x86.c 135 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. * Copyright 2010 Red Hat, Inc. and/or its affilates.
  10. *
  11. * Authors:
  12. * Avi Kivity <avi@qumranet.com>
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Amit Shah <amit.shah@qumranet.com>
  15. * Ben-Ami Yassour <benami@il.ibm.com>
  16. *
  17. * This work is licensed under the terms of the GNU GPL, version 2. See
  18. * the COPYING file in the top-level directory.
  19. *
  20. */
  21. #include <linux/kvm_host.h>
  22. #include "irq.h"
  23. #include "mmu.h"
  24. #include "i8254.h"
  25. #include "tss.h"
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <linux/clocksource.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/kvm.h>
  31. #include <linux/fs.h>
  32. #include <linux/vmalloc.h>
  33. #include <linux/module.h>
  34. #include <linux/mman.h>
  35. #include <linux/highmem.h>
  36. #include <linux/iommu.h>
  37. #include <linux/intel-iommu.h>
  38. #include <linux/cpufreq.h>
  39. #include <linux/user-return-notifier.h>
  40. #include <linux/srcu.h>
  41. #include <linux/slab.h>
  42. #include <linux/perf_event.h>
  43. #include <linux/uaccess.h>
  44. #include <trace/events/kvm.h>
  45. #define CREATE_TRACE_POINTS
  46. #include "trace.h"
  47. #include <asm/debugreg.h>
  48. #include <asm/msr.h>
  49. #include <asm/desc.h>
  50. #include <asm/mtrr.h>
  51. #include <asm/mce.h>
  52. #include <asm/i387.h>
  53. #include <asm/xcr.h>
  54. #define MAX_IO_MSRS 256
  55. #define CR0_RESERVED_BITS \
  56. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  57. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  58. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  59. #define CR4_RESERVED_BITS \
  60. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  61. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  62. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  63. | X86_CR4_OSXSAVE \
  64. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  65. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  66. #define KVM_MAX_MCE_BANKS 32
  67. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  68. /* EFER defaults:
  69. * - enable syscall per default because its emulated by KVM
  70. * - enable LME and LMA per default on 64 bit KVM
  71. */
  72. #ifdef CONFIG_X86_64
  73. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  74. #else
  75. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  76. #endif
  77. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  78. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  79. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  80. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  81. struct kvm_cpuid_entry2 __user *entries);
  82. struct kvm_x86_ops *kvm_x86_ops;
  83. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  84. int ignore_msrs = 0;
  85. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  86. #define KVM_NR_SHARED_MSRS 16
  87. struct kvm_shared_msrs_global {
  88. int nr;
  89. u32 msrs[KVM_NR_SHARED_MSRS];
  90. };
  91. struct kvm_shared_msrs {
  92. struct user_return_notifier urn;
  93. bool registered;
  94. struct kvm_shared_msr_values {
  95. u64 host;
  96. u64 curr;
  97. } values[KVM_NR_SHARED_MSRS];
  98. };
  99. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  100. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  101. struct kvm_stats_debugfs_item debugfs_entries[] = {
  102. { "pf_fixed", VCPU_STAT(pf_fixed) },
  103. { "pf_guest", VCPU_STAT(pf_guest) },
  104. { "tlb_flush", VCPU_STAT(tlb_flush) },
  105. { "invlpg", VCPU_STAT(invlpg) },
  106. { "exits", VCPU_STAT(exits) },
  107. { "io_exits", VCPU_STAT(io_exits) },
  108. { "mmio_exits", VCPU_STAT(mmio_exits) },
  109. { "signal_exits", VCPU_STAT(signal_exits) },
  110. { "irq_window", VCPU_STAT(irq_window_exits) },
  111. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  112. { "halt_exits", VCPU_STAT(halt_exits) },
  113. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  114. { "hypercalls", VCPU_STAT(hypercalls) },
  115. { "request_irq", VCPU_STAT(request_irq_exits) },
  116. { "irq_exits", VCPU_STAT(irq_exits) },
  117. { "host_state_reload", VCPU_STAT(host_state_reload) },
  118. { "efer_reload", VCPU_STAT(efer_reload) },
  119. { "fpu_reload", VCPU_STAT(fpu_reload) },
  120. { "insn_emulation", VCPU_STAT(insn_emulation) },
  121. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  122. { "irq_injections", VCPU_STAT(irq_injections) },
  123. { "nmi_injections", VCPU_STAT(nmi_injections) },
  124. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  125. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  126. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  127. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  128. { "mmu_flooded", VM_STAT(mmu_flooded) },
  129. { "mmu_recycled", VM_STAT(mmu_recycled) },
  130. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  131. { "mmu_unsync", VM_STAT(mmu_unsync) },
  132. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  133. { "largepages", VM_STAT(lpages) },
  134. { NULL }
  135. };
  136. u64 __read_mostly host_xcr0;
  137. static inline u32 bit(int bitno)
  138. {
  139. return 1 << (bitno & 31);
  140. }
  141. static void kvm_on_user_return(struct user_return_notifier *urn)
  142. {
  143. unsigned slot;
  144. struct kvm_shared_msrs *locals
  145. = container_of(urn, struct kvm_shared_msrs, urn);
  146. struct kvm_shared_msr_values *values;
  147. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  148. values = &locals->values[slot];
  149. if (values->host != values->curr) {
  150. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  151. values->curr = values->host;
  152. }
  153. }
  154. locals->registered = false;
  155. user_return_notifier_unregister(urn);
  156. }
  157. static void shared_msr_update(unsigned slot, u32 msr)
  158. {
  159. struct kvm_shared_msrs *smsr;
  160. u64 value;
  161. smsr = &__get_cpu_var(shared_msrs);
  162. /* only read, and nobody should modify it at this time,
  163. * so don't need lock */
  164. if (slot >= shared_msrs_global.nr) {
  165. printk(KERN_ERR "kvm: invalid MSR slot!");
  166. return;
  167. }
  168. rdmsrl_safe(msr, &value);
  169. smsr->values[slot].host = value;
  170. smsr->values[slot].curr = value;
  171. }
  172. void kvm_define_shared_msr(unsigned slot, u32 msr)
  173. {
  174. if (slot >= shared_msrs_global.nr)
  175. shared_msrs_global.nr = slot + 1;
  176. shared_msrs_global.msrs[slot] = msr;
  177. /* we need ensured the shared_msr_global have been updated */
  178. smp_wmb();
  179. }
  180. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  181. static void kvm_shared_msr_cpu_online(void)
  182. {
  183. unsigned i;
  184. for (i = 0; i < shared_msrs_global.nr; ++i)
  185. shared_msr_update(i, shared_msrs_global.msrs[i]);
  186. }
  187. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  188. {
  189. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  190. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  191. return;
  192. smsr->values[slot].curr = value;
  193. wrmsrl(shared_msrs_global.msrs[slot], value);
  194. if (!smsr->registered) {
  195. smsr->urn.on_user_return = kvm_on_user_return;
  196. user_return_notifier_register(&smsr->urn);
  197. smsr->registered = true;
  198. }
  199. }
  200. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  201. static void drop_user_return_notifiers(void *ignore)
  202. {
  203. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  204. if (smsr->registered)
  205. kvm_on_user_return(&smsr->urn);
  206. }
  207. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  208. {
  209. if (irqchip_in_kernel(vcpu->kvm))
  210. return vcpu->arch.apic_base;
  211. else
  212. return vcpu->arch.apic_base;
  213. }
  214. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  215. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  216. {
  217. /* TODO: reserve bits check */
  218. if (irqchip_in_kernel(vcpu->kvm))
  219. kvm_lapic_set_base(vcpu, data);
  220. else
  221. vcpu->arch.apic_base = data;
  222. }
  223. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  224. #define EXCPT_BENIGN 0
  225. #define EXCPT_CONTRIBUTORY 1
  226. #define EXCPT_PF 2
  227. static int exception_class(int vector)
  228. {
  229. switch (vector) {
  230. case PF_VECTOR:
  231. return EXCPT_PF;
  232. case DE_VECTOR:
  233. case TS_VECTOR:
  234. case NP_VECTOR:
  235. case SS_VECTOR:
  236. case GP_VECTOR:
  237. return EXCPT_CONTRIBUTORY;
  238. default:
  239. break;
  240. }
  241. return EXCPT_BENIGN;
  242. }
  243. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  244. unsigned nr, bool has_error, u32 error_code,
  245. bool reinject)
  246. {
  247. u32 prev_nr;
  248. int class1, class2;
  249. if (!vcpu->arch.exception.pending) {
  250. queue:
  251. vcpu->arch.exception.pending = true;
  252. vcpu->arch.exception.has_error_code = has_error;
  253. vcpu->arch.exception.nr = nr;
  254. vcpu->arch.exception.error_code = error_code;
  255. vcpu->arch.exception.reinject = reinject;
  256. return;
  257. }
  258. /* to check exception */
  259. prev_nr = vcpu->arch.exception.nr;
  260. if (prev_nr == DF_VECTOR) {
  261. /* triple fault -> shutdown */
  262. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  263. return;
  264. }
  265. class1 = exception_class(prev_nr);
  266. class2 = exception_class(nr);
  267. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  268. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  269. /* generate double fault per SDM Table 5-5 */
  270. vcpu->arch.exception.pending = true;
  271. vcpu->arch.exception.has_error_code = true;
  272. vcpu->arch.exception.nr = DF_VECTOR;
  273. vcpu->arch.exception.error_code = 0;
  274. } else
  275. /* replace previous exception with a new one in a hope
  276. that instruction re-execution will regenerate lost
  277. exception */
  278. goto queue;
  279. }
  280. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  281. {
  282. kvm_multiple_exception(vcpu, nr, false, 0, false);
  283. }
  284. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  285. void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  286. {
  287. kvm_multiple_exception(vcpu, nr, false, 0, true);
  288. }
  289. EXPORT_SYMBOL_GPL(kvm_requeue_exception);
  290. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  291. u32 error_code)
  292. {
  293. ++vcpu->stat.pf_guest;
  294. vcpu->arch.cr2 = addr;
  295. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  296. }
  297. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  298. {
  299. vcpu->arch.nmi_pending = 1;
  300. }
  301. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  302. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  303. {
  304. kvm_multiple_exception(vcpu, nr, true, error_code, false);
  305. }
  306. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  307. void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  308. {
  309. kvm_multiple_exception(vcpu, nr, true, error_code, true);
  310. }
  311. EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
  312. /*
  313. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  314. * a #GP and return false.
  315. */
  316. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  317. {
  318. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  319. return true;
  320. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  321. return false;
  322. }
  323. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  324. /*
  325. * Load the pae pdptrs. Return true is they are all valid.
  326. */
  327. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  328. {
  329. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  330. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  331. int i;
  332. int ret;
  333. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  334. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  335. offset * sizeof(u64), sizeof(pdpte));
  336. if (ret < 0) {
  337. ret = 0;
  338. goto out;
  339. }
  340. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  341. if (is_present_gpte(pdpte[i]) &&
  342. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  343. ret = 0;
  344. goto out;
  345. }
  346. }
  347. ret = 1;
  348. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  349. __set_bit(VCPU_EXREG_PDPTR,
  350. (unsigned long *)&vcpu->arch.regs_avail);
  351. __set_bit(VCPU_EXREG_PDPTR,
  352. (unsigned long *)&vcpu->arch.regs_dirty);
  353. out:
  354. return ret;
  355. }
  356. EXPORT_SYMBOL_GPL(load_pdptrs);
  357. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  358. {
  359. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  360. bool changed = true;
  361. int r;
  362. if (is_long_mode(vcpu) || !is_pae(vcpu))
  363. return false;
  364. if (!test_bit(VCPU_EXREG_PDPTR,
  365. (unsigned long *)&vcpu->arch.regs_avail))
  366. return true;
  367. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  368. if (r < 0)
  369. goto out;
  370. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  371. out:
  372. return changed;
  373. }
  374. int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  375. {
  376. unsigned long old_cr0 = kvm_read_cr0(vcpu);
  377. unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
  378. X86_CR0_CD | X86_CR0_NW;
  379. cr0 |= X86_CR0_ET;
  380. #ifdef CONFIG_X86_64
  381. if (cr0 & 0xffffffff00000000UL)
  382. return 1;
  383. #endif
  384. cr0 &= ~CR0_RESERVED_BITS;
  385. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
  386. return 1;
  387. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
  388. return 1;
  389. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  390. #ifdef CONFIG_X86_64
  391. if ((vcpu->arch.efer & EFER_LME)) {
  392. int cs_db, cs_l;
  393. if (!is_pae(vcpu))
  394. return 1;
  395. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  396. if (cs_l)
  397. return 1;
  398. } else
  399. #endif
  400. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3))
  401. return 1;
  402. }
  403. kvm_x86_ops->set_cr0(vcpu, cr0);
  404. if ((cr0 ^ old_cr0) & update_bits)
  405. kvm_mmu_reset_context(vcpu);
  406. return 0;
  407. }
  408. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  409. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  410. {
  411. (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
  412. }
  413. EXPORT_SYMBOL_GPL(kvm_lmsw);
  414. int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  415. {
  416. u64 xcr0;
  417. /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
  418. if (index != XCR_XFEATURE_ENABLED_MASK)
  419. return 1;
  420. xcr0 = xcr;
  421. if (kvm_x86_ops->get_cpl(vcpu) != 0)
  422. return 1;
  423. if (!(xcr0 & XSTATE_FP))
  424. return 1;
  425. if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
  426. return 1;
  427. if (xcr0 & ~host_xcr0)
  428. return 1;
  429. vcpu->arch.xcr0 = xcr0;
  430. vcpu->guest_xcr0_loaded = 0;
  431. return 0;
  432. }
  433. int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  434. {
  435. if (__kvm_set_xcr(vcpu, index, xcr)) {
  436. kvm_inject_gp(vcpu, 0);
  437. return 1;
  438. }
  439. return 0;
  440. }
  441. EXPORT_SYMBOL_GPL(kvm_set_xcr);
  442. static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
  443. {
  444. struct kvm_cpuid_entry2 *best;
  445. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  446. return best && (best->ecx & bit(X86_FEATURE_XSAVE));
  447. }
  448. static void update_cpuid(struct kvm_vcpu *vcpu)
  449. {
  450. struct kvm_cpuid_entry2 *best;
  451. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  452. if (!best)
  453. return;
  454. /* Update OSXSAVE bit */
  455. if (cpu_has_xsave && best->function == 0x1) {
  456. best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
  457. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
  458. best->ecx |= bit(X86_FEATURE_OSXSAVE);
  459. }
  460. }
  461. int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  462. {
  463. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  464. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  465. if (cr4 & CR4_RESERVED_BITS)
  466. return 1;
  467. if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
  468. return 1;
  469. if (is_long_mode(vcpu)) {
  470. if (!(cr4 & X86_CR4_PAE))
  471. return 1;
  472. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  473. && ((cr4 ^ old_cr4) & pdptr_bits)
  474. && !load_pdptrs(vcpu, vcpu->arch.cr3))
  475. return 1;
  476. if (cr4 & X86_CR4_VMXE)
  477. return 1;
  478. kvm_x86_ops->set_cr4(vcpu, cr4);
  479. if ((cr4 ^ old_cr4) & pdptr_bits)
  480. kvm_mmu_reset_context(vcpu);
  481. if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
  482. update_cpuid(vcpu);
  483. return 0;
  484. }
  485. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  486. int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  487. {
  488. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  489. kvm_mmu_sync_roots(vcpu);
  490. kvm_mmu_flush_tlb(vcpu);
  491. return 0;
  492. }
  493. if (is_long_mode(vcpu)) {
  494. if (cr3 & CR3_L_MODE_RESERVED_BITS)
  495. return 1;
  496. } else {
  497. if (is_pae(vcpu)) {
  498. if (cr3 & CR3_PAE_RESERVED_BITS)
  499. return 1;
  500. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3))
  501. return 1;
  502. }
  503. /*
  504. * We don't check reserved bits in nonpae mode, because
  505. * this isn't enforced, and VMware depends on this.
  506. */
  507. }
  508. /*
  509. * Does the new cr3 value map to physical memory? (Note, we
  510. * catch an invalid cr3 even in real-mode, because it would
  511. * cause trouble later on when we turn on paging anyway.)
  512. *
  513. * A real CPU would silently accept an invalid cr3 and would
  514. * attempt to use it - with largely undefined (and often hard
  515. * to debug) behavior on the guest side.
  516. */
  517. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  518. return 1;
  519. vcpu->arch.cr3 = cr3;
  520. vcpu->arch.mmu.new_cr3(vcpu);
  521. return 0;
  522. }
  523. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  524. int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  525. {
  526. if (cr8 & CR8_RESERVED_BITS)
  527. return 1;
  528. if (irqchip_in_kernel(vcpu->kvm))
  529. kvm_lapic_set_tpr(vcpu, cr8);
  530. else
  531. vcpu->arch.cr8 = cr8;
  532. return 0;
  533. }
  534. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  535. {
  536. if (__kvm_set_cr8(vcpu, cr8))
  537. kvm_inject_gp(vcpu, 0);
  538. }
  539. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  540. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  541. {
  542. if (irqchip_in_kernel(vcpu->kvm))
  543. return kvm_lapic_get_cr8(vcpu);
  544. else
  545. return vcpu->arch.cr8;
  546. }
  547. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  548. static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  549. {
  550. switch (dr) {
  551. case 0 ... 3:
  552. vcpu->arch.db[dr] = val;
  553. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  554. vcpu->arch.eff_db[dr] = val;
  555. break;
  556. case 4:
  557. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  558. return 1; /* #UD */
  559. /* fall through */
  560. case 6:
  561. if (val & 0xffffffff00000000ULL)
  562. return -1; /* #GP */
  563. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  564. break;
  565. case 5:
  566. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  567. return 1; /* #UD */
  568. /* fall through */
  569. default: /* 7 */
  570. if (val & 0xffffffff00000000ULL)
  571. return -1; /* #GP */
  572. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  573. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  574. kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
  575. vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
  576. }
  577. break;
  578. }
  579. return 0;
  580. }
  581. int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  582. {
  583. int res;
  584. res = __kvm_set_dr(vcpu, dr, val);
  585. if (res > 0)
  586. kvm_queue_exception(vcpu, UD_VECTOR);
  587. else if (res < 0)
  588. kvm_inject_gp(vcpu, 0);
  589. return res;
  590. }
  591. EXPORT_SYMBOL_GPL(kvm_set_dr);
  592. static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  593. {
  594. switch (dr) {
  595. case 0 ... 3:
  596. *val = vcpu->arch.db[dr];
  597. break;
  598. case 4:
  599. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  600. return 1;
  601. /* fall through */
  602. case 6:
  603. *val = vcpu->arch.dr6;
  604. break;
  605. case 5:
  606. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  607. return 1;
  608. /* fall through */
  609. default: /* 7 */
  610. *val = vcpu->arch.dr7;
  611. break;
  612. }
  613. return 0;
  614. }
  615. int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  616. {
  617. if (_kvm_get_dr(vcpu, dr, val)) {
  618. kvm_queue_exception(vcpu, UD_VECTOR);
  619. return 1;
  620. }
  621. return 0;
  622. }
  623. EXPORT_SYMBOL_GPL(kvm_get_dr);
  624. /*
  625. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  626. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  627. *
  628. * This list is modified at module load time to reflect the
  629. * capabilities of the host cpu. This capabilities test skips MSRs that are
  630. * kvm-specific. Those are put in the beginning of the list.
  631. */
  632. #define KVM_SAVE_MSRS_BEGIN 7
  633. static u32 msrs_to_save[] = {
  634. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  635. MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
  636. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  637. HV_X64_MSR_APIC_ASSIST_PAGE,
  638. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  639. MSR_K6_STAR,
  640. #ifdef CONFIG_X86_64
  641. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  642. #endif
  643. MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  644. };
  645. static unsigned num_msrs_to_save;
  646. static u32 emulated_msrs[] = {
  647. MSR_IA32_MISC_ENABLE,
  648. };
  649. static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
  650. {
  651. u64 old_efer = vcpu->arch.efer;
  652. if (efer & efer_reserved_bits)
  653. return 1;
  654. if (is_paging(vcpu)
  655. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
  656. return 1;
  657. if (efer & EFER_FFXSR) {
  658. struct kvm_cpuid_entry2 *feat;
  659. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  660. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
  661. return 1;
  662. }
  663. if (efer & EFER_SVME) {
  664. struct kvm_cpuid_entry2 *feat;
  665. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  666. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
  667. return 1;
  668. }
  669. efer &= ~EFER_LMA;
  670. efer |= vcpu->arch.efer & EFER_LMA;
  671. kvm_x86_ops->set_efer(vcpu, efer);
  672. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  673. kvm_mmu_reset_context(vcpu);
  674. /* Update reserved bits */
  675. if ((efer ^ old_efer) & EFER_NX)
  676. kvm_mmu_reset_context(vcpu);
  677. return 0;
  678. }
  679. void kvm_enable_efer_bits(u64 mask)
  680. {
  681. efer_reserved_bits &= ~mask;
  682. }
  683. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  684. /*
  685. * Writes msr value into into the appropriate "register".
  686. * Returns 0 on success, non-0 otherwise.
  687. * Assumes vcpu_load() was already called.
  688. */
  689. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  690. {
  691. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  692. }
  693. /*
  694. * Adapt set_msr() to msr_io()'s calling convention
  695. */
  696. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  697. {
  698. return kvm_set_msr(vcpu, index, *data);
  699. }
  700. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  701. {
  702. int version;
  703. int r;
  704. struct pvclock_wall_clock wc;
  705. struct timespec boot;
  706. if (!wall_clock)
  707. return;
  708. r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
  709. if (r)
  710. return;
  711. if (version & 1)
  712. ++version; /* first time write, random junk */
  713. ++version;
  714. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  715. /*
  716. * The guest calculates current wall clock time by adding
  717. * system time (updated by kvm_write_guest_time below) to the
  718. * wall clock specified here. guest system time equals host
  719. * system time for us, thus we must fill in host boot time here.
  720. */
  721. getboottime(&boot);
  722. wc.sec = boot.tv_sec;
  723. wc.nsec = boot.tv_nsec;
  724. wc.version = version;
  725. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  726. version++;
  727. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  728. }
  729. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  730. {
  731. uint32_t quotient, remainder;
  732. /* Don't try to replace with do_div(), this one calculates
  733. * "(dividend << 32) / divisor" */
  734. __asm__ ( "divl %4"
  735. : "=a" (quotient), "=d" (remainder)
  736. : "0" (0), "1" (dividend), "r" (divisor) );
  737. return quotient;
  738. }
  739. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  740. {
  741. uint64_t nsecs = 1000000000LL;
  742. int32_t shift = 0;
  743. uint64_t tps64;
  744. uint32_t tps32;
  745. tps64 = tsc_khz * 1000LL;
  746. while (tps64 > nsecs*2) {
  747. tps64 >>= 1;
  748. shift--;
  749. }
  750. tps32 = (uint32_t)tps64;
  751. while (tps32 <= (uint32_t)nsecs) {
  752. tps32 <<= 1;
  753. shift++;
  754. }
  755. hv_clock->tsc_shift = shift;
  756. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  757. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  758. __func__, tsc_khz, hv_clock->tsc_shift,
  759. hv_clock->tsc_to_system_mul);
  760. }
  761. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  762. static void kvm_write_guest_time(struct kvm_vcpu *v)
  763. {
  764. struct timespec ts;
  765. unsigned long flags;
  766. struct kvm_vcpu_arch *vcpu = &v->arch;
  767. void *shared_kaddr;
  768. unsigned long this_tsc_khz;
  769. if ((!vcpu->time_page))
  770. return;
  771. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  772. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  773. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  774. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  775. }
  776. put_cpu_var(cpu_tsc_khz);
  777. /* Keep irq disabled to prevent changes to the clock */
  778. local_irq_save(flags);
  779. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  780. ktime_get_ts(&ts);
  781. monotonic_to_bootbased(&ts);
  782. local_irq_restore(flags);
  783. /* With all the info we got, fill in the values */
  784. vcpu->hv_clock.system_time = ts.tv_nsec +
  785. (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
  786. vcpu->hv_clock.flags = 0;
  787. /*
  788. * The interface expects us to write an even number signaling that the
  789. * update is finished. Since the guest won't see the intermediate
  790. * state, we just increase by 2 at the end.
  791. */
  792. vcpu->hv_clock.version += 2;
  793. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  794. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  795. sizeof(vcpu->hv_clock));
  796. kunmap_atomic(shared_kaddr, KM_USER0);
  797. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  798. }
  799. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  800. {
  801. struct kvm_vcpu_arch *vcpu = &v->arch;
  802. if (!vcpu->time_page)
  803. return 0;
  804. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  805. return 1;
  806. }
  807. static bool msr_mtrr_valid(unsigned msr)
  808. {
  809. switch (msr) {
  810. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  811. case MSR_MTRRfix64K_00000:
  812. case MSR_MTRRfix16K_80000:
  813. case MSR_MTRRfix16K_A0000:
  814. case MSR_MTRRfix4K_C0000:
  815. case MSR_MTRRfix4K_C8000:
  816. case MSR_MTRRfix4K_D0000:
  817. case MSR_MTRRfix4K_D8000:
  818. case MSR_MTRRfix4K_E0000:
  819. case MSR_MTRRfix4K_E8000:
  820. case MSR_MTRRfix4K_F0000:
  821. case MSR_MTRRfix4K_F8000:
  822. case MSR_MTRRdefType:
  823. case MSR_IA32_CR_PAT:
  824. return true;
  825. case 0x2f8:
  826. return true;
  827. }
  828. return false;
  829. }
  830. static bool valid_pat_type(unsigned t)
  831. {
  832. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  833. }
  834. static bool valid_mtrr_type(unsigned t)
  835. {
  836. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  837. }
  838. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  839. {
  840. int i;
  841. if (!msr_mtrr_valid(msr))
  842. return false;
  843. if (msr == MSR_IA32_CR_PAT) {
  844. for (i = 0; i < 8; i++)
  845. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  846. return false;
  847. return true;
  848. } else if (msr == MSR_MTRRdefType) {
  849. if (data & ~0xcff)
  850. return false;
  851. return valid_mtrr_type(data & 0xff);
  852. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  853. for (i = 0; i < 8 ; i++)
  854. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  855. return false;
  856. return true;
  857. }
  858. /* variable MTRRs */
  859. return valid_mtrr_type(data & 0xff);
  860. }
  861. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  862. {
  863. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  864. if (!mtrr_valid(vcpu, msr, data))
  865. return 1;
  866. if (msr == MSR_MTRRdefType) {
  867. vcpu->arch.mtrr_state.def_type = data;
  868. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  869. } else if (msr == MSR_MTRRfix64K_00000)
  870. p[0] = data;
  871. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  872. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  873. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  874. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  875. else if (msr == MSR_IA32_CR_PAT)
  876. vcpu->arch.pat = data;
  877. else { /* Variable MTRRs */
  878. int idx, is_mtrr_mask;
  879. u64 *pt;
  880. idx = (msr - 0x200) / 2;
  881. is_mtrr_mask = msr - 0x200 - 2 * idx;
  882. if (!is_mtrr_mask)
  883. pt =
  884. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  885. else
  886. pt =
  887. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  888. *pt = data;
  889. }
  890. kvm_mmu_reset_context(vcpu);
  891. return 0;
  892. }
  893. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  894. {
  895. u64 mcg_cap = vcpu->arch.mcg_cap;
  896. unsigned bank_num = mcg_cap & 0xff;
  897. switch (msr) {
  898. case MSR_IA32_MCG_STATUS:
  899. vcpu->arch.mcg_status = data;
  900. break;
  901. case MSR_IA32_MCG_CTL:
  902. if (!(mcg_cap & MCG_CTL_P))
  903. return 1;
  904. if (data != 0 && data != ~(u64)0)
  905. return -1;
  906. vcpu->arch.mcg_ctl = data;
  907. break;
  908. default:
  909. if (msr >= MSR_IA32_MC0_CTL &&
  910. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  911. u32 offset = msr - MSR_IA32_MC0_CTL;
  912. /* only 0 or all 1s can be written to IA32_MCi_CTL
  913. * some Linux kernels though clear bit 10 in bank 4 to
  914. * workaround a BIOS/GART TBL issue on AMD K8s, ignore
  915. * this to avoid an uncatched #GP in the guest
  916. */
  917. if ((offset & 0x3) == 0 &&
  918. data != 0 && (data | (1 << 10)) != ~(u64)0)
  919. return -1;
  920. vcpu->arch.mce_banks[offset] = data;
  921. break;
  922. }
  923. return 1;
  924. }
  925. return 0;
  926. }
  927. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  928. {
  929. struct kvm *kvm = vcpu->kvm;
  930. int lm = is_long_mode(vcpu);
  931. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  932. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  933. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  934. : kvm->arch.xen_hvm_config.blob_size_32;
  935. u32 page_num = data & ~PAGE_MASK;
  936. u64 page_addr = data & PAGE_MASK;
  937. u8 *page;
  938. int r;
  939. r = -E2BIG;
  940. if (page_num >= blob_size)
  941. goto out;
  942. r = -ENOMEM;
  943. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  944. if (!page)
  945. goto out;
  946. r = -EFAULT;
  947. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  948. goto out_free;
  949. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  950. goto out_free;
  951. r = 0;
  952. out_free:
  953. kfree(page);
  954. out:
  955. return r;
  956. }
  957. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  958. {
  959. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  960. }
  961. static bool kvm_hv_msr_partition_wide(u32 msr)
  962. {
  963. bool r = false;
  964. switch (msr) {
  965. case HV_X64_MSR_GUEST_OS_ID:
  966. case HV_X64_MSR_HYPERCALL:
  967. r = true;
  968. break;
  969. }
  970. return r;
  971. }
  972. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  973. {
  974. struct kvm *kvm = vcpu->kvm;
  975. switch (msr) {
  976. case HV_X64_MSR_GUEST_OS_ID:
  977. kvm->arch.hv_guest_os_id = data;
  978. /* setting guest os id to zero disables hypercall page */
  979. if (!kvm->arch.hv_guest_os_id)
  980. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  981. break;
  982. case HV_X64_MSR_HYPERCALL: {
  983. u64 gfn;
  984. unsigned long addr;
  985. u8 instructions[4];
  986. /* if guest os id is not set hypercall should remain disabled */
  987. if (!kvm->arch.hv_guest_os_id)
  988. break;
  989. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  990. kvm->arch.hv_hypercall = data;
  991. break;
  992. }
  993. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  994. addr = gfn_to_hva(kvm, gfn);
  995. if (kvm_is_error_hva(addr))
  996. return 1;
  997. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  998. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  999. if (copy_to_user((void __user *)addr, instructions, 4))
  1000. return 1;
  1001. kvm->arch.hv_hypercall = data;
  1002. break;
  1003. }
  1004. default:
  1005. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1006. "data 0x%llx\n", msr, data);
  1007. return 1;
  1008. }
  1009. return 0;
  1010. }
  1011. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1012. {
  1013. switch (msr) {
  1014. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  1015. unsigned long addr;
  1016. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  1017. vcpu->arch.hv_vapic = data;
  1018. break;
  1019. }
  1020. addr = gfn_to_hva(vcpu->kvm, data >>
  1021. HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
  1022. if (kvm_is_error_hva(addr))
  1023. return 1;
  1024. if (clear_user((void __user *)addr, PAGE_SIZE))
  1025. return 1;
  1026. vcpu->arch.hv_vapic = data;
  1027. break;
  1028. }
  1029. case HV_X64_MSR_EOI:
  1030. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  1031. case HV_X64_MSR_ICR:
  1032. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  1033. case HV_X64_MSR_TPR:
  1034. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  1035. default:
  1036. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1037. "data 0x%llx\n", msr, data);
  1038. return 1;
  1039. }
  1040. return 0;
  1041. }
  1042. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1043. {
  1044. switch (msr) {
  1045. case MSR_EFER:
  1046. return set_efer(vcpu, data);
  1047. case MSR_K7_HWCR:
  1048. data &= ~(u64)0x40; /* ignore flush filter disable */
  1049. data &= ~(u64)0x100; /* ignore ignne emulation enable */
  1050. if (data != 0) {
  1051. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  1052. data);
  1053. return 1;
  1054. }
  1055. break;
  1056. case MSR_FAM10H_MMIO_CONF_BASE:
  1057. if (data != 0) {
  1058. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  1059. "0x%llx\n", data);
  1060. return 1;
  1061. }
  1062. break;
  1063. case MSR_AMD64_NB_CFG:
  1064. break;
  1065. case MSR_IA32_DEBUGCTLMSR:
  1066. if (!data) {
  1067. /* We support the non-activated case already */
  1068. break;
  1069. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  1070. /* Values other than LBR and BTF are vendor-specific,
  1071. thus reserved and should throw a #GP */
  1072. return 1;
  1073. }
  1074. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  1075. __func__, data);
  1076. break;
  1077. case MSR_IA32_UCODE_REV:
  1078. case MSR_IA32_UCODE_WRITE:
  1079. case MSR_VM_HSAVE_PA:
  1080. case MSR_AMD64_PATCH_LOADER:
  1081. break;
  1082. case 0x200 ... 0x2ff:
  1083. return set_msr_mtrr(vcpu, msr, data);
  1084. case MSR_IA32_APICBASE:
  1085. kvm_set_apic_base(vcpu, data);
  1086. break;
  1087. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1088. return kvm_x2apic_msr_write(vcpu, msr, data);
  1089. case MSR_IA32_MISC_ENABLE:
  1090. vcpu->arch.ia32_misc_enable_msr = data;
  1091. break;
  1092. case MSR_KVM_WALL_CLOCK_NEW:
  1093. case MSR_KVM_WALL_CLOCK:
  1094. vcpu->kvm->arch.wall_clock = data;
  1095. kvm_write_wall_clock(vcpu->kvm, data);
  1096. break;
  1097. case MSR_KVM_SYSTEM_TIME_NEW:
  1098. case MSR_KVM_SYSTEM_TIME: {
  1099. if (vcpu->arch.time_page) {
  1100. kvm_release_page_dirty(vcpu->arch.time_page);
  1101. vcpu->arch.time_page = NULL;
  1102. }
  1103. vcpu->arch.time = data;
  1104. /* we verify if the enable bit is set... */
  1105. if (!(data & 1))
  1106. break;
  1107. /* ...but clean it before doing the actual write */
  1108. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  1109. vcpu->arch.time_page =
  1110. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  1111. if (is_error_page(vcpu->arch.time_page)) {
  1112. kvm_release_page_clean(vcpu->arch.time_page);
  1113. vcpu->arch.time_page = NULL;
  1114. }
  1115. kvm_request_guest_time_update(vcpu);
  1116. break;
  1117. }
  1118. case MSR_IA32_MCG_CTL:
  1119. case MSR_IA32_MCG_STATUS:
  1120. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1121. return set_msr_mce(vcpu, msr, data);
  1122. /* Performance counters are not protected by a CPUID bit,
  1123. * so we should check all of them in the generic path for the sake of
  1124. * cross vendor migration.
  1125. * Writing a zero into the event select MSRs disables them,
  1126. * which we perfectly emulate ;-). Any other value should be at least
  1127. * reported, some guests depend on them.
  1128. */
  1129. case MSR_P6_EVNTSEL0:
  1130. case MSR_P6_EVNTSEL1:
  1131. case MSR_K7_EVNTSEL0:
  1132. case MSR_K7_EVNTSEL1:
  1133. case MSR_K7_EVNTSEL2:
  1134. case MSR_K7_EVNTSEL3:
  1135. if (data != 0)
  1136. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1137. "0x%x data 0x%llx\n", msr, data);
  1138. break;
  1139. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1140. * so we ignore writes to make it happy.
  1141. */
  1142. case MSR_P6_PERFCTR0:
  1143. case MSR_P6_PERFCTR1:
  1144. case MSR_K7_PERFCTR0:
  1145. case MSR_K7_PERFCTR1:
  1146. case MSR_K7_PERFCTR2:
  1147. case MSR_K7_PERFCTR3:
  1148. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1149. "0x%x data 0x%llx\n", msr, data);
  1150. break;
  1151. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1152. if (kvm_hv_msr_partition_wide(msr)) {
  1153. int r;
  1154. mutex_lock(&vcpu->kvm->lock);
  1155. r = set_msr_hyperv_pw(vcpu, msr, data);
  1156. mutex_unlock(&vcpu->kvm->lock);
  1157. return r;
  1158. } else
  1159. return set_msr_hyperv(vcpu, msr, data);
  1160. break;
  1161. default:
  1162. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1163. return xen_hvm_config(vcpu, data);
  1164. if (!ignore_msrs) {
  1165. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1166. msr, data);
  1167. return 1;
  1168. } else {
  1169. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1170. msr, data);
  1171. break;
  1172. }
  1173. }
  1174. return 0;
  1175. }
  1176. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1177. /*
  1178. * Reads an msr value (of 'msr_index') into 'pdata'.
  1179. * Returns 0 on success, non-0 otherwise.
  1180. * Assumes vcpu_load() was already called.
  1181. */
  1182. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1183. {
  1184. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1185. }
  1186. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1187. {
  1188. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1189. if (!msr_mtrr_valid(msr))
  1190. return 1;
  1191. if (msr == MSR_MTRRdefType)
  1192. *pdata = vcpu->arch.mtrr_state.def_type +
  1193. (vcpu->arch.mtrr_state.enabled << 10);
  1194. else if (msr == MSR_MTRRfix64K_00000)
  1195. *pdata = p[0];
  1196. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1197. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1198. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1199. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1200. else if (msr == MSR_IA32_CR_PAT)
  1201. *pdata = vcpu->arch.pat;
  1202. else { /* Variable MTRRs */
  1203. int idx, is_mtrr_mask;
  1204. u64 *pt;
  1205. idx = (msr - 0x200) / 2;
  1206. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1207. if (!is_mtrr_mask)
  1208. pt =
  1209. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1210. else
  1211. pt =
  1212. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1213. *pdata = *pt;
  1214. }
  1215. return 0;
  1216. }
  1217. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1218. {
  1219. u64 data;
  1220. u64 mcg_cap = vcpu->arch.mcg_cap;
  1221. unsigned bank_num = mcg_cap & 0xff;
  1222. switch (msr) {
  1223. case MSR_IA32_P5_MC_ADDR:
  1224. case MSR_IA32_P5_MC_TYPE:
  1225. data = 0;
  1226. break;
  1227. case MSR_IA32_MCG_CAP:
  1228. data = vcpu->arch.mcg_cap;
  1229. break;
  1230. case MSR_IA32_MCG_CTL:
  1231. if (!(mcg_cap & MCG_CTL_P))
  1232. return 1;
  1233. data = vcpu->arch.mcg_ctl;
  1234. break;
  1235. case MSR_IA32_MCG_STATUS:
  1236. data = vcpu->arch.mcg_status;
  1237. break;
  1238. default:
  1239. if (msr >= MSR_IA32_MC0_CTL &&
  1240. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1241. u32 offset = msr - MSR_IA32_MC0_CTL;
  1242. data = vcpu->arch.mce_banks[offset];
  1243. break;
  1244. }
  1245. return 1;
  1246. }
  1247. *pdata = data;
  1248. return 0;
  1249. }
  1250. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1251. {
  1252. u64 data = 0;
  1253. struct kvm *kvm = vcpu->kvm;
  1254. switch (msr) {
  1255. case HV_X64_MSR_GUEST_OS_ID:
  1256. data = kvm->arch.hv_guest_os_id;
  1257. break;
  1258. case HV_X64_MSR_HYPERCALL:
  1259. data = kvm->arch.hv_hypercall;
  1260. break;
  1261. default:
  1262. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1263. return 1;
  1264. }
  1265. *pdata = data;
  1266. return 0;
  1267. }
  1268. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1269. {
  1270. u64 data = 0;
  1271. switch (msr) {
  1272. case HV_X64_MSR_VP_INDEX: {
  1273. int r;
  1274. struct kvm_vcpu *v;
  1275. kvm_for_each_vcpu(r, v, vcpu->kvm)
  1276. if (v == vcpu)
  1277. data = r;
  1278. break;
  1279. }
  1280. case HV_X64_MSR_EOI:
  1281. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  1282. case HV_X64_MSR_ICR:
  1283. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  1284. case HV_X64_MSR_TPR:
  1285. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  1286. default:
  1287. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1288. return 1;
  1289. }
  1290. *pdata = data;
  1291. return 0;
  1292. }
  1293. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1294. {
  1295. u64 data;
  1296. switch (msr) {
  1297. case MSR_IA32_PLATFORM_ID:
  1298. case MSR_IA32_UCODE_REV:
  1299. case MSR_IA32_EBL_CR_POWERON:
  1300. case MSR_IA32_DEBUGCTLMSR:
  1301. case MSR_IA32_LASTBRANCHFROMIP:
  1302. case MSR_IA32_LASTBRANCHTOIP:
  1303. case MSR_IA32_LASTINTFROMIP:
  1304. case MSR_IA32_LASTINTTOIP:
  1305. case MSR_K8_SYSCFG:
  1306. case MSR_K7_HWCR:
  1307. case MSR_VM_HSAVE_PA:
  1308. case MSR_P6_PERFCTR0:
  1309. case MSR_P6_PERFCTR1:
  1310. case MSR_P6_EVNTSEL0:
  1311. case MSR_P6_EVNTSEL1:
  1312. case MSR_K7_EVNTSEL0:
  1313. case MSR_K7_PERFCTR0:
  1314. case MSR_K8_INT_PENDING_MSG:
  1315. case MSR_AMD64_NB_CFG:
  1316. case MSR_FAM10H_MMIO_CONF_BASE:
  1317. data = 0;
  1318. break;
  1319. case MSR_MTRRcap:
  1320. data = 0x500 | KVM_NR_VAR_MTRR;
  1321. break;
  1322. case 0x200 ... 0x2ff:
  1323. return get_msr_mtrr(vcpu, msr, pdata);
  1324. case 0xcd: /* fsb frequency */
  1325. data = 3;
  1326. break;
  1327. case MSR_IA32_APICBASE:
  1328. data = kvm_get_apic_base(vcpu);
  1329. break;
  1330. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1331. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1332. break;
  1333. case MSR_IA32_MISC_ENABLE:
  1334. data = vcpu->arch.ia32_misc_enable_msr;
  1335. break;
  1336. case MSR_IA32_PERF_STATUS:
  1337. /* TSC increment by tick */
  1338. data = 1000ULL;
  1339. /* CPU multiplier */
  1340. data |= (((uint64_t)4ULL) << 40);
  1341. break;
  1342. case MSR_EFER:
  1343. data = vcpu->arch.efer;
  1344. break;
  1345. case MSR_KVM_WALL_CLOCK:
  1346. case MSR_KVM_WALL_CLOCK_NEW:
  1347. data = vcpu->kvm->arch.wall_clock;
  1348. break;
  1349. case MSR_KVM_SYSTEM_TIME:
  1350. case MSR_KVM_SYSTEM_TIME_NEW:
  1351. data = vcpu->arch.time;
  1352. break;
  1353. case MSR_IA32_P5_MC_ADDR:
  1354. case MSR_IA32_P5_MC_TYPE:
  1355. case MSR_IA32_MCG_CAP:
  1356. case MSR_IA32_MCG_CTL:
  1357. case MSR_IA32_MCG_STATUS:
  1358. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1359. return get_msr_mce(vcpu, msr, pdata);
  1360. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1361. if (kvm_hv_msr_partition_wide(msr)) {
  1362. int r;
  1363. mutex_lock(&vcpu->kvm->lock);
  1364. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  1365. mutex_unlock(&vcpu->kvm->lock);
  1366. return r;
  1367. } else
  1368. return get_msr_hyperv(vcpu, msr, pdata);
  1369. break;
  1370. default:
  1371. if (!ignore_msrs) {
  1372. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1373. return 1;
  1374. } else {
  1375. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1376. data = 0;
  1377. }
  1378. break;
  1379. }
  1380. *pdata = data;
  1381. return 0;
  1382. }
  1383. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1384. /*
  1385. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1386. *
  1387. * @return number of msrs set successfully.
  1388. */
  1389. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1390. struct kvm_msr_entry *entries,
  1391. int (*do_msr)(struct kvm_vcpu *vcpu,
  1392. unsigned index, u64 *data))
  1393. {
  1394. int i, idx;
  1395. idx = srcu_read_lock(&vcpu->kvm->srcu);
  1396. for (i = 0; i < msrs->nmsrs; ++i)
  1397. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1398. break;
  1399. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  1400. return i;
  1401. }
  1402. /*
  1403. * Read or write a bunch of msrs. Parameters are user addresses.
  1404. *
  1405. * @return number of msrs set successfully.
  1406. */
  1407. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1408. int (*do_msr)(struct kvm_vcpu *vcpu,
  1409. unsigned index, u64 *data),
  1410. int writeback)
  1411. {
  1412. struct kvm_msrs msrs;
  1413. struct kvm_msr_entry *entries;
  1414. int r, n;
  1415. unsigned size;
  1416. r = -EFAULT;
  1417. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1418. goto out;
  1419. r = -E2BIG;
  1420. if (msrs.nmsrs >= MAX_IO_MSRS)
  1421. goto out;
  1422. r = -ENOMEM;
  1423. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1424. entries = kmalloc(size, GFP_KERNEL);
  1425. if (!entries)
  1426. goto out;
  1427. r = -EFAULT;
  1428. if (copy_from_user(entries, user_msrs->entries, size))
  1429. goto out_free;
  1430. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1431. if (r < 0)
  1432. goto out_free;
  1433. r = -EFAULT;
  1434. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1435. goto out_free;
  1436. r = n;
  1437. out_free:
  1438. kfree(entries);
  1439. out:
  1440. return r;
  1441. }
  1442. int kvm_dev_ioctl_check_extension(long ext)
  1443. {
  1444. int r;
  1445. switch (ext) {
  1446. case KVM_CAP_IRQCHIP:
  1447. case KVM_CAP_HLT:
  1448. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1449. case KVM_CAP_SET_TSS_ADDR:
  1450. case KVM_CAP_EXT_CPUID:
  1451. case KVM_CAP_CLOCKSOURCE:
  1452. case KVM_CAP_PIT:
  1453. case KVM_CAP_NOP_IO_DELAY:
  1454. case KVM_CAP_MP_STATE:
  1455. case KVM_CAP_SYNC_MMU:
  1456. case KVM_CAP_REINJECT_CONTROL:
  1457. case KVM_CAP_IRQ_INJECT_STATUS:
  1458. case KVM_CAP_ASSIGN_DEV_IRQ:
  1459. case KVM_CAP_IRQFD:
  1460. case KVM_CAP_IOEVENTFD:
  1461. case KVM_CAP_PIT2:
  1462. case KVM_CAP_PIT_STATE2:
  1463. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1464. case KVM_CAP_XEN_HVM:
  1465. case KVM_CAP_ADJUST_CLOCK:
  1466. case KVM_CAP_VCPU_EVENTS:
  1467. case KVM_CAP_HYPERV:
  1468. case KVM_CAP_HYPERV_VAPIC:
  1469. case KVM_CAP_HYPERV_SPIN:
  1470. case KVM_CAP_PCI_SEGMENT:
  1471. case KVM_CAP_DEBUGREGS:
  1472. case KVM_CAP_X86_ROBUST_SINGLESTEP:
  1473. case KVM_CAP_XSAVE:
  1474. r = 1;
  1475. break;
  1476. case KVM_CAP_COALESCED_MMIO:
  1477. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1478. break;
  1479. case KVM_CAP_VAPIC:
  1480. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1481. break;
  1482. case KVM_CAP_NR_VCPUS:
  1483. r = KVM_MAX_VCPUS;
  1484. break;
  1485. case KVM_CAP_NR_MEMSLOTS:
  1486. r = KVM_MEMORY_SLOTS;
  1487. break;
  1488. case KVM_CAP_PV_MMU: /* obsolete */
  1489. r = 0;
  1490. break;
  1491. case KVM_CAP_IOMMU:
  1492. r = iommu_found();
  1493. break;
  1494. case KVM_CAP_MCE:
  1495. r = KVM_MAX_MCE_BANKS;
  1496. break;
  1497. case KVM_CAP_XCRS:
  1498. r = cpu_has_xsave;
  1499. break;
  1500. default:
  1501. r = 0;
  1502. break;
  1503. }
  1504. return r;
  1505. }
  1506. long kvm_arch_dev_ioctl(struct file *filp,
  1507. unsigned int ioctl, unsigned long arg)
  1508. {
  1509. void __user *argp = (void __user *)arg;
  1510. long r;
  1511. switch (ioctl) {
  1512. case KVM_GET_MSR_INDEX_LIST: {
  1513. struct kvm_msr_list __user *user_msr_list = argp;
  1514. struct kvm_msr_list msr_list;
  1515. unsigned n;
  1516. r = -EFAULT;
  1517. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1518. goto out;
  1519. n = msr_list.nmsrs;
  1520. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1521. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1522. goto out;
  1523. r = -E2BIG;
  1524. if (n < msr_list.nmsrs)
  1525. goto out;
  1526. r = -EFAULT;
  1527. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1528. num_msrs_to_save * sizeof(u32)))
  1529. goto out;
  1530. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1531. &emulated_msrs,
  1532. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1533. goto out;
  1534. r = 0;
  1535. break;
  1536. }
  1537. case KVM_GET_SUPPORTED_CPUID: {
  1538. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1539. struct kvm_cpuid2 cpuid;
  1540. r = -EFAULT;
  1541. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1542. goto out;
  1543. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1544. cpuid_arg->entries);
  1545. if (r)
  1546. goto out;
  1547. r = -EFAULT;
  1548. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1549. goto out;
  1550. r = 0;
  1551. break;
  1552. }
  1553. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1554. u64 mce_cap;
  1555. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1556. r = -EFAULT;
  1557. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1558. goto out;
  1559. r = 0;
  1560. break;
  1561. }
  1562. default:
  1563. r = -EINVAL;
  1564. }
  1565. out:
  1566. return r;
  1567. }
  1568. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1569. {
  1570. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1571. if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
  1572. unsigned long khz = cpufreq_quick_get(cpu);
  1573. if (!khz)
  1574. khz = tsc_khz;
  1575. per_cpu(cpu_tsc_khz, cpu) = khz;
  1576. }
  1577. kvm_request_guest_time_update(vcpu);
  1578. }
  1579. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1580. {
  1581. kvm_x86_ops->vcpu_put(vcpu);
  1582. kvm_put_guest_fpu(vcpu);
  1583. }
  1584. static int is_efer_nx(void)
  1585. {
  1586. unsigned long long efer = 0;
  1587. rdmsrl_safe(MSR_EFER, &efer);
  1588. return efer & EFER_NX;
  1589. }
  1590. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1591. {
  1592. int i;
  1593. struct kvm_cpuid_entry2 *e, *entry;
  1594. entry = NULL;
  1595. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1596. e = &vcpu->arch.cpuid_entries[i];
  1597. if (e->function == 0x80000001) {
  1598. entry = e;
  1599. break;
  1600. }
  1601. }
  1602. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1603. entry->edx &= ~(1 << 20);
  1604. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1605. }
  1606. }
  1607. /* when an old userspace process fills a new kernel module */
  1608. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1609. struct kvm_cpuid *cpuid,
  1610. struct kvm_cpuid_entry __user *entries)
  1611. {
  1612. int r, i;
  1613. struct kvm_cpuid_entry *cpuid_entries;
  1614. r = -E2BIG;
  1615. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1616. goto out;
  1617. r = -ENOMEM;
  1618. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1619. if (!cpuid_entries)
  1620. goto out;
  1621. r = -EFAULT;
  1622. if (copy_from_user(cpuid_entries, entries,
  1623. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1624. goto out_free;
  1625. for (i = 0; i < cpuid->nent; i++) {
  1626. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1627. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1628. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1629. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1630. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1631. vcpu->arch.cpuid_entries[i].index = 0;
  1632. vcpu->arch.cpuid_entries[i].flags = 0;
  1633. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1634. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1635. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1636. }
  1637. vcpu->arch.cpuid_nent = cpuid->nent;
  1638. cpuid_fix_nx_cap(vcpu);
  1639. r = 0;
  1640. kvm_apic_set_version(vcpu);
  1641. kvm_x86_ops->cpuid_update(vcpu);
  1642. update_cpuid(vcpu);
  1643. out_free:
  1644. vfree(cpuid_entries);
  1645. out:
  1646. return r;
  1647. }
  1648. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1649. struct kvm_cpuid2 *cpuid,
  1650. struct kvm_cpuid_entry2 __user *entries)
  1651. {
  1652. int r;
  1653. r = -E2BIG;
  1654. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1655. goto out;
  1656. r = -EFAULT;
  1657. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1658. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1659. goto out;
  1660. vcpu->arch.cpuid_nent = cpuid->nent;
  1661. kvm_apic_set_version(vcpu);
  1662. kvm_x86_ops->cpuid_update(vcpu);
  1663. update_cpuid(vcpu);
  1664. return 0;
  1665. out:
  1666. return r;
  1667. }
  1668. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1669. struct kvm_cpuid2 *cpuid,
  1670. struct kvm_cpuid_entry2 __user *entries)
  1671. {
  1672. int r;
  1673. r = -E2BIG;
  1674. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1675. goto out;
  1676. r = -EFAULT;
  1677. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1678. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1679. goto out;
  1680. return 0;
  1681. out:
  1682. cpuid->nent = vcpu->arch.cpuid_nent;
  1683. return r;
  1684. }
  1685. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1686. u32 index)
  1687. {
  1688. entry->function = function;
  1689. entry->index = index;
  1690. cpuid_count(entry->function, entry->index,
  1691. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1692. entry->flags = 0;
  1693. }
  1694. #define F(x) bit(X86_FEATURE_##x)
  1695. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1696. u32 index, int *nent, int maxnent)
  1697. {
  1698. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1699. #ifdef CONFIG_X86_64
  1700. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  1701. ? F(GBPAGES) : 0;
  1702. unsigned f_lm = F(LM);
  1703. #else
  1704. unsigned f_gbpages = 0;
  1705. unsigned f_lm = 0;
  1706. #endif
  1707. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  1708. /* cpuid 1.edx */
  1709. const u32 kvm_supported_word0_x86_features =
  1710. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1711. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1712. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1713. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1714. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1715. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1716. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1717. 0 /* HTT, TM, Reserved, PBE */;
  1718. /* cpuid 0x80000001.edx */
  1719. const u32 kvm_supported_word1_x86_features =
  1720. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1721. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1722. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1723. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1724. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1725. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1726. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  1727. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1728. /* cpuid 1.ecx */
  1729. const u32 kvm_supported_word4_x86_features =
  1730. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1731. 0 /* DS-CPL, VMX, SMX, EST */ |
  1732. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1733. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1734. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1735. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1736. 0 /* Reserved, AES */ | F(XSAVE) | 0 /* OSXSAVE */;
  1737. /* cpuid 0x80000001.ecx */
  1738. const u32 kvm_supported_word6_x86_features =
  1739. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1740. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1741. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1742. 0 /* SKINIT */ | 0 /* WDT */;
  1743. /* all calls to cpuid_count() should be made on the same cpu */
  1744. get_cpu();
  1745. do_cpuid_1_ent(entry, function, index);
  1746. ++*nent;
  1747. switch (function) {
  1748. case 0:
  1749. entry->eax = min(entry->eax, (u32)0xd);
  1750. break;
  1751. case 1:
  1752. entry->edx &= kvm_supported_word0_x86_features;
  1753. entry->ecx &= kvm_supported_word4_x86_features;
  1754. /* we support x2apic emulation even if host does not support
  1755. * it since we emulate x2apic in software */
  1756. entry->ecx |= F(X2APIC);
  1757. break;
  1758. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1759. * may return different values. This forces us to get_cpu() before
  1760. * issuing the first command, and also to emulate this annoying behavior
  1761. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1762. case 2: {
  1763. int t, times = entry->eax & 0xff;
  1764. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1765. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1766. for (t = 1; t < times && *nent < maxnent; ++t) {
  1767. do_cpuid_1_ent(&entry[t], function, 0);
  1768. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1769. ++*nent;
  1770. }
  1771. break;
  1772. }
  1773. /* function 4 and 0xb have additional index. */
  1774. case 4: {
  1775. int i, cache_type;
  1776. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1777. /* read more entries until cache_type is zero */
  1778. for (i = 1; *nent < maxnent; ++i) {
  1779. cache_type = entry[i - 1].eax & 0x1f;
  1780. if (!cache_type)
  1781. break;
  1782. do_cpuid_1_ent(&entry[i], function, i);
  1783. entry[i].flags |=
  1784. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1785. ++*nent;
  1786. }
  1787. break;
  1788. }
  1789. case 0xb: {
  1790. int i, level_type;
  1791. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1792. /* read more entries until level_type is zero */
  1793. for (i = 1; *nent < maxnent; ++i) {
  1794. level_type = entry[i - 1].ecx & 0xff00;
  1795. if (!level_type)
  1796. break;
  1797. do_cpuid_1_ent(&entry[i], function, i);
  1798. entry[i].flags |=
  1799. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1800. ++*nent;
  1801. }
  1802. break;
  1803. }
  1804. case 0xd: {
  1805. int i;
  1806. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1807. for (i = 1; *nent < maxnent; ++i) {
  1808. if (entry[i - 1].eax == 0 && i != 2)
  1809. break;
  1810. do_cpuid_1_ent(&entry[i], function, i);
  1811. entry[i].flags |=
  1812. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1813. ++*nent;
  1814. }
  1815. break;
  1816. }
  1817. case KVM_CPUID_SIGNATURE: {
  1818. char signature[12] = "KVMKVMKVM\0\0";
  1819. u32 *sigptr = (u32 *)signature;
  1820. entry->eax = 0;
  1821. entry->ebx = sigptr[0];
  1822. entry->ecx = sigptr[1];
  1823. entry->edx = sigptr[2];
  1824. break;
  1825. }
  1826. case KVM_CPUID_FEATURES:
  1827. entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
  1828. (1 << KVM_FEATURE_NOP_IO_DELAY) |
  1829. (1 << KVM_FEATURE_CLOCKSOURCE2) |
  1830. (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
  1831. entry->ebx = 0;
  1832. entry->ecx = 0;
  1833. entry->edx = 0;
  1834. break;
  1835. case 0x80000000:
  1836. entry->eax = min(entry->eax, 0x8000001a);
  1837. break;
  1838. case 0x80000001:
  1839. entry->edx &= kvm_supported_word1_x86_features;
  1840. entry->ecx &= kvm_supported_word6_x86_features;
  1841. break;
  1842. }
  1843. kvm_x86_ops->set_supported_cpuid(function, entry);
  1844. put_cpu();
  1845. }
  1846. #undef F
  1847. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1848. struct kvm_cpuid_entry2 __user *entries)
  1849. {
  1850. struct kvm_cpuid_entry2 *cpuid_entries;
  1851. int limit, nent = 0, r = -E2BIG;
  1852. u32 func;
  1853. if (cpuid->nent < 1)
  1854. goto out;
  1855. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1856. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  1857. r = -ENOMEM;
  1858. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1859. if (!cpuid_entries)
  1860. goto out;
  1861. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1862. limit = cpuid_entries[0].eax;
  1863. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1864. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1865. &nent, cpuid->nent);
  1866. r = -E2BIG;
  1867. if (nent >= cpuid->nent)
  1868. goto out_free;
  1869. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1870. limit = cpuid_entries[nent - 1].eax;
  1871. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1872. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1873. &nent, cpuid->nent);
  1874. r = -E2BIG;
  1875. if (nent >= cpuid->nent)
  1876. goto out_free;
  1877. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
  1878. cpuid->nent);
  1879. r = -E2BIG;
  1880. if (nent >= cpuid->nent)
  1881. goto out_free;
  1882. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
  1883. cpuid->nent);
  1884. r = -E2BIG;
  1885. if (nent >= cpuid->nent)
  1886. goto out_free;
  1887. r = -EFAULT;
  1888. if (copy_to_user(entries, cpuid_entries,
  1889. nent * sizeof(struct kvm_cpuid_entry2)))
  1890. goto out_free;
  1891. cpuid->nent = nent;
  1892. r = 0;
  1893. out_free:
  1894. vfree(cpuid_entries);
  1895. out:
  1896. return r;
  1897. }
  1898. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1899. struct kvm_lapic_state *s)
  1900. {
  1901. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1902. return 0;
  1903. }
  1904. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1905. struct kvm_lapic_state *s)
  1906. {
  1907. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1908. kvm_apic_post_state_restore(vcpu);
  1909. update_cr8_intercept(vcpu);
  1910. return 0;
  1911. }
  1912. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1913. struct kvm_interrupt *irq)
  1914. {
  1915. if (irq->irq < 0 || irq->irq >= 256)
  1916. return -EINVAL;
  1917. if (irqchip_in_kernel(vcpu->kvm))
  1918. return -ENXIO;
  1919. kvm_queue_interrupt(vcpu, irq->irq, false);
  1920. return 0;
  1921. }
  1922. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1923. {
  1924. kvm_inject_nmi(vcpu);
  1925. return 0;
  1926. }
  1927. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1928. struct kvm_tpr_access_ctl *tac)
  1929. {
  1930. if (tac->flags)
  1931. return -EINVAL;
  1932. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1933. return 0;
  1934. }
  1935. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1936. u64 mcg_cap)
  1937. {
  1938. int r;
  1939. unsigned bank_num = mcg_cap & 0xff, bank;
  1940. r = -EINVAL;
  1941. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  1942. goto out;
  1943. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1944. goto out;
  1945. r = 0;
  1946. vcpu->arch.mcg_cap = mcg_cap;
  1947. /* Init IA32_MCG_CTL to all 1s */
  1948. if (mcg_cap & MCG_CTL_P)
  1949. vcpu->arch.mcg_ctl = ~(u64)0;
  1950. /* Init IA32_MCi_CTL to all 1s */
  1951. for (bank = 0; bank < bank_num; bank++)
  1952. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1953. out:
  1954. return r;
  1955. }
  1956. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1957. struct kvm_x86_mce *mce)
  1958. {
  1959. u64 mcg_cap = vcpu->arch.mcg_cap;
  1960. unsigned bank_num = mcg_cap & 0xff;
  1961. u64 *banks = vcpu->arch.mce_banks;
  1962. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1963. return -EINVAL;
  1964. /*
  1965. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1966. * reporting is disabled
  1967. */
  1968. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1969. vcpu->arch.mcg_ctl != ~(u64)0)
  1970. return 0;
  1971. banks += 4 * mce->bank;
  1972. /*
  1973. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1974. * reporting is disabled for the bank
  1975. */
  1976. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1977. return 0;
  1978. if (mce->status & MCI_STATUS_UC) {
  1979. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1980. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  1981. printk(KERN_DEBUG "kvm: set_mce: "
  1982. "injects mce exception while "
  1983. "previous one is in progress!\n");
  1984. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1985. return 0;
  1986. }
  1987. if (banks[1] & MCI_STATUS_VAL)
  1988. mce->status |= MCI_STATUS_OVER;
  1989. banks[2] = mce->addr;
  1990. banks[3] = mce->misc;
  1991. vcpu->arch.mcg_status = mce->mcg_status;
  1992. banks[1] = mce->status;
  1993. kvm_queue_exception(vcpu, MC_VECTOR);
  1994. } else if (!(banks[1] & MCI_STATUS_VAL)
  1995. || !(banks[1] & MCI_STATUS_UC)) {
  1996. if (banks[1] & MCI_STATUS_VAL)
  1997. mce->status |= MCI_STATUS_OVER;
  1998. banks[2] = mce->addr;
  1999. banks[3] = mce->misc;
  2000. banks[1] = mce->status;
  2001. } else
  2002. banks[1] |= MCI_STATUS_OVER;
  2003. return 0;
  2004. }
  2005. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  2006. struct kvm_vcpu_events *events)
  2007. {
  2008. events->exception.injected =
  2009. vcpu->arch.exception.pending &&
  2010. !kvm_exception_is_soft(vcpu->arch.exception.nr);
  2011. events->exception.nr = vcpu->arch.exception.nr;
  2012. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  2013. events->exception.error_code = vcpu->arch.exception.error_code;
  2014. events->interrupt.injected =
  2015. vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
  2016. events->interrupt.nr = vcpu->arch.interrupt.nr;
  2017. events->interrupt.soft = 0;
  2018. events->interrupt.shadow =
  2019. kvm_x86_ops->get_interrupt_shadow(vcpu,
  2020. KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
  2021. events->nmi.injected = vcpu->arch.nmi_injected;
  2022. events->nmi.pending = vcpu->arch.nmi_pending;
  2023. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  2024. events->sipi_vector = vcpu->arch.sipi_vector;
  2025. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  2026. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2027. | KVM_VCPUEVENT_VALID_SHADOW);
  2028. }
  2029. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  2030. struct kvm_vcpu_events *events)
  2031. {
  2032. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  2033. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2034. | KVM_VCPUEVENT_VALID_SHADOW))
  2035. return -EINVAL;
  2036. vcpu->arch.exception.pending = events->exception.injected;
  2037. vcpu->arch.exception.nr = events->exception.nr;
  2038. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  2039. vcpu->arch.exception.error_code = events->exception.error_code;
  2040. vcpu->arch.interrupt.pending = events->interrupt.injected;
  2041. vcpu->arch.interrupt.nr = events->interrupt.nr;
  2042. vcpu->arch.interrupt.soft = events->interrupt.soft;
  2043. if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
  2044. kvm_pic_clear_isr_ack(vcpu->kvm);
  2045. if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
  2046. kvm_x86_ops->set_interrupt_shadow(vcpu,
  2047. events->interrupt.shadow);
  2048. vcpu->arch.nmi_injected = events->nmi.injected;
  2049. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  2050. vcpu->arch.nmi_pending = events->nmi.pending;
  2051. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  2052. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  2053. vcpu->arch.sipi_vector = events->sipi_vector;
  2054. return 0;
  2055. }
  2056. static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
  2057. struct kvm_debugregs *dbgregs)
  2058. {
  2059. memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
  2060. dbgregs->dr6 = vcpu->arch.dr6;
  2061. dbgregs->dr7 = vcpu->arch.dr7;
  2062. dbgregs->flags = 0;
  2063. }
  2064. static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
  2065. struct kvm_debugregs *dbgregs)
  2066. {
  2067. if (dbgregs->flags)
  2068. return -EINVAL;
  2069. memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
  2070. vcpu->arch.dr6 = dbgregs->dr6;
  2071. vcpu->arch.dr7 = dbgregs->dr7;
  2072. return 0;
  2073. }
  2074. static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
  2075. struct kvm_xsave *guest_xsave)
  2076. {
  2077. if (cpu_has_xsave)
  2078. memcpy(guest_xsave->region,
  2079. &vcpu->arch.guest_fpu.state->xsave,
  2080. sizeof(struct xsave_struct));
  2081. else {
  2082. memcpy(guest_xsave->region,
  2083. &vcpu->arch.guest_fpu.state->fxsave,
  2084. sizeof(struct i387_fxsave_struct));
  2085. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
  2086. XSTATE_FPSSE;
  2087. }
  2088. }
  2089. static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
  2090. struct kvm_xsave *guest_xsave)
  2091. {
  2092. u64 xstate_bv =
  2093. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
  2094. if (cpu_has_xsave)
  2095. memcpy(&vcpu->arch.guest_fpu.state->xsave,
  2096. guest_xsave->region, sizeof(struct xsave_struct));
  2097. else {
  2098. if (xstate_bv & ~XSTATE_FPSSE)
  2099. return -EINVAL;
  2100. memcpy(&vcpu->arch.guest_fpu.state->fxsave,
  2101. guest_xsave->region, sizeof(struct i387_fxsave_struct));
  2102. }
  2103. return 0;
  2104. }
  2105. static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
  2106. struct kvm_xcrs *guest_xcrs)
  2107. {
  2108. if (!cpu_has_xsave) {
  2109. guest_xcrs->nr_xcrs = 0;
  2110. return;
  2111. }
  2112. guest_xcrs->nr_xcrs = 1;
  2113. guest_xcrs->flags = 0;
  2114. guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
  2115. guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
  2116. }
  2117. static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
  2118. struct kvm_xcrs *guest_xcrs)
  2119. {
  2120. int i, r = 0;
  2121. if (!cpu_has_xsave)
  2122. return -EINVAL;
  2123. if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
  2124. return -EINVAL;
  2125. for (i = 0; i < guest_xcrs->nr_xcrs; i++)
  2126. /* Only support XCR0 currently */
  2127. if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
  2128. r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
  2129. guest_xcrs->xcrs[0].value);
  2130. break;
  2131. }
  2132. if (r)
  2133. r = -EINVAL;
  2134. return r;
  2135. }
  2136. long kvm_arch_vcpu_ioctl(struct file *filp,
  2137. unsigned int ioctl, unsigned long arg)
  2138. {
  2139. struct kvm_vcpu *vcpu = filp->private_data;
  2140. void __user *argp = (void __user *)arg;
  2141. int r;
  2142. union {
  2143. struct kvm_lapic_state *lapic;
  2144. struct kvm_xsave *xsave;
  2145. struct kvm_xcrs *xcrs;
  2146. void *buffer;
  2147. } u;
  2148. u.buffer = NULL;
  2149. switch (ioctl) {
  2150. case KVM_GET_LAPIC: {
  2151. r = -EINVAL;
  2152. if (!vcpu->arch.apic)
  2153. goto out;
  2154. u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2155. r = -ENOMEM;
  2156. if (!u.lapic)
  2157. goto out;
  2158. r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
  2159. if (r)
  2160. goto out;
  2161. r = -EFAULT;
  2162. if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
  2163. goto out;
  2164. r = 0;
  2165. break;
  2166. }
  2167. case KVM_SET_LAPIC: {
  2168. r = -EINVAL;
  2169. if (!vcpu->arch.apic)
  2170. goto out;
  2171. u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2172. r = -ENOMEM;
  2173. if (!u.lapic)
  2174. goto out;
  2175. r = -EFAULT;
  2176. if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
  2177. goto out;
  2178. r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
  2179. if (r)
  2180. goto out;
  2181. r = 0;
  2182. break;
  2183. }
  2184. case KVM_INTERRUPT: {
  2185. struct kvm_interrupt irq;
  2186. r = -EFAULT;
  2187. if (copy_from_user(&irq, argp, sizeof irq))
  2188. goto out;
  2189. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2190. if (r)
  2191. goto out;
  2192. r = 0;
  2193. break;
  2194. }
  2195. case KVM_NMI: {
  2196. r = kvm_vcpu_ioctl_nmi(vcpu);
  2197. if (r)
  2198. goto out;
  2199. r = 0;
  2200. break;
  2201. }
  2202. case KVM_SET_CPUID: {
  2203. struct kvm_cpuid __user *cpuid_arg = argp;
  2204. struct kvm_cpuid cpuid;
  2205. r = -EFAULT;
  2206. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2207. goto out;
  2208. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2209. if (r)
  2210. goto out;
  2211. break;
  2212. }
  2213. case KVM_SET_CPUID2: {
  2214. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2215. struct kvm_cpuid2 cpuid;
  2216. r = -EFAULT;
  2217. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2218. goto out;
  2219. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  2220. cpuid_arg->entries);
  2221. if (r)
  2222. goto out;
  2223. break;
  2224. }
  2225. case KVM_GET_CPUID2: {
  2226. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2227. struct kvm_cpuid2 cpuid;
  2228. r = -EFAULT;
  2229. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2230. goto out;
  2231. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  2232. cpuid_arg->entries);
  2233. if (r)
  2234. goto out;
  2235. r = -EFAULT;
  2236. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2237. goto out;
  2238. r = 0;
  2239. break;
  2240. }
  2241. case KVM_GET_MSRS:
  2242. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2243. break;
  2244. case KVM_SET_MSRS:
  2245. r = msr_io(vcpu, argp, do_set_msr, 0);
  2246. break;
  2247. case KVM_TPR_ACCESS_REPORTING: {
  2248. struct kvm_tpr_access_ctl tac;
  2249. r = -EFAULT;
  2250. if (copy_from_user(&tac, argp, sizeof tac))
  2251. goto out;
  2252. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2253. if (r)
  2254. goto out;
  2255. r = -EFAULT;
  2256. if (copy_to_user(argp, &tac, sizeof tac))
  2257. goto out;
  2258. r = 0;
  2259. break;
  2260. };
  2261. case KVM_SET_VAPIC_ADDR: {
  2262. struct kvm_vapic_addr va;
  2263. r = -EINVAL;
  2264. if (!irqchip_in_kernel(vcpu->kvm))
  2265. goto out;
  2266. r = -EFAULT;
  2267. if (copy_from_user(&va, argp, sizeof va))
  2268. goto out;
  2269. r = 0;
  2270. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2271. break;
  2272. }
  2273. case KVM_X86_SETUP_MCE: {
  2274. u64 mcg_cap;
  2275. r = -EFAULT;
  2276. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2277. goto out;
  2278. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2279. break;
  2280. }
  2281. case KVM_X86_SET_MCE: {
  2282. struct kvm_x86_mce mce;
  2283. r = -EFAULT;
  2284. if (copy_from_user(&mce, argp, sizeof mce))
  2285. goto out;
  2286. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2287. break;
  2288. }
  2289. case KVM_GET_VCPU_EVENTS: {
  2290. struct kvm_vcpu_events events;
  2291. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2292. r = -EFAULT;
  2293. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2294. break;
  2295. r = 0;
  2296. break;
  2297. }
  2298. case KVM_SET_VCPU_EVENTS: {
  2299. struct kvm_vcpu_events events;
  2300. r = -EFAULT;
  2301. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2302. break;
  2303. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2304. break;
  2305. }
  2306. case KVM_GET_DEBUGREGS: {
  2307. struct kvm_debugregs dbgregs;
  2308. kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
  2309. r = -EFAULT;
  2310. if (copy_to_user(argp, &dbgregs,
  2311. sizeof(struct kvm_debugregs)))
  2312. break;
  2313. r = 0;
  2314. break;
  2315. }
  2316. case KVM_SET_DEBUGREGS: {
  2317. struct kvm_debugregs dbgregs;
  2318. r = -EFAULT;
  2319. if (copy_from_user(&dbgregs, argp,
  2320. sizeof(struct kvm_debugregs)))
  2321. break;
  2322. r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
  2323. break;
  2324. }
  2325. case KVM_GET_XSAVE: {
  2326. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2327. r = -ENOMEM;
  2328. if (!u.xsave)
  2329. break;
  2330. kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
  2331. r = -EFAULT;
  2332. if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
  2333. break;
  2334. r = 0;
  2335. break;
  2336. }
  2337. case KVM_SET_XSAVE: {
  2338. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2339. r = -ENOMEM;
  2340. if (!u.xsave)
  2341. break;
  2342. r = -EFAULT;
  2343. if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
  2344. break;
  2345. r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
  2346. break;
  2347. }
  2348. case KVM_GET_XCRS: {
  2349. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2350. r = -ENOMEM;
  2351. if (!u.xcrs)
  2352. break;
  2353. kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
  2354. r = -EFAULT;
  2355. if (copy_to_user(argp, u.xcrs,
  2356. sizeof(struct kvm_xcrs)))
  2357. break;
  2358. r = 0;
  2359. break;
  2360. }
  2361. case KVM_SET_XCRS: {
  2362. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2363. r = -ENOMEM;
  2364. if (!u.xcrs)
  2365. break;
  2366. r = -EFAULT;
  2367. if (copy_from_user(u.xcrs, argp,
  2368. sizeof(struct kvm_xcrs)))
  2369. break;
  2370. r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
  2371. break;
  2372. }
  2373. default:
  2374. r = -EINVAL;
  2375. }
  2376. out:
  2377. kfree(u.buffer);
  2378. return r;
  2379. }
  2380. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2381. {
  2382. int ret;
  2383. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2384. return -1;
  2385. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2386. return ret;
  2387. }
  2388. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2389. u64 ident_addr)
  2390. {
  2391. kvm->arch.ept_identity_map_addr = ident_addr;
  2392. return 0;
  2393. }
  2394. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  2395. u32 kvm_nr_mmu_pages)
  2396. {
  2397. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  2398. return -EINVAL;
  2399. mutex_lock(&kvm->slots_lock);
  2400. spin_lock(&kvm->mmu_lock);
  2401. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  2402. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  2403. spin_unlock(&kvm->mmu_lock);
  2404. mutex_unlock(&kvm->slots_lock);
  2405. return 0;
  2406. }
  2407. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  2408. {
  2409. return kvm->arch.n_alloc_mmu_pages;
  2410. }
  2411. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2412. {
  2413. int r;
  2414. r = 0;
  2415. switch (chip->chip_id) {
  2416. case KVM_IRQCHIP_PIC_MASTER:
  2417. memcpy(&chip->chip.pic,
  2418. &pic_irqchip(kvm)->pics[0],
  2419. sizeof(struct kvm_pic_state));
  2420. break;
  2421. case KVM_IRQCHIP_PIC_SLAVE:
  2422. memcpy(&chip->chip.pic,
  2423. &pic_irqchip(kvm)->pics[1],
  2424. sizeof(struct kvm_pic_state));
  2425. break;
  2426. case KVM_IRQCHIP_IOAPIC:
  2427. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2428. break;
  2429. default:
  2430. r = -EINVAL;
  2431. break;
  2432. }
  2433. return r;
  2434. }
  2435. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2436. {
  2437. int r;
  2438. r = 0;
  2439. switch (chip->chip_id) {
  2440. case KVM_IRQCHIP_PIC_MASTER:
  2441. raw_spin_lock(&pic_irqchip(kvm)->lock);
  2442. memcpy(&pic_irqchip(kvm)->pics[0],
  2443. &chip->chip.pic,
  2444. sizeof(struct kvm_pic_state));
  2445. raw_spin_unlock(&pic_irqchip(kvm)->lock);
  2446. break;
  2447. case KVM_IRQCHIP_PIC_SLAVE:
  2448. raw_spin_lock(&pic_irqchip(kvm)->lock);
  2449. memcpy(&pic_irqchip(kvm)->pics[1],
  2450. &chip->chip.pic,
  2451. sizeof(struct kvm_pic_state));
  2452. raw_spin_unlock(&pic_irqchip(kvm)->lock);
  2453. break;
  2454. case KVM_IRQCHIP_IOAPIC:
  2455. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2456. break;
  2457. default:
  2458. r = -EINVAL;
  2459. break;
  2460. }
  2461. kvm_pic_update_irq(pic_irqchip(kvm));
  2462. return r;
  2463. }
  2464. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2465. {
  2466. int r = 0;
  2467. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2468. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2469. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2470. return r;
  2471. }
  2472. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2473. {
  2474. int r = 0;
  2475. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2476. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2477. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2478. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2479. return r;
  2480. }
  2481. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2482. {
  2483. int r = 0;
  2484. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2485. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2486. sizeof(ps->channels));
  2487. ps->flags = kvm->arch.vpit->pit_state.flags;
  2488. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2489. return r;
  2490. }
  2491. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2492. {
  2493. int r = 0, start = 0;
  2494. u32 prev_legacy, cur_legacy;
  2495. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2496. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2497. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2498. if (!prev_legacy && cur_legacy)
  2499. start = 1;
  2500. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2501. sizeof(kvm->arch.vpit->pit_state.channels));
  2502. kvm->arch.vpit->pit_state.flags = ps->flags;
  2503. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2504. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2505. return r;
  2506. }
  2507. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2508. struct kvm_reinject_control *control)
  2509. {
  2510. if (!kvm->arch.vpit)
  2511. return -ENXIO;
  2512. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2513. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2514. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2515. return 0;
  2516. }
  2517. /*
  2518. * Get (and clear) the dirty memory log for a memory slot.
  2519. */
  2520. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2521. struct kvm_dirty_log *log)
  2522. {
  2523. int r, i;
  2524. struct kvm_memory_slot *memslot;
  2525. unsigned long n;
  2526. unsigned long is_dirty = 0;
  2527. mutex_lock(&kvm->slots_lock);
  2528. r = -EINVAL;
  2529. if (log->slot >= KVM_MEMORY_SLOTS)
  2530. goto out;
  2531. memslot = &kvm->memslots->memslots[log->slot];
  2532. r = -ENOENT;
  2533. if (!memslot->dirty_bitmap)
  2534. goto out;
  2535. n = kvm_dirty_bitmap_bytes(memslot);
  2536. for (i = 0; !is_dirty && i < n/sizeof(long); i++)
  2537. is_dirty = memslot->dirty_bitmap[i];
  2538. /* If nothing is dirty, don't bother messing with page tables. */
  2539. if (is_dirty) {
  2540. struct kvm_memslots *slots, *old_slots;
  2541. unsigned long *dirty_bitmap;
  2542. spin_lock(&kvm->mmu_lock);
  2543. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2544. spin_unlock(&kvm->mmu_lock);
  2545. r = -ENOMEM;
  2546. dirty_bitmap = vmalloc(n);
  2547. if (!dirty_bitmap)
  2548. goto out;
  2549. memset(dirty_bitmap, 0, n);
  2550. r = -ENOMEM;
  2551. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  2552. if (!slots) {
  2553. vfree(dirty_bitmap);
  2554. goto out;
  2555. }
  2556. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  2557. slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
  2558. old_slots = kvm->memslots;
  2559. rcu_assign_pointer(kvm->memslots, slots);
  2560. synchronize_srcu_expedited(&kvm->srcu);
  2561. dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
  2562. kfree(old_slots);
  2563. r = -EFAULT;
  2564. if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
  2565. vfree(dirty_bitmap);
  2566. goto out;
  2567. }
  2568. vfree(dirty_bitmap);
  2569. } else {
  2570. r = -EFAULT;
  2571. if (clear_user(log->dirty_bitmap, n))
  2572. goto out;
  2573. }
  2574. r = 0;
  2575. out:
  2576. mutex_unlock(&kvm->slots_lock);
  2577. return r;
  2578. }
  2579. long kvm_arch_vm_ioctl(struct file *filp,
  2580. unsigned int ioctl, unsigned long arg)
  2581. {
  2582. struct kvm *kvm = filp->private_data;
  2583. void __user *argp = (void __user *)arg;
  2584. int r = -ENOTTY;
  2585. /*
  2586. * This union makes it completely explicit to gcc-3.x
  2587. * that these two variables' stack usage should be
  2588. * combined, not added together.
  2589. */
  2590. union {
  2591. struct kvm_pit_state ps;
  2592. struct kvm_pit_state2 ps2;
  2593. struct kvm_pit_config pit_config;
  2594. } u;
  2595. switch (ioctl) {
  2596. case KVM_SET_TSS_ADDR:
  2597. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2598. if (r < 0)
  2599. goto out;
  2600. break;
  2601. case KVM_SET_IDENTITY_MAP_ADDR: {
  2602. u64 ident_addr;
  2603. r = -EFAULT;
  2604. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2605. goto out;
  2606. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2607. if (r < 0)
  2608. goto out;
  2609. break;
  2610. }
  2611. case KVM_SET_NR_MMU_PAGES:
  2612. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2613. if (r)
  2614. goto out;
  2615. break;
  2616. case KVM_GET_NR_MMU_PAGES:
  2617. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2618. break;
  2619. case KVM_CREATE_IRQCHIP: {
  2620. struct kvm_pic *vpic;
  2621. mutex_lock(&kvm->lock);
  2622. r = -EEXIST;
  2623. if (kvm->arch.vpic)
  2624. goto create_irqchip_unlock;
  2625. r = -ENOMEM;
  2626. vpic = kvm_create_pic(kvm);
  2627. if (vpic) {
  2628. r = kvm_ioapic_init(kvm);
  2629. if (r) {
  2630. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  2631. &vpic->dev);
  2632. kfree(vpic);
  2633. goto create_irqchip_unlock;
  2634. }
  2635. } else
  2636. goto create_irqchip_unlock;
  2637. smp_wmb();
  2638. kvm->arch.vpic = vpic;
  2639. smp_wmb();
  2640. r = kvm_setup_default_irq_routing(kvm);
  2641. if (r) {
  2642. mutex_lock(&kvm->irq_lock);
  2643. kvm_ioapic_destroy(kvm);
  2644. kvm_destroy_pic(kvm);
  2645. mutex_unlock(&kvm->irq_lock);
  2646. }
  2647. create_irqchip_unlock:
  2648. mutex_unlock(&kvm->lock);
  2649. break;
  2650. }
  2651. case KVM_CREATE_PIT:
  2652. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2653. goto create_pit;
  2654. case KVM_CREATE_PIT2:
  2655. r = -EFAULT;
  2656. if (copy_from_user(&u.pit_config, argp,
  2657. sizeof(struct kvm_pit_config)))
  2658. goto out;
  2659. create_pit:
  2660. mutex_lock(&kvm->slots_lock);
  2661. r = -EEXIST;
  2662. if (kvm->arch.vpit)
  2663. goto create_pit_unlock;
  2664. r = -ENOMEM;
  2665. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2666. if (kvm->arch.vpit)
  2667. r = 0;
  2668. create_pit_unlock:
  2669. mutex_unlock(&kvm->slots_lock);
  2670. break;
  2671. case KVM_IRQ_LINE_STATUS:
  2672. case KVM_IRQ_LINE: {
  2673. struct kvm_irq_level irq_event;
  2674. r = -EFAULT;
  2675. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2676. goto out;
  2677. r = -ENXIO;
  2678. if (irqchip_in_kernel(kvm)) {
  2679. __s32 status;
  2680. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2681. irq_event.irq, irq_event.level);
  2682. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2683. r = -EFAULT;
  2684. irq_event.status = status;
  2685. if (copy_to_user(argp, &irq_event,
  2686. sizeof irq_event))
  2687. goto out;
  2688. }
  2689. r = 0;
  2690. }
  2691. break;
  2692. }
  2693. case KVM_GET_IRQCHIP: {
  2694. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2695. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2696. r = -ENOMEM;
  2697. if (!chip)
  2698. goto out;
  2699. r = -EFAULT;
  2700. if (copy_from_user(chip, argp, sizeof *chip))
  2701. goto get_irqchip_out;
  2702. r = -ENXIO;
  2703. if (!irqchip_in_kernel(kvm))
  2704. goto get_irqchip_out;
  2705. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2706. if (r)
  2707. goto get_irqchip_out;
  2708. r = -EFAULT;
  2709. if (copy_to_user(argp, chip, sizeof *chip))
  2710. goto get_irqchip_out;
  2711. r = 0;
  2712. get_irqchip_out:
  2713. kfree(chip);
  2714. if (r)
  2715. goto out;
  2716. break;
  2717. }
  2718. case KVM_SET_IRQCHIP: {
  2719. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2720. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2721. r = -ENOMEM;
  2722. if (!chip)
  2723. goto out;
  2724. r = -EFAULT;
  2725. if (copy_from_user(chip, argp, sizeof *chip))
  2726. goto set_irqchip_out;
  2727. r = -ENXIO;
  2728. if (!irqchip_in_kernel(kvm))
  2729. goto set_irqchip_out;
  2730. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2731. if (r)
  2732. goto set_irqchip_out;
  2733. r = 0;
  2734. set_irqchip_out:
  2735. kfree(chip);
  2736. if (r)
  2737. goto out;
  2738. break;
  2739. }
  2740. case KVM_GET_PIT: {
  2741. r = -EFAULT;
  2742. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2743. goto out;
  2744. r = -ENXIO;
  2745. if (!kvm->arch.vpit)
  2746. goto out;
  2747. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2748. if (r)
  2749. goto out;
  2750. r = -EFAULT;
  2751. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2752. goto out;
  2753. r = 0;
  2754. break;
  2755. }
  2756. case KVM_SET_PIT: {
  2757. r = -EFAULT;
  2758. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2759. goto out;
  2760. r = -ENXIO;
  2761. if (!kvm->arch.vpit)
  2762. goto out;
  2763. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2764. if (r)
  2765. goto out;
  2766. r = 0;
  2767. break;
  2768. }
  2769. case KVM_GET_PIT2: {
  2770. r = -ENXIO;
  2771. if (!kvm->arch.vpit)
  2772. goto out;
  2773. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  2774. if (r)
  2775. goto out;
  2776. r = -EFAULT;
  2777. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  2778. goto out;
  2779. r = 0;
  2780. break;
  2781. }
  2782. case KVM_SET_PIT2: {
  2783. r = -EFAULT;
  2784. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  2785. goto out;
  2786. r = -ENXIO;
  2787. if (!kvm->arch.vpit)
  2788. goto out;
  2789. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  2790. if (r)
  2791. goto out;
  2792. r = 0;
  2793. break;
  2794. }
  2795. case KVM_REINJECT_CONTROL: {
  2796. struct kvm_reinject_control control;
  2797. r = -EFAULT;
  2798. if (copy_from_user(&control, argp, sizeof(control)))
  2799. goto out;
  2800. r = kvm_vm_ioctl_reinject(kvm, &control);
  2801. if (r)
  2802. goto out;
  2803. r = 0;
  2804. break;
  2805. }
  2806. case KVM_XEN_HVM_CONFIG: {
  2807. r = -EFAULT;
  2808. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  2809. sizeof(struct kvm_xen_hvm_config)))
  2810. goto out;
  2811. r = -EINVAL;
  2812. if (kvm->arch.xen_hvm_config.flags)
  2813. goto out;
  2814. r = 0;
  2815. break;
  2816. }
  2817. case KVM_SET_CLOCK: {
  2818. struct timespec now;
  2819. struct kvm_clock_data user_ns;
  2820. u64 now_ns;
  2821. s64 delta;
  2822. r = -EFAULT;
  2823. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  2824. goto out;
  2825. r = -EINVAL;
  2826. if (user_ns.flags)
  2827. goto out;
  2828. r = 0;
  2829. ktime_get_ts(&now);
  2830. now_ns = timespec_to_ns(&now);
  2831. delta = user_ns.clock - now_ns;
  2832. kvm->arch.kvmclock_offset = delta;
  2833. break;
  2834. }
  2835. case KVM_GET_CLOCK: {
  2836. struct timespec now;
  2837. struct kvm_clock_data user_ns;
  2838. u64 now_ns;
  2839. ktime_get_ts(&now);
  2840. now_ns = timespec_to_ns(&now);
  2841. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  2842. user_ns.flags = 0;
  2843. r = -EFAULT;
  2844. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  2845. goto out;
  2846. r = 0;
  2847. break;
  2848. }
  2849. default:
  2850. ;
  2851. }
  2852. out:
  2853. return r;
  2854. }
  2855. static void kvm_init_msr_list(void)
  2856. {
  2857. u32 dummy[2];
  2858. unsigned i, j;
  2859. /* skip the first msrs in the list. KVM-specific */
  2860. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  2861. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2862. continue;
  2863. if (j < i)
  2864. msrs_to_save[j] = msrs_to_save[i];
  2865. j++;
  2866. }
  2867. num_msrs_to_save = j;
  2868. }
  2869. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2870. const void *v)
  2871. {
  2872. if (vcpu->arch.apic &&
  2873. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2874. return 0;
  2875. return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  2876. }
  2877. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2878. {
  2879. if (vcpu->arch.apic &&
  2880. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2881. return 0;
  2882. return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  2883. }
  2884. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  2885. struct kvm_segment *var, int seg)
  2886. {
  2887. kvm_x86_ops->set_segment(vcpu, var, seg);
  2888. }
  2889. void kvm_get_segment(struct kvm_vcpu *vcpu,
  2890. struct kvm_segment *var, int seg)
  2891. {
  2892. kvm_x86_ops->get_segment(vcpu, var, seg);
  2893. }
  2894. gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2895. {
  2896. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2897. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2898. }
  2899. gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2900. {
  2901. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2902. access |= PFERR_FETCH_MASK;
  2903. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2904. }
  2905. gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2906. {
  2907. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2908. access |= PFERR_WRITE_MASK;
  2909. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2910. }
  2911. /* uses this to access any guest's mapped memory without checking CPL */
  2912. gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2913. {
  2914. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
  2915. }
  2916. static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
  2917. struct kvm_vcpu *vcpu, u32 access,
  2918. u32 *error)
  2919. {
  2920. void *data = val;
  2921. int r = X86EMUL_CONTINUE;
  2922. while (bytes) {
  2923. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
  2924. unsigned offset = addr & (PAGE_SIZE-1);
  2925. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2926. int ret;
  2927. if (gpa == UNMAPPED_GVA) {
  2928. r = X86EMUL_PROPAGATE_FAULT;
  2929. goto out;
  2930. }
  2931. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2932. if (ret < 0) {
  2933. r = X86EMUL_IO_NEEDED;
  2934. goto out;
  2935. }
  2936. bytes -= toread;
  2937. data += toread;
  2938. addr += toread;
  2939. }
  2940. out:
  2941. return r;
  2942. }
  2943. /* used for instruction fetching */
  2944. static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2945. struct kvm_vcpu *vcpu, u32 *error)
  2946. {
  2947. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2948. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
  2949. access | PFERR_FETCH_MASK, error);
  2950. }
  2951. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2952. struct kvm_vcpu *vcpu, u32 *error)
  2953. {
  2954. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2955. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
  2956. error);
  2957. }
  2958. static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
  2959. struct kvm_vcpu *vcpu, u32 *error)
  2960. {
  2961. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
  2962. }
  2963. static int kvm_write_guest_virt_system(gva_t addr, void *val,
  2964. unsigned int bytes,
  2965. struct kvm_vcpu *vcpu,
  2966. u32 *error)
  2967. {
  2968. void *data = val;
  2969. int r = X86EMUL_CONTINUE;
  2970. while (bytes) {
  2971. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr,
  2972. PFERR_WRITE_MASK, error);
  2973. unsigned offset = addr & (PAGE_SIZE-1);
  2974. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2975. int ret;
  2976. if (gpa == UNMAPPED_GVA) {
  2977. r = X86EMUL_PROPAGATE_FAULT;
  2978. goto out;
  2979. }
  2980. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  2981. if (ret < 0) {
  2982. r = X86EMUL_IO_NEEDED;
  2983. goto out;
  2984. }
  2985. bytes -= towrite;
  2986. data += towrite;
  2987. addr += towrite;
  2988. }
  2989. out:
  2990. return r;
  2991. }
  2992. static int emulator_read_emulated(unsigned long addr,
  2993. void *val,
  2994. unsigned int bytes,
  2995. unsigned int *error_code,
  2996. struct kvm_vcpu *vcpu)
  2997. {
  2998. gpa_t gpa;
  2999. if (vcpu->mmio_read_completed) {
  3000. memcpy(val, vcpu->mmio_data, bytes);
  3001. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  3002. vcpu->mmio_phys_addr, *(u64 *)val);
  3003. vcpu->mmio_read_completed = 0;
  3004. return X86EMUL_CONTINUE;
  3005. }
  3006. gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
  3007. if (gpa == UNMAPPED_GVA)
  3008. return X86EMUL_PROPAGATE_FAULT;
  3009. /* For APIC access vmexit */
  3010. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3011. goto mmio;
  3012. if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
  3013. == X86EMUL_CONTINUE)
  3014. return X86EMUL_CONTINUE;
  3015. mmio:
  3016. /*
  3017. * Is this MMIO handled locally?
  3018. */
  3019. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  3020. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  3021. return X86EMUL_CONTINUE;
  3022. }
  3023. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  3024. vcpu->mmio_needed = 1;
  3025. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3026. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3027. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3028. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
  3029. return X86EMUL_IO_NEEDED;
  3030. }
  3031. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  3032. const void *val, int bytes)
  3033. {
  3034. int ret;
  3035. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  3036. if (ret < 0)
  3037. return 0;
  3038. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  3039. return 1;
  3040. }
  3041. static int emulator_write_emulated_onepage(unsigned long addr,
  3042. const void *val,
  3043. unsigned int bytes,
  3044. unsigned int *error_code,
  3045. struct kvm_vcpu *vcpu)
  3046. {
  3047. gpa_t gpa;
  3048. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
  3049. if (gpa == UNMAPPED_GVA)
  3050. return X86EMUL_PROPAGATE_FAULT;
  3051. /* For APIC access vmexit */
  3052. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3053. goto mmio;
  3054. if (emulator_write_phys(vcpu, gpa, val, bytes))
  3055. return X86EMUL_CONTINUE;
  3056. mmio:
  3057. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  3058. /*
  3059. * Is this MMIO handled locally?
  3060. */
  3061. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  3062. return X86EMUL_CONTINUE;
  3063. vcpu->mmio_needed = 1;
  3064. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3065. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3066. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3067. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
  3068. memcpy(vcpu->run->mmio.data, val, bytes);
  3069. return X86EMUL_CONTINUE;
  3070. }
  3071. int emulator_write_emulated(unsigned long addr,
  3072. const void *val,
  3073. unsigned int bytes,
  3074. unsigned int *error_code,
  3075. struct kvm_vcpu *vcpu)
  3076. {
  3077. /* Crossing a page boundary? */
  3078. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  3079. int rc, now;
  3080. now = -addr & ~PAGE_MASK;
  3081. rc = emulator_write_emulated_onepage(addr, val, now, error_code,
  3082. vcpu);
  3083. if (rc != X86EMUL_CONTINUE)
  3084. return rc;
  3085. addr += now;
  3086. val += now;
  3087. bytes -= now;
  3088. }
  3089. return emulator_write_emulated_onepage(addr, val, bytes, error_code,
  3090. vcpu);
  3091. }
  3092. #define CMPXCHG_TYPE(t, ptr, old, new) \
  3093. (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
  3094. #ifdef CONFIG_X86_64
  3095. # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
  3096. #else
  3097. # define CMPXCHG64(ptr, old, new) \
  3098. (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
  3099. #endif
  3100. static int emulator_cmpxchg_emulated(unsigned long addr,
  3101. const void *old,
  3102. const void *new,
  3103. unsigned int bytes,
  3104. unsigned int *error_code,
  3105. struct kvm_vcpu *vcpu)
  3106. {
  3107. gpa_t gpa;
  3108. struct page *page;
  3109. char *kaddr;
  3110. bool exchanged;
  3111. /* guests cmpxchg8b have to be emulated atomically */
  3112. if (bytes > 8 || (bytes & (bytes - 1)))
  3113. goto emul_write;
  3114. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
  3115. if (gpa == UNMAPPED_GVA ||
  3116. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3117. goto emul_write;
  3118. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  3119. goto emul_write;
  3120. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3121. kaddr = kmap_atomic(page, KM_USER0);
  3122. kaddr += offset_in_page(gpa);
  3123. switch (bytes) {
  3124. case 1:
  3125. exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
  3126. break;
  3127. case 2:
  3128. exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
  3129. break;
  3130. case 4:
  3131. exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
  3132. break;
  3133. case 8:
  3134. exchanged = CMPXCHG64(kaddr, old, new);
  3135. break;
  3136. default:
  3137. BUG();
  3138. }
  3139. kunmap_atomic(kaddr, KM_USER0);
  3140. kvm_release_page_dirty(page);
  3141. if (!exchanged)
  3142. return X86EMUL_CMPXCHG_FAILED;
  3143. kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
  3144. return X86EMUL_CONTINUE;
  3145. emul_write:
  3146. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  3147. return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
  3148. }
  3149. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3150. {
  3151. /* TODO: String I/O for in kernel device */
  3152. int r;
  3153. if (vcpu->arch.pio.in)
  3154. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3155. vcpu->arch.pio.size, pd);
  3156. else
  3157. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3158. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3159. pd);
  3160. return r;
  3161. }
  3162. static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
  3163. unsigned int count, struct kvm_vcpu *vcpu)
  3164. {
  3165. if (vcpu->arch.pio.count)
  3166. goto data_avail;
  3167. trace_kvm_pio(1, port, size, 1);
  3168. vcpu->arch.pio.port = port;
  3169. vcpu->arch.pio.in = 1;
  3170. vcpu->arch.pio.count = count;
  3171. vcpu->arch.pio.size = size;
  3172. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3173. data_avail:
  3174. memcpy(val, vcpu->arch.pio_data, size * count);
  3175. vcpu->arch.pio.count = 0;
  3176. return 1;
  3177. }
  3178. vcpu->run->exit_reason = KVM_EXIT_IO;
  3179. vcpu->run->io.direction = KVM_EXIT_IO_IN;
  3180. vcpu->run->io.size = size;
  3181. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3182. vcpu->run->io.count = count;
  3183. vcpu->run->io.port = port;
  3184. return 0;
  3185. }
  3186. static int emulator_pio_out_emulated(int size, unsigned short port,
  3187. const void *val, unsigned int count,
  3188. struct kvm_vcpu *vcpu)
  3189. {
  3190. trace_kvm_pio(0, port, size, 1);
  3191. vcpu->arch.pio.port = port;
  3192. vcpu->arch.pio.in = 0;
  3193. vcpu->arch.pio.count = count;
  3194. vcpu->arch.pio.size = size;
  3195. memcpy(vcpu->arch.pio_data, val, size * count);
  3196. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3197. vcpu->arch.pio.count = 0;
  3198. return 1;
  3199. }
  3200. vcpu->run->exit_reason = KVM_EXIT_IO;
  3201. vcpu->run->io.direction = KVM_EXIT_IO_OUT;
  3202. vcpu->run->io.size = size;
  3203. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3204. vcpu->run->io.count = count;
  3205. vcpu->run->io.port = port;
  3206. return 0;
  3207. }
  3208. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  3209. {
  3210. return kvm_x86_ops->get_segment_base(vcpu, seg);
  3211. }
  3212. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  3213. {
  3214. kvm_mmu_invlpg(vcpu, address);
  3215. return X86EMUL_CONTINUE;
  3216. }
  3217. int emulate_clts(struct kvm_vcpu *vcpu)
  3218. {
  3219. kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3220. kvm_x86_ops->fpu_activate(vcpu);
  3221. return X86EMUL_CONTINUE;
  3222. }
  3223. int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
  3224. {
  3225. return _kvm_get_dr(vcpu, dr, dest);
  3226. }
  3227. int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
  3228. {
  3229. return __kvm_set_dr(vcpu, dr, value);
  3230. }
  3231. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3232. {
  3233. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3234. }
  3235. static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
  3236. {
  3237. unsigned long value;
  3238. switch (cr) {
  3239. case 0:
  3240. value = kvm_read_cr0(vcpu);
  3241. break;
  3242. case 2:
  3243. value = vcpu->arch.cr2;
  3244. break;
  3245. case 3:
  3246. value = vcpu->arch.cr3;
  3247. break;
  3248. case 4:
  3249. value = kvm_read_cr4(vcpu);
  3250. break;
  3251. case 8:
  3252. value = kvm_get_cr8(vcpu);
  3253. break;
  3254. default:
  3255. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3256. return 0;
  3257. }
  3258. return value;
  3259. }
  3260. static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
  3261. {
  3262. int res = 0;
  3263. switch (cr) {
  3264. case 0:
  3265. res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  3266. break;
  3267. case 2:
  3268. vcpu->arch.cr2 = val;
  3269. break;
  3270. case 3:
  3271. res = kvm_set_cr3(vcpu, val);
  3272. break;
  3273. case 4:
  3274. res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3275. break;
  3276. case 8:
  3277. res = __kvm_set_cr8(vcpu, val & 0xfUL);
  3278. break;
  3279. default:
  3280. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3281. res = -1;
  3282. }
  3283. return res;
  3284. }
  3285. static int emulator_get_cpl(struct kvm_vcpu *vcpu)
  3286. {
  3287. return kvm_x86_ops->get_cpl(vcpu);
  3288. }
  3289. static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3290. {
  3291. kvm_x86_ops->get_gdt(vcpu, dt);
  3292. }
  3293. static unsigned long emulator_get_cached_segment_base(int seg,
  3294. struct kvm_vcpu *vcpu)
  3295. {
  3296. return get_segment_base(vcpu, seg);
  3297. }
  3298. static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
  3299. struct kvm_vcpu *vcpu)
  3300. {
  3301. struct kvm_segment var;
  3302. kvm_get_segment(vcpu, &var, seg);
  3303. if (var.unusable)
  3304. return false;
  3305. if (var.g)
  3306. var.limit >>= 12;
  3307. set_desc_limit(desc, var.limit);
  3308. set_desc_base(desc, (unsigned long)var.base);
  3309. desc->type = var.type;
  3310. desc->s = var.s;
  3311. desc->dpl = var.dpl;
  3312. desc->p = var.present;
  3313. desc->avl = var.avl;
  3314. desc->l = var.l;
  3315. desc->d = var.db;
  3316. desc->g = var.g;
  3317. return true;
  3318. }
  3319. static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
  3320. struct kvm_vcpu *vcpu)
  3321. {
  3322. struct kvm_segment var;
  3323. /* needed to preserve selector */
  3324. kvm_get_segment(vcpu, &var, seg);
  3325. var.base = get_desc_base(desc);
  3326. var.limit = get_desc_limit(desc);
  3327. if (desc->g)
  3328. var.limit = (var.limit << 12) | 0xfff;
  3329. var.type = desc->type;
  3330. var.present = desc->p;
  3331. var.dpl = desc->dpl;
  3332. var.db = desc->d;
  3333. var.s = desc->s;
  3334. var.l = desc->l;
  3335. var.g = desc->g;
  3336. var.avl = desc->avl;
  3337. var.present = desc->p;
  3338. var.unusable = !var.present;
  3339. var.padding = 0;
  3340. kvm_set_segment(vcpu, &var, seg);
  3341. return;
  3342. }
  3343. static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
  3344. {
  3345. struct kvm_segment kvm_seg;
  3346. kvm_get_segment(vcpu, &kvm_seg, seg);
  3347. return kvm_seg.selector;
  3348. }
  3349. static void emulator_set_segment_selector(u16 sel, int seg,
  3350. struct kvm_vcpu *vcpu)
  3351. {
  3352. struct kvm_segment kvm_seg;
  3353. kvm_get_segment(vcpu, &kvm_seg, seg);
  3354. kvm_seg.selector = sel;
  3355. kvm_set_segment(vcpu, &kvm_seg, seg);
  3356. }
  3357. static struct x86_emulate_ops emulate_ops = {
  3358. .read_std = kvm_read_guest_virt_system,
  3359. .write_std = kvm_write_guest_virt_system,
  3360. .fetch = kvm_fetch_guest_virt,
  3361. .read_emulated = emulator_read_emulated,
  3362. .write_emulated = emulator_write_emulated,
  3363. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  3364. .pio_in_emulated = emulator_pio_in_emulated,
  3365. .pio_out_emulated = emulator_pio_out_emulated,
  3366. .get_cached_descriptor = emulator_get_cached_descriptor,
  3367. .set_cached_descriptor = emulator_set_cached_descriptor,
  3368. .get_segment_selector = emulator_get_segment_selector,
  3369. .set_segment_selector = emulator_set_segment_selector,
  3370. .get_cached_segment_base = emulator_get_cached_segment_base,
  3371. .get_gdt = emulator_get_gdt,
  3372. .get_cr = emulator_get_cr,
  3373. .set_cr = emulator_set_cr,
  3374. .cpl = emulator_get_cpl,
  3375. .get_dr = emulator_get_dr,
  3376. .set_dr = emulator_set_dr,
  3377. .set_msr = kvm_set_msr,
  3378. .get_msr = kvm_get_msr,
  3379. };
  3380. static void cache_all_regs(struct kvm_vcpu *vcpu)
  3381. {
  3382. kvm_register_read(vcpu, VCPU_REGS_RAX);
  3383. kvm_register_read(vcpu, VCPU_REGS_RSP);
  3384. kvm_register_read(vcpu, VCPU_REGS_RIP);
  3385. vcpu->arch.regs_dirty = ~0;
  3386. }
  3387. static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
  3388. {
  3389. u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
  3390. /*
  3391. * an sti; sti; sequence only disable interrupts for the first
  3392. * instruction. So, if the last instruction, be it emulated or
  3393. * not, left the system with the INT_STI flag enabled, it
  3394. * means that the last instruction is an sti. We should not
  3395. * leave the flag on in this case. The same goes for mov ss
  3396. */
  3397. if (!(int_shadow & mask))
  3398. kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
  3399. }
  3400. static void inject_emulated_exception(struct kvm_vcpu *vcpu)
  3401. {
  3402. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  3403. if (ctxt->exception == PF_VECTOR)
  3404. kvm_inject_page_fault(vcpu, ctxt->cr2, ctxt->error_code);
  3405. else if (ctxt->error_code_valid)
  3406. kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
  3407. else
  3408. kvm_queue_exception(vcpu, ctxt->exception);
  3409. }
  3410. static int handle_emulation_failure(struct kvm_vcpu *vcpu)
  3411. {
  3412. ++vcpu->stat.insn_emulation_fail;
  3413. trace_kvm_emulate_insn_failed(vcpu);
  3414. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3415. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  3416. vcpu->run->internal.ndata = 0;
  3417. kvm_queue_exception(vcpu, UD_VECTOR);
  3418. return EMULATE_FAIL;
  3419. }
  3420. int emulate_instruction(struct kvm_vcpu *vcpu,
  3421. unsigned long cr2,
  3422. u16 error_code,
  3423. int emulation_type)
  3424. {
  3425. int r;
  3426. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3427. kvm_clear_exception_queue(vcpu);
  3428. vcpu->arch.mmio_fault_cr2 = cr2;
  3429. /*
  3430. * TODO: fix emulate.c to use guest_read/write_register
  3431. * instead of direct ->regs accesses, can save hundred cycles
  3432. * on Intel for instructions that don't read/change RSP, for
  3433. * for example.
  3434. */
  3435. cache_all_regs(vcpu);
  3436. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  3437. int cs_db, cs_l;
  3438. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3439. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  3440. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  3441. vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
  3442. vcpu->arch.emulate_ctxt.mode =
  3443. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  3444. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  3445. ? X86EMUL_MODE_VM86 : cs_l
  3446. ? X86EMUL_MODE_PROT64 : cs_db
  3447. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  3448. memset(c, 0, sizeof(struct decode_cache));
  3449. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3450. vcpu->arch.emulate_ctxt.interruptibility = 0;
  3451. vcpu->arch.emulate_ctxt.exception = -1;
  3452. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  3453. trace_kvm_emulate_insn_start(vcpu);
  3454. /* Only allow emulation of specific instructions on #UD
  3455. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  3456. if (emulation_type & EMULTYPE_TRAP_UD) {
  3457. if (!c->twobyte)
  3458. return EMULATE_FAIL;
  3459. switch (c->b) {
  3460. case 0x01: /* VMMCALL */
  3461. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  3462. return EMULATE_FAIL;
  3463. break;
  3464. case 0x34: /* sysenter */
  3465. case 0x35: /* sysexit */
  3466. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3467. return EMULATE_FAIL;
  3468. break;
  3469. case 0x05: /* syscall */
  3470. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3471. return EMULATE_FAIL;
  3472. break;
  3473. default:
  3474. return EMULATE_FAIL;
  3475. }
  3476. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  3477. return EMULATE_FAIL;
  3478. }
  3479. ++vcpu->stat.insn_emulation;
  3480. if (r) {
  3481. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  3482. return EMULATE_DONE;
  3483. if (emulation_type & EMULTYPE_SKIP)
  3484. return EMULATE_FAIL;
  3485. return handle_emulation_failure(vcpu);
  3486. }
  3487. }
  3488. if (emulation_type & EMULTYPE_SKIP) {
  3489. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  3490. return EMULATE_DONE;
  3491. }
  3492. /* this is needed for vmware backdor interface to work since it
  3493. changes registers values during IO operation */
  3494. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3495. restart:
  3496. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  3497. if (r) { /* emulation failed */
  3498. /*
  3499. * if emulation was due to access to shadowed page table
  3500. * and it failed try to unshadow page and re-entetr the
  3501. * guest to let CPU execute the instruction.
  3502. */
  3503. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  3504. return EMULATE_DONE;
  3505. return handle_emulation_failure(vcpu);
  3506. }
  3507. toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
  3508. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3509. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  3510. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  3511. if (vcpu->arch.emulate_ctxt.exception >= 0) {
  3512. inject_emulated_exception(vcpu);
  3513. return EMULATE_DONE;
  3514. }
  3515. if (vcpu->arch.pio.count) {
  3516. if (!vcpu->arch.pio.in)
  3517. vcpu->arch.pio.count = 0;
  3518. return EMULATE_DO_MMIO;
  3519. }
  3520. if (vcpu->mmio_needed) {
  3521. if (vcpu->mmio_is_write)
  3522. vcpu->mmio_needed = 0;
  3523. return EMULATE_DO_MMIO;
  3524. }
  3525. if (vcpu->arch.emulate_ctxt.restart)
  3526. goto restart;
  3527. return EMULATE_DONE;
  3528. }
  3529. EXPORT_SYMBOL_GPL(emulate_instruction);
  3530. int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
  3531. {
  3532. unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3533. int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
  3534. /* do not return to emulator after return from userspace */
  3535. vcpu->arch.pio.count = 0;
  3536. return ret;
  3537. }
  3538. EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
  3539. static void bounce_off(void *info)
  3540. {
  3541. /* nothing */
  3542. }
  3543. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  3544. void *data)
  3545. {
  3546. struct cpufreq_freqs *freq = data;
  3547. struct kvm *kvm;
  3548. struct kvm_vcpu *vcpu;
  3549. int i, send_ipi = 0;
  3550. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  3551. return 0;
  3552. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  3553. return 0;
  3554. per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
  3555. spin_lock(&kvm_lock);
  3556. list_for_each_entry(kvm, &vm_list, vm_list) {
  3557. kvm_for_each_vcpu(i, vcpu, kvm) {
  3558. if (vcpu->cpu != freq->cpu)
  3559. continue;
  3560. if (!kvm_request_guest_time_update(vcpu))
  3561. continue;
  3562. if (vcpu->cpu != smp_processor_id())
  3563. send_ipi++;
  3564. }
  3565. }
  3566. spin_unlock(&kvm_lock);
  3567. if (freq->old < freq->new && send_ipi) {
  3568. /*
  3569. * We upscale the frequency. Must make the guest
  3570. * doesn't see old kvmclock values while running with
  3571. * the new frequency, otherwise we risk the guest sees
  3572. * time go backwards.
  3573. *
  3574. * In case we update the frequency for another cpu
  3575. * (which might be in guest context) send an interrupt
  3576. * to kick the cpu out of guest context. Next time
  3577. * guest context is entered kvmclock will be updated,
  3578. * so the guest will not see stale values.
  3579. */
  3580. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  3581. }
  3582. return 0;
  3583. }
  3584. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  3585. .notifier_call = kvmclock_cpufreq_notifier
  3586. };
  3587. static void kvm_timer_init(void)
  3588. {
  3589. int cpu;
  3590. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  3591. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  3592. CPUFREQ_TRANSITION_NOTIFIER);
  3593. for_each_online_cpu(cpu) {
  3594. unsigned long khz = cpufreq_get(cpu);
  3595. if (!khz)
  3596. khz = tsc_khz;
  3597. per_cpu(cpu_tsc_khz, cpu) = khz;
  3598. }
  3599. } else {
  3600. for_each_possible_cpu(cpu)
  3601. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  3602. }
  3603. }
  3604. static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
  3605. static int kvm_is_in_guest(void)
  3606. {
  3607. return percpu_read(current_vcpu) != NULL;
  3608. }
  3609. static int kvm_is_user_mode(void)
  3610. {
  3611. int user_mode = 3;
  3612. if (percpu_read(current_vcpu))
  3613. user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
  3614. return user_mode != 0;
  3615. }
  3616. static unsigned long kvm_get_guest_ip(void)
  3617. {
  3618. unsigned long ip = 0;
  3619. if (percpu_read(current_vcpu))
  3620. ip = kvm_rip_read(percpu_read(current_vcpu));
  3621. return ip;
  3622. }
  3623. static struct perf_guest_info_callbacks kvm_guest_cbs = {
  3624. .is_in_guest = kvm_is_in_guest,
  3625. .is_user_mode = kvm_is_user_mode,
  3626. .get_guest_ip = kvm_get_guest_ip,
  3627. };
  3628. void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
  3629. {
  3630. percpu_write(current_vcpu, vcpu);
  3631. }
  3632. EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
  3633. void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
  3634. {
  3635. percpu_write(current_vcpu, NULL);
  3636. }
  3637. EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
  3638. int kvm_arch_init(void *opaque)
  3639. {
  3640. int r;
  3641. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  3642. if (kvm_x86_ops) {
  3643. printk(KERN_ERR "kvm: already loaded the other module\n");
  3644. r = -EEXIST;
  3645. goto out;
  3646. }
  3647. if (!ops->cpu_has_kvm_support()) {
  3648. printk(KERN_ERR "kvm: no hardware support\n");
  3649. r = -EOPNOTSUPP;
  3650. goto out;
  3651. }
  3652. if (ops->disabled_by_bios()) {
  3653. printk(KERN_ERR "kvm: disabled by bios\n");
  3654. r = -EOPNOTSUPP;
  3655. goto out;
  3656. }
  3657. r = kvm_mmu_module_init();
  3658. if (r)
  3659. goto out;
  3660. kvm_init_msr_list();
  3661. kvm_x86_ops = ops;
  3662. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  3663. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  3664. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  3665. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  3666. kvm_timer_init();
  3667. perf_register_guest_info_callbacks(&kvm_guest_cbs);
  3668. if (cpu_has_xsave)
  3669. host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
  3670. return 0;
  3671. out:
  3672. return r;
  3673. }
  3674. void kvm_arch_exit(void)
  3675. {
  3676. perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
  3677. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3678. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  3679. CPUFREQ_TRANSITION_NOTIFIER);
  3680. kvm_x86_ops = NULL;
  3681. kvm_mmu_module_exit();
  3682. }
  3683. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  3684. {
  3685. ++vcpu->stat.halt_exits;
  3686. if (irqchip_in_kernel(vcpu->kvm)) {
  3687. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  3688. return 1;
  3689. } else {
  3690. vcpu->run->exit_reason = KVM_EXIT_HLT;
  3691. return 0;
  3692. }
  3693. }
  3694. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  3695. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  3696. unsigned long a1)
  3697. {
  3698. if (is_long_mode(vcpu))
  3699. return a0;
  3700. else
  3701. return a0 | ((gpa_t)a1 << 32);
  3702. }
  3703. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  3704. {
  3705. u64 param, ingpa, outgpa, ret;
  3706. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  3707. bool fast, longmode;
  3708. int cs_db, cs_l;
  3709. /*
  3710. * hypercall generates UD from non zero cpl and real mode
  3711. * per HYPER-V spec
  3712. */
  3713. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  3714. kvm_queue_exception(vcpu, UD_VECTOR);
  3715. return 0;
  3716. }
  3717. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3718. longmode = is_long_mode(vcpu) && cs_l == 1;
  3719. if (!longmode) {
  3720. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  3721. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  3722. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  3723. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  3724. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  3725. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  3726. }
  3727. #ifdef CONFIG_X86_64
  3728. else {
  3729. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3730. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3731. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  3732. }
  3733. #endif
  3734. code = param & 0xffff;
  3735. fast = (param >> 16) & 0x1;
  3736. rep_cnt = (param >> 32) & 0xfff;
  3737. rep_idx = (param >> 48) & 0xfff;
  3738. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  3739. switch (code) {
  3740. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  3741. kvm_vcpu_on_spin(vcpu);
  3742. break;
  3743. default:
  3744. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  3745. break;
  3746. }
  3747. ret = res | (((u64)rep_done & 0xfff) << 32);
  3748. if (longmode) {
  3749. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3750. } else {
  3751. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  3752. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  3753. }
  3754. return 1;
  3755. }
  3756. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  3757. {
  3758. unsigned long nr, a0, a1, a2, a3, ret;
  3759. int r = 1;
  3760. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  3761. return kvm_hv_hypercall(vcpu);
  3762. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3763. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3764. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3765. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3766. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3767. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  3768. if (!is_long_mode(vcpu)) {
  3769. nr &= 0xFFFFFFFF;
  3770. a0 &= 0xFFFFFFFF;
  3771. a1 &= 0xFFFFFFFF;
  3772. a2 &= 0xFFFFFFFF;
  3773. a3 &= 0xFFFFFFFF;
  3774. }
  3775. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  3776. ret = -KVM_EPERM;
  3777. goto out;
  3778. }
  3779. switch (nr) {
  3780. case KVM_HC_VAPIC_POLL_IRQ:
  3781. ret = 0;
  3782. break;
  3783. case KVM_HC_MMU_OP:
  3784. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  3785. break;
  3786. default:
  3787. ret = -KVM_ENOSYS;
  3788. break;
  3789. }
  3790. out:
  3791. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3792. ++vcpu->stat.hypercalls;
  3793. return r;
  3794. }
  3795. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  3796. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  3797. {
  3798. char instruction[3];
  3799. unsigned long rip = kvm_rip_read(vcpu);
  3800. /*
  3801. * Blow out the MMU to ensure that no other VCPU has an active mapping
  3802. * to ensure that the updated hypercall appears atomically across all
  3803. * VCPUs.
  3804. */
  3805. kvm_mmu_zap_all(vcpu->kvm);
  3806. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  3807. return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
  3808. }
  3809. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3810. {
  3811. struct desc_ptr dt = { limit, base };
  3812. kvm_x86_ops->set_gdt(vcpu, &dt);
  3813. }
  3814. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3815. {
  3816. struct desc_ptr dt = { limit, base };
  3817. kvm_x86_ops->set_idt(vcpu, &dt);
  3818. }
  3819. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  3820. {
  3821. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  3822. int j, nent = vcpu->arch.cpuid_nent;
  3823. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  3824. /* when no next entry is found, the current entry[i] is reselected */
  3825. for (j = i + 1; ; j = (j + 1) % nent) {
  3826. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  3827. if (ej->function == e->function) {
  3828. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  3829. return j;
  3830. }
  3831. }
  3832. return 0; /* silence gcc, even though control never reaches here */
  3833. }
  3834. /* find an entry with matching function, matching index (if needed), and that
  3835. * should be read next (if it's stateful) */
  3836. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  3837. u32 function, u32 index)
  3838. {
  3839. if (e->function != function)
  3840. return 0;
  3841. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  3842. return 0;
  3843. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  3844. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  3845. return 0;
  3846. return 1;
  3847. }
  3848. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  3849. u32 function, u32 index)
  3850. {
  3851. int i;
  3852. struct kvm_cpuid_entry2 *best = NULL;
  3853. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  3854. struct kvm_cpuid_entry2 *e;
  3855. e = &vcpu->arch.cpuid_entries[i];
  3856. if (is_matching_cpuid_entry(e, function, index)) {
  3857. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  3858. move_to_next_stateful_cpuid_entry(vcpu, i);
  3859. best = e;
  3860. break;
  3861. }
  3862. /*
  3863. * Both basic or both extended?
  3864. */
  3865. if (((e->function ^ function) & 0x80000000) == 0)
  3866. if (!best || e->function > best->function)
  3867. best = e;
  3868. }
  3869. return best;
  3870. }
  3871. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  3872. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  3873. {
  3874. struct kvm_cpuid_entry2 *best;
  3875. best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
  3876. if (!best || best->eax < 0x80000008)
  3877. goto not_found;
  3878. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  3879. if (best)
  3880. return best->eax & 0xff;
  3881. not_found:
  3882. return 36;
  3883. }
  3884. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  3885. {
  3886. u32 function, index;
  3887. struct kvm_cpuid_entry2 *best;
  3888. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3889. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3890. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  3891. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  3892. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  3893. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  3894. best = kvm_find_cpuid_entry(vcpu, function, index);
  3895. if (best) {
  3896. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  3897. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  3898. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  3899. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  3900. }
  3901. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3902. trace_kvm_cpuid(function,
  3903. kvm_register_read(vcpu, VCPU_REGS_RAX),
  3904. kvm_register_read(vcpu, VCPU_REGS_RBX),
  3905. kvm_register_read(vcpu, VCPU_REGS_RCX),
  3906. kvm_register_read(vcpu, VCPU_REGS_RDX));
  3907. }
  3908. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  3909. /*
  3910. * Check if userspace requested an interrupt window, and that the
  3911. * interrupt window is open.
  3912. *
  3913. * No need to exit to userspace if we already have an interrupt queued.
  3914. */
  3915. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  3916. {
  3917. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  3918. vcpu->run->request_interrupt_window &&
  3919. kvm_arch_interrupt_allowed(vcpu));
  3920. }
  3921. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  3922. {
  3923. struct kvm_run *kvm_run = vcpu->run;
  3924. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  3925. kvm_run->cr8 = kvm_get_cr8(vcpu);
  3926. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  3927. if (irqchip_in_kernel(vcpu->kvm))
  3928. kvm_run->ready_for_interrupt_injection = 1;
  3929. else
  3930. kvm_run->ready_for_interrupt_injection =
  3931. kvm_arch_interrupt_allowed(vcpu) &&
  3932. !kvm_cpu_has_interrupt(vcpu) &&
  3933. !kvm_event_needs_reinjection(vcpu);
  3934. }
  3935. static void vapic_enter(struct kvm_vcpu *vcpu)
  3936. {
  3937. struct kvm_lapic *apic = vcpu->arch.apic;
  3938. struct page *page;
  3939. if (!apic || !apic->vapic_addr)
  3940. return;
  3941. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3942. vcpu->arch.apic->vapic_page = page;
  3943. }
  3944. static void vapic_exit(struct kvm_vcpu *vcpu)
  3945. {
  3946. struct kvm_lapic *apic = vcpu->arch.apic;
  3947. int idx;
  3948. if (!apic || !apic->vapic_addr)
  3949. return;
  3950. idx = srcu_read_lock(&vcpu->kvm->srcu);
  3951. kvm_release_page_dirty(apic->vapic_page);
  3952. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3953. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  3954. }
  3955. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  3956. {
  3957. int max_irr, tpr;
  3958. if (!kvm_x86_ops->update_cr8_intercept)
  3959. return;
  3960. if (!vcpu->arch.apic)
  3961. return;
  3962. if (!vcpu->arch.apic->vapic_addr)
  3963. max_irr = kvm_lapic_find_highest_irr(vcpu);
  3964. else
  3965. max_irr = -1;
  3966. if (max_irr != -1)
  3967. max_irr >>= 4;
  3968. tpr = kvm_lapic_get_cr8(vcpu);
  3969. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  3970. }
  3971. static void inject_pending_event(struct kvm_vcpu *vcpu)
  3972. {
  3973. /* try to reinject previous events if any */
  3974. if (vcpu->arch.exception.pending) {
  3975. trace_kvm_inj_exception(vcpu->arch.exception.nr,
  3976. vcpu->arch.exception.has_error_code,
  3977. vcpu->arch.exception.error_code);
  3978. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  3979. vcpu->arch.exception.has_error_code,
  3980. vcpu->arch.exception.error_code,
  3981. vcpu->arch.exception.reinject);
  3982. return;
  3983. }
  3984. if (vcpu->arch.nmi_injected) {
  3985. kvm_x86_ops->set_nmi(vcpu);
  3986. return;
  3987. }
  3988. if (vcpu->arch.interrupt.pending) {
  3989. kvm_x86_ops->set_irq(vcpu);
  3990. return;
  3991. }
  3992. /* try to inject new event if pending */
  3993. if (vcpu->arch.nmi_pending) {
  3994. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  3995. vcpu->arch.nmi_pending = false;
  3996. vcpu->arch.nmi_injected = true;
  3997. kvm_x86_ops->set_nmi(vcpu);
  3998. }
  3999. } else if (kvm_cpu_has_interrupt(vcpu)) {
  4000. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  4001. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  4002. false);
  4003. kvm_x86_ops->set_irq(vcpu);
  4004. }
  4005. }
  4006. }
  4007. static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
  4008. {
  4009. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
  4010. !vcpu->guest_xcr0_loaded) {
  4011. /* kvm_set_xcr() also depends on this */
  4012. xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
  4013. vcpu->guest_xcr0_loaded = 1;
  4014. }
  4015. }
  4016. static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
  4017. {
  4018. if (vcpu->guest_xcr0_loaded) {
  4019. if (vcpu->arch.xcr0 != host_xcr0)
  4020. xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
  4021. vcpu->guest_xcr0_loaded = 0;
  4022. }
  4023. }
  4024. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  4025. {
  4026. int r;
  4027. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  4028. vcpu->run->request_interrupt_window;
  4029. if (vcpu->requests)
  4030. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  4031. kvm_mmu_unload(vcpu);
  4032. r = kvm_mmu_reload(vcpu);
  4033. if (unlikely(r))
  4034. goto out;
  4035. if (vcpu->requests) {
  4036. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  4037. __kvm_migrate_timers(vcpu);
  4038. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  4039. kvm_write_guest_time(vcpu);
  4040. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  4041. kvm_mmu_sync_roots(vcpu);
  4042. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  4043. kvm_x86_ops->tlb_flush(vcpu);
  4044. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  4045. &vcpu->requests)) {
  4046. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  4047. r = 0;
  4048. goto out;
  4049. }
  4050. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  4051. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  4052. r = 0;
  4053. goto out;
  4054. }
  4055. if (test_and_clear_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests)) {
  4056. vcpu->fpu_active = 0;
  4057. kvm_x86_ops->fpu_deactivate(vcpu);
  4058. }
  4059. }
  4060. preempt_disable();
  4061. kvm_x86_ops->prepare_guest_switch(vcpu);
  4062. if (vcpu->fpu_active)
  4063. kvm_load_guest_fpu(vcpu);
  4064. kvm_load_guest_xcr0(vcpu);
  4065. atomic_set(&vcpu->guest_mode, 1);
  4066. smp_wmb();
  4067. local_irq_disable();
  4068. if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
  4069. || need_resched() || signal_pending(current)) {
  4070. atomic_set(&vcpu->guest_mode, 0);
  4071. smp_wmb();
  4072. local_irq_enable();
  4073. preempt_enable();
  4074. r = 1;
  4075. goto out;
  4076. }
  4077. inject_pending_event(vcpu);
  4078. /* enable NMI/IRQ window open exits if needed */
  4079. if (vcpu->arch.nmi_pending)
  4080. kvm_x86_ops->enable_nmi_window(vcpu);
  4081. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  4082. kvm_x86_ops->enable_irq_window(vcpu);
  4083. if (kvm_lapic_enabled(vcpu)) {
  4084. update_cr8_intercept(vcpu);
  4085. kvm_lapic_sync_to_vapic(vcpu);
  4086. }
  4087. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4088. kvm_guest_enter();
  4089. if (unlikely(vcpu->arch.switch_db_regs)) {
  4090. set_debugreg(0, 7);
  4091. set_debugreg(vcpu->arch.eff_db[0], 0);
  4092. set_debugreg(vcpu->arch.eff_db[1], 1);
  4093. set_debugreg(vcpu->arch.eff_db[2], 2);
  4094. set_debugreg(vcpu->arch.eff_db[3], 3);
  4095. }
  4096. trace_kvm_entry(vcpu->vcpu_id);
  4097. kvm_x86_ops->run(vcpu);
  4098. /*
  4099. * If the guest has used debug registers, at least dr7
  4100. * will be disabled while returning to the host.
  4101. * If we don't have active breakpoints in the host, we don't
  4102. * care about the messed up debug address registers. But if
  4103. * we have some of them active, restore the old state.
  4104. */
  4105. if (hw_breakpoint_active())
  4106. hw_breakpoint_restore();
  4107. atomic_set(&vcpu->guest_mode, 0);
  4108. smp_wmb();
  4109. local_irq_enable();
  4110. ++vcpu->stat.exits;
  4111. /*
  4112. * We must have an instruction between local_irq_enable() and
  4113. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  4114. * the interrupt shadow. The stat.exits increment will do nicely.
  4115. * But we need to prevent reordering, hence this barrier():
  4116. */
  4117. barrier();
  4118. kvm_guest_exit();
  4119. preempt_enable();
  4120. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4121. /*
  4122. * Profile KVM exit RIPs:
  4123. */
  4124. if (unlikely(prof_on == KVM_PROFILING)) {
  4125. unsigned long rip = kvm_rip_read(vcpu);
  4126. profile_hit(KVM_PROFILING, (void *)rip);
  4127. }
  4128. kvm_lapic_sync_from_vapic(vcpu);
  4129. r = kvm_x86_ops->handle_exit(vcpu);
  4130. out:
  4131. return r;
  4132. }
  4133. static int __vcpu_run(struct kvm_vcpu *vcpu)
  4134. {
  4135. int r;
  4136. struct kvm *kvm = vcpu->kvm;
  4137. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  4138. pr_debug("vcpu %d received sipi with vector # %x\n",
  4139. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  4140. kvm_lapic_reset(vcpu);
  4141. r = kvm_arch_vcpu_reset(vcpu);
  4142. if (r)
  4143. return r;
  4144. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4145. }
  4146. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4147. vapic_enter(vcpu);
  4148. r = 1;
  4149. while (r > 0) {
  4150. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  4151. r = vcpu_enter_guest(vcpu);
  4152. else {
  4153. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4154. kvm_vcpu_block(vcpu);
  4155. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4156. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  4157. {
  4158. switch(vcpu->arch.mp_state) {
  4159. case KVM_MP_STATE_HALTED:
  4160. vcpu->arch.mp_state =
  4161. KVM_MP_STATE_RUNNABLE;
  4162. case KVM_MP_STATE_RUNNABLE:
  4163. break;
  4164. case KVM_MP_STATE_SIPI_RECEIVED:
  4165. default:
  4166. r = -EINTR;
  4167. break;
  4168. }
  4169. }
  4170. }
  4171. if (r <= 0)
  4172. break;
  4173. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  4174. if (kvm_cpu_has_pending_timer(vcpu))
  4175. kvm_inject_pending_timer_irqs(vcpu);
  4176. if (dm_request_for_irq_injection(vcpu)) {
  4177. r = -EINTR;
  4178. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4179. ++vcpu->stat.request_irq_exits;
  4180. }
  4181. if (signal_pending(current)) {
  4182. r = -EINTR;
  4183. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4184. ++vcpu->stat.signal_exits;
  4185. }
  4186. if (need_resched()) {
  4187. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4188. kvm_resched(vcpu);
  4189. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4190. }
  4191. }
  4192. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4193. vapic_exit(vcpu);
  4194. return r;
  4195. }
  4196. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  4197. {
  4198. int r;
  4199. sigset_t sigsaved;
  4200. if (vcpu->sigset_active)
  4201. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  4202. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  4203. kvm_vcpu_block(vcpu);
  4204. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  4205. r = -EAGAIN;
  4206. goto out;
  4207. }
  4208. /* re-sync apic's tpr */
  4209. if (!irqchip_in_kernel(vcpu->kvm))
  4210. kvm_set_cr8(vcpu, kvm_run->cr8);
  4211. if (vcpu->arch.pio.count || vcpu->mmio_needed ||
  4212. vcpu->arch.emulate_ctxt.restart) {
  4213. if (vcpu->mmio_needed) {
  4214. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  4215. vcpu->mmio_read_completed = 1;
  4216. vcpu->mmio_needed = 0;
  4217. }
  4218. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4219. r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
  4220. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4221. if (r != EMULATE_DONE) {
  4222. r = 0;
  4223. goto out;
  4224. }
  4225. }
  4226. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  4227. kvm_register_write(vcpu, VCPU_REGS_RAX,
  4228. kvm_run->hypercall.ret);
  4229. r = __vcpu_run(vcpu);
  4230. out:
  4231. post_kvm_run_save(vcpu);
  4232. if (vcpu->sigset_active)
  4233. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  4234. return r;
  4235. }
  4236. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4237. {
  4238. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4239. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4240. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4241. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4242. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4243. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4244. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4245. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4246. #ifdef CONFIG_X86_64
  4247. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  4248. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  4249. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  4250. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  4251. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  4252. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  4253. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  4254. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  4255. #endif
  4256. regs->rip = kvm_rip_read(vcpu);
  4257. regs->rflags = kvm_get_rflags(vcpu);
  4258. return 0;
  4259. }
  4260. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4261. {
  4262. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  4263. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  4264. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  4265. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  4266. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  4267. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  4268. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  4269. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  4270. #ifdef CONFIG_X86_64
  4271. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  4272. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  4273. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  4274. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  4275. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  4276. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  4277. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  4278. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  4279. #endif
  4280. kvm_rip_write(vcpu, regs->rip);
  4281. kvm_set_rflags(vcpu, regs->rflags);
  4282. vcpu->arch.exception.pending = false;
  4283. return 0;
  4284. }
  4285. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  4286. {
  4287. struct kvm_segment cs;
  4288. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4289. *db = cs.db;
  4290. *l = cs.l;
  4291. }
  4292. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  4293. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  4294. struct kvm_sregs *sregs)
  4295. {
  4296. struct desc_ptr dt;
  4297. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4298. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4299. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4300. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4301. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4302. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4303. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4304. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4305. kvm_x86_ops->get_idt(vcpu, &dt);
  4306. sregs->idt.limit = dt.size;
  4307. sregs->idt.base = dt.address;
  4308. kvm_x86_ops->get_gdt(vcpu, &dt);
  4309. sregs->gdt.limit = dt.size;
  4310. sregs->gdt.base = dt.address;
  4311. sregs->cr0 = kvm_read_cr0(vcpu);
  4312. sregs->cr2 = vcpu->arch.cr2;
  4313. sregs->cr3 = vcpu->arch.cr3;
  4314. sregs->cr4 = kvm_read_cr4(vcpu);
  4315. sregs->cr8 = kvm_get_cr8(vcpu);
  4316. sregs->efer = vcpu->arch.efer;
  4317. sregs->apic_base = kvm_get_apic_base(vcpu);
  4318. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  4319. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  4320. set_bit(vcpu->arch.interrupt.nr,
  4321. (unsigned long *)sregs->interrupt_bitmap);
  4322. return 0;
  4323. }
  4324. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  4325. struct kvm_mp_state *mp_state)
  4326. {
  4327. mp_state->mp_state = vcpu->arch.mp_state;
  4328. return 0;
  4329. }
  4330. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  4331. struct kvm_mp_state *mp_state)
  4332. {
  4333. vcpu->arch.mp_state = mp_state->mp_state;
  4334. return 0;
  4335. }
  4336. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
  4337. bool has_error_code, u32 error_code)
  4338. {
  4339. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  4340. int cs_db, cs_l, ret;
  4341. cache_all_regs(vcpu);
  4342. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  4343. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  4344. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  4345. vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
  4346. vcpu->arch.emulate_ctxt.mode =
  4347. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  4348. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  4349. ? X86EMUL_MODE_VM86 : cs_l
  4350. ? X86EMUL_MODE_PROT64 : cs_db
  4351. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  4352. memset(c, 0, sizeof(struct decode_cache));
  4353. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  4354. ret = emulator_task_switch(&vcpu->arch.emulate_ctxt, &emulate_ops,
  4355. tss_selector, reason, has_error_code,
  4356. error_code);
  4357. if (ret)
  4358. return EMULATE_FAIL;
  4359. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  4360. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  4361. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  4362. return EMULATE_DONE;
  4363. }
  4364. EXPORT_SYMBOL_GPL(kvm_task_switch);
  4365. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  4366. struct kvm_sregs *sregs)
  4367. {
  4368. int mmu_reset_needed = 0;
  4369. int pending_vec, max_bits;
  4370. struct desc_ptr dt;
  4371. dt.size = sregs->idt.limit;
  4372. dt.address = sregs->idt.base;
  4373. kvm_x86_ops->set_idt(vcpu, &dt);
  4374. dt.size = sregs->gdt.limit;
  4375. dt.address = sregs->gdt.base;
  4376. kvm_x86_ops->set_gdt(vcpu, &dt);
  4377. vcpu->arch.cr2 = sregs->cr2;
  4378. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  4379. vcpu->arch.cr3 = sregs->cr3;
  4380. kvm_set_cr8(vcpu, sregs->cr8);
  4381. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  4382. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4383. kvm_set_apic_base(vcpu, sregs->apic_base);
  4384. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  4385. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4386. vcpu->arch.cr0 = sregs->cr0;
  4387. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  4388. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4389. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4390. load_pdptrs(vcpu, vcpu->arch.cr3);
  4391. mmu_reset_needed = 1;
  4392. }
  4393. if (mmu_reset_needed)
  4394. kvm_mmu_reset_context(vcpu);
  4395. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  4396. pending_vec = find_first_bit(
  4397. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  4398. if (pending_vec < max_bits) {
  4399. kvm_queue_interrupt(vcpu, pending_vec, false);
  4400. pr_debug("Set back pending irq %d\n", pending_vec);
  4401. if (irqchip_in_kernel(vcpu->kvm))
  4402. kvm_pic_clear_isr_ack(vcpu->kvm);
  4403. }
  4404. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4405. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4406. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4407. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4408. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4409. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4410. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4411. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4412. update_cr8_intercept(vcpu);
  4413. /* Older userspace won't unhalt the vcpu on reset. */
  4414. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4415. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4416. !is_protmode(vcpu))
  4417. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4418. return 0;
  4419. }
  4420. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4421. struct kvm_guest_debug *dbg)
  4422. {
  4423. unsigned long rflags;
  4424. int i, r;
  4425. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  4426. r = -EBUSY;
  4427. if (vcpu->arch.exception.pending)
  4428. goto out;
  4429. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  4430. kvm_queue_exception(vcpu, DB_VECTOR);
  4431. else
  4432. kvm_queue_exception(vcpu, BP_VECTOR);
  4433. }
  4434. /*
  4435. * Read rflags as long as potentially injected trace flags are still
  4436. * filtered out.
  4437. */
  4438. rflags = kvm_get_rflags(vcpu);
  4439. vcpu->guest_debug = dbg->control;
  4440. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4441. vcpu->guest_debug = 0;
  4442. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4443. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4444. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4445. vcpu->arch.switch_db_regs =
  4446. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4447. } else {
  4448. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4449. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4450. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4451. }
  4452. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4453. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
  4454. get_segment_base(vcpu, VCPU_SREG_CS);
  4455. /*
  4456. * Trigger an rflags update that will inject or remove the trace
  4457. * flags.
  4458. */
  4459. kvm_set_rflags(vcpu, rflags);
  4460. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  4461. r = 0;
  4462. out:
  4463. return r;
  4464. }
  4465. /*
  4466. * Translate a guest virtual address to a guest physical address.
  4467. */
  4468. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  4469. struct kvm_translation *tr)
  4470. {
  4471. unsigned long vaddr = tr->linear_address;
  4472. gpa_t gpa;
  4473. int idx;
  4474. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4475. gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
  4476. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4477. tr->physical_address = gpa;
  4478. tr->valid = gpa != UNMAPPED_GVA;
  4479. tr->writeable = 1;
  4480. tr->usermode = 0;
  4481. return 0;
  4482. }
  4483. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4484. {
  4485. struct i387_fxsave_struct *fxsave =
  4486. &vcpu->arch.guest_fpu.state->fxsave;
  4487. memcpy(fpu->fpr, fxsave->st_space, 128);
  4488. fpu->fcw = fxsave->cwd;
  4489. fpu->fsw = fxsave->swd;
  4490. fpu->ftwx = fxsave->twd;
  4491. fpu->last_opcode = fxsave->fop;
  4492. fpu->last_ip = fxsave->rip;
  4493. fpu->last_dp = fxsave->rdp;
  4494. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  4495. return 0;
  4496. }
  4497. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4498. {
  4499. struct i387_fxsave_struct *fxsave =
  4500. &vcpu->arch.guest_fpu.state->fxsave;
  4501. memcpy(fxsave->st_space, fpu->fpr, 128);
  4502. fxsave->cwd = fpu->fcw;
  4503. fxsave->swd = fpu->fsw;
  4504. fxsave->twd = fpu->ftwx;
  4505. fxsave->fop = fpu->last_opcode;
  4506. fxsave->rip = fpu->last_ip;
  4507. fxsave->rdp = fpu->last_dp;
  4508. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  4509. return 0;
  4510. }
  4511. int fx_init(struct kvm_vcpu *vcpu)
  4512. {
  4513. int err;
  4514. err = fpu_alloc(&vcpu->arch.guest_fpu);
  4515. if (err)
  4516. return err;
  4517. fpu_finit(&vcpu->arch.guest_fpu);
  4518. /*
  4519. * Ensure guest xcr0 is valid for loading
  4520. */
  4521. vcpu->arch.xcr0 = XSTATE_FP;
  4522. vcpu->arch.cr0 |= X86_CR0_ET;
  4523. return 0;
  4524. }
  4525. EXPORT_SYMBOL_GPL(fx_init);
  4526. static void fx_free(struct kvm_vcpu *vcpu)
  4527. {
  4528. fpu_free(&vcpu->arch.guest_fpu);
  4529. }
  4530. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4531. {
  4532. if (vcpu->guest_fpu_loaded)
  4533. return;
  4534. /*
  4535. * Restore all possible states in the guest,
  4536. * and assume host would use all available bits.
  4537. * Guest xcr0 would be loaded later.
  4538. */
  4539. kvm_put_guest_xcr0(vcpu);
  4540. vcpu->guest_fpu_loaded = 1;
  4541. unlazy_fpu(current);
  4542. fpu_restore_checking(&vcpu->arch.guest_fpu);
  4543. trace_kvm_fpu(1);
  4544. }
  4545. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4546. {
  4547. kvm_put_guest_xcr0(vcpu);
  4548. if (!vcpu->guest_fpu_loaded)
  4549. return;
  4550. vcpu->guest_fpu_loaded = 0;
  4551. fpu_save_init(&vcpu->arch.guest_fpu);
  4552. ++vcpu->stat.fpu_reload;
  4553. set_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests);
  4554. trace_kvm_fpu(0);
  4555. }
  4556. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4557. {
  4558. if (vcpu->arch.time_page) {
  4559. kvm_release_page_dirty(vcpu->arch.time_page);
  4560. vcpu->arch.time_page = NULL;
  4561. }
  4562. fx_free(vcpu);
  4563. kvm_x86_ops->vcpu_free(vcpu);
  4564. }
  4565. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4566. unsigned int id)
  4567. {
  4568. return kvm_x86_ops->vcpu_create(kvm, id);
  4569. }
  4570. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4571. {
  4572. int r;
  4573. vcpu->arch.mtrr_state.have_fixed = 1;
  4574. vcpu_load(vcpu);
  4575. r = kvm_arch_vcpu_reset(vcpu);
  4576. if (r == 0)
  4577. r = kvm_mmu_setup(vcpu);
  4578. vcpu_put(vcpu);
  4579. if (r < 0)
  4580. goto free_vcpu;
  4581. return 0;
  4582. free_vcpu:
  4583. kvm_x86_ops->vcpu_free(vcpu);
  4584. return r;
  4585. }
  4586. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  4587. {
  4588. vcpu_load(vcpu);
  4589. kvm_mmu_unload(vcpu);
  4590. vcpu_put(vcpu);
  4591. fx_free(vcpu);
  4592. kvm_x86_ops->vcpu_free(vcpu);
  4593. }
  4594. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  4595. {
  4596. vcpu->arch.nmi_pending = false;
  4597. vcpu->arch.nmi_injected = false;
  4598. vcpu->arch.switch_db_regs = 0;
  4599. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  4600. vcpu->arch.dr6 = DR6_FIXED_1;
  4601. vcpu->arch.dr7 = DR7_FIXED_1;
  4602. return kvm_x86_ops->vcpu_reset(vcpu);
  4603. }
  4604. int kvm_arch_hardware_enable(void *garbage)
  4605. {
  4606. /*
  4607. * Since this may be called from a hotplug notifcation,
  4608. * we can't get the CPU frequency directly.
  4609. */
  4610. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4611. int cpu = raw_smp_processor_id();
  4612. per_cpu(cpu_tsc_khz, cpu) = 0;
  4613. }
  4614. kvm_shared_msr_cpu_online();
  4615. return kvm_x86_ops->hardware_enable(garbage);
  4616. }
  4617. void kvm_arch_hardware_disable(void *garbage)
  4618. {
  4619. kvm_x86_ops->hardware_disable(garbage);
  4620. drop_user_return_notifiers(garbage);
  4621. }
  4622. int kvm_arch_hardware_setup(void)
  4623. {
  4624. return kvm_x86_ops->hardware_setup();
  4625. }
  4626. void kvm_arch_hardware_unsetup(void)
  4627. {
  4628. kvm_x86_ops->hardware_unsetup();
  4629. }
  4630. void kvm_arch_check_processor_compat(void *rtn)
  4631. {
  4632. kvm_x86_ops->check_processor_compatibility(rtn);
  4633. }
  4634. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  4635. {
  4636. struct page *page;
  4637. struct kvm *kvm;
  4638. int r;
  4639. BUG_ON(vcpu->kvm == NULL);
  4640. kvm = vcpu->kvm;
  4641. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4642. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4643. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4644. else
  4645. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4646. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4647. if (!page) {
  4648. r = -ENOMEM;
  4649. goto fail;
  4650. }
  4651. vcpu->arch.pio_data = page_address(page);
  4652. r = kvm_mmu_create(vcpu);
  4653. if (r < 0)
  4654. goto fail_free_pio_data;
  4655. if (irqchip_in_kernel(kvm)) {
  4656. r = kvm_create_lapic(vcpu);
  4657. if (r < 0)
  4658. goto fail_mmu_destroy;
  4659. }
  4660. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4661. GFP_KERNEL);
  4662. if (!vcpu->arch.mce_banks) {
  4663. r = -ENOMEM;
  4664. goto fail_free_lapic;
  4665. }
  4666. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4667. return 0;
  4668. fail_free_lapic:
  4669. kvm_free_lapic(vcpu);
  4670. fail_mmu_destroy:
  4671. kvm_mmu_destroy(vcpu);
  4672. fail_free_pio_data:
  4673. free_page((unsigned long)vcpu->arch.pio_data);
  4674. fail:
  4675. return r;
  4676. }
  4677. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4678. {
  4679. int idx;
  4680. kfree(vcpu->arch.mce_banks);
  4681. kvm_free_lapic(vcpu);
  4682. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4683. kvm_mmu_destroy(vcpu);
  4684. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4685. free_page((unsigned long)vcpu->arch.pio_data);
  4686. }
  4687. struct kvm *kvm_arch_create_vm(void)
  4688. {
  4689. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4690. if (!kvm)
  4691. return ERR_PTR(-ENOMEM);
  4692. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4693. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4694. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4695. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4696. rdtscll(kvm->arch.vm_init_tsc);
  4697. return kvm;
  4698. }
  4699. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4700. {
  4701. vcpu_load(vcpu);
  4702. kvm_mmu_unload(vcpu);
  4703. vcpu_put(vcpu);
  4704. }
  4705. static void kvm_free_vcpus(struct kvm *kvm)
  4706. {
  4707. unsigned int i;
  4708. struct kvm_vcpu *vcpu;
  4709. /*
  4710. * Unpin any mmu pages first.
  4711. */
  4712. kvm_for_each_vcpu(i, vcpu, kvm)
  4713. kvm_unload_vcpu_mmu(vcpu);
  4714. kvm_for_each_vcpu(i, vcpu, kvm)
  4715. kvm_arch_vcpu_free(vcpu);
  4716. mutex_lock(&kvm->lock);
  4717. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4718. kvm->vcpus[i] = NULL;
  4719. atomic_set(&kvm->online_vcpus, 0);
  4720. mutex_unlock(&kvm->lock);
  4721. }
  4722. void kvm_arch_sync_events(struct kvm *kvm)
  4723. {
  4724. kvm_free_all_assigned_devices(kvm);
  4725. }
  4726. void kvm_arch_destroy_vm(struct kvm *kvm)
  4727. {
  4728. kvm_iommu_unmap_guest(kvm);
  4729. kvm_free_pit(kvm);
  4730. kfree(kvm->arch.vpic);
  4731. kfree(kvm->arch.vioapic);
  4732. kvm_free_vcpus(kvm);
  4733. kvm_free_physmem(kvm);
  4734. if (kvm->arch.apic_access_page)
  4735. put_page(kvm->arch.apic_access_page);
  4736. if (kvm->arch.ept_identity_pagetable)
  4737. put_page(kvm->arch.ept_identity_pagetable);
  4738. cleanup_srcu_struct(&kvm->srcu);
  4739. kfree(kvm);
  4740. }
  4741. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  4742. struct kvm_memory_slot *memslot,
  4743. struct kvm_memory_slot old,
  4744. struct kvm_userspace_memory_region *mem,
  4745. int user_alloc)
  4746. {
  4747. int npages = memslot->npages;
  4748. /*To keep backward compatibility with older userspace,
  4749. *x86 needs to hanlde !user_alloc case.
  4750. */
  4751. if (!user_alloc) {
  4752. if (npages && !old.rmap) {
  4753. unsigned long userspace_addr;
  4754. down_write(&current->mm->mmap_sem);
  4755. userspace_addr = do_mmap(NULL, 0,
  4756. npages * PAGE_SIZE,
  4757. PROT_READ | PROT_WRITE,
  4758. MAP_PRIVATE | MAP_ANONYMOUS,
  4759. 0);
  4760. up_write(&current->mm->mmap_sem);
  4761. if (IS_ERR((void *)userspace_addr))
  4762. return PTR_ERR((void *)userspace_addr);
  4763. memslot->userspace_addr = userspace_addr;
  4764. }
  4765. }
  4766. return 0;
  4767. }
  4768. void kvm_arch_commit_memory_region(struct kvm *kvm,
  4769. struct kvm_userspace_memory_region *mem,
  4770. struct kvm_memory_slot old,
  4771. int user_alloc)
  4772. {
  4773. int npages = mem->memory_size >> PAGE_SHIFT;
  4774. if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
  4775. int ret;
  4776. down_write(&current->mm->mmap_sem);
  4777. ret = do_munmap(current->mm, old.userspace_addr,
  4778. old.npages * PAGE_SIZE);
  4779. up_write(&current->mm->mmap_sem);
  4780. if (ret < 0)
  4781. printk(KERN_WARNING
  4782. "kvm_vm_ioctl_set_memory_region: "
  4783. "failed to munmap memory\n");
  4784. }
  4785. spin_lock(&kvm->mmu_lock);
  4786. if (!kvm->arch.n_requested_mmu_pages) {
  4787. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4788. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4789. }
  4790. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4791. spin_unlock(&kvm->mmu_lock);
  4792. }
  4793. void kvm_arch_flush_shadow(struct kvm *kvm)
  4794. {
  4795. kvm_mmu_zap_all(kvm);
  4796. kvm_reload_remote_mmus(kvm);
  4797. }
  4798. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4799. {
  4800. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4801. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4802. || vcpu->arch.nmi_pending ||
  4803. (kvm_arch_interrupt_allowed(vcpu) &&
  4804. kvm_cpu_has_interrupt(vcpu));
  4805. }
  4806. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  4807. {
  4808. int me;
  4809. int cpu = vcpu->cpu;
  4810. if (waitqueue_active(&vcpu->wq)) {
  4811. wake_up_interruptible(&vcpu->wq);
  4812. ++vcpu->stat.halt_wakeup;
  4813. }
  4814. me = get_cpu();
  4815. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  4816. if (atomic_xchg(&vcpu->guest_mode, 0))
  4817. smp_send_reschedule(cpu);
  4818. put_cpu();
  4819. }
  4820. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  4821. {
  4822. return kvm_x86_ops->interrupt_allowed(vcpu);
  4823. }
  4824. bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
  4825. {
  4826. unsigned long current_rip = kvm_rip_read(vcpu) +
  4827. get_segment_base(vcpu, VCPU_SREG_CS);
  4828. return current_rip == linear_rip;
  4829. }
  4830. EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
  4831. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  4832. {
  4833. unsigned long rflags;
  4834. rflags = kvm_x86_ops->get_rflags(vcpu);
  4835. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4836. rflags &= ~X86_EFLAGS_TF;
  4837. return rflags;
  4838. }
  4839. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  4840. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  4841. {
  4842. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  4843. kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
  4844. rflags |= X86_EFLAGS_TF;
  4845. kvm_x86_ops->set_rflags(vcpu, rflags);
  4846. }
  4847. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  4848. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  4849. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  4850. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  4851. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  4852. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  4853. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  4854. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  4855. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  4856. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  4857. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  4858. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
  4859. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);