amd_iommu.c 63 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764
  1. /*
  2. * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
  3. * Author: Joerg Roedel <joerg.roedel@amd.com>
  4. * Leo Duran <leo.duran@amd.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/pci.h>
  20. #include <linux/pci-ats.h>
  21. #include <linux/bitmap.h>
  22. #include <linux/slab.h>
  23. #include <linux/debugfs.h>
  24. #include <linux/scatterlist.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/iommu-helper.h>
  27. #include <linux/iommu.h>
  28. #include <linux/delay.h>
  29. #include <asm/proto.h>
  30. #include <asm/iommu.h>
  31. #include <asm/gart.h>
  32. #include <asm/dma.h>
  33. #include <asm/amd_iommu_proto.h>
  34. #include <asm/amd_iommu_types.h>
  35. #include <asm/amd_iommu.h>
  36. #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  37. #define LOOP_TIMEOUT 100000
  38. static DEFINE_RWLOCK(amd_iommu_devtable_lock);
  39. /* A list of preallocated protection domains */
  40. static LIST_HEAD(iommu_pd_list);
  41. static DEFINE_SPINLOCK(iommu_pd_list_lock);
  42. /*
  43. * Domain for untranslated devices - only allocated
  44. * if iommu=pt passed on kernel cmd line.
  45. */
  46. static struct protection_domain *pt_domain;
  47. static struct iommu_ops amd_iommu_ops;
  48. /*
  49. * general struct to manage commands send to an IOMMU
  50. */
  51. struct iommu_cmd {
  52. u32 data[4];
  53. };
  54. static void update_domain(struct protection_domain *domain);
  55. /****************************************************************************
  56. *
  57. * Helper functions
  58. *
  59. ****************************************************************************/
  60. static inline u16 get_device_id(struct device *dev)
  61. {
  62. struct pci_dev *pdev = to_pci_dev(dev);
  63. return calc_devid(pdev->bus->number, pdev->devfn);
  64. }
  65. static struct iommu_dev_data *get_dev_data(struct device *dev)
  66. {
  67. return dev->archdata.iommu;
  68. }
  69. /*
  70. * In this function the list of preallocated protection domains is traversed to
  71. * find the domain for a specific device
  72. */
  73. static struct dma_ops_domain *find_protection_domain(u16 devid)
  74. {
  75. struct dma_ops_domain *entry, *ret = NULL;
  76. unsigned long flags;
  77. u16 alias = amd_iommu_alias_table[devid];
  78. if (list_empty(&iommu_pd_list))
  79. return NULL;
  80. spin_lock_irqsave(&iommu_pd_list_lock, flags);
  81. list_for_each_entry(entry, &iommu_pd_list, list) {
  82. if (entry->target_dev == devid ||
  83. entry->target_dev == alias) {
  84. ret = entry;
  85. break;
  86. }
  87. }
  88. spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
  89. return ret;
  90. }
  91. /*
  92. * This function checks if the driver got a valid device from the caller to
  93. * avoid dereferencing invalid pointers.
  94. */
  95. static bool check_device(struct device *dev)
  96. {
  97. u16 devid;
  98. if (!dev || !dev->dma_mask)
  99. return false;
  100. /* No device or no PCI device */
  101. if (dev->bus != &pci_bus_type)
  102. return false;
  103. devid = get_device_id(dev);
  104. /* Out of our scope? */
  105. if (devid > amd_iommu_last_bdf)
  106. return false;
  107. if (amd_iommu_rlookup_table[devid] == NULL)
  108. return false;
  109. return true;
  110. }
  111. static int iommu_init_device(struct device *dev)
  112. {
  113. struct iommu_dev_data *dev_data;
  114. struct pci_dev *pdev;
  115. u16 devid, alias;
  116. if (dev->archdata.iommu)
  117. return 0;
  118. dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
  119. if (!dev_data)
  120. return -ENOMEM;
  121. dev_data->dev = dev;
  122. devid = get_device_id(dev);
  123. alias = amd_iommu_alias_table[devid];
  124. pdev = pci_get_bus_and_slot(PCI_BUS(alias), alias & 0xff);
  125. if (pdev)
  126. dev_data->alias = &pdev->dev;
  127. else {
  128. kfree(dev_data);
  129. return -ENOTSUPP;
  130. }
  131. atomic_set(&dev_data->bind, 0);
  132. dev->archdata.iommu = dev_data;
  133. return 0;
  134. }
  135. static void iommu_ignore_device(struct device *dev)
  136. {
  137. u16 devid, alias;
  138. devid = get_device_id(dev);
  139. alias = amd_iommu_alias_table[devid];
  140. memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
  141. memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
  142. amd_iommu_rlookup_table[devid] = NULL;
  143. amd_iommu_rlookup_table[alias] = NULL;
  144. }
  145. static void iommu_uninit_device(struct device *dev)
  146. {
  147. kfree(dev->archdata.iommu);
  148. }
  149. void __init amd_iommu_uninit_devices(void)
  150. {
  151. struct pci_dev *pdev = NULL;
  152. for_each_pci_dev(pdev) {
  153. if (!check_device(&pdev->dev))
  154. continue;
  155. iommu_uninit_device(&pdev->dev);
  156. }
  157. }
  158. int __init amd_iommu_init_devices(void)
  159. {
  160. struct pci_dev *pdev = NULL;
  161. int ret = 0;
  162. for_each_pci_dev(pdev) {
  163. if (!check_device(&pdev->dev))
  164. continue;
  165. ret = iommu_init_device(&pdev->dev);
  166. if (ret == -ENOTSUPP)
  167. iommu_ignore_device(&pdev->dev);
  168. else if (ret)
  169. goto out_free;
  170. }
  171. return 0;
  172. out_free:
  173. amd_iommu_uninit_devices();
  174. return ret;
  175. }
  176. #ifdef CONFIG_AMD_IOMMU_STATS
  177. /*
  178. * Initialization code for statistics collection
  179. */
  180. DECLARE_STATS_COUNTER(compl_wait);
  181. DECLARE_STATS_COUNTER(cnt_map_single);
  182. DECLARE_STATS_COUNTER(cnt_unmap_single);
  183. DECLARE_STATS_COUNTER(cnt_map_sg);
  184. DECLARE_STATS_COUNTER(cnt_unmap_sg);
  185. DECLARE_STATS_COUNTER(cnt_alloc_coherent);
  186. DECLARE_STATS_COUNTER(cnt_free_coherent);
  187. DECLARE_STATS_COUNTER(cross_page);
  188. DECLARE_STATS_COUNTER(domain_flush_single);
  189. DECLARE_STATS_COUNTER(domain_flush_all);
  190. DECLARE_STATS_COUNTER(alloced_io_mem);
  191. DECLARE_STATS_COUNTER(total_map_requests);
  192. static struct dentry *stats_dir;
  193. static struct dentry *de_fflush;
  194. static void amd_iommu_stats_add(struct __iommu_counter *cnt)
  195. {
  196. if (stats_dir == NULL)
  197. return;
  198. cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
  199. &cnt->value);
  200. }
  201. static void amd_iommu_stats_init(void)
  202. {
  203. stats_dir = debugfs_create_dir("amd-iommu", NULL);
  204. if (stats_dir == NULL)
  205. return;
  206. de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
  207. (u32 *)&amd_iommu_unmap_flush);
  208. amd_iommu_stats_add(&compl_wait);
  209. amd_iommu_stats_add(&cnt_map_single);
  210. amd_iommu_stats_add(&cnt_unmap_single);
  211. amd_iommu_stats_add(&cnt_map_sg);
  212. amd_iommu_stats_add(&cnt_unmap_sg);
  213. amd_iommu_stats_add(&cnt_alloc_coherent);
  214. amd_iommu_stats_add(&cnt_free_coherent);
  215. amd_iommu_stats_add(&cross_page);
  216. amd_iommu_stats_add(&domain_flush_single);
  217. amd_iommu_stats_add(&domain_flush_all);
  218. amd_iommu_stats_add(&alloced_io_mem);
  219. amd_iommu_stats_add(&total_map_requests);
  220. }
  221. #endif
  222. /****************************************************************************
  223. *
  224. * Interrupt handling functions
  225. *
  226. ****************************************************************************/
  227. static void dump_dte_entry(u16 devid)
  228. {
  229. int i;
  230. for (i = 0; i < 8; ++i)
  231. pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
  232. amd_iommu_dev_table[devid].data[i]);
  233. }
  234. static void dump_command(unsigned long phys_addr)
  235. {
  236. struct iommu_cmd *cmd = phys_to_virt(phys_addr);
  237. int i;
  238. for (i = 0; i < 4; ++i)
  239. pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
  240. }
  241. static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
  242. {
  243. u32 *event = __evt;
  244. int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
  245. int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
  246. int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
  247. int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
  248. u64 address = (u64)(((u64)event[3]) << 32) | event[2];
  249. printk(KERN_ERR "AMD-Vi: Event logged [");
  250. switch (type) {
  251. case EVENT_TYPE_ILL_DEV:
  252. printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
  253. "address=0x%016llx flags=0x%04x]\n",
  254. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  255. address, flags);
  256. dump_dte_entry(devid);
  257. break;
  258. case EVENT_TYPE_IO_FAULT:
  259. printk("IO_PAGE_FAULT device=%02x:%02x.%x "
  260. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  261. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  262. domid, address, flags);
  263. break;
  264. case EVENT_TYPE_DEV_TAB_ERR:
  265. printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  266. "address=0x%016llx flags=0x%04x]\n",
  267. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  268. address, flags);
  269. break;
  270. case EVENT_TYPE_PAGE_TAB_ERR:
  271. printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  272. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  273. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  274. domid, address, flags);
  275. break;
  276. case EVENT_TYPE_ILL_CMD:
  277. printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
  278. dump_command(address);
  279. break;
  280. case EVENT_TYPE_CMD_HARD_ERR:
  281. printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
  282. "flags=0x%04x]\n", address, flags);
  283. break;
  284. case EVENT_TYPE_IOTLB_INV_TO:
  285. printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
  286. "address=0x%016llx]\n",
  287. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  288. address);
  289. break;
  290. case EVENT_TYPE_INV_DEV_REQ:
  291. printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
  292. "address=0x%016llx flags=0x%04x]\n",
  293. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  294. address, flags);
  295. break;
  296. default:
  297. printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
  298. }
  299. }
  300. static void iommu_poll_events(struct amd_iommu *iommu)
  301. {
  302. u32 head, tail;
  303. unsigned long flags;
  304. spin_lock_irqsave(&iommu->lock, flags);
  305. head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  306. tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
  307. while (head != tail) {
  308. iommu_print_event(iommu, iommu->evt_buf + head);
  309. head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
  310. }
  311. writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  312. spin_unlock_irqrestore(&iommu->lock, flags);
  313. }
  314. irqreturn_t amd_iommu_int_thread(int irq, void *data)
  315. {
  316. struct amd_iommu *iommu;
  317. for_each_iommu(iommu)
  318. iommu_poll_events(iommu);
  319. return IRQ_HANDLED;
  320. }
  321. irqreturn_t amd_iommu_int_handler(int irq, void *data)
  322. {
  323. return IRQ_WAKE_THREAD;
  324. }
  325. /****************************************************************************
  326. *
  327. * IOMMU command queuing functions
  328. *
  329. ****************************************************************************/
  330. static int wait_on_sem(volatile u64 *sem)
  331. {
  332. int i = 0;
  333. while (*sem == 0 && i < LOOP_TIMEOUT) {
  334. udelay(1);
  335. i += 1;
  336. }
  337. if (i == LOOP_TIMEOUT) {
  338. pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
  339. return -EIO;
  340. }
  341. return 0;
  342. }
  343. static void copy_cmd_to_buffer(struct amd_iommu *iommu,
  344. struct iommu_cmd *cmd,
  345. u32 tail)
  346. {
  347. u8 *target;
  348. target = iommu->cmd_buf + tail;
  349. tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
  350. /* Copy command to buffer */
  351. memcpy(target, cmd, sizeof(*cmd));
  352. /* Tell the IOMMU about it */
  353. writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  354. }
  355. static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
  356. {
  357. WARN_ON(address & 0x7ULL);
  358. memset(cmd, 0, sizeof(*cmd));
  359. cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
  360. cmd->data[1] = upper_32_bits(__pa(address));
  361. cmd->data[2] = 1;
  362. CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
  363. }
  364. static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
  365. {
  366. memset(cmd, 0, sizeof(*cmd));
  367. cmd->data[0] = devid;
  368. CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
  369. }
  370. static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
  371. size_t size, u16 domid, int pde)
  372. {
  373. u64 pages;
  374. int s;
  375. pages = iommu_num_pages(address, size, PAGE_SIZE);
  376. s = 0;
  377. if (pages > 1) {
  378. /*
  379. * If we have to flush more than one page, flush all
  380. * TLB entries for this domain
  381. */
  382. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  383. s = 1;
  384. }
  385. address &= PAGE_MASK;
  386. memset(cmd, 0, sizeof(*cmd));
  387. cmd->data[1] |= domid;
  388. cmd->data[2] = lower_32_bits(address);
  389. cmd->data[3] = upper_32_bits(address);
  390. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  391. if (s) /* size bit - we flush more than one 4kb page */
  392. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  393. if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
  394. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  395. }
  396. static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
  397. u64 address, size_t size)
  398. {
  399. u64 pages;
  400. int s;
  401. pages = iommu_num_pages(address, size, PAGE_SIZE);
  402. s = 0;
  403. if (pages > 1) {
  404. /*
  405. * If we have to flush more than one page, flush all
  406. * TLB entries for this domain
  407. */
  408. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  409. s = 1;
  410. }
  411. address &= PAGE_MASK;
  412. memset(cmd, 0, sizeof(*cmd));
  413. cmd->data[0] = devid;
  414. cmd->data[0] |= (qdep & 0xff) << 24;
  415. cmd->data[1] = devid;
  416. cmd->data[2] = lower_32_bits(address);
  417. cmd->data[3] = upper_32_bits(address);
  418. CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
  419. if (s)
  420. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  421. }
  422. static void build_inv_all(struct iommu_cmd *cmd)
  423. {
  424. memset(cmd, 0, sizeof(*cmd));
  425. CMD_SET_TYPE(cmd, CMD_INV_ALL);
  426. }
  427. /*
  428. * Writes the command to the IOMMUs command buffer and informs the
  429. * hardware about the new command.
  430. */
  431. static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
  432. {
  433. u32 left, tail, head, next_tail;
  434. unsigned long flags;
  435. WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
  436. again:
  437. spin_lock_irqsave(&iommu->lock, flags);
  438. head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
  439. tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  440. next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
  441. left = (head - next_tail) % iommu->cmd_buf_size;
  442. if (left <= 2) {
  443. struct iommu_cmd sync_cmd;
  444. volatile u64 sem = 0;
  445. int ret;
  446. build_completion_wait(&sync_cmd, (u64)&sem);
  447. copy_cmd_to_buffer(iommu, &sync_cmd, tail);
  448. spin_unlock_irqrestore(&iommu->lock, flags);
  449. if ((ret = wait_on_sem(&sem)) != 0)
  450. return ret;
  451. goto again;
  452. }
  453. copy_cmd_to_buffer(iommu, cmd, tail);
  454. /* We need to sync now to make sure all commands are processed */
  455. iommu->need_sync = true;
  456. spin_unlock_irqrestore(&iommu->lock, flags);
  457. return 0;
  458. }
  459. /*
  460. * This function queues a completion wait command into the command
  461. * buffer of an IOMMU
  462. */
  463. static int iommu_completion_wait(struct amd_iommu *iommu)
  464. {
  465. struct iommu_cmd cmd;
  466. volatile u64 sem = 0;
  467. int ret;
  468. if (!iommu->need_sync)
  469. return 0;
  470. build_completion_wait(&cmd, (u64)&sem);
  471. ret = iommu_queue_command(iommu, &cmd);
  472. if (ret)
  473. return ret;
  474. return wait_on_sem(&sem);
  475. }
  476. static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
  477. {
  478. struct iommu_cmd cmd;
  479. build_inv_dte(&cmd, devid);
  480. return iommu_queue_command(iommu, &cmd);
  481. }
  482. static void iommu_flush_dte_all(struct amd_iommu *iommu)
  483. {
  484. u32 devid;
  485. for (devid = 0; devid <= 0xffff; ++devid)
  486. iommu_flush_dte(iommu, devid);
  487. iommu_completion_wait(iommu);
  488. }
  489. /*
  490. * This function uses heavy locking and may disable irqs for some time. But
  491. * this is no issue because it is only called during resume.
  492. */
  493. static void iommu_flush_tlb_all(struct amd_iommu *iommu)
  494. {
  495. u32 dom_id;
  496. for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
  497. struct iommu_cmd cmd;
  498. build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
  499. dom_id, 1);
  500. iommu_queue_command(iommu, &cmd);
  501. }
  502. iommu_completion_wait(iommu);
  503. }
  504. static void iommu_flush_all(struct amd_iommu *iommu)
  505. {
  506. struct iommu_cmd cmd;
  507. build_inv_all(&cmd);
  508. iommu_queue_command(iommu, &cmd);
  509. iommu_completion_wait(iommu);
  510. }
  511. void iommu_flush_all_caches(struct amd_iommu *iommu)
  512. {
  513. if (iommu_feature(iommu, FEATURE_IA)) {
  514. iommu_flush_all(iommu);
  515. } else {
  516. iommu_flush_dte_all(iommu);
  517. iommu_flush_tlb_all(iommu);
  518. }
  519. }
  520. /*
  521. * Command send function for flushing on-device TLB
  522. */
  523. static int device_flush_iotlb(struct device *dev, u64 address, size_t size)
  524. {
  525. struct pci_dev *pdev = to_pci_dev(dev);
  526. struct amd_iommu *iommu;
  527. struct iommu_cmd cmd;
  528. u16 devid;
  529. int qdep;
  530. qdep = pci_ats_queue_depth(pdev);
  531. devid = get_device_id(dev);
  532. iommu = amd_iommu_rlookup_table[devid];
  533. build_inv_iotlb_pages(&cmd, devid, qdep, address, size);
  534. return iommu_queue_command(iommu, &cmd);
  535. }
  536. /*
  537. * Command send function for invalidating a device table entry
  538. */
  539. static int device_flush_dte(struct device *dev)
  540. {
  541. struct amd_iommu *iommu;
  542. struct pci_dev *pdev;
  543. u16 devid;
  544. int ret;
  545. pdev = to_pci_dev(dev);
  546. devid = get_device_id(dev);
  547. iommu = amd_iommu_rlookup_table[devid];
  548. ret = iommu_flush_dte(iommu, devid);
  549. if (ret)
  550. return ret;
  551. if (pci_ats_enabled(pdev))
  552. ret = device_flush_iotlb(dev, 0, ~0UL);
  553. return ret;
  554. }
  555. /*
  556. * TLB invalidation function which is called from the mapping functions.
  557. * It invalidates a single PTE if the range to flush is within a single
  558. * page. Otherwise it flushes the whole TLB of the IOMMU.
  559. */
  560. static void __domain_flush_pages(struct protection_domain *domain,
  561. u64 address, size_t size, int pde)
  562. {
  563. struct iommu_dev_data *dev_data;
  564. struct iommu_cmd cmd;
  565. int ret = 0, i;
  566. build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
  567. for (i = 0; i < amd_iommus_present; ++i) {
  568. if (!domain->dev_iommu[i])
  569. continue;
  570. /*
  571. * Devices of this domain are behind this IOMMU
  572. * We need a TLB flush
  573. */
  574. ret |= iommu_queue_command(amd_iommus[i], &cmd);
  575. }
  576. list_for_each_entry(dev_data, &domain->dev_list, list) {
  577. struct pci_dev *pdev = to_pci_dev(dev_data->dev);
  578. if (!pci_ats_enabled(pdev))
  579. continue;
  580. ret |= device_flush_iotlb(dev_data->dev, address, size);
  581. }
  582. WARN_ON(ret);
  583. }
  584. static void domain_flush_pages(struct protection_domain *domain,
  585. u64 address, size_t size)
  586. {
  587. __domain_flush_pages(domain, address, size, 0);
  588. }
  589. /* Flush the whole IO/TLB for a given protection domain */
  590. static void domain_flush_tlb(struct protection_domain *domain)
  591. {
  592. __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
  593. }
  594. /* Flush the whole IO/TLB for a given protection domain - including PDE */
  595. static void domain_flush_tlb_pde(struct protection_domain *domain)
  596. {
  597. __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
  598. }
  599. static void domain_flush_complete(struct protection_domain *domain)
  600. {
  601. int i;
  602. for (i = 0; i < amd_iommus_present; ++i) {
  603. if (!domain->dev_iommu[i])
  604. continue;
  605. /*
  606. * Devices of this domain are behind this IOMMU
  607. * We need to wait for completion of all commands.
  608. */
  609. iommu_completion_wait(amd_iommus[i]);
  610. }
  611. }
  612. /*
  613. * This function flushes the DTEs for all devices in domain
  614. */
  615. static void domain_flush_devices(struct protection_domain *domain)
  616. {
  617. struct iommu_dev_data *dev_data;
  618. unsigned long flags;
  619. spin_lock_irqsave(&domain->lock, flags);
  620. list_for_each_entry(dev_data, &domain->dev_list, list)
  621. device_flush_dte(dev_data->dev);
  622. spin_unlock_irqrestore(&domain->lock, flags);
  623. }
  624. /****************************************************************************
  625. *
  626. * The functions below are used the create the page table mappings for
  627. * unity mapped regions.
  628. *
  629. ****************************************************************************/
  630. /*
  631. * This function is used to add another level to an IO page table. Adding
  632. * another level increases the size of the address space by 9 bits to a size up
  633. * to 64 bits.
  634. */
  635. static bool increase_address_space(struct protection_domain *domain,
  636. gfp_t gfp)
  637. {
  638. u64 *pte;
  639. if (domain->mode == PAGE_MODE_6_LEVEL)
  640. /* address space already 64 bit large */
  641. return false;
  642. pte = (void *)get_zeroed_page(gfp);
  643. if (!pte)
  644. return false;
  645. *pte = PM_LEVEL_PDE(domain->mode,
  646. virt_to_phys(domain->pt_root));
  647. domain->pt_root = pte;
  648. domain->mode += 1;
  649. domain->updated = true;
  650. return true;
  651. }
  652. static u64 *alloc_pte(struct protection_domain *domain,
  653. unsigned long address,
  654. unsigned long page_size,
  655. u64 **pte_page,
  656. gfp_t gfp)
  657. {
  658. int level, end_lvl;
  659. u64 *pte, *page;
  660. BUG_ON(!is_power_of_2(page_size));
  661. while (address > PM_LEVEL_SIZE(domain->mode))
  662. increase_address_space(domain, gfp);
  663. level = domain->mode - 1;
  664. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  665. address = PAGE_SIZE_ALIGN(address, page_size);
  666. end_lvl = PAGE_SIZE_LEVEL(page_size);
  667. while (level > end_lvl) {
  668. if (!IOMMU_PTE_PRESENT(*pte)) {
  669. page = (u64 *)get_zeroed_page(gfp);
  670. if (!page)
  671. return NULL;
  672. *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
  673. }
  674. /* No level skipping support yet */
  675. if (PM_PTE_LEVEL(*pte) != level)
  676. return NULL;
  677. level -= 1;
  678. pte = IOMMU_PTE_PAGE(*pte);
  679. if (pte_page && level == end_lvl)
  680. *pte_page = pte;
  681. pte = &pte[PM_LEVEL_INDEX(level, address)];
  682. }
  683. return pte;
  684. }
  685. /*
  686. * This function checks if there is a PTE for a given dma address. If
  687. * there is one, it returns the pointer to it.
  688. */
  689. static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
  690. {
  691. int level;
  692. u64 *pte;
  693. if (address > PM_LEVEL_SIZE(domain->mode))
  694. return NULL;
  695. level = domain->mode - 1;
  696. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  697. while (level > 0) {
  698. /* Not Present */
  699. if (!IOMMU_PTE_PRESENT(*pte))
  700. return NULL;
  701. /* Large PTE */
  702. if (PM_PTE_LEVEL(*pte) == 0x07) {
  703. unsigned long pte_mask, __pte;
  704. /*
  705. * If we have a series of large PTEs, make
  706. * sure to return a pointer to the first one.
  707. */
  708. pte_mask = PTE_PAGE_SIZE(*pte);
  709. pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
  710. __pte = ((unsigned long)pte) & pte_mask;
  711. return (u64 *)__pte;
  712. }
  713. /* No level skipping support yet */
  714. if (PM_PTE_LEVEL(*pte) != level)
  715. return NULL;
  716. level -= 1;
  717. /* Walk to the next level */
  718. pte = IOMMU_PTE_PAGE(*pte);
  719. pte = &pte[PM_LEVEL_INDEX(level, address)];
  720. }
  721. return pte;
  722. }
  723. /*
  724. * Generic mapping functions. It maps a physical address into a DMA
  725. * address space. It allocates the page table pages if necessary.
  726. * In the future it can be extended to a generic mapping function
  727. * supporting all features of AMD IOMMU page tables like level skipping
  728. * and full 64 bit address spaces.
  729. */
  730. static int iommu_map_page(struct protection_domain *dom,
  731. unsigned long bus_addr,
  732. unsigned long phys_addr,
  733. int prot,
  734. unsigned long page_size)
  735. {
  736. u64 __pte, *pte;
  737. int i, count;
  738. if (!(prot & IOMMU_PROT_MASK))
  739. return -EINVAL;
  740. bus_addr = PAGE_ALIGN(bus_addr);
  741. phys_addr = PAGE_ALIGN(phys_addr);
  742. count = PAGE_SIZE_PTE_COUNT(page_size);
  743. pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
  744. for (i = 0; i < count; ++i)
  745. if (IOMMU_PTE_PRESENT(pte[i]))
  746. return -EBUSY;
  747. if (page_size > PAGE_SIZE) {
  748. __pte = PAGE_SIZE_PTE(phys_addr, page_size);
  749. __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
  750. } else
  751. __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
  752. if (prot & IOMMU_PROT_IR)
  753. __pte |= IOMMU_PTE_IR;
  754. if (prot & IOMMU_PROT_IW)
  755. __pte |= IOMMU_PTE_IW;
  756. for (i = 0; i < count; ++i)
  757. pte[i] = __pte;
  758. update_domain(dom);
  759. return 0;
  760. }
  761. static unsigned long iommu_unmap_page(struct protection_domain *dom,
  762. unsigned long bus_addr,
  763. unsigned long page_size)
  764. {
  765. unsigned long long unmap_size, unmapped;
  766. u64 *pte;
  767. BUG_ON(!is_power_of_2(page_size));
  768. unmapped = 0;
  769. while (unmapped < page_size) {
  770. pte = fetch_pte(dom, bus_addr);
  771. if (!pte) {
  772. /*
  773. * No PTE for this address
  774. * move forward in 4kb steps
  775. */
  776. unmap_size = PAGE_SIZE;
  777. } else if (PM_PTE_LEVEL(*pte) == 0) {
  778. /* 4kb PTE found for this address */
  779. unmap_size = PAGE_SIZE;
  780. *pte = 0ULL;
  781. } else {
  782. int count, i;
  783. /* Large PTE found which maps this address */
  784. unmap_size = PTE_PAGE_SIZE(*pte);
  785. count = PAGE_SIZE_PTE_COUNT(unmap_size);
  786. for (i = 0; i < count; i++)
  787. pte[i] = 0ULL;
  788. }
  789. bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
  790. unmapped += unmap_size;
  791. }
  792. BUG_ON(!is_power_of_2(unmapped));
  793. return unmapped;
  794. }
  795. /*
  796. * This function checks if a specific unity mapping entry is needed for
  797. * this specific IOMMU.
  798. */
  799. static int iommu_for_unity_map(struct amd_iommu *iommu,
  800. struct unity_map_entry *entry)
  801. {
  802. u16 bdf, i;
  803. for (i = entry->devid_start; i <= entry->devid_end; ++i) {
  804. bdf = amd_iommu_alias_table[i];
  805. if (amd_iommu_rlookup_table[bdf] == iommu)
  806. return 1;
  807. }
  808. return 0;
  809. }
  810. /*
  811. * This function actually applies the mapping to the page table of the
  812. * dma_ops domain.
  813. */
  814. static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
  815. struct unity_map_entry *e)
  816. {
  817. u64 addr;
  818. int ret;
  819. for (addr = e->address_start; addr < e->address_end;
  820. addr += PAGE_SIZE) {
  821. ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
  822. PAGE_SIZE);
  823. if (ret)
  824. return ret;
  825. /*
  826. * if unity mapping is in aperture range mark the page
  827. * as allocated in the aperture
  828. */
  829. if (addr < dma_dom->aperture_size)
  830. __set_bit(addr >> PAGE_SHIFT,
  831. dma_dom->aperture[0]->bitmap);
  832. }
  833. return 0;
  834. }
  835. /*
  836. * Init the unity mappings for a specific IOMMU in the system
  837. *
  838. * Basically iterates over all unity mapping entries and applies them to
  839. * the default domain DMA of that IOMMU if necessary.
  840. */
  841. static int iommu_init_unity_mappings(struct amd_iommu *iommu)
  842. {
  843. struct unity_map_entry *entry;
  844. int ret;
  845. list_for_each_entry(entry, &amd_iommu_unity_map, list) {
  846. if (!iommu_for_unity_map(iommu, entry))
  847. continue;
  848. ret = dma_ops_unity_map(iommu->default_dom, entry);
  849. if (ret)
  850. return ret;
  851. }
  852. return 0;
  853. }
  854. /*
  855. * Inits the unity mappings required for a specific device
  856. */
  857. static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
  858. u16 devid)
  859. {
  860. struct unity_map_entry *e;
  861. int ret;
  862. list_for_each_entry(e, &amd_iommu_unity_map, list) {
  863. if (!(devid >= e->devid_start && devid <= e->devid_end))
  864. continue;
  865. ret = dma_ops_unity_map(dma_dom, e);
  866. if (ret)
  867. return ret;
  868. }
  869. return 0;
  870. }
  871. /****************************************************************************
  872. *
  873. * The next functions belong to the address allocator for the dma_ops
  874. * interface functions. They work like the allocators in the other IOMMU
  875. * drivers. Its basically a bitmap which marks the allocated pages in
  876. * the aperture. Maybe it could be enhanced in the future to a more
  877. * efficient allocator.
  878. *
  879. ****************************************************************************/
  880. /*
  881. * The address allocator core functions.
  882. *
  883. * called with domain->lock held
  884. */
  885. /*
  886. * Used to reserve address ranges in the aperture (e.g. for exclusion
  887. * ranges.
  888. */
  889. static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
  890. unsigned long start_page,
  891. unsigned int pages)
  892. {
  893. unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
  894. if (start_page + pages > last_page)
  895. pages = last_page - start_page;
  896. for (i = start_page; i < start_page + pages; ++i) {
  897. int index = i / APERTURE_RANGE_PAGES;
  898. int page = i % APERTURE_RANGE_PAGES;
  899. __set_bit(page, dom->aperture[index]->bitmap);
  900. }
  901. }
  902. /*
  903. * This function is used to add a new aperture range to an existing
  904. * aperture in case of dma_ops domain allocation or address allocation
  905. * failure.
  906. */
  907. static int alloc_new_range(struct dma_ops_domain *dma_dom,
  908. bool populate, gfp_t gfp)
  909. {
  910. int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
  911. struct amd_iommu *iommu;
  912. unsigned long i;
  913. #ifdef CONFIG_IOMMU_STRESS
  914. populate = false;
  915. #endif
  916. if (index >= APERTURE_MAX_RANGES)
  917. return -ENOMEM;
  918. dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
  919. if (!dma_dom->aperture[index])
  920. return -ENOMEM;
  921. dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
  922. if (!dma_dom->aperture[index]->bitmap)
  923. goto out_free;
  924. dma_dom->aperture[index]->offset = dma_dom->aperture_size;
  925. if (populate) {
  926. unsigned long address = dma_dom->aperture_size;
  927. int i, num_ptes = APERTURE_RANGE_PAGES / 512;
  928. u64 *pte, *pte_page;
  929. for (i = 0; i < num_ptes; ++i) {
  930. pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
  931. &pte_page, gfp);
  932. if (!pte)
  933. goto out_free;
  934. dma_dom->aperture[index]->pte_pages[i] = pte_page;
  935. address += APERTURE_RANGE_SIZE / 64;
  936. }
  937. }
  938. dma_dom->aperture_size += APERTURE_RANGE_SIZE;
  939. /* Initialize the exclusion range if necessary */
  940. for_each_iommu(iommu) {
  941. if (iommu->exclusion_start &&
  942. iommu->exclusion_start >= dma_dom->aperture[index]->offset
  943. && iommu->exclusion_start < dma_dom->aperture_size) {
  944. unsigned long startpage;
  945. int pages = iommu_num_pages(iommu->exclusion_start,
  946. iommu->exclusion_length,
  947. PAGE_SIZE);
  948. startpage = iommu->exclusion_start >> PAGE_SHIFT;
  949. dma_ops_reserve_addresses(dma_dom, startpage, pages);
  950. }
  951. }
  952. /*
  953. * Check for areas already mapped as present in the new aperture
  954. * range and mark those pages as reserved in the allocator. Such
  955. * mappings may already exist as a result of requested unity
  956. * mappings for devices.
  957. */
  958. for (i = dma_dom->aperture[index]->offset;
  959. i < dma_dom->aperture_size;
  960. i += PAGE_SIZE) {
  961. u64 *pte = fetch_pte(&dma_dom->domain, i);
  962. if (!pte || !IOMMU_PTE_PRESENT(*pte))
  963. continue;
  964. dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
  965. }
  966. update_domain(&dma_dom->domain);
  967. return 0;
  968. out_free:
  969. update_domain(&dma_dom->domain);
  970. free_page((unsigned long)dma_dom->aperture[index]->bitmap);
  971. kfree(dma_dom->aperture[index]);
  972. dma_dom->aperture[index] = NULL;
  973. return -ENOMEM;
  974. }
  975. static unsigned long dma_ops_area_alloc(struct device *dev,
  976. struct dma_ops_domain *dom,
  977. unsigned int pages,
  978. unsigned long align_mask,
  979. u64 dma_mask,
  980. unsigned long start)
  981. {
  982. unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
  983. int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
  984. int i = start >> APERTURE_RANGE_SHIFT;
  985. unsigned long boundary_size;
  986. unsigned long address = -1;
  987. unsigned long limit;
  988. next_bit >>= PAGE_SHIFT;
  989. boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
  990. PAGE_SIZE) >> PAGE_SHIFT;
  991. for (;i < max_index; ++i) {
  992. unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
  993. if (dom->aperture[i]->offset >= dma_mask)
  994. break;
  995. limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
  996. dma_mask >> PAGE_SHIFT);
  997. address = iommu_area_alloc(dom->aperture[i]->bitmap,
  998. limit, next_bit, pages, 0,
  999. boundary_size, align_mask);
  1000. if (address != -1) {
  1001. address = dom->aperture[i]->offset +
  1002. (address << PAGE_SHIFT);
  1003. dom->next_address = address + (pages << PAGE_SHIFT);
  1004. break;
  1005. }
  1006. next_bit = 0;
  1007. }
  1008. return address;
  1009. }
  1010. static unsigned long dma_ops_alloc_addresses(struct device *dev,
  1011. struct dma_ops_domain *dom,
  1012. unsigned int pages,
  1013. unsigned long align_mask,
  1014. u64 dma_mask)
  1015. {
  1016. unsigned long address;
  1017. #ifdef CONFIG_IOMMU_STRESS
  1018. dom->next_address = 0;
  1019. dom->need_flush = true;
  1020. #endif
  1021. address = dma_ops_area_alloc(dev, dom, pages, align_mask,
  1022. dma_mask, dom->next_address);
  1023. if (address == -1) {
  1024. dom->next_address = 0;
  1025. address = dma_ops_area_alloc(dev, dom, pages, align_mask,
  1026. dma_mask, 0);
  1027. dom->need_flush = true;
  1028. }
  1029. if (unlikely(address == -1))
  1030. address = DMA_ERROR_CODE;
  1031. WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
  1032. return address;
  1033. }
  1034. /*
  1035. * The address free function.
  1036. *
  1037. * called with domain->lock held
  1038. */
  1039. static void dma_ops_free_addresses(struct dma_ops_domain *dom,
  1040. unsigned long address,
  1041. unsigned int pages)
  1042. {
  1043. unsigned i = address >> APERTURE_RANGE_SHIFT;
  1044. struct aperture_range *range = dom->aperture[i];
  1045. BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
  1046. #ifdef CONFIG_IOMMU_STRESS
  1047. if (i < 4)
  1048. return;
  1049. #endif
  1050. if (address >= dom->next_address)
  1051. dom->need_flush = true;
  1052. address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
  1053. bitmap_clear(range->bitmap, address, pages);
  1054. }
  1055. /****************************************************************************
  1056. *
  1057. * The next functions belong to the domain allocation. A domain is
  1058. * allocated for every IOMMU as the default domain. If device isolation
  1059. * is enabled, every device get its own domain. The most important thing
  1060. * about domains is the page table mapping the DMA address space they
  1061. * contain.
  1062. *
  1063. ****************************************************************************/
  1064. /*
  1065. * This function adds a protection domain to the global protection domain list
  1066. */
  1067. static void add_domain_to_list(struct protection_domain *domain)
  1068. {
  1069. unsigned long flags;
  1070. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1071. list_add(&domain->list, &amd_iommu_pd_list);
  1072. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1073. }
  1074. /*
  1075. * This function removes a protection domain to the global
  1076. * protection domain list
  1077. */
  1078. static void del_domain_from_list(struct protection_domain *domain)
  1079. {
  1080. unsigned long flags;
  1081. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1082. list_del(&domain->list);
  1083. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1084. }
  1085. static u16 domain_id_alloc(void)
  1086. {
  1087. unsigned long flags;
  1088. int id;
  1089. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1090. id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
  1091. BUG_ON(id == 0);
  1092. if (id > 0 && id < MAX_DOMAIN_ID)
  1093. __set_bit(id, amd_iommu_pd_alloc_bitmap);
  1094. else
  1095. id = 0;
  1096. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1097. return id;
  1098. }
  1099. static void domain_id_free(int id)
  1100. {
  1101. unsigned long flags;
  1102. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1103. if (id > 0 && id < MAX_DOMAIN_ID)
  1104. __clear_bit(id, amd_iommu_pd_alloc_bitmap);
  1105. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1106. }
  1107. static void free_pagetable(struct protection_domain *domain)
  1108. {
  1109. int i, j;
  1110. u64 *p1, *p2, *p3;
  1111. p1 = domain->pt_root;
  1112. if (!p1)
  1113. return;
  1114. for (i = 0; i < 512; ++i) {
  1115. if (!IOMMU_PTE_PRESENT(p1[i]))
  1116. continue;
  1117. p2 = IOMMU_PTE_PAGE(p1[i]);
  1118. for (j = 0; j < 512; ++j) {
  1119. if (!IOMMU_PTE_PRESENT(p2[j]))
  1120. continue;
  1121. p3 = IOMMU_PTE_PAGE(p2[j]);
  1122. free_page((unsigned long)p3);
  1123. }
  1124. free_page((unsigned long)p2);
  1125. }
  1126. free_page((unsigned long)p1);
  1127. domain->pt_root = NULL;
  1128. }
  1129. /*
  1130. * Free a domain, only used if something went wrong in the
  1131. * allocation path and we need to free an already allocated page table
  1132. */
  1133. static void dma_ops_domain_free(struct dma_ops_domain *dom)
  1134. {
  1135. int i;
  1136. if (!dom)
  1137. return;
  1138. del_domain_from_list(&dom->domain);
  1139. free_pagetable(&dom->domain);
  1140. for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
  1141. if (!dom->aperture[i])
  1142. continue;
  1143. free_page((unsigned long)dom->aperture[i]->bitmap);
  1144. kfree(dom->aperture[i]);
  1145. }
  1146. kfree(dom);
  1147. }
  1148. /*
  1149. * Allocates a new protection domain usable for the dma_ops functions.
  1150. * It also initializes the page table and the address allocator data
  1151. * structures required for the dma_ops interface
  1152. */
  1153. static struct dma_ops_domain *dma_ops_domain_alloc(void)
  1154. {
  1155. struct dma_ops_domain *dma_dom;
  1156. dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
  1157. if (!dma_dom)
  1158. return NULL;
  1159. spin_lock_init(&dma_dom->domain.lock);
  1160. dma_dom->domain.id = domain_id_alloc();
  1161. if (dma_dom->domain.id == 0)
  1162. goto free_dma_dom;
  1163. INIT_LIST_HEAD(&dma_dom->domain.dev_list);
  1164. dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
  1165. dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  1166. dma_dom->domain.flags = PD_DMA_OPS_MASK;
  1167. dma_dom->domain.priv = dma_dom;
  1168. if (!dma_dom->domain.pt_root)
  1169. goto free_dma_dom;
  1170. dma_dom->need_flush = false;
  1171. dma_dom->target_dev = 0xffff;
  1172. add_domain_to_list(&dma_dom->domain);
  1173. if (alloc_new_range(dma_dom, true, GFP_KERNEL))
  1174. goto free_dma_dom;
  1175. /*
  1176. * mark the first page as allocated so we never return 0 as
  1177. * a valid dma-address. So we can use 0 as error value
  1178. */
  1179. dma_dom->aperture[0]->bitmap[0] = 1;
  1180. dma_dom->next_address = 0;
  1181. return dma_dom;
  1182. free_dma_dom:
  1183. dma_ops_domain_free(dma_dom);
  1184. return NULL;
  1185. }
  1186. /*
  1187. * little helper function to check whether a given protection domain is a
  1188. * dma_ops domain
  1189. */
  1190. static bool dma_ops_domain(struct protection_domain *domain)
  1191. {
  1192. return domain->flags & PD_DMA_OPS_MASK;
  1193. }
  1194. static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
  1195. {
  1196. u64 pte_root = virt_to_phys(domain->pt_root);
  1197. u32 flags = 0;
  1198. pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
  1199. << DEV_ENTRY_MODE_SHIFT;
  1200. pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
  1201. if (ats)
  1202. flags |= DTE_FLAG_IOTLB;
  1203. amd_iommu_dev_table[devid].data[3] |= flags;
  1204. amd_iommu_dev_table[devid].data[2] = domain->id;
  1205. amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
  1206. amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
  1207. }
  1208. static void clear_dte_entry(u16 devid)
  1209. {
  1210. /* remove entry from the device table seen by the hardware */
  1211. amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
  1212. amd_iommu_dev_table[devid].data[1] = 0;
  1213. amd_iommu_dev_table[devid].data[2] = 0;
  1214. amd_iommu_apply_erratum_63(devid);
  1215. }
  1216. static void do_attach(struct device *dev, struct protection_domain *domain)
  1217. {
  1218. struct iommu_dev_data *dev_data;
  1219. struct amd_iommu *iommu;
  1220. struct pci_dev *pdev;
  1221. bool ats = false;
  1222. u16 devid;
  1223. devid = get_device_id(dev);
  1224. iommu = amd_iommu_rlookup_table[devid];
  1225. dev_data = get_dev_data(dev);
  1226. pdev = to_pci_dev(dev);
  1227. if (amd_iommu_iotlb_sup)
  1228. ats = pci_ats_enabled(pdev);
  1229. /* Update data structures */
  1230. dev_data->domain = domain;
  1231. list_add(&dev_data->list, &domain->dev_list);
  1232. set_dte_entry(devid, domain, ats);
  1233. /* Do reference counting */
  1234. domain->dev_iommu[iommu->index] += 1;
  1235. domain->dev_cnt += 1;
  1236. /* Flush the DTE entry */
  1237. device_flush_dte(dev);
  1238. }
  1239. static void do_detach(struct device *dev)
  1240. {
  1241. struct iommu_dev_data *dev_data;
  1242. struct amd_iommu *iommu;
  1243. u16 devid;
  1244. devid = get_device_id(dev);
  1245. iommu = amd_iommu_rlookup_table[devid];
  1246. dev_data = get_dev_data(dev);
  1247. /* decrease reference counters */
  1248. dev_data->domain->dev_iommu[iommu->index] -= 1;
  1249. dev_data->domain->dev_cnt -= 1;
  1250. /* Update data structures */
  1251. dev_data->domain = NULL;
  1252. list_del(&dev_data->list);
  1253. clear_dte_entry(devid);
  1254. /* Flush the DTE entry */
  1255. device_flush_dte(dev);
  1256. }
  1257. /*
  1258. * If a device is not yet associated with a domain, this function does
  1259. * assigns it visible for the hardware
  1260. */
  1261. static int __attach_device(struct device *dev,
  1262. struct protection_domain *domain)
  1263. {
  1264. struct iommu_dev_data *dev_data, *alias_data;
  1265. int ret;
  1266. dev_data = get_dev_data(dev);
  1267. alias_data = get_dev_data(dev_data->alias);
  1268. if (!alias_data)
  1269. return -EINVAL;
  1270. /* lock domain */
  1271. spin_lock(&domain->lock);
  1272. /* Some sanity checks */
  1273. ret = -EBUSY;
  1274. if (alias_data->domain != NULL &&
  1275. alias_data->domain != domain)
  1276. goto out_unlock;
  1277. if (dev_data->domain != NULL &&
  1278. dev_data->domain != domain)
  1279. goto out_unlock;
  1280. /* Do real assignment */
  1281. if (dev_data->alias != dev) {
  1282. alias_data = get_dev_data(dev_data->alias);
  1283. if (alias_data->domain == NULL)
  1284. do_attach(dev_data->alias, domain);
  1285. atomic_inc(&alias_data->bind);
  1286. }
  1287. if (dev_data->domain == NULL)
  1288. do_attach(dev, domain);
  1289. atomic_inc(&dev_data->bind);
  1290. ret = 0;
  1291. out_unlock:
  1292. /* ready */
  1293. spin_unlock(&domain->lock);
  1294. return ret;
  1295. }
  1296. /*
  1297. * If a device is not yet associated with a domain, this function does
  1298. * assigns it visible for the hardware
  1299. */
  1300. static int attach_device(struct device *dev,
  1301. struct protection_domain *domain)
  1302. {
  1303. struct pci_dev *pdev = to_pci_dev(dev);
  1304. unsigned long flags;
  1305. int ret;
  1306. if (amd_iommu_iotlb_sup)
  1307. pci_enable_ats(pdev, PAGE_SHIFT);
  1308. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1309. ret = __attach_device(dev, domain);
  1310. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1311. /*
  1312. * We might boot into a crash-kernel here. The crashed kernel
  1313. * left the caches in the IOMMU dirty. So we have to flush
  1314. * here to evict all dirty stuff.
  1315. */
  1316. domain_flush_tlb_pde(domain);
  1317. return ret;
  1318. }
  1319. /*
  1320. * Removes a device from a protection domain (unlocked)
  1321. */
  1322. static void __detach_device(struct device *dev)
  1323. {
  1324. struct iommu_dev_data *dev_data = get_dev_data(dev);
  1325. struct iommu_dev_data *alias_data;
  1326. struct protection_domain *domain;
  1327. unsigned long flags;
  1328. BUG_ON(!dev_data->domain);
  1329. domain = dev_data->domain;
  1330. spin_lock_irqsave(&domain->lock, flags);
  1331. if (dev_data->alias != dev) {
  1332. alias_data = get_dev_data(dev_data->alias);
  1333. if (atomic_dec_and_test(&alias_data->bind))
  1334. do_detach(dev_data->alias);
  1335. }
  1336. if (atomic_dec_and_test(&dev_data->bind))
  1337. do_detach(dev);
  1338. spin_unlock_irqrestore(&domain->lock, flags);
  1339. /*
  1340. * If we run in passthrough mode the device must be assigned to the
  1341. * passthrough domain if it is detached from any other domain.
  1342. * Make sure we can deassign from the pt_domain itself.
  1343. */
  1344. if (iommu_pass_through &&
  1345. (dev_data->domain == NULL && domain != pt_domain))
  1346. __attach_device(dev, pt_domain);
  1347. }
  1348. /*
  1349. * Removes a device from a protection domain (with devtable_lock held)
  1350. */
  1351. static void detach_device(struct device *dev)
  1352. {
  1353. struct pci_dev *pdev = to_pci_dev(dev);
  1354. unsigned long flags;
  1355. /* lock device table */
  1356. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1357. __detach_device(dev);
  1358. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1359. if (amd_iommu_iotlb_sup && pci_ats_enabled(pdev))
  1360. pci_disable_ats(pdev);
  1361. }
  1362. /*
  1363. * Find out the protection domain structure for a given PCI device. This
  1364. * will give us the pointer to the page table root for example.
  1365. */
  1366. static struct protection_domain *domain_for_device(struct device *dev)
  1367. {
  1368. struct protection_domain *dom;
  1369. struct iommu_dev_data *dev_data, *alias_data;
  1370. unsigned long flags;
  1371. u16 devid;
  1372. devid = get_device_id(dev);
  1373. dev_data = get_dev_data(dev);
  1374. alias_data = get_dev_data(dev_data->alias);
  1375. if (!alias_data)
  1376. return NULL;
  1377. read_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1378. dom = dev_data->domain;
  1379. if (dom == NULL &&
  1380. alias_data->domain != NULL) {
  1381. __attach_device(dev, alias_data->domain);
  1382. dom = alias_data->domain;
  1383. }
  1384. read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1385. return dom;
  1386. }
  1387. static int device_change_notifier(struct notifier_block *nb,
  1388. unsigned long action, void *data)
  1389. {
  1390. struct device *dev = data;
  1391. u16 devid;
  1392. struct protection_domain *domain;
  1393. struct dma_ops_domain *dma_domain;
  1394. struct amd_iommu *iommu;
  1395. unsigned long flags;
  1396. if (!check_device(dev))
  1397. return 0;
  1398. devid = get_device_id(dev);
  1399. iommu = amd_iommu_rlookup_table[devid];
  1400. switch (action) {
  1401. case BUS_NOTIFY_UNBOUND_DRIVER:
  1402. domain = domain_for_device(dev);
  1403. if (!domain)
  1404. goto out;
  1405. if (iommu_pass_through)
  1406. break;
  1407. detach_device(dev);
  1408. break;
  1409. case BUS_NOTIFY_ADD_DEVICE:
  1410. iommu_init_device(dev);
  1411. domain = domain_for_device(dev);
  1412. /* allocate a protection domain if a device is added */
  1413. dma_domain = find_protection_domain(devid);
  1414. if (dma_domain)
  1415. goto out;
  1416. dma_domain = dma_ops_domain_alloc();
  1417. if (!dma_domain)
  1418. goto out;
  1419. dma_domain->target_dev = devid;
  1420. spin_lock_irqsave(&iommu_pd_list_lock, flags);
  1421. list_add_tail(&dma_domain->list, &iommu_pd_list);
  1422. spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
  1423. break;
  1424. case BUS_NOTIFY_DEL_DEVICE:
  1425. iommu_uninit_device(dev);
  1426. default:
  1427. goto out;
  1428. }
  1429. device_flush_dte(dev);
  1430. iommu_completion_wait(iommu);
  1431. out:
  1432. return 0;
  1433. }
  1434. static struct notifier_block device_nb = {
  1435. .notifier_call = device_change_notifier,
  1436. };
  1437. void amd_iommu_init_notifier(void)
  1438. {
  1439. bus_register_notifier(&pci_bus_type, &device_nb);
  1440. }
  1441. /*****************************************************************************
  1442. *
  1443. * The next functions belong to the dma_ops mapping/unmapping code.
  1444. *
  1445. *****************************************************************************/
  1446. /*
  1447. * In the dma_ops path we only have the struct device. This function
  1448. * finds the corresponding IOMMU, the protection domain and the
  1449. * requestor id for a given device.
  1450. * If the device is not yet associated with a domain this is also done
  1451. * in this function.
  1452. */
  1453. static struct protection_domain *get_domain(struct device *dev)
  1454. {
  1455. struct protection_domain *domain;
  1456. struct dma_ops_domain *dma_dom;
  1457. u16 devid = get_device_id(dev);
  1458. if (!check_device(dev))
  1459. return ERR_PTR(-EINVAL);
  1460. domain = domain_for_device(dev);
  1461. if (domain != NULL && !dma_ops_domain(domain))
  1462. return ERR_PTR(-EBUSY);
  1463. if (domain != NULL)
  1464. return domain;
  1465. /* Device not bount yet - bind it */
  1466. dma_dom = find_protection_domain(devid);
  1467. if (!dma_dom)
  1468. dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
  1469. attach_device(dev, &dma_dom->domain);
  1470. DUMP_printk("Using protection domain %d for device %s\n",
  1471. dma_dom->domain.id, dev_name(dev));
  1472. return &dma_dom->domain;
  1473. }
  1474. static void update_device_table(struct protection_domain *domain)
  1475. {
  1476. struct iommu_dev_data *dev_data;
  1477. list_for_each_entry(dev_data, &domain->dev_list, list) {
  1478. struct pci_dev *pdev = to_pci_dev(dev_data->dev);
  1479. u16 devid = get_device_id(dev_data->dev);
  1480. set_dte_entry(devid, domain, pci_ats_enabled(pdev));
  1481. }
  1482. }
  1483. static void update_domain(struct protection_domain *domain)
  1484. {
  1485. if (!domain->updated)
  1486. return;
  1487. update_device_table(domain);
  1488. domain_flush_devices(domain);
  1489. domain_flush_tlb_pde(domain);
  1490. domain->updated = false;
  1491. }
  1492. /*
  1493. * This function fetches the PTE for a given address in the aperture
  1494. */
  1495. static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
  1496. unsigned long address)
  1497. {
  1498. struct aperture_range *aperture;
  1499. u64 *pte, *pte_page;
  1500. aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
  1501. if (!aperture)
  1502. return NULL;
  1503. pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
  1504. if (!pte) {
  1505. pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
  1506. GFP_ATOMIC);
  1507. aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
  1508. } else
  1509. pte += PM_LEVEL_INDEX(0, address);
  1510. update_domain(&dom->domain);
  1511. return pte;
  1512. }
  1513. /*
  1514. * This is the generic map function. It maps one 4kb page at paddr to
  1515. * the given address in the DMA address space for the domain.
  1516. */
  1517. static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
  1518. unsigned long address,
  1519. phys_addr_t paddr,
  1520. int direction)
  1521. {
  1522. u64 *pte, __pte;
  1523. WARN_ON(address > dom->aperture_size);
  1524. paddr &= PAGE_MASK;
  1525. pte = dma_ops_get_pte(dom, address);
  1526. if (!pte)
  1527. return DMA_ERROR_CODE;
  1528. __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
  1529. if (direction == DMA_TO_DEVICE)
  1530. __pte |= IOMMU_PTE_IR;
  1531. else if (direction == DMA_FROM_DEVICE)
  1532. __pte |= IOMMU_PTE_IW;
  1533. else if (direction == DMA_BIDIRECTIONAL)
  1534. __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
  1535. WARN_ON(*pte);
  1536. *pte = __pte;
  1537. return (dma_addr_t)address;
  1538. }
  1539. /*
  1540. * The generic unmapping function for on page in the DMA address space.
  1541. */
  1542. static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
  1543. unsigned long address)
  1544. {
  1545. struct aperture_range *aperture;
  1546. u64 *pte;
  1547. if (address >= dom->aperture_size)
  1548. return;
  1549. aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
  1550. if (!aperture)
  1551. return;
  1552. pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
  1553. if (!pte)
  1554. return;
  1555. pte += PM_LEVEL_INDEX(0, address);
  1556. WARN_ON(!*pte);
  1557. *pte = 0ULL;
  1558. }
  1559. /*
  1560. * This function contains common code for mapping of a physically
  1561. * contiguous memory region into DMA address space. It is used by all
  1562. * mapping functions provided with this IOMMU driver.
  1563. * Must be called with the domain lock held.
  1564. */
  1565. static dma_addr_t __map_single(struct device *dev,
  1566. struct dma_ops_domain *dma_dom,
  1567. phys_addr_t paddr,
  1568. size_t size,
  1569. int dir,
  1570. bool align,
  1571. u64 dma_mask)
  1572. {
  1573. dma_addr_t offset = paddr & ~PAGE_MASK;
  1574. dma_addr_t address, start, ret;
  1575. unsigned int pages;
  1576. unsigned long align_mask = 0;
  1577. int i;
  1578. pages = iommu_num_pages(paddr, size, PAGE_SIZE);
  1579. paddr &= PAGE_MASK;
  1580. INC_STATS_COUNTER(total_map_requests);
  1581. if (pages > 1)
  1582. INC_STATS_COUNTER(cross_page);
  1583. if (align)
  1584. align_mask = (1UL << get_order(size)) - 1;
  1585. retry:
  1586. address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
  1587. dma_mask);
  1588. if (unlikely(address == DMA_ERROR_CODE)) {
  1589. /*
  1590. * setting next_address here will let the address
  1591. * allocator only scan the new allocated range in the
  1592. * first run. This is a small optimization.
  1593. */
  1594. dma_dom->next_address = dma_dom->aperture_size;
  1595. if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
  1596. goto out;
  1597. /*
  1598. * aperture was successfully enlarged by 128 MB, try
  1599. * allocation again
  1600. */
  1601. goto retry;
  1602. }
  1603. start = address;
  1604. for (i = 0; i < pages; ++i) {
  1605. ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
  1606. if (ret == DMA_ERROR_CODE)
  1607. goto out_unmap;
  1608. paddr += PAGE_SIZE;
  1609. start += PAGE_SIZE;
  1610. }
  1611. address += offset;
  1612. ADD_STATS_COUNTER(alloced_io_mem, size);
  1613. if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
  1614. domain_flush_tlb(&dma_dom->domain);
  1615. dma_dom->need_flush = false;
  1616. } else if (unlikely(amd_iommu_np_cache))
  1617. domain_flush_pages(&dma_dom->domain, address, size);
  1618. out:
  1619. return address;
  1620. out_unmap:
  1621. for (--i; i >= 0; --i) {
  1622. start -= PAGE_SIZE;
  1623. dma_ops_domain_unmap(dma_dom, start);
  1624. }
  1625. dma_ops_free_addresses(dma_dom, address, pages);
  1626. return DMA_ERROR_CODE;
  1627. }
  1628. /*
  1629. * Does the reverse of the __map_single function. Must be called with
  1630. * the domain lock held too
  1631. */
  1632. static void __unmap_single(struct dma_ops_domain *dma_dom,
  1633. dma_addr_t dma_addr,
  1634. size_t size,
  1635. int dir)
  1636. {
  1637. dma_addr_t flush_addr;
  1638. dma_addr_t i, start;
  1639. unsigned int pages;
  1640. if ((dma_addr == DMA_ERROR_CODE) ||
  1641. (dma_addr + size > dma_dom->aperture_size))
  1642. return;
  1643. flush_addr = dma_addr;
  1644. pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
  1645. dma_addr &= PAGE_MASK;
  1646. start = dma_addr;
  1647. for (i = 0; i < pages; ++i) {
  1648. dma_ops_domain_unmap(dma_dom, start);
  1649. start += PAGE_SIZE;
  1650. }
  1651. SUB_STATS_COUNTER(alloced_io_mem, size);
  1652. dma_ops_free_addresses(dma_dom, dma_addr, pages);
  1653. if (amd_iommu_unmap_flush || dma_dom->need_flush) {
  1654. domain_flush_pages(&dma_dom->domain, flush_addr, size);
  1655. dma_dom->need_flush = false;
  1656. }
  1657. }
  1658. /*
  1659. * The exported map_single function for dma_ops.
  1660. */
  1661. static dma_addr_t map_page(struct device *dev, struct page *page,
  1662. unsigned long offset, size_t size,
  1663. enum dma_data_direction dir,
  1664. struct dma_attrs *attrs)
  1665. {
  1666. unsigned long flags;
  1667. struct protection_domain *domain;
  1668. dma_addr_t addr;
  1669. u64 dma_mask;
  1670. phys_addr_t paddr = page_to_phys(page) + offset;
  1671. INC_STATS_COUNTER(cnt_map_single);
  1672. domain = get_domain(dev);
  1673. if (PTR_ERR(domain) == -EINVAL)
  1674. return (dma_addr_t)paddr;
  1675. else if (IS_ERR(domain))
  1676. return DMA_ERROR_CODE;
  1677. dma_mask = *dev->dma_mask;
  1678. spin_lock_irqsave(&domain->lock, flags);
  1679. addr = __map_single(dev, domain->priv, paddr, size, dir, false,
  1680. dma_mask);
  1681. if (addr == DMA_ERROR_CODE)
  1682. goto out;
  1683. domain_flush_complete(domain);
  1684. out:
  1685. spin_unlock_irqrestore(&domain->lock, flags);
  1686. return addr;
  1687. }
  1688. /*
  1689. * The exported unmap_single function for dma_ops.
  1690. */
  1691. static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
  1692. enum dma_data_direction dir, struct dma_attrs *attrs)
  1693. {
  1694. unsigned long flags;
  1695. struct protection_domain *domain;
  1696. INC_STATS_COUNTER(cnt_unmap_single);
  1697. domain = get_domain(dev);
  1698. if (IS_ERR(domain))
  1699. return;
  1700. spin_lock_irqsave(&domain->lock, flags);
  1701. __unmap_single(domain->priv, dma_addr, size, dir);
  1702. domain_flush_complete(domain);
  1703. spin_unlock_irqrestore(&domain->lock, flags);
  1704. }
  1705. /*
  1706. * This is a special map_sg function which is used if we should map a
  1707. * device which is not handled by an AMD IOMMU in the system.
  1708. */
  1709. static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
  1710. int nelems, int dir)
  1711. {
  1712. struct scatterlist *s;
  1713. int i;
  1714. for_each_sg(sglist, s, nelems, i) {
  1715. s->dma_address = (dma_addr_t)sg_phys(s);
  1716. s->dma_length = s->length;
  1717. }
  1718. return nelems;
  1719. }
  1720. /*
  1721. * The exported map_sg function for dma_ops (handles scatter-gather
  1722. * lists).
  1723. */
  1724. static int map_sg(struct device *dev, struct scatterlist *sglist,
  1725. int nelems, enum dma_data_direction dir,
  1726. struct dma_attrs *attrs)
  1727. {
  1728. unsigned long flags;
  1729. struct protection_domain *domain;
  1730. int i;
  1731. struct scatterlist *s;
  1732. phys_addr_t paddr;
  1733. int mapped_elems = 0;
  1734. u64 dma_mask;
  1735. INC_STATS_COUNTER(cnt_map_sg);
  1736. domain = get_domain(dev);
  1737. if (PTR_ERR(domain) == -EINVAL)
  1738. return map_sg_no_iommu(dev, sglist, nelems, dir);
  1739. else if (IS_ERR(domain))
  1740. return 0;
  1741. dma_mask = *dev->dma_mask;
  1742. spin_lock_irqsave(&domain->lock, flags);
  1743. for_each_sg(sglist, s, nelems, i) {
  1744. paddr = sg_phys(s);
  1745. s->dma_address = __map_single(dev, domain->priv,
  1746. paddr, s->length, dir, false,
  1747. dma_mask);
  1748. if (s->dma_address) {
  1749. s->dma_length = s->length;
  1750. mapped_elems++;
  1751. } else
  1752. goto unmap;
  1753. }
  1754. domain_flush_complete(domain);
  1755. out:
  1756. spin_unlock_irqrestore(&domain->lock, flags);
  1757. return mapped_elems;
  1758. unmap:
  1759. for_each_sg(sglist, s, mapped_elems, i) {
  1760. if (s->dma_address)
  1761. __unmap_single(domain->priv, s->dma_address,
  1762. s->dma_length, dir);
  1763. s->dma_address = s->dma_length = 0;
  1764. }
  1765. mapped_elems = 0;
  1766. goto out;
  1767. }
  1768. /*
  1769. * The exported map_sg function for dma_ops (handles scatter-gather
  1770. * lists).
  1771. */
  1772. static void unmap_sg(struct device *dev, struct scatterlist *sglist,
  1773. int nelems, enum dma_data_direction dir,
  1774. struct dma_attrs *attrs)
  1775. {
  1776. unsigned long flags;
  1777. struct protection_domain *domain;
  1778. struct scatterlist *s;
  1779. int i;
  1780. INC_STATS_COUNTER(cnt_unmap_sg);
  1781. domain = get_domain(dev);
  1782. if (IS_ERR(domain))
  1783. return;
  1784. spin_lock_irqsave(&domain->lock, flags);
  1785. for_each_sg(sglist, s, nelems, i) {
  1786. __unmap_single(domain->priv, s->dma_address,
  1787. s->dma_length, dir);
  1788. s->dma_address = s->dma_length = 0;
  1789. }
  1790. domain_flush_complete(domain);
  1791. spin_unlock_irqrestore(&domain->lock, flags);
  1792. }
  1793. /*
  1794. * The exported alloc_coherent function for dma_ops.
  1795. */
  1796. static void *alloc_coherent(struct device *dev, size_t size,
  1797. dma_addr_t *dma_addr, gfp_t flag)
  1798. {
  1799. unsigned long flags;
  1800. void *virt_addr;
  1801. struct protection_domain *domain;
  1802. phys_addr_t paddr;
  1803. u64 dma_mask = dev->coherent_dma_mask;
  1804. INC_STATS_COUNTER(cnt_alloc_coherent);
  1805. domain = get_domain(dev);
  1806. if (PTR_ERR(domain) == -EINVAL) {
  1807. virt_addr = (void *)__get_free_pages(flag, get_order(size));
  1808. *dma_addr = __pa(virt_addr);
  1809. return virt_addr;
  1810. } else if (IS_ERR(domain))
  1811. return NULL;
  1812. dma_mask = dev->coherent_dma_mask;
  1813. flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
  1814. flag |= __GFP_ZERO;
  1815. virt_addr = (void *)__get_free_pages(flag, get_order(size));
  1816. if (!virt_addr)
  1817. return NULL;
  1818. paddr = virt_to_phys(virt_addr);
  1819. if (!dma_mask)
  1820. dma_mask = *dev->dma_mask;
  1821. spin_lock_irqsave(&domain->lock, flags);
  1822. *dma_addr = __map_single(dev, domain->priv, paddr,
  1823. size, DMA_BIDIRECTIONAL, true, dma_mask);
  1824. if (*dma_addr == DMA_ERROR_CODE) {
  1825. spin_unlock_irqrestore(&domain->lock, flags);
  1826. goto out_free;
  1827. }
  1828. domain_flush_complete(domain);
  1829. spin_unlock_irqrestore(&domain->lock, flags);
  1830. return virt_addr;
  1831. out_free:
  1832. free_pages((unsigned long)virt_addr, get_order(size));
  1833. return NULL;
  1834. }
  1835. /*
  1836. * The exported free_coherent function for dma_ops.
  1837. */
  1838. static void free_coherent(struct device *dev, size_t size,
  1839. void *virt_addr, dma_addr_t dma_addr)
  1840. {
  1841. unsigned long flags;
  1842. struct protection_domain *domain;
  1843. INC_STATS_COUNTER(cnt_free_coherent);
  1844. domain = get_domain(dev);
  1845. if (IS_ERR(domain))
  1846. goto free_mem;
  1847. spin_lock_irqsave(&domain->lock, flags);
  1848. __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
  1849. domain_flush_complete(domain);
  1850. spin_unlock_irqrestore(&domain->lock, flags);
  1851. free_mem:
  1852. free_pages((unsigned long)virt_addr, get_order(size));
  1853. }
  1854. /*
  1855. * This function is called by the DMA layer to find out if we can handle a
  1856. * particular device. It is part of the dma_ops.
  1857. */
  1858. static int amd_iommu_dma_supported(struct device *dev, u64 mask)
  1859. {
  1860. return check_device(dev);
  1861. }
  1862. /*
  1863. * The function for pre-allocating protection domains.
  1864. *
  1865. * If the driver core informs the DMA layer if a driver grabs a device
  1866. * we don't need to preallocate the protection domains anymore.
  1867. * For now we have to.
  1868. */
  1869. static void prealloc_protection_domains(void)
  1870. {
  1871. struct pci_dev *dev = NULL;
  1872. struct dma_ops_domain *dma_dom;
  1873. u16 devid;
  1874. for_each_pci_dev(dev) {
  1875. /* Do we handle this device? */
  1876. if (!check_device(&dev->dev))
  1877. continue;
  1878. /* Is there already any domain for it? */
  1879. if (domain_for_device(&dev->dev))
  1880. continue;
  1881. devid = get_device_id(&dev->dev);
  1882. dma_dom = dma_ops_domain_alloc();
  1883. if (!dma_dom)
  1884. continue;
  1885. init_unity_mappings_for_device(dma_dom, devid);
  1886. dma_dom->target_dev = devid;
  1887. attach_device(&dev->dev, &dma_dom->domain);
  1888. list_add_tail(&dma_dom->list, &iommu_pd_list);
  1889. }
  1890. }
  1891. static struct dma_map_ops amd_iommu_dma_ops = {
  1892. .alloc_coherent = alloc_coherent,
  1893. .free_coherent = free_coherent,
  1894. .map_page = map_page,
  1895. .unmap_page = unmap_page,
  1896. .map_sg = map_sg,
  1897. .unmap_sg = unmap_sg,
  1898. .dma_supported = amd_iommu_dma_supported,
  1899. };
  1900. static unsigned device_dma_ops_init(void)
  1901. {
  1902. struct pci_dev *pdev = NULL;
  1903. unsigned unhandled = 0;
  1904. for_each_pci_dev(pdev) {
  1905. if (!check_device(&pdev->dev)) {
  1906. unhandled += 1;
  1907. continue;
  1908. }
  1909. pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
  1910. }
  1911. return unhandled;
  1912. }
  1913. /*
  1914. * The function which clues the AMD IOMMU driver into dma_ops.
  1915. */
  1916. void __init amd_iommu_init_api(void)
  1917. {
  1918. register_iommu(&amd_iommu_ops);
  1919. }
  1920. int __init amd_iommu_init_dma_ops(void)
  1921. {
  1922. struct amd_iommu *iommu;
  1923. int ret, unhandled;
  1924. /*
  1925. * first allocate a default protection domain for every IOMMU we
  1926. * found in the system. Devices not assigned to any other
  1927. * protection domain will be assigned to the default one.
  1928. */
  1929. for_each_iommu(iommu) {
  1930. iommu->default_dom = dma_ops_domain_alloc();
  1931. if (iommu->default_dom == NULL)
  1932. return -ENOMEM;
  1933. iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
  1934. ret = iommu_init_unity_mappings(iommu);
  1935. if (ret)
  1936. goto free_domains;
  1937. }
  1938. /*
  1939. * Pre-allocate the protection domains for each device.
  1940. */
  1941. prealloc_protection_domains();
  1942. iommu_detected = 1;
  1943. swiotlb = 0;
  1944. /* Make the driver finally visible to the drivers */
  1945. unhandled = device_dma_ops_init();
  1946. if (unhandled && max_pfn > MAX_DMA32_PFN) {
  1947. /* There are unhandled devices - initialize swiotlb for them */
  1948. swiotlb = 1;
  1949. }
  1950. amd_iommu_stats_init();
  1951. return 0;
  1952. free_domains:
  1953. for_each_iommu(iommu) {
  1954. if (iommu->default_dom)
  1955. dma_ops_domain_free(iommu->default_dom);
  1956. }
  1957. return ret;
  1958. }
  1959. /*****************************************************************************
  1960. *
  1961. * The following functions belong to the exported interface of AMD IOMMU
  1962. *
  1963. * This interface allows access to lower level functions of the IOMMU
  1964. * like protection domain handling and assignement of devices to domains
  1965. * which is not possible with the dma_ops interface.
  1966. *
  1967. *****************************************************************************/
  1968. static void cleanup_domain(struct protection_domain *domain)
  1969. {
  1970. struct iommu_dev_data *dev_data, *next;
  1971. unsigned long flags;
  1972. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1973. list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
  1974. struct device *dev = dev_data->dev;
  1975. __detach_device(dev);
  1976. atomic_set(&dev_data->bind, 0);
  1977. }
  1978. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1979. }
  1980. static void protection_domain_free(struct protection_domain *domain)
  1981. {
  1982. if (!domain)
  1983. return;
  1984. del_domain_from_list(domain);
  1985. if (domain->id)
  1986. domain_id_free(domain->id);
  1987. kfree(domain);
  1988. }
  1989. static struct protection_domain *protection_domain_alloc(void)
  1990. {
  1991. struct protection_domain *domain;
  1992. domain = kzalloc(sizeof(*domain), GFP_KERNEL);
  1993. if (!domain)
  1994. return NULL;
  1995. spin_lock_init(&domain->lock);
  1996. mutex_init(&domain->api_lock);
  1997. domain->id = domain_id_alloc();
  1998. if (!domain->id)
  1999. goto out_err;
  2000. INIT_LIST_HEAD(&domain->dev_list);
  2001. add_domain_to_list(domain);
  2002. return domain;
  2003. out_err:
  2004. kfree(domain);
  2005. return NULL;
  2006. }
  2007. static int amd_iommu_domain_init(struct iommu_domain *dom)
  2008. {
  2009. struct protection_domain *domain;
  2010. domain = protection_domain_alloc();
  2011. if (!domain)
  2012. goto out_free;
  2013. domain->mode = PAGE_MODE_3_LEVEL;
  2014. domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  2015. if (!domain->pt_root)
  2016. goto out_free;
  2017. dom->priv = domain;
  2018. return 0;
  2019. out_free:
  2020. protection_domain_free(domain);
  2021. return -ENOMEM;
  2022. }
  2023. static void amd_iommu_domain_destroy(struct iommu_domain *dom)
  2024. {
  2025. struct protection_domain *domain = dom->priv;
  2026. if (!domain)
  2027. return;
  2028. if (domain->dev_cnt > 0)
  2029. cleanup_domain(domain);
  2030. BUG_ON(domain->dev_cnt != 0);
  2031. free_pagetable(domain);
  2032. protection_domain_free(domain);
  2033. dom->priv = NULL;
  2034. }
  2035. static void amd_iommu_detach_device(struct iommu_domain *dom,
  2036. struct device *dev)
  2037. {
  2038. struct iommu_dev_data *dev_data = dev->archdata.iommu;
  2039. struct amd_iommu *iommu;
  2040. u16 devid;
  2041. if (!check_device(dev))
  2042. return;
  2043. devid = get_device_id(dev);
  2044. if (dev_data->domain != NULL)
  2045. detach_device(dev);
  2046. iommu = amd_iommu_rlookup_table[devid];
  2047. if (!iommu)
  2048. return;
  2049. device_flush_dte(dev);
  2050. iommu_completion_wait(iommu);
  2051. }
  2052. static int amd_iommu_attach_device(struct iommu_domain *dom,
  2053. struct device *dev)
  2054. {
  2055. struct protection_domain *domain = dom->priv;
  2056. struct iommu_dev_data *dev_data;
  2057. struct amd_iommu *iommu;
  2058. int ret;
  2059. u16 devid;
  2060. if (!check_device(dev))
  2061. return -EINVAL;
  2062. dev_data = dev->archdata.iommu;
  2063. devid = get_device_id(dev);
  2064. iommu = amd_iommu_rlookup_table[devid];
  2065. if (!iommu)
  2066. return -EINVAL;
  2067. if (dev_data->domain)
  2068. detach_device(dev);
  2069. ret = attach_device(dev, domain);
  2070. iommu_completion_wait(iommu);
  2071. return ret;
  2072. }
  2073. static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
  2074. phys_addr_t paddr, int gfp_order, int iommu_prot)
  2075. {
  2076. unsigned long page_size = 0x1000UL << gfp_order;
  2077. struct protection_domain *domain = dom->priv;
  2078. int prot = 0;
  2079. int ret;
  2080. if (iommu_prot & IOMMU_READ)
  2081. prot |= IOMMU_PROT_IR;
  2082. if (iommu_prot & IOMMU_WRITE)
  2083. prot |= IOMMU_PROT_IW;
  2084. mutex_lock(&domain->api_lock);
  2085. ret = iommu_map_page(domain, iova, paddr, prot, page_size);
  2086. mutex_unlock(&domain->api_lock);
  2087. return ret;
  2088. }
  2089. static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
  2090. int gfp_order)
  2091. {
  2092. struct protection_domain *domain = dom->priv;
  2093. unsigned long page_size, unmap_size;
  2094. page_size = 0x1000UL << gfp_order;
  2095. mutex_lock(&domain->api_lock);
  2096. unmap_size = iommu_unmap_page(domain, iova, page_size);
  2097. mutex_unlock(&domain->api_lock);
  2098. domain_flush_tlb_pde(domain);
  2099. return get_order(unmap_size);
  2100. }
  2101. static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
  2102. unsigned long iova)
  2103. {
  2104. struct protection_domain *domain = dom->priv;
  2105. unsigned long offset_mask;
  2106. phys_addr_t paddr;
  2107. u64 *pte, __pte;
  2108. pte = fetch_pte(domain, iova);
  2109. if (!pte || !IOMMU_PTE_PRESENT(*pte))
  2110. return 0;
  2111. if (PM_PTE_LEVEL(*pte) == 0)
  2112. offset_mask = PAGE_SIZE - 1;
  2113. else
  2114. offset_mask = PTE_PAGE_SIZE(*pte) - 1;
  2115. __pte = *pte & PM_ADDR_MASK;
  2116. paddr = (__pte & ~offset_mask) | (iova & offset_mask);
  2117. return paddr;
  2118. }
  2119. static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
  2120. unsigned long cap)
  2121. {
  2122. switch (cap) {
  2123. case IOMMU_CAP_CACHE_COHERENCY:
  2124. return 1;
  2125. }
  2126. return 0;
  2127. }
  2128. static struct iommu_ops amd_iommu_ops = {
  2129. .domain_init = amd_iommu_domain_init,
  2130. .domain_destroy = amd_iommu_domain_destroy,
  2131. .attach_dev = amd_iommu_attach_device,
  2132. .detach_dev = amd_iommu_detach_device,
  2133. .map = amd_iommu_map,
  2134. .unmap = amd_iommu_unmap,
  2135. .iova_to_phys = amd_iommu_iova_to_phys,
  2136. .domain_has_cap = amd_iommu_domain_has_cap,
  2137. };
  2138. /*****************************************************************************
  2139. *
  2140. * The next functions do a basic initialization of IOMMU for pass through
  2141. * mode
  2142. *
  2143. * In passthrough mode the IOMMU is initialized and enabled but not used for
  2144. * DMA-API translation.
  2145. *
  2146. *****************************************************************************/
  2147. int __init amd_iommu_init_passthrough(void)
  2148. {
  2149. struct amd_iommu *iommu;
  2150. struct pci_dev *dev = NULL;
  2151. u16 devid;
  2152. /* allocate passthrough domain */
  2153. pt_domain = protection_domain_alloc();
  2154. if (!pt_domain)
  2155. return -ENOMEM;
  2156. pt_domain->mode |= PAGE_MODE_NONE;
  2157. for_each_pci_dev(dev) {
  2158. if (!check_device(&dev->dev))
  2159. continue;
  2160. devid = get_device_id(&dev->dev);
  2161. iommu = amd_iommu_rlookup_table[devid];
  2162. if (!iommu)
  2163. continue;
  2164. attach_device(&dev->dev, pt_domain);
  2165. }
  2166. pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
  2167. return 0;
  2168. }