rmap.c 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem (vmtruncate_range)
  24. * mm->mmap_sem
  25. * page->flags PG_locked (lock_page)
  26. * mapping->i_mmap_mutex
  27. * anon_vma->mutex
  28. * mm->page_table_lock or pte_lock
  29. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30. * swap_lock (in swap_duplicate, swap_info_get)
  31. * mmlist_lock (in mmput, drain_mmlist and others)
  32. * mapping->private_lock (in __set_page_dirty_buffers)
  33. * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  34. * inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty)
  35. * sb_lock (within inode_lock in fs/fs-writeback.c)
  36. * mapping->tree_lock (widely used, in set_page_dirty,
  37. * in arch-dependent flush_dcache_mmap_lock,
  38. * within inode_wb_list_lock in __sync_single_inode)
  39. *
  40. * (code doesn't rely on that order so it could be switched around)
  41. * ->tasklist_lock
  42. * anon_vma->mutex (memory_failure, collect_procs_anon)
  43. * pte map lock
  44. */
  45. #include <linux/mm.h>
  46. #include <linux/pagemap.h>
  47. #include <linux/swap.h>
  48. #include <linux/swapops.h>
  49. #include <linux/slab.h>
  50. #include <linux/init.h>
  51. #include <linux/ksm.h>
  52. #include <linux/rmap.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/module.h>
  55. #include <linux/memcontrol.h>
  56. #include <linux/mmu_notifier.h>
  57. #include <linux/migrate.h>
  58. #include <linux/hugetlb.h>
  59. #include <asm/tlbflush.h>
  60. #include "internal.h"
  61. static struct kmem_cache *anon_vma_cachep;
  62. static struct kmem_cache *anon_vma_chain_cachep;
  63. static inline struct anon_vma *anon_vma_alloc(void)
  64. {
  65. struct anon_vma *anon_vma;
  66. anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  67. if (anon_vma) {
  68. atomic_set(&anon_vma->refcount, 1);
  69. /*
  70. * Initialise the anon_vma root to point to itself. If called
  71. * from fork, the root will be reset to the parents anon_vma.
  72. */
  73. anon_vma->root = anon_vma;
  74. }
  75. return anon_vma;
  76. }
  77. static inline void anon_vma_free(struct anon_vma *anon_vma)
  78. {
  79. VM_BUG_ON(atomic_read(&anon_vma->refcount));
  80. /*
  81. * Synchronize against page_lock_anon_vma() such that
  82. * we can safely hold the lock without the anon_vma getting
  83. * freed.
  84. *
  85. * Relies on the full mb implied by the atomic_dec_and_test() from
  86. * put_anon_vma() against the acquire barrier implied by
  87. * mutex_trylock() from page_lock_anon_vma(). This orders:
  88. *
  89. * page_lock_anon_vma() VS put_anon_vma()
  90. * mutex_trylock() atomic_dec_and_test()
  91. * LOCK MB
  92. * atomic_read() mutex_is_locked()
  93. *
  94. * LOCK should suffice since the actual taking of the lock must
  95. * happen _before_ what follows.
  96. */
  97. if (mutex_is_locked(&anon_vma->root->mutex)) {
  98. anon_vma_lock(anon_vma);
  99. anon_vma_unlock(anon_vma);
  100. }
  101. kmem_cache_free(anon_vma_cachep, anon_vma);
  102. }
  103. static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
  104. {
  105. return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
  106. }
  107. static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  108. {
  109. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  110. }
  111. /**
  112. * anon_vma_prepare - attach an anon_vma to a memory region
  113. * @vma: the memory region in question
  114. *
  115. * This makes sure the memory mapping described by 'vma' has
  116. * an 'anon_vma' attached to it, so that we can associate the
  117. * anonymous pages mapped into it with that anon_vma.
  118. *
  119. * The common case will be that we already have one, but if
  120. * not we either need to find an adjacent mapping that we
  121. * can re-use the anon_vma from (very common when the only
  122. * reason for splitting a vma has been mprotect()), or we
  123. * allocate a new one.
  124. *
  125. * Anon-vma allocations are very subtle, because we may have
  126. * optimistically looked up an anon_vma in page_lock_anon_vma()
  127. * and that may actually touch the spinlock even in the newly
  128. * allocated vma (it depends on RCU to make sure that the
  129. * anon_vma isn't actually destroyed).
  130. *
  131. * As a result, we need to do proper anon_vma locking even
  132. * for the new allocation. At the same time, we do not want
  133. * to do any locking for the common case of already having
  134. * an anon_vma.
  135. *
  136. * This must be called with the mmap_sem held for reading.
  137. */
  138. int anon_vma_prepare(struct vm_area_struct *vma)
  139. {
  140. struct anon_vma *anon_vma = vma->anon_vma;
  141. struct anon_vma_chain *avc;
  142. might_sleep();
  143. if (unlikely(!anon_vma)) {
  144. struct mm_struct *mm = vma->vm_mm;
  145. struct anon_vma *allocated;
  146. avc = anon_vma_chain_alloc(GFP_KERNEL);
  147. if (!avc)
  148. goto out_enomem;
  149. anon_vma = find_mergeable_anon_vma(vma);
  150. allocated = NULL;
  151. if (!anon_vma) {
  152. anon_vma = anon_vma_alloc();
  153. if (unlikely(!anon_vma))
  154. goto out_enomem_free_avc;
  155. allocated = anon_vma;
  156. }
  157. anon_vma_lock(anon_vma);
  158. /* page_table_lock to protect against threads */
  159. spin_lock(&mm->page_table_lock);
  160. if (likely(!vma->anon_vma)) {
  161. vma->anon_vma = anon_vma;
  162. avc->anon_vma = anon_vma;
  163. avc->vma = vma;
  164. list_add(&avc->same_vma, &vma->anon_vma_chain);
  165. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  166. allocated = NULL;
  167. avc = NULL;
  168. }
  169. spin_unlock(&mm->page_table_lock);
  170. anon_vma_unlock(anon_vma);
  171. if (unlikely(allocated))
  172. put_anon_vma(allocated);
  173. if (unlikely(avc))
  174. anon_vma_chain_free(avc);
  175. }
  176. return 0;
  177. out_enomem_free_avc:
  178. anon_vma_chain_free(avc);
  179. out_enomem:
  180. return -ENOMEM;
  181. }
  182. /*
  183. * This is a useful helper function for locking the anon_vma root as
  184. * we traverse the vma->anon_vma_chain, looping over anon_vma's that
  185. * have the same vma.
  186. *
  187. * Such anon_vma's should have the same root, so you'd expect to see
  188. * just a single mutex_lock for the whole traversal.
  189. */
  190. static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
  191. {
  192. struct anon_vma *new_root = anon_vma->root;
  193. if (new_root != root) {
  194. if (WARN_ON_ONCE(root))
  195. mutex_unlock(&root->mutex);
  196. root = new_root;
  197. mutex_lock(&root->mutex);
  198. }
  199. return root;
  200. }
  201. static inline void unlock_anon_vma_root(struct anon_vma *root)
  202. {
  203. if (root)
  204. mutex_unlock(&root->mutex);
  205. }
  206. static void anon_vma_chain_link(struct vm_area_struct *vma,
  207. struct anon_vma_chain *avc,
  208. struct anon_vma *anon_vma)
  209. {
  210. avc->vma = vma;
  211. avc->anon_vma = anon_vma;
  212. list_add(&avc->same_vma, &vma->anon_vma_chain);
  213. /*
  214. * It's critical to add new vmas to the tail of the anon_vma,
  215. * see comment in huge_memory.c:__split_huge_page().
  216. */
  217. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  218. }
  219. /*
  220. * Attach the anon_vmas from src to dst.
  221. * Returns 0 on success, -ENOMEM on failure.
  222. */
  223. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  224. {
  225. struct anon_vma_chain *avc, *pavc;
  226. struct anon_vma *root = NULL;
  227. list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  228. struct anon_vma *anon_vma;
  229. avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
  230. if (unlikely(!avc)) {
  231. unlock_anon_vma_root(root);
  232. root = NULL;
  233. avc = anon_vma_chain_alloc(GFP_KERNEL);
  234. if (!avc)
  235. goto enomem_failure;
  236. }
  237. anon_vma = pavc->anon_vma;
  238. root = lock_anon_vma_root(root, anon_vma);
  239. anon_vma_chain_link(dst, avc, anon_vma);
  240. }
  241. unlock_anon_vma_root(root);
  242. return 0;
  243. enomem_failure:
  244. unlink_anon_vmas(dst);
  245. return -ENOMEM;
  246. }
  247. /*
  248. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  249. * the corresponding VMA in the parent process is attached to.
  250. * Returns 0 on success, non-zero on failure.
  251. */
  252. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  253. {
  254. struct anon_vma_chain *avc;
  255. struct anon_vma *anon_vma;
  256. /* Don't bother if the parent process has no anon_vma here. */
  257. if (!pvma->anon_vma)
  258. return 0;
  259. /*
  260. * First, attach the new VMA to the parent VMA's anon_vmas,
  261. * so rmap can find non-COWed pages in child processes.
  262. */
  263. if (anon_vma_clone(vma, pvma))
  264. return -ENOMEM;
  265. /* Then add our own anon_vma. */
  266. anon_vma = anon_vma_alloc();
  267. if (!anon_vma)
  268. goto out_error;
  269. avc = anon_vma_chain_alloc(GFP_KERNEL);
  270. if (!avc)
  271. goto out_error_free_anon_vma;
  272. /*
  273. * The root anon_vma's spinlock is the lock actually used when we
  274. * lock any of the anon_vmas in this anon_vma tree.
  275. */
  276. anon_vma->root = pvma->anon_vma->root;
  277. /*
  278. * With refcounts, an anon_vma can stay around longer than the
  279. * process it belongs to. The root anon_vma needs to be pinned until
  280. * this anon_vma is freed, because the lock lives in the root.
  281. */
  282. get_anon_vma(anon_vma->root);
  283. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  284. vma->anon_vma = anon_vma;
  285. anon_vma_lock(anon_vma);
  286. anon_vma_chain_link(vma, avc, anon_vma);
  287. anon_vma_unlock(anon_vma);
  288. return 0;
  289. out_error_free_anon_vma:
  290. put_anon_vma(anon_vma);
  291. out_error:
  292. unlink_anon_vmas(vma);
  293. return -ENOMEM;
  294. }
  295. void unlink_anon_vmas(struct vm_area_struct *vma)
  296. {
  297. struct anon_vma_chain *avc, *next;
  298. struct anon_vma *root = NULL;
  299. /*
  300. * Unlink each anon_vma chained to the VMA. This list is ordered
  301. * from newest to oldest, ensuring the root anon_vma gets freed last.
  302. */
  303. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  304. struct anon_vma *anon_vma = avc->anon_vma;
  305. root = lock_anon_vma_root(root, anon_vma);
  306. list_del(&avc->same_anon_vma);
  307. /*
  308. * Leave empty anon_vmas on the list - we'll need
  309. * to free them outside the lock.
  310. */
  311. if (list_empty(&anon_vma->head))
  312. continue;
  313. list_del(&avc->same_vma);
  314. anon_vma_chain_free(avc);
  315. }
  316. unlock_anon_vma_root(root);
  317. /*
  318. * Iterate the list once more, it now only contains empty and unlinked
  319. * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
  320. * needing to acquire the anon_vma->root->mutex.
  321. */
  322. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  323. struct anon_vma *anon_vma = avc->anon_vma;
  324. put_anon_vma(anon_vma);
  325. list_del(&avc->same_vma);
  326. anon_vma_chain_free(avc);
  327. }
  328. }
  329. static void anon_vma_ctor(void *data)
  330. {
  331. struct anon_vma *anon_vma = data;
  332. mutex_init(&anon_vma->mutex);
  333. atomic_set(&anon_vma->refcount, 0);
  334. INIT_LIST_HEAD(&anon_vma->head);
  335. }
  336. void __init anon_vma_init(void)
  337. {
  338. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  339. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  340. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  341. }
  342. /*
  343. * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
  344. *
  345. * Since there is no serialization what so ever against page_remove_rmap()
  346. * the best this function can do is return a locked anon_vma that might
  347. * have been relevant to this page.
  348. *
  349. * The page might have been remapped to a different anon_vma or the anon_vma
  350. * returned may already be freed (and even reused).
  351. *
  352. * In case it was remapped to a different anon_vma, the new anon_vma will be a
  353. * child of the old anon_vma, and the anon_vma lifetime rules will therefore
  354. * ensure that any anon_vma obtained from the page will still be valid for as
  355. * long as we observe page_mapped() [ hence all those page_mapped() tests ].
  356. *
  357. * All users of this function must be very careful when walking the anon_vma
  358. * chain and verify that the page in question is indeed mapped in it
  359. * [ something equivalent to page_mapped_in_vma() ].
  360. *
  361. * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
  362. * that the anon_vma pointer from page->mapping is valid if there is a
  363. * mapcount, we can dereference the anon_vma after observing those.
  364. */
  365. struct anon_vma *page_get_anon_vma(struct page *page)
  366. {
  367. struct anon_vma *anon_vma = NULL;
  368. unsigned long anon_mapping;
  369. rcu_read_lock();
  370. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  371. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  372. goto out;
  373. if (!page_mapped(page))
  374. goto out;
  375. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  376. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  377. anon_vma = NULL;
  378. goto out;
  379. }
  380. /*
  381. * If this page is still mapped, then its anon_vma cannot have been
  382. * freed. But if it has been unmapped, we have no security against the
  383. * anon_vma structure being freed and reused (for another anon_vma:
  384. * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
  385. * above cannot corrupt).
  386. */
  387. if (!page_mapped(page)) {
  388. put_anon_vma(anon_vma);
  389. anon_vma = NULL;
  390. }
  391. out:
  392. rcu_read_unlock();
  393. return anon_vma;
  394. }
  395. /*
  396. * Similar to page_get_anon_vma() except it locks the anon_vma.
  397. *
  398. * Its a little more complex as it tries to keep the fast path to a single
  399. * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
  400. * reference like with page_get_anon_vma() and then block on the mutex.
  401. */
  402. struct anon_vma *page_lock_anon_vma(struct page *page)
  403. {
  404. struct anon_vma *anon_vma = NULL;
  405. struct anon_vma *root_anon_vma;
  406. unsigned long anon_mapping;
  407. rcu_read_lock();
  408. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  409. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  410. goto out;
  411. if (!page_mapped(page))
  412. goto out;
  413. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  414. root_anon_vma = ACCESS_ONCE(anon_vma->root);
  415. if (mutex_trylock(&root_anon_vma->mutex)) {
  416. /*
  417. * If the page is still mapped, then this anon_vma is still
  418. * its anon_vma, and holding the mutex ensures that it will
  419. * not go away, see anon_vma_free().
  420. */
  421. if (!page_mapped(page)) {
  422. mutex_unlock(&root_anon_vma->mutex);
  423. anon_vma = NULL;
  424. }
  425. goto out;
  426. }
  427. /* trylock failed, we got to sleep */
  428. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  429. anon_vma = NULL;
  430. goto out;
  431. }
  432. if (!page_mapped(page)) {
  433. put_anon_vma(anon_vma);
  434. anon_vma = NULL;
  435. goto out;
  436. }
  437. /* we pinned the anon_vma, its safe to sleep */
  438. rcu_read_unlock();
  439. anon_vma_lock(anon_vma);
  440. if (atomic_dec_and_test(&anon_vma->refcount)) {
  441. /*
  442. * Oops, we held the last refcount, release the lock
  443. * and bail -- can't simply use put_anon_vma() because
  444. * we'll deadlock on the anon_vma_lock() recursion.
  445. */
  446. anon_vma_unlock(anon_vma);
  447. __put_anon_vma(anon_vma);
  448. anon_vma = NULL;
  449. }
  450. return anon_vma;
  451. out:
  452. rcu_read_unlock();
  453. return anon_vma;
  454. }
  455. void page_unlock_anon_vma(struct anon_vma *anon_vma)
  456. {
  457. anon_vma_unlock(anon_vma);
  458. }
  459. /*
  460. * At what user virtual address is page expected in @vma?
  461. * Returns virtual address or -EFAULT if page's index/offset is not
  462. * within the range mapped the @vma.
  463. */
  464. inline unsigned long
  465. vma_address(struct page *page, struct vm_area_struct *vma)
  466. {
  467. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  468. unsigned long address;
  469. if (unlikely(is_vm_hugetlb_page(vma)))
  470. pgoff = page->index << huge_page_order(page_hstate(page));
  471. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  472. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  473. /* page should be within @vma mapping range */
  474. return -EFAULT;
  475. }
  476. return address;
  477. }
  478. /*
  479. * At what user virtual address is page expected in vma?
  480. * Caller should check the page is actually part of the vma.
  481. */
  482. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  483. {
  484. if (PageAnon(page)) {
  485. struct anon_vma *page__anon_vma = page_anon_vma(page);
  486. /*
  487. * Note: swapoff's unuse_vma() is more efficient with this
  488. * check, and needs it to match anon_vma when KSM is active.
  489. */
  490. if (!vma->anon_vma || !page__anon_vma ||
  491. vma->anon_vma->root != page__anon_vma->root)
  492. return -EFAULT;
  493. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  494. if (!vma->vm_file ||
  495. vma->vm_file->f_mapping != page->mapping)
  496. return -EFAULT;
  497. } else
  498. return -EFAULT;
  499. return vma_address(page, vma);
  500. }
  501. /*
  502. * Check that @page is mapped at @address into @mm.
  503. *
  504. * If @sync is false, page_check_address may perform a racy check to avoid
  505. * the page table lock when the pte is not present (helpful when reclaiming
  506. * highly shared pages).
  507. *
  508. * On success returns with pte mapped and locked.
  509. */
  510. pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
  511. unsigned long address, spinlock_t **ptlp, int sync)
  512. {
  513. pgd_t *pgd;
  514. pud_t *pud;
  515. pmd_t *pmd;
  516. pte_t *pte;
  517. spinlock_t *ptl;
  518. if (unlikely(PageHuge(page))) {
  519. pte = huge_pte_offset(mm, address);
  520. ptl = &mm->page_table_lock;
  521. goto check;
  522. }
  523. pgd = pgd_offset(mm, address);
  524. if (!pgd_present(*pgd))
  525. return NULL;
  526. pud = pud_offset(pgd, address);
  527. if (!pud_present(*pud))
  528. return NULL;
  529. pmd = pmd_offset(pud, address);
  530. if (!pmd_present(*pmd))
  531. return NULL;
  532. if (pmd_trans_huge(*pmd))
  533. return NULL;
  534. pte = pte_offset_map(pmd, address);
  535. /* Make a quick check before getting the lock */
  536. if (!sync && !pte_present(*pte)) {
  537. pte_unmap(pte);
  538. return NULL;
  539. }
  540. ptl = pte_lockptr(mm, pmd);
  541. check:
  542. spin_lock(ptl);
  543. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  544. *ptlp = ptl;
  545. return pte;
  546. }
  547. pte_unmap_unlock(pte, ptl);
  548. return NULL;
  549. }
  550. /**
  551. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  552. * @page: the page to test
  553. * @vma: the VMA to test
  554. *
  555. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  556. * if the page is not mapped into the page tables of this VMA. Only
  557. * valid for normal file or anonymous VMAs.
  558. */
  559. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  560. {
  561. unsigned long address;
  562. pte_t *pte;
  563. spinlock_t *ptl;
  564. address = vma_address(page, vma);
  565. if (address == -EFAULT) /* out of vma range */
  566. return 0;
  567. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  568. if (!pte) /* the page is not in this mm */
  569. return 0;
  570. pte_unmap_unlock(pte, ptl);
  571. return 1;
  572. }
  573. /*
  574. * Subfunctions of page_referenced: page_referenced_one called
  575. * repeatedly from either page_referenced_anon or page_referenced_file.
  576. */
  577. int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  578. unsigned long address, unsigned int *mapcount,
  579. unsigned long *vm_flags)
  580. {
  581. struct mm_struct *mm = vma->vm_mm;
  582. int referenced = 0;
  583. if (unlikely(PageTransHuge(page))) {
  584. pmd_t *pmd;
  585. spin_lock(&mm->page_table_lock);
  586. /*
  587. * rmap might return false positives; we must filter
  588. * these out using page_check_address_pmd().
  589. */
  590. pmd = page_check_address_pmd(page, mm, address,
  591. PAGE_CHECK_ADDRESS_PMD_FLAG);
  592. if (!pmd) {
  593. spin_unlock(&mm->page_table_lock);
  594. goto out;
  595. }
  596. if (vma->vm_flags & VM_LOCKED) {
  597. spin_unlock(&mm->page_table_lock);
  598. *mapcount = 0; /* break early from loop */
  599. *vm_flags |= VM_LOCKED;
  600. goto out;
  601. }
  602. /* go ahead even if the pmd is pmd_trans_splitting() */
  603. if (pmdp_clear_flush_young_notify(vma, address, pmd))
  604. referenced++;
  605. spin_unlock(&mm->page_table_lock);
  606. } else {
  607. pte_t *pte;
  608. spinlock_t *ptl;
  609. /*
  610. * rmap might return false positives; we must filter
  611. * these out using page_check_address().
  612. */
  613. pte = page_check_address(page, mm, address, &ptl, 0);
  614. if (!pte)
  615. goto out;
  616. if (vma->vm_flags & VM_LOCKED) {
  617. pte_unmap_unlock(pte, ptl);
  618. *mapcount = 0; /* break early from loop */
  619. *vm_flags |= VM_LOCKED;
  620. goto out;
  621. }
  622. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  623. /*
  624. * Don't treat a reference through a sequentially read
  625. * mapping as such. If the page has been used in
  626. * another mapping, we will catch it; if this other
  627. * mapping is already gone, the unmap path will have
  628. * set PG_referenced or activated the page.
  629. */
  630. if (likely(!VM_SequentialReadHint(vma)))
  631. referenced++;
  632. }
  633. pte_unmap_unlock(pte, ptl);
  634. }
  635. /* Pretend the page is referenced if the task has the
  636. swap token and is in the middle of a page fault. */
  637. if (mm != current->mm && has_swap_token(mm) &&
  638. rwsem_is_locked(&mm->mmap_sem))
  639. referenced++;
  640. (*mapcount)--;
  641. if (referenced)
  642. *vm_flags |= vma->vm_flags;
  643. out:
  644. return referenced;
  645. }
  646. static int page_referenced_anon(struct page *page,
  647. struct mem_cgroup *mem_cont,
  648. unsigned long *vm_flags)
  649. {
  650. unsigned int mapcount;
  651. struct anon_vma *anon_vma;
  652. struct anon_vma_chain *avc;
  653. int referenced = 0;
  654. anon_vma = page_lock_anon_vma(page);
  655. if (!anon_vma)
  656. return referenced;
  657. mapcount = page_mapcount(page);
  658. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  659. struct vm_area_struct *vma = avc->vma;
  660. unsigned long address = vma_address(page, vma);
  661. if (address == -EFAULT)
  662. continue;
  663. /*
  664. * If we are reclaiming on behalf of a cgroup, skip
  665. * counting on behalf of references from different
  666. * cgroups
  667. */
  668. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  669. continue;
  670. referenced += page_referenced_one(page, vma, address,
  671. &mapcount, vm_flags);
  672. if (!mapcount)
  673. break;
  674. }
  675. page_unlock_anon_vma(anon_vma);
  676. return referenced;
  677. }
  678. /**
  679. * page_referenced_file - referenced check for object-based rmap
  680. * @page: the page we're checking references on.
  681. * @mem_cont: target memory controller
  682. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  683. *
  684. * For an object-based mapped page, find all the places it is mapped and
  685. * check/clear the referenced flag. This is done by following the page->mapping
  686. * pointer, then walking the chain of vmas it holds. It returns the number
  687. * of references it found.
  688. *
  689. * This function is only called from page_referenced for object-based pages.
  690. */
  691. static int page_referenced_file(struct page *page,
  692. struct mem_cgroup *mem_cont,
  693. unsigned long *vm_flags)
  694. {
  695. unsigned int mapcount;
  696. struct address_space *mapping = page->mapping;
  697. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  698. struct vm_area_struct *vma;
  699. struct prio_tree_iter iter;
  700. int referenced = 0;
  701. /*
  702. * The caller's checks on page->mapping and !PageAnon have made
  703. * sure that this is a file page: the check for page->mapping
  704. * excludes the case just before it gets set on an anon page.
  705. */
  706. BUG_ON(PageAnon(page));
  707. /*
  708. * The page lock not only makes sure that page->mapping cannot
  709. * suddenly be NULLified by truncation, it makes sure that the
  710. * structure at mapping cannot be freed and reused yet,
  711. * so we can safely take mapping->i_mmap_mutex.
  712. */
  713. BUG_ON(!PageLocked(page));
  714. mutex_lock(&mapping->i_mmap_mutex);
  715. /*
  716. * i_mmap_mutex does not stabilize mapcount at all, but mapcount
  717. * is more likely to be accurate if we note it after spinning.
  718. */
  719. mapcount = page_mapcount(page);
  720. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  721. unsigned long address = vma_address(page, vma);
  722. if (address == -EFAULT)
  723. continue;
  724. /*
  725. * If we are reclaiming on behalf of a cgroup, skip
  726. * counting on behalf of references from different
  727. * cgroups
  728. */
  729. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  730. continue;
  731. referenced += page_referenced_one(page, vma, address,
  732. &mapcount, vm_flags);
  733. if (!mapcount)
  734. break;
  735. }
  736. mutex_unlock(&mapping->i_mmap_mutex);
  737. return referenced;
  738. }
  739. /**
  740. * page_referenced - test if the page was referenced
  741. * @page: the page to test
  742. * @is_locked: caller holds lock on the page
  743. * @mem_cont: target memory controller
  744. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  745. *
  746. * Quick test_and_clear_referenced for all mappings to a page,
  747. * returns the number of ptes which referenced the page.
  748. */
  749. int page_referenced(struct page *page,
  750. int is_locked,
  751. struct mem_cgroup *mem_cont,
  752. unsigned long *vm_flags)
  753. {
  754. int referenced = 0;
  755. int we_locked = 0;
  756. *vm_flags = 0;
  757. if (page_mapped(page) && page_rmapping(page)) {
  758. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  759. we_locked = trylock_page(page);
  760. if (!we_locked) {
  761. referenced++;
  762. goto out;
  763. }
  764. }
  765. if (unlikely(PageKsm(page)))
  766. referenced += page_referenced_ksm(page, mem_cont,
  767. vm_flags);
  768. else if (PageAnon(page))
  769. referenced += page_referenced_anon(page, mem_cont,
  770. vm_flags);
  771. else if (page->mapping)
  772. referenced += page_referenced_file(page, mem_cont,
  773. vm_flags);
  774. if (we_locked)
  775. unlock_page(page);
  776. }
  777. out:
  778. if (page_test_and_clear_young(page_to_pfn(page)))
  779. referenced++;
  780. return referenced;
  781. }
  782. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  783. unsigned long address)
  784. {
  785. struct mm_struct *mm = vma->vm_mm;
  786. pte_t *pte;
  787. spinlock_t *ptl;
  788. int ret = 0;
  789. pte = page_check_address(page, mm, address, &ptl, 1);
  790. if (!pte)
  791. goto out;
  792. if (pte_dirty(*pte) || pte_write(*pte)) {
  793. pte_t entry;
  794. flush_cache_page(vma, address, pte_pfn(*pte));
  795. entry = ptep_clear_flush_notify(vma, address, pte);
  796. entry = pte_wrprotect(entry);
  797. entry = pte_mkclean(entry);
  798. set_pte_at(mm, address, pte, entry);
  799. ret = 1;
  800. }
  801. pte_unmap_unlock(pte, ptl);
  802. out:
  803. return ret;
  804. }
  805. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  806. {
  807. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  808. struct vm_area_struct *vma;
  809. struct prio_tree_iter iter;
  810. int ret = 0;
  811. BUG_ON(PageAnon(page));
  812. mutex_lock(&mapping->i_mmap_mutex);
  813. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  814. if (vma->vm_flags & VM_SHARED) {
  815. unsigned long address = vma_address(page, vma);
  816. if (address == -EFAULT)
  817. continue;
  818. ret += page_mkclean_one(page, vma, address);
  819. }
  820. }
  821. mutex_unlock(&mapping->i_mmap_mutex);
  822. return ret;
  823. }
  824. int page_mkclean(struct page *page)
  825. {
  826. int ret = 0;
  827. BUG_ON(!PageLocked(page));
  828. if (page_mapped(page)) {
  829. struct address_space *mapping = page_mapping(page);
  830. if (mapping) {
  831. ret = page_mkclean_file(mapping, page);
  832. if (page_test_and_clear_dirty(page_to_pfn(page), 1))
  833. ret = 1;
  834. }
  835. }
  836. return ret;
  837. }
  838. EXPORT_SYMBOL_GPL(page_mkclean);
  839. /**
  840. * page_move_anon_rmap - move a page to our anon_vma
  841. * @page: the page to move to our anon_vma
  842. * @vma: the vma the page belongs to
  843. * @address: the user virtual address mapped
  844. *
  845. * When a page belongs exclusively to one process after a COW event,
  846. * that page can be moved into the anon_vma that belongs to just that
  847. * process, so the rmap code will not search the parent or sibling
  848. * processes.
  849. */
  850. void page_move_anon_rmap(struct page *page,
  851. struct vm_area_struct *vma, unsigned long address)
  852. {
  853. struct anon_vma *anon_vma = vma->anon_vma;
  854. VM_BUG_ON(!PageLocked(page));
  855. VM_BUG_ON(!anon_vma);
  856. VM_BUG_ON(page->index != linear_page_index(vma, address));
  857. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  858. page->mapping = (struct address_space *) anon_vma;
  859. }
  860. /**
  861. * __page_set_anon_rmap - set up new anonymous rmap
  862. * @page: Page to add to rmap
  863. * @vma: VM area to add page to.
  864. * @address: User virtual address of the mapping
  865. * @exclusive: the page is exclusively owned by the current process
  866. */
  867. static void __page_set_anon_rmap(struct page *page,
  868. struct vm_area_struct *vma, unsigned long address, int exclusive)
  869. {
  870. struct anon_vma *anon_vma = vma->anon_vma;
  871. BUG_ON(!anon_vma);
  872. if (PageAnon(page))
  873. return;
  874. /*
  875. * If the page isn't exclusively mapped into this vma,
  876. * we must use the _oldest_ possible anon_vma for the
  877. * page mapping!
  878. */
  879. if (!exclusive)
  880. anon_vma = anon_vma->root;
  881. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  882. page->mapping = (struct address_space *) anon_vma;
  883. page->index = linear_page_index(vma, address);
  884. }
  885. /**
  886. * __page_check_anon_rmap - sanity check anonymous rmap addition
  887. * @page: the page to add the mapping to
  888. * @vma: the vm area in which the mapping is added
  889. * @address: the user virtual address mapped
  890. */
  891. static void __page_check_anon_rmap(struct page *page,
  892. struct vm_area_struct *vma, unsigned long address)
  893. {
  894. #ifdef CONFIG_DEBUG_VM
  895. /*
  896. * The page's anon-rmap details (mapping and index) are guaranteed to
  897. * be set up correctly at this point.
  898. *
  899. * We have exclusion against page_add_anon_rmap because the caller
  900. * always holds the page locked, except if called from page_dup_rmap,
  901. * in which case the page is already known to be setup.
  902. *
  903. * We have exclusion against page_add_new_anon_rmap because those pages
  904. * are initially only visible via the pagetables, and the pte is locked
  905. * over the call to page_add_new_anon_rmap.
  906. */
  907. BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
  908. BUG_ON(page->index != linear_page_index(vma, address));
  909. #endif
  910. }
  911. /**
  912. * page_add_anon_rmap - add pte mapping to an anonymous page
  913. * @page: the page to add the mapping to
  914. * @vma: the vm area in which the mapping is added
  915. * @address: the user virtual address mapped
  916. *
  917. * The caller needs to hold the pte lock, and the page must be locked in
  918. * the anon_vma case: to serialize mapping,index checking after setting,
  919. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  920. * (but PageKsm is never downgraded to PageAnon).
  921. */
  922. void page_add_anon_rmap(struct page *page,
  923. struct vm_area_struct *vma, unsigned long address)
  924. {
  925. do_page_add_anon_rmap(page, vma, address, 0);
  926. }
  927. /*
  928. * Special version of the above for do_swap_page, which often runs
  929. * into pages that are exclusively owned by the current process.
  930. * Everybody else should continue to use page_add_anon_rmap above.
  931. */
  932. void do_page_add_anon_rmap(struct page *page,
  933. struct vm_area_struct *vma, unsigned long address, int exclusive)
  934. {
  935. int first = atomic_inc_and_test(&page->_mapcount);
  936. if (first) {
  937. if (!PageTransHuge(page))
  938. __inc_zone_page_state(page, NR_ANON_PAGES);
  939. else
  940. __inc_zone_page_state(page,
  941. NR_ANON_TRANSPARENT_HUGEPAGES);
  942. }
  943. if (unlikely(PageKsm(page)))
  944. return;
  945. VM_BUG_ON(!PageLocked(page));
  946. /* address might be in next vma when migration races vma_adjust */
  947. if (first)
  948. __page_set_anon_rmap(page, vma, address, exclusive);
  949. else
  950. __page_check_anon_rmap(page, vma, address);
  951. }
  952. /**
  953. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  954. * @page: the page to add the mapping to
  955. * @vma: the vm area in which the mapping is added
  956. * @address: the user virtual address mapped
  957. *
  958. * Same as page_add_anon_rmap but must only be called on *new* pages.
  959. * This means the inc-and-test can be bypassed.
  960. * Page does not have to be locked.
  961. */
  962. void page_add_new_anon_rmap(struct page *page,
  963. struct vm_area_struct *vma, unsigned long address)
  964. {
  965. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  966. SetPageSwapBacked(page);
  967. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  968. if (!PageTransHuge(page))
  969. __inc_zone_page_state(page, NR_ANON_PAGES);
  970. else
  971. __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  972. __page_set_anon_rmap(page, vma, address, 1);
  973. if (page_evictable(page, vma))
  974. lru_cache_add_lru(page, LRU_ACTIVE_ANON);
  975. else
  976. add_page_to_unevictable_list(page);
  977. }
  978. /**
  979. * page_add_file_rmap - add pte mapping to a file page
  980. * @page: the page to add the mapping to
  981. *
  982. * The caller needs to hold the pte lock.
  983. */
  984. void page_add_file_rmap(struct page *page)
  985. {
  986. if (atomic_inc_and_test(&page->_mapcount)) {
  987. __inc_zone_page_state(page, NR_FILE_MAPPED);
  988. mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
  989. }
  990. }
  991. /**
  992. * page_remove_rmap - take down pte mapping from a page
  993. * @page: page to remove mapping from
  994. *
  995. * The caller needs to hold the pte lock.
  996. */
  997. void page_remove_rmap(struct page *page)
  998. {
  999. /* page still mapped by someone else? */
  1000. if (!atomic_add_negative(-1, &page->_mapcount))
  1001. return;
  1002. /*
  1003. * Now that the last pte has gone, s390 must transfer dirty
  1004. * flag from storage key to struct page. We can usually skip
  1005. * this if the page is anon, so about to be freed; but perhaps
  1006. * not if it's in swapcache - there might be another pte slot
  1007. * containing the swap entry, but page not yet written to swap.
  1008. */
  1009. if ((!PageAnon(page) || PageSwapCache(page)) &&
  1010. page_test_and_clear_dirty(page_to_pfn(page), 1))
  1011. set_page_dirty(page);
  1012. /*
  1013. * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
  1014. * and not charged by memcg for now.
  1015. */
  1016. if (unlikely(PageHuge(page)))
  1017. return;
  1018. if (PageAnon(page)) {
  1019. mem_cgroup_uncharge_page(page);
  1020. if (!PageTransHuge(page))
  1021. __dec_zone_page_state(page, NR_ANON_PAGES);
  1022. else
  1023. __dec_zone_page_state(page,
  1024. NR_ANON_TRANSPARENT_HUGEPAGES);
  1025. } else {
  1026. __dec_zone_page_state(page, NR_FILE_MAPPED);
  1027. mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
  1028. }
  1029. /*
  1030. * It would be tidy to reset the PageAnon mapping here,
  1031. * but that might overwrite a racing page_add_anon_rmap
  1032. * which increments mapcount after us but sets mapping
  1033. * before us: so leave the reset to free_hot_cold_page,
  1034. * and remember that it's only reliable while mapped.
  1035. * Leaving it set also helps swapoff to reinstate ptes
  1036. * faster for those pages still in swapcache.
  1037. */
  1038. }
  1039. /*
  1040. * Subfunctions of try_to_unmap: try_to_unmap_one called
  1041. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  1042. */
  1043. int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  1044. unsigned long address, enum ttu_flags flags)
  1045. {
  1046. struct mm_struct *mm = vma->vm_mm;
  1047. pte_t *pte;
  1048. pte_t pteval;
  1049. spinlock_t *ptl;
  1050. int ret = SWAP_AGAIN;
  1051. pte = page_check_address(page, mm, address, &ptl, 0);
  1052. if (!pte)
  1053. goto out;
  1054. /*
  1055. * If the page is mlock()d, we cannot swap it out.
  1056. * If it's recently referenced (perhaps page_referenced
  1057. * skipped over this mm) then we should reactivate it.
  1058. */
  1059. if (!(flags & TTU_IGNORE_MLOCK)) {
  1060. if (vma->vm_flags & VM_LOCKED)
  1061. goto out_mlock;
  1062. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1063. goto out_unmap;
  1064. }
  1065. if (!(flags & TTU_IGNORE_ACCESS)) {
  1066. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  1067. ret = SWAP_FAIL;
  1068. goto out_unmap;
  1069. }
  1070. }
  1071. /* Nuke the page table entry. */
  1072. flush_cache_page(vma, address, page_to_pfn(page));
  1073. pteval = ptep_clear_flush_notify(vma, address, pte);
  1074. /* Move the dirty bit to the physical page now the pte is gone. */
  1075. if (pte_dirty(pteval))
  1076. set_page_dirty(page);
  1077. /* Update high watermark before we lower rss */
  1078. update_hiwater_rss(mm);
  1079. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  1080. if (PageAnon(page))
  1081. dec_mm_counter(mm, MM_ANONPAGES);
  1082. else
  1083. dec_mm_counter(mm, MM_FILEPAGES);
  1084. set_pte_at(mm, address, pte,
  1085. swp_entry_to_pte(make_hwpoison_entry(page)));
  1086. } else if (PageAnon(page)) {
  1087. swp_entry_t entry = { .val = page_private(page) };
  1088. if (PageSwapCache(page)) {
  1089. /*
  1090. * Store the swap location in the pte.
  1091. * See handle_pte_fault() ...
  1092. */
  1093. if (swap_duplicate(entry) < 0) {
  1094. set_pte_at(mm, address, pte, pteval);
  1095. ret = SWAP_FAIL;
  1096. goto out_unmap;
  1097. }
  1098. if (list_empty(&mm->mmlist)) {
  1099. spin_lock(&mmlist_lock);
  1100. if (list_empty(&mm->mmlist))
  1101. list_add(&mm->mmlist, &init_mm.mmlist);
  1102. spin_unlock(&mmlist_lock);
  1103. }
  1104. dec_mm_counter(mm, MM_ANONPAGES);
  1105. inc_mm_counter(mm, MM_SWAPENTS);
  1106. } else if (PAGE_MIGRATION) {
  1107. /*
  1108. * Store the pfn of the page in a special migration
  1109. * pte. do_swap_page() will wait until the migration
  1110. * pte is removed and then restart fault handling.
  1111. */
  1112. BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
  1113. entry = make_migration_entry(page, pte_write(pteval));
  1114. }
  1115. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  1116. BUG_ON(pte_file(*pte));
  1117. } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
  1118. /* Establish migration entry for a file page */
  1119. swp_entry_t entry;
  1120. entry = make_migration_entry(page, pte_write(pteval));
  1121. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  1122. } else
  1123. dec_mm_counter(mm, MM_FILEPAGES);
  1124. page_remove_rmap(page);
  1125. page_cache_release(page);
  1126. out_unmap:
  1127. pte_unmap_unlock(pte, ptl);
  1128. out:
  1129. return ret;
  1130. out_mlock:
  1131. pte_unmap_unlock(pte, ptl);
  1132. /*
  1133. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  1134. * unstable result and race. Plus, We can't wait here because
  1135. * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
  1136. * if trylock failed, the page remain in evictable lru and later
  1137. * vmscan could retry to move the page to unevictable lru if the
  1138. * page is actually mlocked.
  1139. */
  1140. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1141. if (vma->vm_flags & VM_LOCKED) {
  1142. mlock_vma_page(page);
  1143. ret = SWAP_MLOCK;
  1144. }
  1145. up_read(&vma->vm_mm->mmap_sem);
  1146. }
  1147. return ret;
  1148. }
  1149. /*
  1150. * objrmap doesn't work for nonlinear VMAs because the assumption that
  1151. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  1152. * Consequently, given a particular page and its ->index, we cannot locate the
  1153. * ptes which are mapping that page without an exhaustive linear search.
  1154. *
  1155. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  1156. * maps the file to which the target page belongs. The ->vm_private_data field
  1157. * holds the current cursor into that scan. Successive searches will circulate
  1158. * around the vma's virtual address space.
  1159. *
  1160. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  1161. * more scanning pressure is placed against them as well. Eventually pages
  1162. * will become fully unmapped and are eligible for eviction.
  1163. *
  1164. * For very sparsely populated VMAs this is a little inefficient - chances are
  1165. * there there won't be many ptes located within the scan cluster. In this case
  1166. * maybe we could scan further - to the end of the pte page, perhaps.
  1167. *
  1168. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  1169. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  1170. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  1171. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  1172. */
  1173. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  1174. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  1175. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  1176. struct vm_area_struct *vma, struct page *check_page)
  1177. {
  1178. struct mm_struct *mm = vma->vm_mm;
  1179. pgd_t *pgd;
  1180. pud_t *pud;
  1181. pmd_t *pmd;
  1182. pte_t *pte;
  1183. pte_t pteval;
  1184. spinlock_t *ptl;
  1185. struct page *page;
  1186. unsigned long address;
  1187. unsigned long end;
  1188. int ret = SWAP_AGAIN;
  1189. int locked_vma = 0;
  1190. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  1191. end = address + CLUSTER_SIZE;
  1192. if (address < vma->vm_start)
  1193. address = vma->vm_start;
  1194. if (end > vma->vm_end)
  1195. end = vma->vm_end;
  1196. pgd = pgd_offset(mm, address);
  1197. if (!pgd_present(*pgd))
  1198. return ret;
  1199. pud = pud_offset(pgd, address);
  1200. if (!pud_present(*pud))
  1201. return ret;
  1202. pmd = pmd_offset(pud, address);
  1203. if (!pmd_present(*pmd))
  1204. return ret;
  1205. /*
  1206. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  1207. * keep the sem while scanning the cluster for mlocking pages.
  1208. */
  1209. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1210. locked_vma = (vma->vm_flags & VM_LOCKED);
  1211. if (!locked_vma)
  1212. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  1213. }
  1214. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1215. /* Update high watermark before we lower rss */
  1216. update_hiwater_rss(mm);
  1217. for (; address < end; pte++, address += PAGE_SIZE) {
  1218. if (!pte_present(*pte))
  1219. continue;
  1220. page = vm_normal_page(vma, address, *pte);
  1221. BUG_ON(!page || PageAnon(page));
  1222. if (locked_vma) {
  1223. mlock_vma_page(page); /* no-op if already mlocked */
  1224. if (page == check_page)
  1225. ret = SWAP_MLOCK;
  1226. continue; /* don't unmap */
  1227. }
  1228. if (ptep_clear_flush_young_notify(vma, address, pte))
  1229. continue;
  1230. /* Nuke the page table entry. */
  1231. flush_cache_page(vma, address, pte_pfn(*pte));
  1232. pteval = ptep_clear_flush_notify(vma, address, pte);
  1233. /* If nonlinear, store the file page offset in the pte. */
  1234. if (page->index != linear_page_index(vma, address))
  1235. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  1236. /* Move the dirty bit to the physical page now the pte is gone. */
  1237. if (pte_dirty(pteval))
  1238. set_page_dirty(page);
  1239. page_remove_rmap(page);
  1240. page_cache_release(page);
  1241. dec_mm_counter(mm, MM_FILEPAGES);
  1242. (*mapcount)--;
  1243. }
  1244. pte_unmap_unlock(pte - 1, ptl);
  1245. if (locked_vma)
  1246. up_read(&vma->vm_mm->mmap_sem);
  1247. return ret;
  1248. }
  1249. bool is_vma_temporary_stack(struct vm_area_struct *vma)
  1250. {
  1251. int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
  1252. if (!maybe_stack)
  1253. return false;
  1254. if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
  1255. VM_STACK_INCOMPLETE_SETUP)
  1256. return true;
  1257. return false;
  1258. }
  1259. /**
  1260. * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
  1261. * rmap method
  1262. * @page: the page to unmap/unlock
  1263. * @flags: action and flags
  1264. *
  1265. * Find all the mappings of a page using the mapping pointer and the vma chains
  1266. * contained in the anon_vma struct it points to.
  1267. *
  1268. * This function is only called from try_to_unmap/try_to_munlock for
  1269. * anonymous pages.
  1270. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1271. * where the page was found will be held for write. So, we won't recheck
  1272. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1273. * 'LOCKED.
  1274. */
  1275. static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
  1276. {
  1277. struct anon_vma *anon_vma;
  1278. struct anon_vma_chain *avc;
  1279. int ret = SWAP_AGAIN;
  1280. anon_vma = page_lock_anon_vma(page);
  1281. if (!anon_vma)
  1282. return ret;
  1283. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1284. struct vm_area_struct *vma = avc->vma;
  1285. unsigned long address;
  1286. /*
  1287. * During exec, a temporary VMA is setup and later moved.
  1288. * The VMA is moved under the anon_vma lock but not the
  1289. * page tables leading to a race where migration cannot
  1290. * find the migration ptes. Rather than increasing the
  1291. * locking requirements of exec(), migration skips
  1292. * temporary VMAs until after exec() completes.
  1293. */
  1294. if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
  1295. is_vma_temporary_stack(vma))
  1296. continue;
  1297. address = vma_address(page, vma);
  1298. if (address == -EFAULT)
  1299. continue;
  1300. ret = try_to_unmap_one(page, vma, address, flags);
  1301. if (ret != SWAP_AGAIN || !page_mapped(page))
  1302. break;
  1303. }
  1304. page_unlock_anon_vma(anon_vma);
  1305. return ret;
  1306. }
  1307. /**
  1308. * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
  1309. * @page: the page to unmap/unlock
  1310. * @flags: action and flags
  1311. *
  1312. * Find all the mappings of a page using the mapping pointer and the vma chains
  1313. * contained in the address_space struct it points to.
  1314. *
  1315. * This function is only called from try_to_unmap/try_to_munlock for
  1316. * object-based pages.
  1317. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1318. * where the page was found will be held for write. So, we won't recheck
  1319. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1320. * 'LOCKED.
  1321. */
  1322. static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
  1323. {
  1324. struct address_space *mapping = page->mapping;
  1325. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1326. struct vm_area_struct *vma;
  1327. struct prio_tree_iter iter;
  1328. int ret = SWAP_AGAIN;
  1329. unsigned long cursor;
  1330. unsigned long max_nl_cursor = 0;
  1331. unsigned long max_nl_size = 0;
  1332. unsigned int mapcount;
  1333. mutex_lock(&mapping->i_mmap_mutex);
  1334. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1335. unsigned long address = vma_address(page, vma);
  1336. if (address == -EFAULT)
  1337. continue;
  1338. ret = try_to_unmap_one(page, vma, address, flags);
  1339. if (ret != SWAP_AGAIN || !page_mapped(page))
  1340. goto out;
  1341. }
  1342. if (list_empty(&mapping->i_mmap_nonlinear))
  1343. goto out;
  1344. /*
  1345. * We don't bother to try to find the munlocked page in nonlinears.
  1346. * It's costly. Instead, later, page reclaim logic may call
  1347. * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
  1348. */
  1349. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1350. goto out;
  1351. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1352. shared.vm_set.list) {
  1353. cursor = (unsigned long) vma->vm_private_data;
  1354. if (cursor > max_nl_cursor)
  1355. max_nl_cursor = cursor;
  1356. cursor = vma->vm_end - vma->vm_start;
  1357. if (cursor > max_nl_size)
  1358. max_nl_size = cursor;
  1359. }
  1360. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1361. ret = SWAP_FAIL;
  1362. goto out;
  1363. }
  1364. /*
  1365. * We don't try to search for this page in the nonlinear vmas,
  1366. * and page_referenced wouldn't have found it anyway. Instead
  1367. * just walk the nonlinear vmas trying to age and unmap some.
  1368. * The mapcount of the page we came in with is irrelevant,
  1369. * but even so use it as a guide to how hard we should try?
  1370. */
  1371. mapcount = page_mapcount(page);
  1372. if (!mapcount)
  1373. goto out;
  1374. cond_resched();
  1375. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1376. if (max_nl_cursor == 0)
  1377. max_nl_cursor = CLUSTER_SIZE;
  1378. do {
  1379. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1380. shared.vm_set.list) {
  1381. cursor = (unsigned long) vma->vm_private_data;
  1382. while ( cursor < max_nl_cursor &&
  1383. cursor < vma->vm_end - vma->vm_start) {
  1384. if (try_to_unmap_cluster(cursor, &mapcount,
  1385. vma, page) == SWAP_MLOCK)
  1386. ret = SWAP_MLOCK;
  1387. cursor += CLUSTER_SIZE;
  1388. vma->vm_private_data = (void *) cursor;
  1389. if ((int)mapcount <= 0)
  1390. goto out;
  1391. }
  1392. vma->vm_private_data = (void *) max_nl_cursor;
  1393. }
  1394. cond_resched();
  1395. max_nl_cursor += CLUSTER_SIZE;
  1396. } while (max_nl_cursor <= max_nl_size);
  1397. /*
  1398. * Don't loop forever (perhaps all the remaining pages are
  1399. * in locked vmas). Reset cursor on all unreserved nonlinear
  1400. * vmas, now forgetting on which ones it had fallen behind.
  1401. */
  1402. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1403. vma->vm_private_data = NULL;
  1404. out:
  1405. mutex_unlock(&mapping->i_mmap_mutex);
  1406. return ret;
  1407. }
  1408. /**
  1409. * try_to_unmap - try to remove all page table mappings to a page
  1410. * @page: the page to get unmapped
  1411. * @flags: action and flags
  1412. *
  1413. * Tries to remove all the page table entries which are mapping this
  1414. * page, used in the pageout path. Caller must hold the page lock.
  1415. * Return values are:
  1416. *
  1417. * SWAP_SUCCESS - we succeeded in removing all mappings
  1418. * SWAP_AGAIN - we missed a mapping, try again later
  1419. * SWAP_FAIL - the page is unswappable
  1420. * SWAP_MLOCK - page is mlocked.
  1421. */
  1422. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1423. {
  1424. int ret;
  1425. BUG_ON(!PageLocked(page));
  1426. VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
  1427. if (unlikely(PageKsm(page)))
  1428. ret = try_to_unmap_ksm(page, flags);
  1429. else if (PageAnon(page))
  1430. ret = try_to_unmap_anon(page, flags);
  1431. else
  1432. ret = try_to_unmap_file(page, flags);
  1433. if (ret != SWAP_MLOCK && !page_mapped(page))
  1434. ret = SWAP_SUCCESS;
  1435. return ret;
  1436. }
  1437. /**
  1438. * try_to_munlock - try to munlock a page
  1439. * @page: the page to be munlocked
  1440. *
  1441. * Called from munlock code. Checks all of the VMAs mapping the page
  1442. * to make sure nobody else has this page mlocked. The page will be
  1443. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1444. *
  1445. * Return values are:
  1446. *
  1447. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1448. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1449. * SWAP_FAIL - page cannot be located at present
  1450. * SWAP_MLOCK - page is now mlocked.
  1451. */
  1452. int try_to_munlock(struct page *page)
  1453. {
  1454. VM_BUG_ON(!PageLocked(page) || PageLRU(page));
  1455. if (unlikely(PageKsm(page)))
  1456. return try_to_unmap_ksm(page, TTU_MUNLOCK);
  1457. else if (PageAnon(page))
  1458. return try_to_unmap_anon(page, TTU_MUNLOCK);
  1459. else
  1460. return try_to_unmap_file(page, TTU_MUNLOCK);
  1461. }
  1462. void __put_anon_vma(struct anon_vma *anon_vma)
  1463. {
  1464. struct anon_vma *root = anon_vma->root;
  1465. if (root != anon_vma && atomic_dec_and_test(&root->refcount))
  1466. anon_vma_free(root);
  1467. anon_vma_free(anon_vma);
  1468. }
  1469. #ifdef CONFIG_MIGRATION
  1470. /*
  1471. * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
  1472. * Called by migrate.c to remove migration ptes, but might be used more later.
  1473. */
  1474. static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
  1475. struct vm_area_struct *, unsigned long, void *), void *arg)
  1476. {
  1477. struct anon_vma *anon_vma;
  1478. struct anon_vma_chain *avc;
  1479. int ret = SWAP_AGAIN;
  1480. /*
  1481. * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
  1482. * because that depends on page_mapped(); but not all its usages
  1483. * are holding mmap_sem. Users without mmap_sem are required to
  1484. * take a reference count to prevent the anon_vma disappearing
  1485. */
  1486. anon_vma = page_anon_vma(page);
  1487. if (!anon_vma)
  1488. return ret;
  1489. anon_vma_lock(anon_vma);
  1490. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1491. struct vm_area_struct *vma = avc->vma;
  1492. unsigned long address = vma_address(page, vma);
  1493. if (address == -EFAULT)
  1494. continue;
  1495. ret = rmap_one(page, vma, address, arg);
  1496. if (ret != SWAP_AGAIN)
  1497. break;
  1498. }
  1499. anon_vma_unlock(anon_vma);
  1500. return ret;
  1501. }
  1502. static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
  1503. struct vm_area_struct *, unsigned long, void *), void *arg)
  1504. {
  1505. struct address_space *mapping = page->mapping;
  1506. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1507. struct vm_area_struct *vma;
  1508. struct prio_tree_iter iter;
  1509. int ret = SWAP_AGAIN;
  1510. if (!mapping)
  1511. return ret;
  1512. mutex_lock(&mapping->i_mmap_mutex);
  1513. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1514. unsigned long address = vma_address(page, vma);
  1515. if (address == -EFAULT)
  1516. continue;
  1517. ret = rmap_one(page, vma, address, arg);
  1518. if (ret != SWAP_AGAIN)
  1519. break;
  1520. }
  1521. /*
  1522. * No nonlinear handling: being always shared, nonlinear vmas
  1523. * never contain migration ptes. Decide what to do about this
  1524. * limitation to linear when we need rmap_walk() on nonlinear.
  1525. */
  1526. mutex_unlock(&mapping->i_mmap_mutex);
  1527. return ret;
  1528. }
  1529. int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
  1530. struct vm_area_struct *, unsigned long, void *), void *arg)
  1531. {
  1532. VM_BUG_ON(!PageLocked(page));
  1533. if (unlikely(PageKsm(page)))
  1534. return rmap_walk_ksm(page, rmap_one, arg);
  1535. else if (PageAnon(page))
  1536. return rmap_walk_anon(page, rmap_one, arg);
  1537. else
  1538. return rmap_walk_file(page, rmap_one, arg);
  1539. }
  1540. #endif /* CONFIG_MIGRATION */
  1541. #ifdef CONFIG_HUGETLB_PAGE
  1542. /*
  1543. * The following three functions are for anonymous (private mapped) hugepages.
  1544. * Unlike common anonymous pages, anonymous hugepages have no accounting code
  1545. * and no lru code, because we handle hugepages differently from common pages.
  1546. */
  1547. static void __hugepage_set_anon_rmap(struct page *page,
  1548. struct vm_area_struct *vma, unsigned long address, int exclusive)
  1549. {
  1550. struct anon_vma *anon_vma = vma->anon_vma;
  1551. BUG_ON(!anon_vma);
  1552. if (PageAnon(page))
  1553. return;
  1554. if (!exclusive)
  1555. anon_vma = anon_vma->root;
  1556. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  1557. page->mapping = (struct address_space *) anon_vma;
  1558. page->index = linear_page_index(vma, address);
  1559. }
  1560. void hugepage_add_anon_rmap(struct page *page,
  1561. struct vm_area_struct *vma, unsigned long address)
  1562. {
  1563. struct anon_vma *anon_vma = vma->anon_vma;
  1564. int first;
  1565. BUG_ON(!PageLocked(page));
  1566. BUG_ON(!anon_vma);
  1567. /* address might be in next vma when migration races vma_adjust */
  1568. first = atomic_inc_and_test(&page->_mapcount);
  1569. if (first)
  1570. __hugepage_set_anon_rmap(page, vma, address, 0);
  1571. }
  1572. void hugepage_add_new_anon_rmap(struct page *page,
  1573. struct vm_area_struct *vma, unsigned long address)
  1574. {
  1575. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1576. atomic_set(&page->_mapcount, 0);
  1577. __hugepage_set_anon_rmap(page, vma, address, 1);
  1578. }
  1579. #endif /* CONFIG_HUGETLB_PAGE */