv;
  2989. unsigned long chipset_val, graphics_val, ret = 0;
  2990. spin_lock_irq(&mchdev_lock);
  2991. if (!i915_mch_dev)
  2992. goto out_unlock;
  2993. dev_priv = i915_mch_dev;
  2994. chipset_val = __i915_chipset_val(dev_priv);
  2995. graphics_val = __i915_gfx_val(dev_priv);
  2996. ret = chipset_val + graphics_val;
  2997. out_unlock:
  2998. spin_unlock_irq(&mchdev_lock);
  2999. return ret;
  3000. }
  3001. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  3002. /**
  3003. * i915_gpu_raise - raise GPU frequency limit
  3004. *
  3005. * Raise the limit; IPS indicates we have thermal headroom.
  3006. */
  3007. bool i915_gpu_raise(void)
  3008. {
  3009. struct drm_i915_private *dev_priv;
  3010. bool ret = true;
  3011. spin_lock_irq(&mchdev_lock);
  3012. if (!i915_mch_dev) {
  3013. ret = false;
  3014. goto out_unlock;
  3015. }
  3016. dev_priv = i915_mch_dev;
  3017. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  3018. dev_priv->ips.max_delay--;
  3019. out_unlock:
  3020. spin_unlock_irq(&mchdev_lock);
  3021. return ret;
  3022. }
  3023. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  3024. /**
  3025. * i915_gpu_lower - lower GPU frequency limit
  3026. *
  3027. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  3028. * frequency maximum.
  3029. */
  3030. bool i915_gpu_lower(void)
  3031. {
  3032. struct drm_i915_private *dev_priv;
  3033. bool ret = true;
  3034. spin_lock_irq(&mchdev_lock);
  3035. if (!i915_mch_dev) {
  3036. ret = false;
  3037. goto out_unlock;
  3038. }
  3039. dev_priv = i915_mch_dev;
  3040. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  3041. dev_priv->ips.max_delay++;
  3042. out_unlock:
  3043. spin_unlock_irq(&mchdev_lock);
  3044. return ret;
  3045. }
  3046. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  3047. /**
  3048. * i915_gpu_busy - indicate GPU business to IPS
  3049. *
  3050. * Tell the IPS driver whether or not the GPU is busy.
  3051. */
  3052. bool i915_gpu_busy(void)
  3053. {
  3054. struct drm_i915_private *dev_priv;
  3055. struct intel_ring_buffer *ring;
  3056. bool ret = false;
  3057. int i;
  3058. spin_lock_irq(&mchdev_lock);
  3059. if (!i915_mch_dev)
  3060. goto out_unlock;
  3061. dev_priv = i915_mch_dev;
  3062. for_each_ring(ring, dev_priv, i)
  3063. ret |= !list_empty(&ring->request_list);
  3064. out_unlock:
  3065. spin_unlock_irq(&mchdev_lock);
  3066. return ret;
  3067. }
  3068. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  3069. /**
  3070. * i915_gpu_turbo_disable - disable graphics turbo
  3071. *
  3072. * Disable graphics turbo by resetting the max frequency and setting the
  3073. * current frequency to the default.
  3074. */
  3075. bool i915_gpu_turbo_disable(void)
  3076. {
  3077. struct drm_i915_private *dev_priv;
  3078. bool ret = true;
  3079. spin_lock_irq(&mchdev_lock);
  3080. if (!i915_mch_dev) {
  3081. ret = false;
  3082. goto out_unlock;
  3083. }
  3084. dev_priv = i915_mch_dev;
  3085. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  3086. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  3087. ret = false;
  3088. out_unlock:
  3089. spin_unlock_irq(&mchdev_lock);
  3090. return ret;
  3091. }
  3092. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  3093. /**
  3094. * Tells the intel_ips driver that the i915 driver is now loaded, if
  3095. * IPS got loaded first.
  3096. *
  3097. * This awkward dance is so that neither module has to depend on the
  3098. * other in order for IPS to do the appropriate communication of
  3099. * GPU turbo limits to i915.
  3100. */
  3101. static void
  3102. ips_ping_for_i915_load(void)
  3103. {
  3104. void (*link)(void);
  3105. link = symbol_get(ips_link_to_i915_driver);
  3106. if (link) {
  3107. link();
  3108. symbol_put(ips_link_to_i915_driver);
  3109. }
  3110. }
  3111. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  3112. {
  3113. /* We only register the i915 ips part with intel-ips once everything is
  3114. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  3115. spin_lock_irq(&mchdev_lock);
  3116. i915_mch_dev = dev_priv;
  3117. spin_unlock_irq(&mchdev_lock);
  3118. ips_ping_for_i915_load();
  3119. }
  3120. void intel_gpu_ips_teardown(void)
  3121. {
  3122. spin_lock_irq(&mchdev_lock);
  3123. i915_mch_dev = NULL;
  3124. spin_unlock_irq(&mchdev_lock);
  3125. }
  3126. static void intel_init_emon(struct drm_device *dev)
  3127. {
  3128. struct drm_i915_private *dev_priv = dev->dev_private;
  3129. u32 lcfuse;
  3130. u8 pxw[16];
  3131. int i;
  3132. /* Disable to program */
  3133. I915_WRITE(ECR, 0);
  3134. POSTING_READ(ECR);
  3135. /* Program energy weights for various events */
  3136. I915_WRITE(SDEW, 0x15040d00);
  3137. I915_WRITE(CSIEW0, 0x007f0000);
  3138. I915_WRITE(CSIEW1, 0x1e220004);
  3139. I915_WRITE(CSIEW2, 0x04000004);
  3140. for (i = 0; i < 5; i++)
  3141. I915_WRITE(PEW + (i * 4), 0);
  3142. for (i = 0; i < 3; i++)
  3143. I915_WRITE(DEW + (i * 4), 0);
  3144. /* Program P-state weights to account for frequency power adjustment */
  3145. for (i = 0; i < 16; i++) {
  3146. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  3147. unsigned long freq = intel_pxfreq(pxvidfreq);
  3148. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  3149. PXVFREQ_PX_SHIFT;
  3150. unsigned long val;
  3151. val = vid * vid;
  3152. val *= (freq / 1000);
  3153. val *= 255;
  3154. val /= (127*127*900);
  3155. if (val > 0xff)
  3156. DRM_ERROR("bad pxval: %ld\n", val);
  3157. pxw[i] = val;
  3158. }
  3159. /* Render standby states get 0 weight */
  3160. pxw[14] = 0;
  3161. pxw[15] = 0;
  3162. for (i = 0; i < 4; i++) {
  3163. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  3164. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  3165. I915_WRITE(PXW + (i * 4), val);
  3166. }
  3167. /* Adjust magic regs to magic values (more experimental results) */
  3168. I915_WRITE(OGW0, 0);
  3169. I915_WRITE(OGW1, 0);
  3170. I915_WRITE(EG0, 0x00007f00);
  3171. I915_WRITE(EG1, 0x0000000e);
  3172. I915_WRITE(EG2, 0x000e0000);
  3173. I915_WRITE(EG3, 0x68000300);
  3174. I915_WRITE(EG4, 0x42000000);
  3175. I915_WRITE(EG5, 0x00140031);
  3176. I915_WRITE(EG6, 0);
  3177. I915_WRITE(EG7, 0);
  3178. for (i = 0; i < 8; i++)
  3179. I915_WRITE(PXWL + (i * 4), 0);
  3180. /* Enable PMON + select events */
  3181. I915_WRITE(ECR, 0x80000019);
  3182. lcfuse = I915_READ(LCFUSE02);
  3183. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  3184. }
  3185. void intel_disable_gt_powersave(struct drm_device *dev)
  3186. {
  3187. struct drm_i915_private *dev_priv = dev->dev_private;
  3188. /* Interrupts should be disabled already to avoid re-arming. */
  3189. WARN_ON(dev->irq_enabled);
  3190. if (IS_IRONLAKE_M(dev)) {
  3191. ironlake_disable_drps(dev);
  3192. ironlake_disable_rc6(dev);
  3193. } else if (INTEL_INFO(dev)->gen >= 6) {
  3194. cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
  3195. cancel_work_sync(&dev_priv->rps.work);
  3196. if (IS_VALLEYVIEW(dev))
  3197. cancel_delayed_work_sync(&dev_priv->rps.vlv_work);
  3198. mutex_lock(&dev_priv->rps.hw_lock);
  3199. if (IS_VALLEYVIEW(dev))
  3200. valleyview_disable_rps(dev);
  3201. else
  3202. gen6_disable_rps(dev);
  3203. mutex_unlock(&dev_priv->rps.hw_lock);
  3204. }
  3205. }
  3206. static void intel_gen6_powersave_work(struct work_struct *work)
  3207. {
  3208. struct drm_i915_private *dev_priv =
  3209. container_of(work, struct drm_i915_private,
  3210. rps.delayed_resume_work.work);
  3211. struct drm_device *dev = dev_priv->dev;
  3212. mutex_lock(&dev_priv->rps.hw_lock);
  3213. if (IS_VALLEYVIEW(dev)) {
  3214. valleyview_enable_rps(dev);
  3215. } else {
  3216. gen6_enable_rps(dev);
  3217. gen6_update_ring_freq(dev);
  3218. }
  3219. mutex_unlock(&dev_priv->rps.hw_lock);
  3220. }
  3221. void intel_enable_gt_powersave(struct drm_device *dev)
  3222. {
  3223. struct drm_i915_private *dev_priv = dev->dev_private;
  3224. if (IS_IRONLAKE_M(dev)) {
  3225. ironlake_enable_drps(dev);
  3226. ironlake_enable_rc6(dev);
  3227. intel_init_emon(dev);
  3228. } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
  3229. /*
  3230. * PCU communication is slow and this doesn't need to be
  3231. * done at any specific time, so do this out of our fast path
  3232. * to make resume and init faster.
  3233. */
  3234. schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  3235. round_jiffies_up_relative(HZ));
  3236. }
  3237. }
  3238. static void ibx_init_clock_gating(struct drm_device *dev)
  3239. {
  3240. struct drm_i915_private *dev_priv = dev->dev_private;
  3241. /*
  3242. * On Ibex Peak and Cougar Point, we need to disable clock
  3243. * gating for the panel power sequencer or it will fail to
  3244. * start up when no ports are active.
  3245. */
  3246. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  3247. }
  3248. static void ironlake_init_clock_gating(struct drm_device *dev)
  3249. {
  3250. struct drm_i915_private *dev_priv = dev->dev_private;
  3251. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  3252. /* Required for FBC */
  3253. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  3254. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  3255. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  3256. I915_WRITE(PCH_3DCGDIS0,
  3257. MARIUNIT_CLOCK_GATE_DISABLE |
  3258. SVSMUNIT_CLOCK_GATE_DISABLE);
  3259. I915_WRITE(PCH_3DCGDIS1,
  3260. VFMUNIT_CLOCK_GATE_DISABLE);
  3261. /*
  3262. * According to the spec the following bits should be set in
  3263. * order to enable memory self-refresh
  3264. * The bit 22/21 of 0x42004
  3265. * The bit 5 of 0x42020
  3266. * The bit 15 of 0x45000
  3267. */
  3268. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  3269. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  3270. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  3271. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  3272. I915_WRITE(DISP_ARB_CTL,
  3273. (I915_READ(DISP_ARB_CTL) |
  3274. DISP_FBC_WM_DIS));
  3275. I915_WRITE(WM3_LP_ILK, 0);
  3276. I915_WRITE(WM2_LP_ILK, 0);
  3277. I915_WRITE(WM1_LP_ILK, 0);
  3278. /*
  3279. * Based on the document from hardware guys the following bits
  3280. * should be set unconditionally in order to enable FBC.
  3281. * The bit 22 of 0x42000
  3282. * The bit 22 of 0x42004
  3283. * The bit 7,8,9 of 0x42020.
  3284. */
  3285. if (IS_IRONLAKE_M(dev)) {
  3286. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  3287. I915_READ(ILK_DISPLAY_CHICKEN1) |
  3288. ILK_FBCQ_DIS);
  3289. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  3290. I915_READ(ILK_DISPLAY_CHICKEN2) |
  3291. ILK_DPARB_GATE);
  3292. }
  3293. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  3294. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  3295. I915_READ(ILK_DISPLAY_CHICKEN2) |
  3296. ILK_ELPIN_409_SELECT);
  3297. I915_WRITE(_3D_CHICKEN2,
  3298. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  3299. _3D_CHICKEN2_WM_READ_PIPELINED);
  3300. /* WaDisableRenderCachePipelinedFlush:ilk */
  3301. I915_WRITE(CACHE_MODE_0,
  3302. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  3303. ibx_init_clock_gating(dev);
  3304. }
  3305. static void cpt_init_clock_gating(struct drm_device *dev)
  3306. {
  3307. struct drm_i915_private *dev_priv = dev->dev_private;
  3308. int pipe;
  3309. uint32_t val;
  3310. /*
  3311. * On Ibex Peak and Cougar Point, we need to disable clock
  3312. * gating for the panel power sequencer or it will fail to
  3313. * start up when no ports are active.
  3314. */
  3315. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  3316. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  3317. DPLS_EDP_PPS_FIX_DIS);
  3318. /* The below fixes the weird display corruption, a few pixels shifted
  3319. * downward, on (only) LVDS of some HP laptops with IVY.
  3320. */
  3321. for_each_pipe(pipe) {
  3322. val = I915_READ(TRANS_CHICKEN2(pipe));
  3323. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  3324. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  3325. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  3326. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  3327. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  3328. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  3329. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  3330. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  3331. }
  3332. /* WADP0ClockGatingDisable */
  3333. for_each_pipe(pipe) {
  3334. I915_WRITE(TRANS_CHICKEN1(pipe),
  3335. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  3336. }
  3337. }
  3338. static void gen6_check_mch_setup(struct drm_device *dev)
  3339. {
  3340. struct drm_i915_private *dev_priv = dev->dev_private;
  3341. uint32_t tmp;
  3342. tmp = I915_READ(MCH_SSKPD);
  3343. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
  3344. DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
  3345. DRM_INFO("This can cause pipe underruns and display issues.\n");
  3346. DRM_INFO("Please upgrade your BIOS to fix this.\n");
  3347. }
  3348. }
  3349. static void gen6_init_clock_gating(struct drm_device *dev)
  3350. {
  3351. struct drm_i915_private *dev_priv = dev->dev_private;
  3352. int pipe;
  3353. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  3354. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  3355. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  3356. I915_READ(ILK_DISPLAY_CHICKEN2) |
  3357. ILK_ELPIN_409_SELECT);
  3358. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  3359. I915_WRITE(_3D_CHICKEN,
  3360. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  3361. /* WaSetupGtModeTdRowDispatch:snb */
  3362. if (IS_SNB_GT1(dev))
  3363. I915_WRITE(GEN6_GT_MODE,
  3364. _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
  3365. I915_WRITE(WM3_LP_ILK, 0);
  3366. I915_WRITE(WM2_LP_ILK, 0);
  3367. I915_WRITE(WM1_LP_ILK, 0);
  3368. I915_WRITE(CACHE_MODE_0,
  3369. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  3370. I915_WRITE(GEN6_UCGCTL1,
  3371. I915_READ(GEN6_UCGCTL1) |
  3372. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  3373. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  3374. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  3375. * gating disable must be set. Failure to set it results in
  3376. * flickering pixels due to Z write ordering failures after
  3377. * some amount of runtime in the Mesa "fire" demo, and Unigine
  3378. * Sanctuary and Tropics, and apparently anything else with
  3379. * alpha test or pixel discard.
  3380. *
  3381. * According to the spec, bit 11 (RCCUNIT) must also be set,
  3382. * but we didn't debug actual testcases to find it out.
  3383. *
  3384. * Also apply WaDisableVDSUnitClockGating:snb and
  3385. * WaDisableRCPBUnitClockGating:snb.
  3386. */
  3387. I915_WRITE(GEN6_UCGCTL2,
  3388. GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
  3389. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  3390. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  3391. /* Bspec says we need to always set all mask bits. */
  3392. I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
  3393. _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
  3394. /*
  3395. * According to the spec the following bits should be
  3396. * set in order to enable memory self-refresh and fbc:
  3397. * The bit21 and bit22 of 0x42000
  3398. * The bit21 and bit22 of 0x42004
  3399. * The bit5 and bit7 of 0x42020
  3400. * The bit14 of 0x70180
  3401. * The bit14 of 0x71180
  3402. */
  3403. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  3404. I915_READ(ILK_DISPLAY_CHICKEN1) |
  3405. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  3406. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  3407. I915_READ(ILK_DISPLAY_CHICKEN2) |
  3408. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  3409. I915_WRITE(ILK_DSPCLK_GATE_D,
  3410. I915_READ(ILK_DSPCLK_GATE_D) |
  3411. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  3412. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  3413. /* WaMbcDriverBootEnable:snb */
  3414. I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
  3415. GEN6_MBCTL_ENABLE_BOOT_FETCH);
  3416. for_each_pipe(pipe) {
  3417. I915_WRITE(DSPCNTR(pipe),
  3418. I915_READ(DSPCNTR(pipe)) |
  3419. DISPPLANE_TRICKLE_FEED_DISABLE);
  3420. intel_flush_display_plane(dev_priv, pipe);
  3421. }
  3422. /* The default value should be 0x200 according to docs, but the two
  3423. * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
  3424. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
  3425. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
  3426. cpt_init_clock_gating(dev);
  3427. gen6_check_mch_setup(dev);
  3428. }
  3429. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  3430. {
  3431. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  3432. reg &= ~GEN7_FF_SCHED_MASK;
  3433. reg |= GEN7_FF_TS_SCHED_HW;
  3434. reg |= GEN7_FF_VS_SCHED_HW;
  3435. reg |= GEN7_FF_DS_SCHED_HW;
  3436. if (IS_HASWELL(dev_priv->dev))
  3437. reg &= ~GEN7_FF_VS_REF_CNT_FFME;
  3438. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  3439. }
  3440. static void lpt_init_clock_gating(struct drm_device *dev)
  3441. {
  3442. struct drm_i915_private *dev_priv = dev->dev_private;
  3443. /*
  3444. * TODO: this bit should only be enabled when really needed, then
  3445. * disabled when not needed anymore in order to save power.
  3446. */
  3447. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
  3448. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  3449. I915_READ(SOUTH_DSPCLK_GATE_D) |
  3450. PCH_LP_PARTITION_LEVEL_DISABLE);
  3451. }
  3452. static void lpt_suspend_hw(struct drm_device *dev)
  3453. {
  3454. struct drm_i915_private *dev_priv = dev->dev_private;
  3455. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  3456. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  3457. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  3458. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  3459. }
  3460. }
  3461. static void haswell_init_clock_gating(struct drm_device *dev)
  3462. {
  3463. struct drm_i915_private *dev_priv = dev->dev_private;
  3464. int pipe;
  3465. I915_WRITE(WM3_LP_ILK, 0);
  3466. I915_WRITE(WM2_LP_ILK, 0);
  3467. I915_WRITE(WM1_LP_ILK, 0);
  3468. /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  3469. * This implements the WaDisableRCZUnitClockGating:hsw workaround.
  3470. */
  3471. I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  3472. /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
  3473. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  3474. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  3475. /* WaApplyL3ControlAndL3ChickenMode:hsw */
  3476. I915_WRITE(GEN7_L3CNTLREG1,
  3477. GEN7_WA_FOR_GEN7_L3_CONTROL);
  3478. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  3479. GEN7_WA_L3_CHICKEN_MODE);
  3480. /* This is required by WaCatErrorRejectionIssue:hsw */
  3481. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  3482. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  3483. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  3484. for_each_pipe(pipe) {
  3485. I915_WRITE(DSPCNTR(pipe),
  3486. I915_READ(DSPCNTR(pipe)) |
  3487. DISPPLANE_TRICKLE_FEED_DISABLE);
  3488. intel_flush_display_plane(dev_priv, pipe);
  3489. }
  3490. /* WaVSRefCountFullforceMissDisable:hsw */
  3491. gen7_setup_fixed_func_scheduler(dev_priv);
  3492. /* WaDisable4x2SubspanOptimization:hsw */
  3493. I915_WRITE(CACHE_MODE_1,
  3494. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  3495. /* WaMbcDriverBootEnable:hsw */
  3496. I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
  3497. GEN6_MBCTL_ENABLE_BOOT_FETCH);
  3498. /* WaSwitchSolVfFArbitrationPriority:hsw */
  3499. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  3500. /* XXX: This is a workaround for early silicon revisions and should be
  3501. * removed later.
  3502. */
  3503. I915_WRITE(WM_DBG,
  3504. I915_READ(WM_DBG) |
  3505. WM_DBG_DISALLOW_MULTIPLE_LP |
  3506. WM_DBG_DISALLOW_SPRITE |
  3507. WM_DBG_DISALLOW_MAXFIFO);
  3508. lpt_init_clock_gating(dev);
  3509. }
  3510. static void ivybridge_init_clock_gating(struct drm_device *dev)
  3511. {
  3512. struct drm_i915_private *dev_priv = dev->dev_private;
  3513. int pipe;
  3514. uint32_t snpcr;
  3515. I915_WRITE(WM3_LP_ILK, 0);
  3516. I915_WRITE(WM2_LP_ILK, 0);
  3517. I915_WRITE(WM1_LP_ILK, 0);
  3518. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  3519. /* WaDisableEarlyCull:ivb */
  3520. I915_WRITE(_3D_CHICKEN3,
  3521. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  3522. /* WaDisableBackToBackFlipFix:ivb */
  3523. I915_WRITE(IVB_CHICKEN3,
  3524. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  3525. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  3526. /* WaDisablePSDDualDispatchEnable:ivb */
  3527. if (IS_IVB_GT1(dev))
  3528. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  3529. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  3530. else
  3531. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
  3532. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  3533. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  3534. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  3535. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  3536. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  3537. I915_WRITE(GEN7_L3CNTLREG1,
  3538. GEN7_WA_FOR_GEN7_L3_CONTROL);
  3539. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  3540. GEN7_WA_L3_CHICKEN_MODE);
  3541. if (IS_IVB_GT1(dev))
  3542. I915_WRITE(GEN7_ROW_CHICKEN2,
  3543. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  3544. else
  3545. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  3546. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  3547. /* WaForceL3Serialization:ivb */
  3548. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  3549. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  3550. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  3551. * gating disable must be set. Failure to set it results in
  3552. * flickering pixels due to Z write ordering failures after
  3553. * some amount of runtime in the Mesa "fire" demo, and Unigine
  3554. * Sanctuary and Tropics, and apparently anything else with
  3555. * alpha test or pixel discard.
  3556. *
  3557. * According to the spec, bit 11 (RCCUNIT) must also be set,
  3558. * but we didn't debug actual testcases to find it out.
  3559. *
  3560. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  3561. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  3562. */
  3563. I915_WRITE(GEN6_UCGCTL2,
  3564. GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
  3565. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  3566. /* This is required by WaCatErrorRejectionIssue:ivb */
  3567. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  3568. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  3569. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  3570. for_each_pipe(pipe) {
  3571. I915_WRITE(DSPCNTR(pipe),
  3572. I915_READ(DSPCNTR(pipe)) |
  3573. DISPPLANE_TRICKLE_FEED_DISABLE);
  3574. intel_flush_display_plane(dev_priv, pipe);
  3575. }
  3576. /* WaMbcDriverBootEnable:ivb */
  3577. I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
  3578. GEN6_MBCTL_ENABLE_BOOT_FETCH);
  3579. /* WaVSRefCountFullforceMissDisable:ivb */
  3580. gen7_setup_fixed_func_scheduler(dev_priv);
  3581. /* WaDisable4x2SubspanOptimization:ivb */
  3582. I915_WRITE(CACHE_MODE_1,
  3583. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  3584. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3585. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  3586. snpcr |= GEN6_MBC_SNPCR_MED;
  3587. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  3588. if (!HAS_PCH_NOP(dev))
  3589. cpt_init_clock_gating(dev);
  3590. gen6_check_mch_setup(dev);
  3591. }
  3592. static void valleyview_init_clock_gating(struct drm_device *dev)
  3593. {
  3594. struct drm_i915_private *dev_priv = dev->dev_private;
  3595. int pipe;
  3596. I915_WRITE(WM3_LP_ILK, 0);
  3597. I915_WRITE(WM2_LP_ILK, 0);
  3598. I915_WRITE(WM1_LP_ILK, 0);
  3599. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  3600. /* WaDisableEarlyCull:vlv */
  3601. I915_WRITE(_3D_CHICKEN3,
  3602. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  3603. /* WaDisableBackToBackFlipFix:vlv */
  3604. I915_WRITE(IVB_CHICKEN3,
  3605. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  3606. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  3607. /* WaDisablePSDDualDispatchEnable:vlv */
  3608. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  3609. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  3610. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  3611. /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
  3612. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  3613. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  3614. /* WaApplyL3ControlAndL3ChickenMode:vlv */
  3615. I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
  3616. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
  3617. /* WaForceL3Serialization:vlv */
  3618. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  3619. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  3620. /* WaDisableDopClockGating:vlv */
  3621. I915_WRITE(GEN7_ROW_CHICKEN2,
  3622. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  3623. /* WaForceL3Serialization:vlv */
  3624. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  3625. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  3626. /* This is required by WaCatErrorRejectionIssue:vlv */
  3627. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  3628. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  3629. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  3630. /* WaMbcDriverBootEnable:vlv */
  3631. I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
  3632. GEN6_MBCTL_ENABLE_BOOT_FETCH);
  3633. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  3634. * gating disable must be set. Failure to set it results in
  3635. * flickering pixels due to Z write ordering failures after
  3636. * some amount of runtime in the Mesa "fire" demo, and Unigine
  3637. * Sanctuary and Tropics, and apparently anything else with
  3638. * alpha test or pixel discard.
  3639. *
  3640. * According to the spec, bit 11 (RCCUNIT) must also be set,
  3641. * but we didn't debug actual testcases to find it out.
  3642. *
  3643. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  3644. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  3645. *
  3646. * Also apply WaDisableVDSUnitClockGating:vlv and
  3647. * WaDisableRCPBUnitClockGating:vlv.
  3648. */
  3649. I915_WRITE(GEN6_UCGCTL2,
  3650. GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
  3651. GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
  3652. GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
  3653. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  3654. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  3655. I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  3656. for_each_pipe(pipe) {
  3657. I915_WRITE(DSPCNTR(pipe),
  3658. I915_READ(DSPCNTR(pipe)) |
  3659. DISPPLANE_TRICKLE_FEED_DISABLE);
  3660. intel_flush_display_plane(dev_priv, pipe);
  3661. }
  3662. I915_WRITE(CACHE_MODE_1,
  3663. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  3664. /*
  3665. * WaDisableVLVClockGating_VBIIssue:vlv
  3666. * Disable clock gating on th GCFG unit to prevent a delay
  3667. * in the reporting of vblank events.
  3668. */
  3669. I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
  3670. /* Conservative clock gating settings for now */
  3671. I915_WRITE(0x9400, 0xffffffff);
  3672. I915_WRITE(0x9404, 0xffffffff);
  3673. I915_WRITE(0x9408, 0xffffffff);
  3674. I915_WRITE(0x940c, 0xffffffff);
  3675. I915_WRITE(0x9410, 0xffffffff);
  3676. I915_WRITE(0x9414, 0xffffffff);
  3677. I915_WRITE(0x9418, 0xffffffff);
  3678. }
  3679. static void g4x_init_clock_gating(struct drm_device *dev)
  3680. {
  3681. struct drm_i915_private *dev_priv = dev->dev_private;
  3682. uint32_t dspclk_gate;
  3683. I915_WRITE(RENCLK_GATE_D1, 0);
  3684. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  3685. GS_UNIT_CLOCK_GATE_DISABLE |
  3686. CL_UNIT_CLOCK_GATE_DISABLE);
  3687. I915_WRITE(RAMCLK_GATE_D, 0);
  3688. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  3689. OVRUNIT_CLOCK_GATE_DISABLE |
  3690. OVCUNIT_CLOCK_GATE_DISABLE;
  3691. if (IS_GM45(dev))
  3692. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  3693. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  3694. /* WaDisableRenderCachePipelinedFlush */
  3695. I915_WRITE(CACHE_MODE_0,
  3696. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  3697. }
  3698. static void crestline_init_clock_gating(struct drm_device *dev)
  3699. {
  3700. struct drm_i915_private *dev_priv = dev->dev_private;
  3701. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  3702. I915_WRITE(RENCLK_GATE_D2, 0);
  3703. I915_WRITE(DSPCLK_GATE_D, 0);
  3704. I915_WRITE(RAMCLK_GATE_D, 0);
  3705. I915_WRITE16(DEUC, 0);
  3706. }
  3707. static void broadwater_init_clock_gating(struct drm_device *dev)
  3708. {
  3709. struct drm_i915_private *dev_priv = dev->dev_private;
  3710. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  3711. I965_RCC_CLOCK_GATE_DISABLE |
  3712. I965_RCPB_CLOCK_GATE_DISABLE |
  3713. I965_ISC_CLOCK_GATE_DISABLE |
  3714. I965_FBC_CLOCK_GATE_DISABLE);
  3715. I915_WRITE(RENCLK_GATE_D2, 0);
  3716. }
  3717. static void gen3_init_clock_gating(struct drm_device *dev)
  3718. {
  3719. struct drm_i915_private *dev_priv = dev->dev_private;
  3720. u32 dstate = I915_READ(D_STATE);
  3721. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  3722. DSTATE_DOT_CLOCK_GATING;
  3723. I915_WRITE(D_STATE, dstate);
  3724. if (IS_PINEVIEW(dev))
  3725. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  3726. /* IIR "flip pending" means done if this bit is set */
  3727. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  3728. }
  3729. static void i85x_init_clock_gating(struct drm_device *dev)
  3730. {
  3731. struct drm_i915_private *dev_priv = dev->dev_private;
  3732. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  3733. }
  3734. static void i830_init_clock_gating(struct drm_device *dev)
  3735. {
  3736. struct drm_i915_private *dev_priv = dev->dev_private;
  3737. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  3738. }
  3739. void intel_init_clock_gating(struct drm_device *dev)
  3740. {
  3741. struct drm_i915_private *dev_priv = dev->dev_private;
  3742. dev_priv->display.init_clock_gating(dev);
  3743. }
  3744. void intel_suspend_hw(struct drm_device *dev)
  3745. {
  3746. if (HAS_PCH_LPT(dev))
  3747. lpt_suspend_hw(dev);
  3748. }
  3749. /**
  3750. * We should only use the power well if we explicitly asked the hardware to
  3751. * enable it, so check if it's enabled and also check if we've requested it to
  3752. * be enabled.
  3753. */
  3754. bool intel_display_power_enabled(struct drm_device *dev,
  3755. enum intel_display_power_domain domain)
  3756. {
  3757. struct drm_i915_private *dev_priv = dev->dev_private;
  3758. if (!HAS_POWER_WELL(dev))
  3759. return true;
  3760. switch (domain) {
  3761. case POWER_DOMAIN_PIPE_A:
  3762. case POWER_DOMAIN_TRANSCODER_EDP:
  3763. return true;
  3764. case POWER_DOMAIN_PIPE_B:
  3765. case POWER_DOMAIN_PIPE_C:
  3766. case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
  3767. case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
  3768. case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
  3769. case POWER_DOMAIN_TRANSCODER_A:
  3770. case POWER_DOMAIN_TRANSCODER_B:
  3771. case POWER_DOMAIN_TRANSCODER_C:
  3772. return I915_READ(HSW_PWR_WELL_DRIVER) ==
  3773. (HSW_PWR_WELL_ENABLE | HSW_PWR_WELL_STATE);
  3774. default:
  3775. BUG();
  3776. }
  3777. }
  3778. void intel_set_power_well(struct drm_device *dev, bool enable)
  3779. {
  3780. struct drm_i915_private *dev_priv = dev->dev_private;
  3781. bool is_enabled, enable_requested;
  3782. uint32_t tmp;
  3783. if (!HAS_POWER_WELL(dev))
  3784. return;
  3785. if (!i915_disable_power_well && !enable)
  3786. return;
  3787. tmp = I915_READ(HSW_PWR_WELL_DRIVER);
  3788. is_enabled = tmp & HSW_PWR_WELL_STATE;
  3789. enable_requested = tmp & HSW_PWR_WELL_ENABLE;
  3790. if (enable) {
  3791. if (!enable_requested)
  3792. I915_WRITE(HSW_PWR_WELL_DRIVER, HSW_PWR_WELL_ENABLE);
  3793. if (!is_enabled) {
  3794. DRM_DEBUG_KMS("Enabling power well\n");
  3795. if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
  3796. HSW_PWR_WELL_STATE), 20))
  3797. DRM_ERROR("Timeout enabling power well\n");
  3798. }
  3799. } else {
  3800. if (enable_requested) {
  3801. I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
  3802. DRM_DEBUG_KMS("Requesting to disable the power well\n");
  3803. }
  3804. }
  3805. }
  3806. /*
  3807. * Starting with Haswell, we have a "Power Down Well" that can be turned off
  3808. * when not needed anymore. We have 4 registers that can request the power well
  3809. * to be enabled, and it will only be disabled if none of the registers is
  3810. * requesting it to be enabled.
  3811. */
  3812. void intel_init_power_well(struct drm_device *dev)
  3813. {
  3814. struct drm_i915_private *dev_priv = dev->dev_private;
  3815. if (!HAS_POWER_WELL(dev))
  3816. return;
  3817. /* For now, we need the power well to be always enabled. */
  3818. intel_set_power_well(dev, true);
  3819. /* We're taking over the BIOS, so clear any requests made by it since
  3820. * the driver is in charge now. */
  3821. if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE)
  3822. I915_WRITE(HSW_PWR_WELL_BIOS, 0);
  3823. }
  3824. /* Set up chip specific power management-related functions */
  3825. void intel_init_pm(struct drm_device *dev)
  3826. {
  3827. struct drm_i915_private *dev_priv = dev->dev_private;
  3828. if (I915_HAS_FBC(dev)) {
  3829. if (HAS_PCH_SPLIT(dev)) {
  3830. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  3831. if (IS_IVYBRIDGE(dev))
  3832. dev_priv->display.enable_fbc =
  3833. gen7_enable_fbc;
  3834. else
  3835. dev_priv->display.enable_fbc =
  3836. ironlake_enable_fbc;
  3837. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  3838. } else if (IS_GM45(dev)) {
  3839. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  3840. dev_priv->display.enable_fbc = g4x_enable_fbc;
  3841. dev_priv->display.disable_fbc = g4x_disable_fbc;
  3842. } else if (IS_CRESTLINE(dev)) {
  3843. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  3844. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  3845. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  3846. }
  3847. /* 855GM needs testing */
  3848. }
  3849. /* For cxsr */
  3850. if (IS_PINEVIEW(dev))
  3851. i915_pineview_get_mem_freq(dev);
  3852. else if (IS_GEN5(dev))
  3853. i915_ironlake_get_mem_freq(dev);
  3854. /* For FIFO watermark updates */
  3855. if (HAS_PCH_SPLIT(dev)) {
  3856. if (IS_GEN5(dev)) {
  3857. if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
  3858. dev_priv->display.update_wm = ironlake_update_wm;
  3859. else {
  3860. DRM_DEBUG_KMS("Failed to get proper latency. "
  3861. "Disable CxSR\n");
  3862. dev_priv->display.update_wm = NULL;
  3863. }
  3864. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  3865. } else if (IS_GEN6(dev)) {
  3866. if (SNB_READ_WM0_LATENCY()) {
  3867. dev_priv->display.update_wm = sandybridge_update_wm;
  3868. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  3869. } else {
  3870. DRM_DEBUG_KMS("Failed to read display plane latency. "
  3871. "Disable CxSR\n");
  3872. dev_priv->display.update_wm = NULL;
  3873. }
  3874. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  3875. } else if (IS_IVYBRIDGE(dev)) {
  3876. if (SNB_READ_WM0_LATENCY()) {
  3877. dev_priv->display.update_wm = ivybridge_update_wm;
  3878. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  3879. } else {
  3880. DRM_DEBUG_KMS("Failed to read display plane latency. "
  3881. "Disable CxSR\n");
  3882. dev_priv->display.update_wm = NULL;
  3883. }
  3884. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  3885. } else if (IS_HASWELL(dev)) {
  3886. if (SNB_READ_WM0_LATENCY()) {
  3887. dev_priv->display.update_wm = sandybridge_update_wm;
  3888. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  3889. dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
  3890. } else {
  3891. DRM_DEBUG_KMS("Failed to read display plane latency. "
  3892. "Disable CxSR\n");
  3893. dev_priv->display.update_wm = NULL;
  3894. }
  3895. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  3896. } else
  3897. dev_priv->display.update_wm = NULL;
  3898. } else if (IS_VALLEYVIEW(dev)) {
  3899. dev_priv->display.update_wm = valleyview_update_wm;
  3900. dev_priv->display.init_clock_gating =
  3901. valleyview_init_clock_gating;
  3902. } else if (IS_PINEVIEW(dev)) {
  3903. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  3904. dev_priv->is_ddr3,
  3905. dev_priv->fsb_freq,
  3906. dev_priv->mem_freq)) {
  3907. DRM_INFO("failed to find known CxSR latency "
  3908. "(found ddr%s fsb freq %d, mem freq %d), "
  3909. "disabling CxSR\n",
  3910. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  3911. dev_priv->fsb_freq, dev_priv->mem_freq);
  3912. /* Disable CxSR and never update its watermark again */
  3913. pineview_disable_cxsr(dev);
  3914. dev_priv->display.update_wm = NULL;
  3915. } else
  3916. dev_priv->display.update_wm = pineview_update_wm;
  3917. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  3918. } else if (IS_G4X(dev)) {
  3919. dev_priv->display.update_wm = g4x_update_wm;
  3920. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  3921. } else if (IS_GEN4(dev)) {
  3922. dev_priv->display.update_wm = i965_update_wm;
  3923. if (IS_CRESTLINE(dev))
  3924. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  3925. else if (IS_BROADWATER(dev))
  3926. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  3927. } else if (IS_GEN3(dev)) {
  3928. dev_priv->display.update_wm = i9xx_update_wm;
  3929. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  3930. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  3931. } else if (IS_I865G(dev)) {
  3932. dev_priv->display.update_wm = i830_update_wm;
  3933. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  3934. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  3935. } else if (IS_I85X(dev)) {
  3936. dev_priv->display.update_wm = i9xx_update_wm;
  3937. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  3938. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  3939. } else {
  3940. dev_priv->display.update_wm = i830_update_wm;
  3941. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  3942. if (IS_845G(dev))
  3943. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  3944. else
  3945. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  3946. }
  3947. }
  3948. static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
  3949. {
  3950. u32 gt_thread_status_mask;
  3951. if (IS_HASWELL(dev_priv->dev))
  3952. gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
  3953. else
  3954. gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
  3955. /* w/a for a sporadic read returning 0 by waiting for the GT
  3956. * thread to wake up.
  3957. */
  3958. if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
  3959. DRM_ERROR("GT thread status wait timed out\n");
  3960. }
  3961. static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
  3962. {
  3963. I915_WRITE_NOTRACE(FORCEWAKE, 0);
  3964. POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
  3965. }
  3966. static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
  3967. {
  3968. if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1) == 0,
  3969. FORCEWAKE_ACK_TIMEOUT_MS))
  3970. DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
  3971. I915_WRITE_NOTRACE(FORCEWAKE, 1);
  3972. POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
  3973. if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1),
  3974. FORCEWAKE_ACK_TIMEOUT_MS))
  3975. DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
  3976. /* WaRsForcewakeWaitTC0:snb */
  3977. __gen6_gt_wait_for_thread_c0(dev_priv);
  3978. }
  3979. static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
  3980. {
  3981. I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
  3982. /* something from same cacheline, but !FORCEWAKE_MT */
  3983. POSTING_READ(ECOBUS);
  3984. }
  3985. static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
  3986. {
  3987. u32 forcewake_ack;
  3988. if (IS_HASWELL(dev_priv->dev))
  3989. forcewake_ack = FORCEWAKE_ACK_HSW;
  3990. else
  3991. forcewake_ack = FORCEWAKE_MT_ACK;
  3992. if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL) == 0,
  3993. FORCEWAKE_ACK_TIMEOUT_MS))
  3994. DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
  3995. I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
  3996. /* something from same cacheline, but !FORCEWAKE_MT */
  3997. POSTING_READ(ECOBUS);
  3998. if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL),
  3999. FORCEWAKE_ACK_TIMEOUT_MS))
  4000. DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
  4001. /* WaRsForcewakeWaitTC0:ivb,hsw */
  4002. __gen6_gt_wait_for_thread_c0(dev_priv);
  4003. }
  4004. /*
  4005. * Generally this is called implicitly by the register read function. However,
  4006. * if some sequence requires the GT to not power down then this function should
  4007. * be called at the beginning of the sequence followed by a call to
  4008. * gen6_gt_force_wake_put() at the end of the sequence.
  4009. */
  4010. void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
  4011. {
  4012. unsigned long irqflags;
  4013. spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
  4014. if (dev_priv->forcewake_count++ == 0)
  4015. dev_priv->gt.force_wake_get(dev_priv);
  4016. spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
  4017. }
  4018. void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
  4019. {
  4020. u32 gtfifodbg;
  4021. gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
  4022. if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
  4023. "MMIO read or write has been dropped %x\n", gtfifodbg))
  4024. I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
  4025. }
  4026. static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
  4027. {
  4028. I915_WRITE_NOTRACE(FORCEWAKE, 0);
  4029. /* something from same cacheline, but !FORCEWAKE */
  4030. POSTING_READ(ECOBUS);
  4031. gen6_gt_check_fifodbg(dev_priv);
  4032. }
  4033. static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
  4034. {
  4035. I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
  4036. /* something from same cacheline, but !FORCEWAKE_MT */
  4037. POSTING_READ(ECOBUS);
  4038. gen6_gt_check_fifodbg(dev_priv);
  4039. }
  4040. /*
  4041. * see gen6_gt_force_wake_get()
  4042. */
  4043. void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
  4044. {
  4045. unsigned long irqflags;
  4046. spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
  4047. if (--dev_priv->forcewake_count == 0)
  4048. dev_priv->gt.force_wake_put(dev_priv);
  4049. spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
  4050. }
  4051. int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
  4052. {
  4053. int ret = 0;
  4054. if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
  4055. int loop = 500;
  4056. u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
  4057. while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
  4058. udelay(10);
  4059. fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
  4060. }
  4061. if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
  4062. ++ret;
  4063. dev_priv->gt_fifo_count = fifo;
  4064. }
  4065. dev_priv->gt_fifo_count--;
  4066. return ret;
  4067. }
  4068. static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
  4069. {
  4070. I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
  4071. /* something from same cacheline, but !FORCEWAKE_VLV */
  4072. POSTING_READ(FORCEWAKE_ACK_VLV);
  4073. }
  4074. static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
  4075. {
  4076. if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL) == 0,
  4077. FORCEWAKE_ACK_TIMEOUT_MS))
  4078. DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
  4079. I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
  4080. I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
  4081. _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
  4082. if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL),
  4083. FORCEWAKE_ACK_TIMEOUT_MS))
  4084. DRM_ERROR("Timed out waiting for GT to ack forcewake request.\n");
  4085. if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_MEDIA_VLV) &
  4086. FORCEWAKE_KERNEL),
  4087. FORCEWAKE_ACK_TIMEOUT_MS))
  4088. DRM_ERROR("Timed out waiting for media to ack forcewake request.\n");
  4089. /* WaRsForcewakeWaitTC0:vlv */
  4090. __gen6_gt_wait_for_thread_c0(dev_priv);
  4091. }
  4092. static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
  4093. {
  4094. I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
  4095. I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
  4096. _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
  4097. /* The below doubles as a POSTING_READ */
  4098. gen6_gt_check_fifodbg(dev_priv);
  4099. }
  4100. void intel_gt_reset(struct drm_device *dev)
  4101. {
  4102. struct drm_i915_private *dev_priv = dev->dev_private;
  4103. if (IS_VALLEYVIEW(dev)) {
  4104. vlv_force_wake_reset(dev_priv);
  4105. } else if (INTEL_INFO(dev)->gen >= 6) {
  4106. __gen6_gt_force_wake_reset(dev_priv);
  4107. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  4108. __gen6_gt_force_wake_mt_reset(dev_priv);
  4109. }
  4110. }
  4111. void intel_gt_init(struct drm_device *dev)
  4112. {
  4113. struct drm_i915_private *dev_priv = dev->dev_private;
  4114. spin_lock_init(&dev_priv->gt_lock);
  4115. intel_gt_reset(dev);
  4116. if (IS_VALLEYVIEW(dev)) {
  4117. dev_priv->gt.force_wake_get = vlv_force_wake_get;
  4118. dev_priv->gt.force_wake_put = vlv_force_wake_put;
  4119. } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  4120. dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
  4121. dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
  4122. } else if (IS_GEN6(dev)) {
  4123. dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
  4124. dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
  4125. }
  4126. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  4127. intel_gen6_powersave_work);
  4128. }
  4129. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
  4130. {
  4131. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4132. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  4133. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  4134. return -EAGAIN;
  4135. }
  4136. I915_WRITE(GEN6_PCODE_DATA, *val);
  4137. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  4138. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  4139. 500)) {
  4140. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  4141. return -ETIMEDOUT;
  4142. }
  4143. *val = I915_READ(GEN6_PCODE_DATA);
  4144. I915_WRITE(GEN6_PCODE_DATA, 0);
  4145. return 0;
  4146. }
  4147. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
  4148. {
  4149. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4150. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  4151. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  4152. return -EAGAIN;
  4153. }
  4154. I915_WRITE(GEN6_PCODE_DATA, val);
  4155. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  4156. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  4157. 500)) {
  4158. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  4159. return -ETIMEDOUT;
  4160. }
  4161. I915_WRITE(GEN6_PCODE_DATA, 0);
  4162. return 0;
  4163. }
  4164. static int vlv_punit_rw(struct drm_i915_private *dev_priv, u32 port, u8 opcode,
  4165. u8 addr, u32 *val)
  4166. {
  4167. u32 cmd, devfn, be, bar;
  4168. bar = 0;
  4169. be = 0xf;
  4170. devfn = PCI_DEVFN(2, 0);
  4171. cmd = (devfn << IOSF_DEVFN_SHIFT) | (opcode << IOSF_OPCODE_SHIFT) |
  4172. (port << IOSF_PORT_SHIFT) | (be << IOSF_BYTE_ENABLES_SHIFT) |
  4173. (bar << IOSF_BAR_SHIFT);
  4174. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4175. if (I915_READ(VLV_IOSF_DOORBELL_REQ) & IOSF_SB_BUSY) {
  4176. DRM_DEBUG_DRIVER("warning: pcode (%s) mailbox access failed\n",
  4177. opcode == PUNIT_OPCODE_REG_READ ?
  4178. "read" : "write");
  4179. return -EAGAIN;
  4180. }
  4181. I915_WRITE(VLV_IOSF_ADDR, addr);
  4182. if (opcode == PUNIT_OPCODE_REG_WRITE)
  4183. I915_WRITE(VLV_IOSF_DATA, *val);
  4184. I915_WRITE(VLV_IOSF_DOORBELL_REQ, cmd);
  4185. if (wait_for((I915_READ(VLV_IOSF_DOORBELL_REQ) & IOSF_SB_BUSY) == 0,
  4186. 5)) {
  4187. DRM_ERROR("timeout waiting for pcode %s (%d) to finish\n",
  4188. opcode == PUNIT_OPCODE_REG_READ ? "read" : "write",
  4189. addr);
  4190. return -ETIMEDOUT;
  4191. }
  4192. if (opcode == PUNIT_OPCODE_REG_READ)
  4193. *val = I915_READ(VLV_IOSF_DATA);
  4194. I915_WRITE(VLV_IOSF_DATA, 0);
  4195. return 0;
  4196. }
  4197. int valleyview_punit_read(struct drm_i915_private *dev_priv, u8 addr, u32 *val)
  4198. {
  4199. return vlv_punit_rw(dev_priv, IOSF_PORT_PUNIT, PUNIT_OPCODE_REG_READ,
  4200. addr, val);
  4201. }
  4202. int valleyview_punit_write(struct drm_i915_private *dev_priv, u8 addr, u32 val)
  4203. {
  4204. return vlv_punit_rw(dev_priv, IOSF_PORT_PUNIT, PUNIT_OPCODE_REG_WRITE,
  4205. addr, &val);
  4206. }
  4207. int valleyview_nc_read(struct drm_i915_private *dev_priv, u8 addr, u32 *val)
  4208. {
  4209. return vlv_punit_rw(dev_priv, IOSF_PORT_NC, PUNIT_OPCODE_REG_READ,
  4210. addr, val);
  4211. }
  4212. int vlv_gpu_freq(int ddr_freq, int val)
  4213. {
  4214. int mult, base;
  4215. switch (ddr_freq) {
  4216. case 800:
  4217. mult = 20;
  4218. base = 120;
  4219. break;
  4220. case 1066:
  4221. mult = 22;
  4222. base = 133;
  4223. break;
  4224. case 1333:
  4225. mult = 21;
  4226. base = 125;
  4227. break;
  4228. default:
  4229. return -1;
  4230. }
  4231. return ((val - 0xbd) * mult) + base;
  4232. }
  4233. int vlv_freq_opcode(int ddr_freq, int val)
  4234. {
  4235. int mult, base;
  4236. switch (ddr_freq) {
  4237. case 800:
  4238. mult = 20;
  4239. base = 120;
  4240. break;
  4241. case 1066:
  4242. mult = 22;
  4243. base = 133;
  4244. break;
  4245. case 1333:
  4246. mult = 21;
  4247. base = 125;
  4248. break;
  4249. default:
  4250. return -1;
  4251. }
  4252. val /= mult;
  4253. val -= base / mult;
  4254. val += 0xbd;
  4255. if (val > 0xea)
  4256. val = 0xea;
  4257. return val;
  4258. }