rx.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501
  1. /*
  2. * Copyright 2002-2005, Instant802 Networks, Inc.
  3. * Copyright 2005-2006, Devicescape Software, Inc.
  4. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
  5. * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/skbuff.h>
  13. #include <linux/netdevice.h>
  14. #include <linux/etherdevice.h>
  15. #include <linux/rcupdate.h>
  16. #include <net/mac80211.h>
  17. #include <net/ieee80211_radiotap.h>
  18. #include "ieee80211_i.h"
  19. #include "ieee80211_led.h"
  20. #include "ieee80211_common.h"
  21. #include "wep.h"
  22. #include "wpa.h"
  23. #include "tkip.h"
  24. #include "wme.h"
  25. /* pre-rx handlers
  26. *
  27. * these don't have dev/sdata fields in the rx data
  28. * The sta value should also not be used because it may
  29. * be NULL even though a STA (in IBSS mode) will be added.
  30. */
  31. static ieee80211_txrx_result
  32. ieee80211_rx_h_parse_qos(struct ieee80211_txrx_data *rx)
  33. {
  34. u8 *data = rx->skb->data;
  35. int tid;
  36. /* does the frame have a qos control field? */
  37. if (WLAN_FC_IS_QOS_DATA(rx->fc)) {
  38. u8 *qc = data + ieee80211_get_hdrlen(rx->fc) - QOS_CONTROL_LEN;
  39. /* frame has qos control */
  40. tid = qc[0] & QOS_CONTROL_TID_MASK;
  41. } else {
  42. if (unlikely((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)) {
  43. /* Separate TID for management frames */
  44. tid = NUM_RX_DATA_QUEUES - 1;
  45. } else {
  46. /* no qos control present */
  47. tid = 0; /* 802.1d - Best Effort */
  48. }
  49. }
  50. I802_DEBUG_INC(rx->local->wme_rx_queue[tid]);
  51. /* only a debug counter, sta might not be assigned properly yet */
  52. if (rx->sta)
  53. I802_DEBUG_INC(rx->sta->wme_rx_queue[tid]);
  54. rx->u.rx.queue = tid;
  55. /* Set skb->priority to 1d tag if highest order bit of TID is not set.
  56. * For now, set skb->priority to 0 for other cases. */
  57. rx->skb->priority = (tid > 7) ? 0 : tid;
  58. return TXRX_CONTINUE;
  59. }
  60. static ieee80211_txrx_result
  61. ieee80211_rx_h_load_stats(struct ieee80211_txrx_data *rx)
  62. {
  63. struct ieee80211_local *local = rx->local;
  64. struct sk_buff *skb = rx->skb;
  65. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  66. u32 load = 0, hdrtime;
  67. struct ieee80211_rate *rate;
  68. struct ieee80211_hw_mode *mode = local->hw.conf.mode;
  69. int i;
  70. /* Estimate total channel use caused by this frame */
  71. if (unlikely(mode->num_rates < 0))
  72. return TXRX_CONTINUE;
  73. rate = &mode->rates[0];
  74. for (i = 0; i < mode->num_rates; i++) {
  75. if (mode->rates[i].val == rx->u.rx.status->rate) {
  76. rate = &mode->rates[i];
  77. break;
  78. }
  79. }
  80. /* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values,
  81. * 1 usec = 1/8 * (1080 / 10) = 13.5 */
  82. if (mode->mode == MODE_IEEE80211A ||
  83. (mode->mode == MODE_IEEE80211G &&
  84. rate->flags & IEEE80211_RATE_ERP))
  85. hdrtime = CHAN_UTIL_HDR_SHORT;
  86. else
  87. hdrtime = CHAN_UTIL_HDR_LONG;
  88. load = hdrtime;
  89. if (!is_multicast_ether_addr(hdr->addr1))
  90. load += hdrtime;
  91. load += skb->len * rate->rate_inv;
  92. /* Divide channel_use by 8 to avoid wrapping around the counter */
  93. load >>= CHAN_UTIL_SHIFT;
  94. local->channel_use_raw += load;
  95. rx->u.rx.load = load;
  96. return TXRX_CONTINUE;
  97. }
  98. ieee80211_rx_handler ieee80211_rx_pre_handlers[] =
  99. {
  100. ieee80211_rx_h_parse_qos,
  101. ieee80211_rx_h_load_stats,
  102. NULL
  103. };
  104. /* rx handlers */
  105. static ieee80211_txrx_result
  106. ieee80211_rx_h_if_stats(struct ieee80211_txrx_data *rx)
  107. {
  108. if (rx->sta)
  109. rx->sta->channel_use_raw += rx->u.rx.load;
  110. rx->sdata->channel_use_raw += rx->u.rx.load;
  111. return TXRX_CONTINUE;
  112. }
  113. static void
  114. ieee80211_rx_monitor(struct net_device *dev, struct sk_buff *skb,
  115. struct ieee80211_rx_status *status)
  116. {
  117. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  118. struct ieee80211_sub_if_data *sdata;
  119. struct ieee80211_rate *rate;
  120. struct ieee80211_rtap_hdr {
  121. struct ieee80211_radiotap_header hdr;
  122. u8 flags;
  123. u8 rate;
  124. __le16 chan_freq;
  125. __le16 chan_flags;
  126. u8 antsignal;
  127. } __attribute__ ((packed)) *rthdr;
  128. skb->dev = dev;
  129. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  130. if (status->flag & RX_FLAG_RADIOTAP)
  131. goto out;
  132. if (skb_headroom(skb) < sizeof(*rthdr)) {
  133. I802_DEBUG_INC(local->rx_expand_skb_head);
  134. if (pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC)) {
  135. dev_kfree_skb(skb);
  136. return;
  137. }
  138. }
  139. rthdr = (struct ieee80211_rtap_hdr *) skb_push(skb, sizeof(*rthdr));
  140. memset(rthdr, 0, sizeof(*rthdr));
  141. rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
  142. rthdr->hdr.it_present =
  143. cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
  144. (1 << IEEE80211_RADIOTAP_RATE) |
  145. (1 << IEEE80211_RADIOTAP_CHANNEL) |
  146. (1 << IEEE80211_RADIOTAP_DB_ANTSIGNAL));
  147. rthdr->flags = local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS ?
  148. IEEE80211_RADIOTAP_F_FCS : 0;
  149. rate = ieee80211_get_rate(local, status->phymode, status->rate);
  150. if (rate)
  151. rthdr->rate = rate->rate / 5;
  152. rthdr->chan_freq = cpu_to_le16(status->freq);
  153. rthdr->chan_flags =
  154. status->phymode == MODE_IEEE80211A ?
  155. cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ) :
  156. cpu_to_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ);
  157. rthdr->antsignal = status->ssi;
  158. out:
  159. sdata->stats.rx_packets++;
  160. sdata->stats.rx_bytes += skb->len;
  161. skb_set_mac_header(skb, 0);
  162. skb->ip_summed = CHECKSUM_UNNECESSARY;
  163. skb->pkt_type = PACKET_OTHERHOST;
  164. skb->protocol = htons(ETH_P_802_2);
  165. memset(skb->cb, 0, sizeof(skb->cb));
  166. netif_rx(skb);
  167. }
  168. static ieee80211_txrx_result
  169. ieee80211_rx_h_monitor(struct ieee80211_txrx_data *rx)
  170. {
  171. if (rx->sdata->type == IEEE80211_IF_TYPE_MNTR) {
  172. ieee80211_rx_monitor(rx->dev, rx->skb, rx->u.rx.status);
  173. return TXRX_QUEUED;
  174. }
  175. if (rx->u.rx.status->flag & RX_FLAG_RADIOTAP)
  176. skb_pull(rx->skb, ieee80211_get_radiotap_len(rx->skb->data));
  177. return TXRX_CONTINUE;
  178. }
  179. static ieee80211_txrx_result
  180. ieee80211_rx_h_passive_scan(struct ieee80211_txrx_data *rx)
  181. {
  182. struct ieee80211_local *local = rx->local;
  183. struct sk_buff *skb = rx->skb;
  184. if (unlikely(local->sta_scanning != 0)) {
  185. ieee80211_sta_rx_scan(rx->dev, skb, rx->u.rx.status);
  186. return TXRX_QUEUED;
  187. }
  188. if (unlikely(rx->flags & IEEE80211_TXRXD_RXIN_SCAN)) {
  189. /* scanning finished during invoking of handlers */
  190. I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
  191. return TXRX_DROP;
  192. }
  193. return TXRX_CONTINUE;
  194. }
  195. static ieee80211_txrx_result
  196. ieee80211_rx_h_check(struct ieee80211_txrx_data *rx)
  197. {
  198. struct ieee80211_hdr *hdr;
  199. hdr = (struct ieee80211_hdr *) rx->skb->data;
  200. /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
  201. if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
  202. if (unlikely(rx->fc & IEEE80211_FCTL_RETRY &&
  203. rx->sta->last_seq_ctrl[rx->u.rx.queue] ==
  204. hdr->seq_ctrl)) {
  205. if (rx->flags & IEEE80211_TXRXD_RXRA_MATCH) {
  206. rx->local->dot11FrameDuplicateCount++;
  207. rx->sta->num_duplicates++;
  208. }
  209. return TXRX_DROP;
  210. } else
  211. rx->sta->last_seq_ctrl[rx->u.rx.queue] = hdr->seq_ctrl;
  212. }
  213. if ((rx->local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) &&
  214. rx->skb->len > FCS_LEN)
  215. skb_trim(rx->skb, rx->skb->len - FCS_LEN);
  216. if (unlikely(rx->skb->len < 16)) {
  217. I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
  218. return TXRX_DROP;
  219. }
  220. if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
  221. rx->skb->pkt_type = PACKET_OTHERHOST;
  222. else if (compare_ether_addr(rx->dev->dev_addr, hdr->addr1) == 0)
  223. rx->skb->pkt_type = PACKET_HOST;
  224. else if (is_multicast_ether_addr(hdr->addr1)) {
  225. if (is_broadcast_ether_addr(hdr->addr1))
  226. rx->skb->pkt_type = PACKET_BROADCAST;
  227. else
  228. rx->skb->pkt_type = PACKET_MULTICAST;
  229. } else
  230. rx->skb->pkt_type = PACKET_OTHERHOST;
  231. /* Drop disallowed frame classes based on STA auth/assoc state;
  232. * IEEE 802.11, Chap 5.5.
  233. *
  234. * 80211.o does filtering only based on association state, i.e., it
  235. * drops Class 3 frames from not associated stations. hostapd sends
  236. * deauth/disassoc frames when needed. In addition, hostapd is
  237. * responsible for filtering on both auth and assoc states.
  238. */
  239. if (unlikely(((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA ||
  240. ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL &&
  241. (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PSPOLL)) &&
  242. rx->sdata->type != IEEE80211_IF_TYPE_IBSS &&
  243. (!rx->sta || !(rx->sta->flags & WLAN_STA_ASSOC)))) {
  244. if ((!(rx->fc & IEEE80211_FCTL_FROMDS) &&
  245. !(rx->fc & IEEE80211_FCTL_TODS) &&
  246. (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
  247. || !(rx->flags & IEEE80211_TXRXD_RXRA_MATCH)) {
  248. /* Drop IBSS frames and frames for other hosts
  249. * silently. */
  250. return TXRX_DROP;
  251. }
  252. if (!rx->local->apdev)
  253. return TXRX_DROP;
  254. ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status,
  255. ieee80211_msg_sta_not_assoc);
  256. return TXRX_QUEUED;
  257. }
  258. return TXRX_CONTINUE;
  259. }
  260. static ieee80211_txrx_result
  261. ieee80211_rx_h_load_key(struct ieee80211_txrx_data *rx)
  262. {
  263. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
  264. int keyidx;
  265. int hdrlen;
  266. struct ieee80211_key *stakey = NULL;
  267. /*
  268. * Key selection 101
  269. *
  270. * There are three types of keys:
  271. * - GTK (group keys)
  272. * - PTK (pairwise keys)
  273. * - STK (station-to-station pairwise keys)
  274. *
  275. * When selecting a key, we have to distinguish between multicast
  276. * (including broadcast) and unicast frames, the latter can only
  277. * use PTKs and STKs while the former always use GTKs. Unless, of
  278. * course, actual WEP keys ("pre-RSNA") are used, then unicast
  279. * frames can also use key indizes like GTKs. Hence, if we don't
  280. * have a PTK/STK we check the key index for a WEP key.
  281. *
  282. * Note that in a regular BSS, multicast frames are sent by the
  283. * AP only, associated stations unicast the frame to the AP first
  284. * which then multicasts it on their behalf.
  285. *
  286. * There is also a slight problem in IBSS mode: GTKs are negotiated
  287. * with each station, that is something we don't currently handle.
  288. * The spec seems to expect that one negotiates the same key with
  289. * every station but there's no such requirement; VLANs could be
  290. * possible.
  291. */
  292. if (!(rx->fc & IEEE80211_FCTL_PROTECTED))
  293. return TXRX_CONTINUE;
  294. /*
  295. * No point in finding a key if the frame is neither
  296. * addressed to us nor a multicast frame.
  297. */
  298. if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
  299. return TXRX_CONTINUE;
  300. if (rx->sta)
  301. stakey = rcu_dereference(rx->sta->key);
  302. if (!is_multicast_ether_addr(hdr->addr1) && stakey) {
  303. rx->key = stakey;
  304. } else {
  305. /*
  306. * The device doesn't give us the IV so we won't be
  307. * able to look up the key. That's ok though, we
  308. * don't need to decrypt the frame, we just won't
  309. * be able to keep statistics accurate.
  310. * Except for key threshold notifications, should
  311. * we somehow allow the driver to tell us which key
  312. * the hardware used if this flag is set?
  313. */
  314. if (!(rx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV))
  315. return TXRX_CONTINUE;
  316. hdrlen = ieee80211_get_hdrlen(rx->fc);
  317. if (rx->skb->len < 8 + hdrlen)
  318. return TXRX_DROP; /* TODO: count this? */
  319. /*
  320. * no need to call ieee80211_wep_get_keyidx,
  321. * it verifies a bunch of things we've done already
  322. */
  323. keyidx = rx->skb->data[hdrlen + 3] >> 6;
  324. rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
  325. /*
  326. * RSNA-protected unicast frames should always be sent with
  327. * pairwise or station-to-station keys, but for WEP we allow
  328. * using a key index as well.
  329. */
  330. if (rx->key && rx->key->conf.alg != ALG_WEP &&
  331. !is_multicast_ether_addr(hdr->addr1))
  332. rx->key = NULL;
  333. }
  334. if (rx->key) {
  335. rx->key->tx_rx_count++;
  336. if (unlikely(rx->local->key_tx_rx_threshold &&
  337. rx->key->tx_rx_count >
  338. rx->local->key_tx_rx_threshold)) {
  339. ieee80211_key_threshold_notify(rx->dev, rx->key,
  340. rx->sta);
  341. }
  342. }
  343. return TXRX_CONTINUE;
  344. }
  345. static void ap_sta_ps_start(struct net_device *dev, struct sta_info *sta)
  346. {
  347. struct ieee80211_sub_if_data *sdata;
  348. sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev);
  349. if (sdata->bss)
  350. atomic_inc(&sdata->bss->num_sta_ps);
  351. sta->flags |= WLAN_STA_PS;
  352. sta->pspoll = 0;
  353. #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
  354. printk(KERN_DEBUG "%s: STA " MAC_FMT " aid %d enters power "
  355. "save mode\n", dev->name, MAC_ARG(sta->addr), sta->aid);
  356. #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
  357. }
  358. static int ap_sta_ps_end(struct net_device *dev, struct sta_info *sta)
  359. {
  360. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  361. struct sk_buff *skb;
  362. int sent = 0;
  363. struct ieee80211_sub_if_data *sdata;
  364. struct ieee80211_tx_packet_data *pkt_data;
  365. sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev);
  366. if (sdata->bss)
  367. atomic_dec(&sdata->bss->num_sta_ps);
  368. sta->flags &= ~(WLAN_STA_PS | WLAN_STA_TIM);
  369. sta->pspoll = 0;
  370. if (!skb_queue_empty(&sta->ps_tx_buf)) {
  371. if (local->ops->set_tim)
  372. local->ops->set_tim(local_to_hw(local), sta->aid, 0);
  373. if (sdata->bss)
  374. bss_tim_clear(local, sdata->bss, sta->aid);
  375. }
  376. #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
  377. printk(KERN_DEBUG "%s: STA " MAC_FMT " aid %d exits power "
  378. "save mode\n", dev->name, MAC_ARG(sta->addr), sta->aid);
  379. #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
  380. /* Send all buffered frames to the station */
  381. while ((skb = skb_dequeue(&sta->tx_filtered)) != NULL) {
  382. pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
  383. sent++;
  384. pkt_data->flags |= IEEE80211_TXPD_REQUEUE;
  385. dev_queue_xmit(skb);
  386. }
  387. while ((skb = skb_dequeue(&sta->ps_tx_buf)) != NULL) {
  388. pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
  389. local->total_ps_buffered--;
  390. sent++;
  391. #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
  392. printk(KERN_DEBUG "%s: STA " MAC_FMT " aid %d send PS frame "
  393. "since STA not sleeping anymore\n", dev->name,
  394. MAC_ARG(sta->addr), sta->aid);
  395. #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
  396. pkt_data->flags |= IEEE80211_TXPD_REQUEUE;
  397. dev_queue_xmit(skb);
  398. }
  399. return sent;
  400. }
  401. static ieee80211_txrx_result
  402. ieee80211_rx_h_sta_process(struct ieee80211_txrx_data *rx)
  403. {
  404. struct sta_info *sta = rx->sta;
  405. struct net_device *dev = rx->dev;
  406. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
  407. if (!sta)
  408. return TXRX_CONTINUE;
  409. /* Update last_rx only for IBSS packets which are for the current
  410. * BSSID to avoid keeping the current IBSS network alive in cases where
  411. * other STAs are using different BSSID. */
  412. if (rx->sdata->type == IEEE80211_IF_TYPE_IBSS) {
  413. u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len);
  414. if (compare_ether_addr(bssid, rx->sdata->u.sta.bssid) == 0)
  415. sta->last_rx = jiffies;
  416. } else
  417. if (!is_multicast_ether_addr(hdr->addr1) ||
  418. rx->sdata->type == IEEE80211_IF_TYPE_STA) {
  419. /* Update last_rx only for unicast frames in order to prevent
  420. * the Probe Request frames (the only broadcast frames from a
  421. * STA in infrastructure mode) from keeping a connection alive.
  422. */
  423. sta->last_rx = jiffies;
  424. }
  425. if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
  426. return TXRX_CONTINUE;
  427. sta->rx_fragments++;
  428. sta->rx_bytes += rx->skb->len;
  429. sta->last_rssi = rx->u.rx.status->ssi;
  430. sta->last_signal = rx->u.rx.status->signal;
  431. sta->last_noise = rx->u.rx.status->noise;
  432. if (!(rx->fc & IEEE80211_FCTL_MOREFRAGS)) {
  433. /* Change STA power saving mode only in the end of a frame
  434. * exchange sequence */
  435. if ((sta->flags & WLAN_STA_PS) && !(rx->fc & IEEE80211_FCTL_PM))
  436. rx->u.rx.sent_ps_buffered += ap_sta_ps_end(dev, sta);
  437. else if (!(sta->flags & WLAN_STA_PS) &&
  438. (rx->fc & IEEE80211_FCTL_PM))
  439. ap_sta_ps_start(dev, sta);
  440. }
  441. /* Drop data::nullfunc frames silently, since they are used only to
  442. * control station power saving mode. */
  443. if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
  444. (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_NULLFUNC) {
  445. I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
  446. /* Update counter and free packet here to avoid counting this
  447. * as a dropped packed. */
  448. sta->rx_packets++;
  449. dev_kfree_skb(rx->skb);
  450. return TXRX_QUEUED;
  451. }
  452. return TXRX_CONTINUE;
  453. } /* ieee80211_rx_h_sta_process */
  454. static ieee80211_txrx_result
  455. ieee80211_rx_h_wep_weak_iv_detection(struct ieee80211_txrx_data *rx)
  456. {
  457. if (!rx->sta || !(rx->fc & IEEE80211_FCTL_PROTECTED) ||
  458. (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA ||
  459. !rx->key || rx->key->conf.alg != ALG_WEP ||
  460. !(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
  461. return TXRX_CONTINUE;
  462. /* Check for weak IVs, if hwaccel did not remove IV from the frame */
  463. if ((rx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) ||
  464. !(rx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
  465. if (ieee80211_wep_is_weak_iv(rx->skb, rx->key))
  466. rx->sta->wep_weak_iv_count++;
  467. return TXRX_CONTINUE;
  468. }
  469. static ieee80211_txrx_result
  470. ieee80211_rx_h_wep_decrypt(struct ieee80211_txrx_data *rx)
  471. {
  472. if ((rx->key && rx->key->conf.alg != ALG_WEP) ||
  473. !(rx->fc & IEEE80211_FCTL_PROTECTED) ||
  474. ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA &&
  475. ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
  476. (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH)))
  477. return TXRX_CONTINUE;
  478. if (!rx->key) {
  479. if (net_ratelimit())
  480. printk(KERN_DEBUG "%s: RX WEP frame, but no key set\n",
  481. rx->dev->name);
  482. return TXRX_DROP;
  483. }
  484. if (!(rx->u.rx.status->flag & RX_FLAG_DECRYPTED) ||
  485. !(rx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) {
  486. if (ieee80211_wep_decrypt(rx->local, rx->skb, rx->key)) {
  487. if (net_ratelimit())
  488. printk(KERN_DEBUG "%s: RX WEP frame, decrypt "
  489. "failed\n", rx->dev->name);
  490. return TXRX_DROP;
  491. }
  492. } else if (rx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) {
  493. ieee80211_wep_remove_iv(rx->local, rx->skb, rx->key);
  494. /* remove ICV */
  495. skb_trim(rx->skb, rx->skb->len - 4);
  496. }
  497. return TXRX_CONTINUE;
  498. }
  499. static inline struct ieee80211_fragment_entry *
  500. ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
  501. unsigned int frag, unsigned int seq, int rx_queue,
  502. struct sk_buff **skb)
  503. {
  504. struct ieee80211_fragment_entry *entry;
  505. int idx;
  506. idx = sdata->fragment_next;
  507. entry = &sdata->fragments[sdata->fragment_next++];
  508. if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
  509. sdata->fragment_next = 0;
  510. if (!skb_queue_empty(&entry->skb_list)) {
  511. #ifdef CONFIG_MAC80211_DEBUG
  512. struct ieee80211_hdr *hdr =
  513. (struct ieee80211_hdr *) entry->skb_list.next->data;
  514. printk(KERN_DEBUG "%s: RX reassembly removed oldest "
  515. "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
  516. "addr1=" MAC_FMT " addr2=" MAC_FMT "\n",
  517. sdata->dev->name, idx,
  518. jiffies - entry->first_frag_time, entry->seq,
  519. entry->last_frag, MAC_ARG(hdr->addr1),
  520. MAC_ARG(hdr->addr2));
  521. #endif /* CONFIG_MAC80211_DEBUG */
  522. __skb_queue_purge(&entry->skb_list);
  523. }
  524. __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
  525. *skb = NULL;
  526. entry->first_frag_time = jiffies;
  527. entry->seq = seq;
  528. entry->rx_queue = rx_queue;
  529. entry->last_frag = frag;
  530. entry->ccmp = 0;
  531. entry->extra_len = 0;
  532. return entry;
  533. }
  534. static inline struct ieee80211_fragment_entry *
  535. ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
  536. u16 fc, unsigned int frag, unsigned int seq,
  537. int rx_queue, struct ieee80211_hdr *hdr)
  538. {
  539. struct ieee80211_fragment_entry *entry;
  540. int i, idx;
  541. idx = sdata->fragment_next;
  542. for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
  543. struct ieee80211_hdr *f_hdr;
  544. u16 f_fc;
  545. idx--;
  546. if (idx < 0)
  547. idx = IEEE80211_FRAGMENT_MAX - 1;
  548. entry = &sdata->fragments[idx];
  549. if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
  550. entry->rx_queue != rx_queue ||
  551. entry->last_frag + 1 != frag)
  552. continue;
  553. f_hdr = (struct ieee80211_hdr *) entry->skb_list.next->data;
  554. f_fc = le16_to_cpu(f_hdr->frame_control);
  555. if ((fc & IEEE80211_FCTL_FTYPE) != (f_fc & IEEE80211_FCTL_FTYPE) ||
  556. compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
  557. compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
  558. continue;
  559. if (entry->first_frag_time + 2 * HZ < jiffies) {
  560. __skb_queue_purge(&entry->skb_list);
  561. continue;
  562. }
  563. return entry;
  564. }
  565. return NULL;
  566. }
  567. static ieee80211_txrx_result
  568. ieee80211_rx_h_defragment(struct ieee80211_txrx_data *rx)
  569. {
  570. struct ieee80211_hdr *hdr;
  571. u16 sc;
  572. unsigned int frag, seq;
  573. struct ieee80211_fragment_entry *entry;
  574. struct sk_buff *skb;
  575. hdr = (struct ieee80211_hdr *) rx->skb->data;
  576. sc = le16_to_cpu(hdr->seq_ctrl);
  577. frag = sc & IEEE80211_SCTL_FRAG;
  578. if (likely((!(rx->fc & IEEE80211_FCTL_MOREFRAGS) && frag == 0) ||
  579. (rx->skb)->len < 24 ||
  580. is_multicast_ether_addr(hdr->addr1))) {
  581. /* not fragmented */
  582. goto out;
  583. }
  584. I802_DEBUG_INC(rx->local->rx_handlers_fragments);
  585. seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
  586. if (frag == 0) {
  587. /* This is the first fragment of a new frame. */
  588. entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
  589. rx->u.rx.queue, &(rx->skb));
  590. if (rx->key && rx->key->conf.alg == ALG_CCMP &&
  591. (rx->fc & IEEE80211_FCTL_PROTECTED)) {
  592. /* Store CCMP PN so that we can verify that the next
  593. * fragment has a sequential PN value. */
  594. entry->ccmp = 1;
  595. memcpy(entry->last_pn,
  596. rx->key->u.ccmp.rx_pn[rx->u.rx.queue],
  597. CCMP_PN_LEN);
  598. }
  599. return TXRX_QUEUED;
  600. }
  601. /* This is a fragment for a frame that should already be pending in
  602. * fragment cache. Add this fragment to the end of the pending entry.
  603. */
  604. entry = ieee80211_reassemble_find(rx->sdata, rx->fc, frag, seq,
  605. rx->u.rx.queue, hdr);
  606. if (!entry) {
  607. I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
  608. return TXRX_DROP;
  609. }
  610. /* Verify that MPDUs within one MSDU have sequential PN values.
  611. * (IEEE 802.11i, 8.3.3.4.5) */
  612. if (entry->ccmp) {
  613. int i;
  614. u8 pn[CCMP_PN_LEN], *rpn;
  615. if (!rx->key || rx->key->conf.alg != ALG_CCMP)
  616. return TXRX_DROP;
  617. memcpy(pn, entry->last_pn, CCMP_PN_LEN);
  618. for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
  619. pn[i]++;
  620. if (pn[i])
  621. break;
  622. }
  623. rpn = rx->key->u.ccmp.rx_pn[rx->u.rx.queue];
  624. if (memcmp(pn, rpn, CCMP_PN_LEN) != 0) {
  625. if (net_ratelimit())
  626. printk(KERN_DEBUG "%s: defrag: CCMP PN not "
  627. "sequential A2=" MAC_FMT
  628. " PN=%02x%02x%02x%02x%02x%02x "
  629. "(expected %02x%02x%02x%02x%02x%02x)\n",
  630. rx->dev->name, MAC_ARG(hdr->addr2),
  631. rpn[0], rpn[1], rpn[2], rpn[3], rpn[4],
  632. rpn[5], pn[0], pn[1], pn[2], pn[3],
  633. pn[4], pn[5]);
  634. return TXRX_DROP;
  635. }
  636. memcpy(entry->last_pn, pn, CCMP_PN_LEN);
  637. }
  638. skb_pull(rx->skb, ieee80211_get_hdrlen(rx->fc));
  639. __skb_queue_tail(&entry->skb_list, rx->skb);
  640. entry->last_frag = frag;
  641. entry->extra_len += rx->skb->len;
  642. if (rx->fc & IEEE80211_FCTL_MOREFRAGS) {
  643. rx->skb = NULL;
  644. return TXRX_QUEUED;
  645. }
  646. rx->skb = __skb_dequeue(&entry->skb_list);
  647. if (skb_tailroom(rx->skb) < entry->extra_len) {
  648. I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
  649. if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
  650. GFP_ATOMIC))) {
  651. I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
  652. __skb_queue_purge(&entry->skb_list);
  653. return TXRX_DROP;
  654. }
  655. }
  656. while ((skb = __skb_dequeue(&entry->skb_list))) {
  657. memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
  658. dev_kfree_skb(skb);
  659. }
  660. /* Complete frame has been reassembled - process it now */
  661. rx->flags |= IEEE80211_TXRXD_FRAGMENTED;
  662. out:
  663. if (rx->sta)
  664. rx->sta->rx_packets++;
  665. if (is_multicast_ether_addr(hdr->addr1))
  666. rx->local->dot11MulticastReceivedFrameCount++;
  667. else
  668. ieee80211_led_rx(rx->local);
  669. return TXRX_CONTINUE;
  670. }
  671. static ieee80211_txrx_result
  672. ieee80211_rx_h_ps_poll(struct ieee80211_txrx_data *rx)
  673. {
  674. struct sk_buff *skb;
  675. int no_pending_pkts;
  676. if (likely(!rx->sta ||
  677. (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL ||
  678. (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PSPOLL ||
  679. !(rx->flags & IEEE80211_TXRXD_RXRA_MATCH)))
  680. return TXRX_CONTINUE;
  681. skb = skb_dequeue(&rx->sta->tx_filtered);
  682. if (!skb) {
  683. skb = skb_dequeue(&rx->sta->ps_tx_buf);
  684. if (skb)
  685. rx->local->total_ps_buffered--;
  686. }
  687. no_pending_pkts = skb_queue_empty(&rx->sta->tx_filtered) &&
  688. skb_queue_empty(&rx->sta->ps_tx_buf);
  689. if (skb) {
  690. struct ieee80211_hdr *hdr =
  691. (struct ieee80211_hdr *) skb->data;
  692. /* tell TX path to send one frame even though the STA may
  693. * still remain is PS mode after this frame exchange */
  694. rx->sta->pspoll = 1;
  695. #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
  696. printk(KERN_DEBUG "STA " MAC_FMT " aid %d: PS Poll (entries "
  697. "after %d)\n",
  698. MAC_ARG(rx->sta->addr), rx->sta->aid,
  699. skb_queue_len(&rx->sta->ps_tx_buf));
  700. #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
  701. /* Use MoreData flag to indicate whether there are more
  702. * buffered frames for this STA */
  703. if (no_pending_pkts) {
  704. hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
  705. rx->sta->flags &= ~WLAN_STA_TIM;
  706. } else
  707. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA);
  708. dev_queue_xmit(skb);
  709. if (no_pending_pkts) {
  710. if (rx->local->ops->set_tim)
  711. rx->local->ops->set_tim(local_to_hw(rx->local),
  712. rx->sta->aid, 0);
  713. if (rx->sdata->bss)
  714. bss_tim_clear(rx->local, rx->sdata->bss, rx->sta->aid);
  715. }
  716. #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
  717. } else if (!rx->u.rx.sent_ps_buffered) {
  718. printk(KERN_DEBUG "%s: STA " MAC_FMT " sent PS Poll even "
  719. "though there is no buffered frames for it\n",
  720. rx->dev->name, MAC_ARG(rx->sta->addr));
  721. #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
  722. }
  723. /* Free PS Poll skb here instead of returning TXRX_DROP that would
  724. * count as an dropped frame. */
  725. dev_kfree_skb(rx->skb);
  726. return TXRX_QUEUED;
  727. }
  728. static ieee80211_txrx_result
  729. ieee80211_rx_h_remove_qos_control(struct ieee80211_txrx_data *rx)
  730. {
  731. u16 fc = rx->fc;
  732. u8 *data = rx->skb->data;
  733. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) data;
  734. if (!WLAN_FC_IS_QOS_DATA(fc))
  735. return TXRX_CONTINUE;
  736. /* remove the qos control field, update frame type and meta-data */
  737. memmove(data + 2, data, ieee80211_get_hdrlen(fc) - 2);
  738. hdr = (struct ieee80211_hdr *) skb_pull(rx->skb, 2);
  739. /* change frame type to non QOS */
  740. rx->fc = fc &= ~IEEE80211_STYPE_QOS_DATA;
  741. hdr->frame_control = cpu_to_le16(fc);
  742. return TXRX_CONTINUE;
  743. }
  744. static ieee80211_txrx_result
  745. ieee80211_rx_h_802_1x_pae(struct ieee80211_txrx_data *rx)
  746. {
  747. if (rx->sdata->eapol && ieee80211_is_eapol(rx->skb) &&
  748. rx->sdata->type != IEEE80211_IF_TYPE_STA &&
  749. (rx->flags & IEEE80211_TXRXD_RXRA_MATCH)) {
  750. /* Pass both encrypted and unencrypted EAPOL frames to user
  751. * space for processing. */
  752. if (!rx->local->apdev)
  753. return TXRX_DROP;
  754. ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status,
  755. ieee80211_msg_normal);
  756. return TXRX_QUEUED;
  757. }
  758. if (unlikely(rx->sdata->ieee802_1x &&
  759. (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
  760. (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC &&
  761. (!rx->sta || !(rx->sta->flags & WLAN_STA_AUTHORIZED)) &&
  762. !ieee80211_is_eapol(rx->skb))) {
  763. #ifdef CONFIG_MAC80211_DEBUG
  764. struct ieee80211_hdr *hdr =
  765. (struct ieee80211_hdr *) rx->skb->data;
  766. printk(KERN_DEBUG "%s: dropped frame from " MAC_FMT
  767. " (unauthorized port)\n", rx->dev->name,
  768. MAC_ARG(hdr->addr2));
  769. #endif /* CONFIG_MAC80211_DEBUG */
  770. return TXRX_DROP;
  771. }
  772. return TXRX_CONTINUE;
  773. }
  774. static ieee80211_txrx_result
  775. ieee80211_rx_h_drop_unencrypted(struct ieee80211_txrx_data *rx)
  776. {
  777. /*
  778. * Pass through unencrypted frames if the hardware might have
  779. * decrypted them already without telling us, but that can only
  780. * be true if we either didn't find a key or the found key is
  781. * uploaded to the hardware.
  782. */
  783. if ((rx->local->hw.flags & IEEE80211_HW_DEVICE_HIDES_WEP) &&
  784. (!rx->key || (rx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)))
  785. return TXRX_CONTINUE;
  786. /* Drop unencrypted frames if key is set. */
  787. if (unlikely(!(rx->fc & IEEE80211_FCTL_PROTECTED) &&
  788. (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
  789. (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC &&
  790. (rx->key || rx->sdata->drop_unencrypted) &&
  791. (rx->sdata->eapol == 0 ||
  792. !ieee80211_is_eapol(rx->skb)))) {
  793. if (net_ratelimit())
  794. printk(KERN_DEBUG "%s: RX non-WEP frame, but expected "
  795. "encryption\n", rx->dev->name);
  796. return TXRX_DROP;
  797. }
  798. return TXRX_CONTINUE;
  799. }
  800. static ieee80211_txrx_result
  801. ieee80211_rx_h_data(struct ieee80211_txrx_data *rx)
  802. {
  803. struct net_device *dev = rx->dev;
  804. struct ieee80211_local *local = rx->local;
  805. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
  806. u16 fc, hdrlen, ethertype;
  807. u8 *payload;
  808. u8 dst[ETH_ALEN];
  809. u8 src[ETH_ALEN];
  810. struct sk_buff *skb = rx->skb, *skb2;
  811. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  812. fc = rx->fc;
  813. if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA))
  814. return TXRX_CONTINUE;
  815. if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
  816. return TXRX_DROP;
  817. hdrlen = ieee80211_get_hdrlen(fc);
  818. /* convert IEEE 802.11 header + possible LLC headers into Ethernet
  819. * header
  820. * IEEE 802.11 address fields:
  821. * ToDS FromDS Addr1 Addr2 Addr3 Addr4
  822. * 0 0 DA SA BSSID n/a
  823. * 0 1 DA BSSID SA n/a
  824. * 1 0 BSSID SA DA n/a
  825. * 1 1 RA TA DA SA
  826. */
  827. switch (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
  828. case IEEE80211_FCTL_TODS:
  829. /* BSSID SA DA */
  830. memcpy(dst, hdr->addr3, ETH_ALEN);
  831. memcpy(src, hdr->addr2, ETH_ALEN);
  832. if (unlikely(sdata->type != IEEE80211_IF_TYPE_AP &&
  833. sdata->type != IEEE80211_IF_TYPE_VLAN)) {
  834. if (net_ratelimit())
  835. printk(KERN_DEBUG "%s: dropped ToDS frame "
  836. "(BSSID=" MAC_FMT
  837. " SA=" MAC_FMT
  838. " DA=" MAC_FMT ")\n",
  839. dev->name,
  840. MAC_ARG(hdr->addr1),
  841. MAC_ARG(hdr->addr2),
  842. MAC_ARG(hdr->addr3));
  843. return TXRX_DROP;
  844. }
  845. break;
  846. case (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
  847. /* RA TA DA SA */
  848. memcpy(dst, hdr->addr3, ETH_ALEN);
  849. memcpy(src, hdr->addr4, ETH_ALEN);
  850. if (unlikely(sdata->type != IEEE80211_IF_TYPE_WDS)) {
  851. if (net_ratelimit())
  852. printk(KERN_DEBUG "%s: dropped FromDS&ToDS "
  853. "frame (RA=" MAC_FMT
  854. " TA=" MAC_FMT " DA=" MAC_FMT
  855. " SA=" MAC_FMT ")\n",
  856. rx->dev->name,
  857. MAC_ARG(hdr->addr1),
  858. MAC_ARG(hdr->addr2),
  859. MAC_ARG(hdr->addr3),
  860. MAC_ARG(hdr->addr4));
  861. return TXRX_DROP;
  862. }
  863. break;
  864. case IEEE80211_FCTL_FROMDS:
  865. /* DA BSSID SA */
  866. memcpy(dst, hdr->addr1, ETH_ALEN);
  867. memcpy(src, hdr->addr3, ETH_ALEN);
  868. if (sdata->type != IEEE80211_IF_TYPE_STA ||
  869. (is_multicast_ether_addr(dst) &&
  870. !compare_ether_addr(src, dev->dev_addr)))
  871. return TXRX_DROP;
  872. break;
  873. case 0:
  874. /* DA SA BSSID */
  875. memcpy(dst, hdr->addr1, ETH_ALEN);
  876. memcpy(src, hdr->addr2, ETH_ALEN);
  877. if (sdata->type != IEEE80211_IF_TYPE_IBSS) {
  878. if (net_ratelimit()) {
  879. printk(KERN_DEBUG "%s: dropped IBSS frame (DA="
  880. MAC_FMT " SA=" MAC_FMT " BSSID=" MAC_FMT
  881. ")\n",
  882. dev->name, MAC_ARG(hdr->addr1),
  883. MAC_ARG(hdr->addr2),
  884. MAC_ARG(hdr->addr3));
  885. }
  886. return TXRX_DROP;
  887. }
  888. break;
  889. }
  890. payload = skb->data + hdrlen;
  891. if (unlikely(skb->len - hdrlen < 8)) {
  892. if (net_ratelimit()) {
  893. printk(KERN_DEBUG "%s: RX too short data frame "
  894. "payload\n", dev->name);
  895. }
  896. return TXRX_DROP;
  897. }
  898. ethertype = (payload[6] << 8) | payload[7];
  899. if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
  900. ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
  901. compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
  902. /* remove RFC1042 or Bridge-Tunnel encapsulation and
  903. * replace EtherType */
  904. skb_pull(skb, hdrlen + 6);
  905. memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
  906. memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
  907. } else {
  908. struct ethhdr *ehdr;
  909. __be16 len;
  910. skb_pull(skb, hdrlen);
  911. len = htons(skb->len);
  912. ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
  913. memcpy(ehdr->h_dest, dst, ETH_ALEN);
  914. memcpy(ehdr->h_source, src, ETH_ALEN);
  915. ehdr->h_proto = len;
  916. }
  917. skb->dev = dev;
  918. skb2 = NULL;
  919. sdata->stats.rx_packets++;
  920. sdata->stats.rx_bytes += skb->len;
  921. if (local->bridge_packets && (sdata->type == IEEE80211_IF_TYPE_AP
  922. || sdata->type == IEEE80211_IF_TYPE_VLAN) &&
  923. (rx->flags & IEEE80211_TXRXD_RXRA_MATCH)) {
  924. if (is_multicast_ether_addr(skb->data)) {
  925. /* send multicast frames both to higher layers in
  926. * local net stack and back to the wireless media */
  927. skb2 = skb_copy(skb, GFP_ATOMIC);
  928. if (!skb2 && net_ratelimit())
  929. printk(KERN_DEBUG "%s: failed to clone "
  930. "multicast frame\n", dev->name);
  931. } else {
  932. struct sta_info *dsta;
  933. dsta = sta_info_get(local, skb->data);
  934. if (dsta && !dsta->dev) {
  935. if (net_ratelimit())
  936. printk(KERN_DEBUG "Station with null "
  937. "dev structure!\n");
  938. } else if (dsta && dsta->dev == dev) {
  939. /* Destination station is associated to this
  940. * AP, so send the frame directly to it and
  941. * do not pass the frame to local net stack.
  942. */
  943. skb2 = skb;
  944. skb = NULL;
  945. }
  946. if (dsta)
  947. sta_info_put(dsta);
  948. }
  949. }
  950. if (skb) {
  951. /* deliver to local stack */
  952. skb->protocol = eth_type_trans(skb, dev);
  953. memset(skb->cb, 0, sizeof(skb->cb));
  954. netif_rx(skb);
  955. }
  956. if (skb2) {
  957. /* send to wireless media */
  958. skb2->protocol = __constant_htons(ETH_P_802_3);
  959. skb_set_network_header(skb2, 0);
  960. skb_set_mac_header(skb2, 0);
  961. dev_queue_xmit(skb2);
  962. }
  963. return TXRX_QUEUED;
  964. }
  965. static ieee80211_txrx_result
  966. ieee80211_rx_h_mgmt(struct ieee80211_txrx_data *rx)
  967. {
  968. struct ieee80211_sub_if_data *sdata;
  969. if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
  970. return TXRX_DROP;
  971. sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
  972. if ((sdata->type == IEEE80211_IF_TYPE_STA ||
  973. sdata->type == IEEE80211_IF_TYPE_IBSS) &&
  974. !rx->local->user_space_mlme) {
  975. ieee80211_sta_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status);
  976. } else {
  977. /* Management frames are sent to hostapd for processing */
  978. if (!rx->local->apdev)
  979. return TXRX_DROP;
  980. ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status,
  981. ieee80211_msg_normal);
  982. }
  983. return TXRX_QUEUED;
  984. }
  985. static inline ieee80211_txrx_result __ieee80211_invoke_rx_handlers(
  986. struct ieee80211_local *local,
  987. ieee80211_rx_handler *handlers,
  988. struct ieee80211_txrx_data *rx,
  989. struct sta_info *sta)
  990. {
  991. ieee80211_rx_handler *handler;
  992. ieee80211_txrx_result res = TXRX_DROP;
  993. for (handler = handlers; *handler != NULL; handler++) {
  994. res = (*handler)(rx);
  995. switch (res) {
  996. case TXRX_CONTINUE:
  997. continue;
  998. case TXRX_DROP:
  999. I802_DEBUG_INC(local->rx_handlers_drop);
  1000. if (sta)
  1001. sta->rx_dropped++;
  1002. break;
  1003. case TXRX_QUEUED:
  1004. I802_DEBUG_INC(local->rx_handlers_queued);
  1005. break;
  1006. }
  1007. break;
  1008. }
  1009. if (res == TXRX_DROP)
  1010. dev_kfree_skb(rx->skb);
  1011. return res;
  1012. }
  1013. static inline void ieee80211_invoke_rx_handlers(struct ieee80211_local *local,
  1014. ieee80211_rx_handler *handlers,
  1015. struct ieee80211_txrx_data *rx,
  1016. struct sta_info *sta)
  1017. {
  1018. if (__ieee80211_invoke_rx_handlers(local, handlers, rx, sta) ==
  1019. TXRX_CONTINUE)
  1020. dev_kfree_skb(rx->skb);
  1021. }
  1022. static void ieee80211_rx_michael_mic_report(struct net_device *dev,
  1023. struct ieee80211_hdr *hdr,
  1024. struct sta_info *sta,
  1025. struct ieee80211_txrx_data *rx)
  1026. {
  1027. int keyidx, hdrlen;
  1028. hdrlen = ieee80211_get_hdrlen_from_skb(rx->skb);
  1029. if (rx->skb->len >= hdrlen + 4)
  1030. keyidx = rx->skb->data[hdrlen + 3] >> 6;
  1031. else
  1032. keyidx = -1;
  1033. /* TODO: verify that this is not triggered by fragmented
  1034. * frames (hw does not verify MIC for them). */
  1035. if (net_ratelimit())
  1036. printk(KERN_DEBUG "%s: TKIP hwaccel reported Michael MIC "
  1037. "failure from " MAC_FMT " to " MAC_FMT " keyidx=%d\n",
  1038. dev->name, MAC_ARG(hdr->addr2), MAC_ARG(hdr->addr1),
  1039. keyidx);
  1040. if (!sta) {
  1041. /* Some hardware versions seem to generate incorrect
  1042. * Michael MIC reports; ignore them to avoid triggering
  1043. * countermeasures. */
  1044. if (net_ratelimit())
  1045. printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
  1046. "error for unknown address " MAC_FMT "\n",
  1047. dev->name, MAC_ARG(hdr->addr2));
  1048. goto ignore;
  1049. }
  1050. if (!(rx->fc & IEEE80211_FCTL_PROTECTED)) {
  1051. if (net_ratelimit())
  1052. printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
  1053. "error for a frame with no ISWEP flag (src "
  1054. MAC_FMT ")\n", dev->name, MAC_ARG(hdr->addr2));
  1055. goto ignore;
  1056. }
  1057. if ((rx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) &&
  1058. rx->sdata->type == IEEE80211_IF_TYPE_AP && keyidx) {
  1059. /* AP with Pairwise keys support should never receive Michael
  1060. * MIC errors for non-zero keyidx because these are reserved
  1061. * for group keys and only the AP is sending real multicast
  1062. * frames in BSS. */
  1063. if (net_ratelimit())
  1064. printk(KERN_DEBUG "%s: ignored Michael MIC error for "
  1065. "a frame with non-zero keyidx (%d)"
  1066. " (src " MAC_FMT ")\n", dev->name, keyidx,
  1067. MAC_ARG(hdr->addr2));
  1068. goto ignore;
  1069. }
  1070. if ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA &&
  1071. ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
  1072. (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH)) {
  1073. if (net_ratelimit())
  1074. printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
  1075. "error for a frame that cannot be encrypted "
  1076. "(fc=0x%04x) (src " MAC_FMT ")\n",
  1077. dev->name, rx->fc, MAC_ARG(hdr->addr2));
  1078. goto ignore;
  1079. }
  1080. /* TODO: consider verifying the MIC error report with software
  1081. * implementation if we get too many spurious reports from the
  1082. * hardware. */
  1083. mac80211_ev_michael_mic_failure(rx->dev, keyidx, hdr);
  1084. ignore:
  1085. dev_kfree_skb(rx->skb);
  1086. rx->skb = NULL;
  1087. }
  1088. ieee80211_rx_handler ieee80211_rx_handlers[] =
  1089. {
  1090. ieee80211_rx_h_if_stats,
  1091. ieee80211_rx_h_monitor,
  1092. ieee80211_rx_h_passive_scan,
  1093. ieee80211_rx_h_check,
  1094. ieee80211_rx_h_load_key,
  1095. ieee80211_rx_h_sta_process,
  1096. ieee80211_rx_h_ccmp_decrypt,
  1097. ieee80211_rx_h_tkip_decrypt,
  1098. ieee80211_rx_h_wep_weak_iv_detection,
  1099. ieee80211_rx_h_wep_decrypt,
  1100. ieee80211_rx_h_defragment,
  1101. ieee80211_rx_h_ps_poll,
  1102. ieee80211_rx_h_michael_mic_verify,
  1103. /* this must be after decryption - so header is counted in MPDU mic
  1104. * must be before pae and data, so QOS_DATA format frames
  1105. * are not passed to user space by these functions
  1106. */
  1107. ieee80211_rx_h_remove_qos_control,
  1108. ieee80211_rx_h_802_1x_pae,
  1109. ieee80211_rx_h_drop_unencrypted,
  1110. ieee80211_rx_h_data,
  1111. ieee80211_rx_h_mgmt,
  1112. NULL
  1113. };
  1114. /* main receive path */
  1115. static int prepare_for_handlers(struct ieee80211_sub_if_data *sdata,
  1116. u8 *bssid, struct ieee80211_txrx_data *rx,
  1117. struct ieee80211_hdr *hdr)
  1118. {
  1119. int multicast = is_multicast_ether_addr(hdr->addr1);
  1120. switch (sdata->type) {
  1121. case IEEE80211_IF_TYPE_STA:
  1122. if (!bssid)
  1123. return 0;
  1124. if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
  1125. if (!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
  1126. return 0;
  1127. rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
  1128. } else if (!multicast &&
  1129. compare_ether_addr(sdata->dev->dev_addr,
  1130. hdr->addr1) != 0) {
  1131. if (!(sdata->flags & IEEE80211_SDATA_PROMISC))
  1132. return 0;
  1133. rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
  1134. }
  1135. break;
  1136. case IEEE80211_IF_TYPE_IBSS:
  1137. if (!bssid)
  1138. return 0;
  1139. if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
  1140. if (!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
  1141. return 0;
  1142. rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
  1143. } else if (!multicast &&
  1144. compare_ether_addr(sdata->dev->dev_addr,
  1145. hdr->addr1) != 0) {
  1146. if (!(sdata->flags & IEEE80211_SDATA_PROMISC))
  1147. return 0;
  1148. rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
  1149. } else if (!rx->sta)
  1150. rx->sta = ieee80211_ibss_add_sta(sdata->dev, rx->skb,
  1151. bssid, hdr->addr2);
  1152. break;
  1153. case IEEE80211_IF_TYPE_AP:
  1154. if (!bssid) {
  1155. if (compare_ether_addr(sdata->dev->dev_addr,
  1156. hdr->addr1))
  1157. return 0;
  1158. } else if (!ieee80211_bssid_match(bssid,
  1159. sdata->dev->dev_addr)) {
  1160. if (!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
  1161. return 0;
  1162. rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
  1163. }
  1164. if (sdata->dev == sdata->local->mdev &&
  1165. !(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
  1166. /* do not receive anything via
  1167. * master device when not scanning */
  1168. return 0;
  1169. break;
  1170. case IEEE80211_IF_TYPE_WDS:
  1171. if (bssid ||
  1172. (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA)
  1173. return 0;
  1174. if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
  1175. return 0;
  1176. break;
  1177. }
  1178. return 1;
  1179. }
  1180. /*
  1181. * This is the receive path handler. It is called by a low level driver when an
  1182. * 802.11 MPDU is received from the hardware.
  1183. */
  1184. void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
  1185. struct ieee80211_rx_status *status)
  1186. {
  1187. struct ieee80211_local *local = hw_to_local(hw);
  1188. struct ieee80211_sub_if_data *sdata;
  1189. struct sta_info *sta;
  1190. struct ieee80211_hdr *hdr;
  1191. struct ieee80211_txrx_data rx;
  1192. u16 type;
  1193. int radiotap_len = 0, prepres;
  1194. struct ieee80211_sub_if_data *prev = NULL;
  1195. struct sk_buff *skb_new;
  1196. u8 *bssid;
  1197. if (status->flag & RX_FLAG_RADIOTAP) {
  1198. radiotap_len = ieee80211_get_radiotap_len(skb->data);
  1199. skb_pull(skb, radiotap_len);
  1200. }
  1201. /*
  1202. * key references are protected using RCU and this requires that
  1203. * we are in a read-site RCU section during receive processing
  1204. */
  1205. rcu_read_lock();
  1206. hdr = (struct ieee80211_hdr *) skb->data;
  1207. memset(&rx, 0, sizeof(rx));
  1208. rx.skb = skb;
  1209. rx.local = local;
  1210. rx.u.rx.status = status;
  1211. rx.fc = skb->len >= 2 ? le16_to_cpu(hdr->frame_control) : 0;
  1212. type = rx.fc & IEEE80211_FCTL_FTYPE;
  1213. if (type == IEEE80211_FTYPE_DATA || type == IEEE80211_FTYPE_MGMT)
  1214. local->dot11ReceivedFragmentCount++;
  1215. if (skb->len >= 16) {
  1216. sta = rx.sta = sta_info_get(local, hdr->addr2);
  1217. if (sta) {
  1218. rx.dev = rx.sta->dev;
  1219. rx.sdata = IEEE80211_DEV_TO_SUB_IF(rx.dev);
  1220. }
  1221. } else
  1222. sta = rx.sta = NULL;
  1223. if ((status->flag & RX_FLAG_MMIC_ERROR)) {
  1224. ieee80211_rx_michael_mic_report(local->mdev, hdr, sta, &rx);
  1225. goto end;
  1226. }
  1227. if (unlikely(local->sta_scanning))
  1228. rx.flags |= IEEE80211_TXRXD_RXIN_SCAN;
  1229. if (__ieee80211_invoke_rx_handlers(local, local->rx_pre_handlers, &rx,
  1230. sta) != TXRX_CONTINUE)
  1231. goto end;
  1232. skb = rx.skb;
  1233. skb_push(skb, radiotap_len);
  1234. if (sta && !(sta->flags & (WLAN_STA_WDS | WLAN_STA_ASSOC_AP)) &&
  1235. !local->iff_promiscs && !is_multicast_ether_addr(hdr->addr1)) {
  1236. rx.flags |= IEEE80211_TXRXD_RXRA_MATCH;
  1237. ieee80211_invoke_rx_handlers(local, local->rx_handlers, &rx,
  1238. rx.sta);
  1239. sta_info_put(sta);
  1240. rcu_read_unlock();
  1241. return;
  1242. }
  1243. bssid = ieee80211_get_bssid(hdr, skb->len - radiotap_len);
  1244. read_lock(&local->sub_if_lock);
  1245. list_for_each_entry(sdata, &local->sub_if_list, list) {
  1246. rx.flags |= IEEE80211_TXRXD_RXRA_MATCH;
  1247. if (!netif_running(sdata->dev))
  1248. continue;
  1249. prepres = prepare_for_handlers(sdata, bssid, &rx, hdr);
  1250. /* prepare_for_handlers can change sta */
  1251. sta = rx.sta;
  1252. if (!prepres)
  1253. continue;
  1254. /*
  1255. * frame is destined for this interface, but if it's not
  1256. * also for the previous one we handle that after the
  1257. * loop to avoid copying the SKB once too much
  1258. */
  1259. if (!prev) {
  1260. prev = sdata;
  1261. continue;
  1262. }
  1263. /*
  1264. * frame was destined for the previous interface
  1265. * so invoke RX handlers for it
  1266. */
  1267. skb_new = skb_copy(skb, GFP_ATOMIC);
  1268. if (!skb_new) {
  1269. if (net_ratelimit())
  1270. printk(KERN_DEBUG "%s: failed to copy "
  1271. "multicast frame for %s",
  1272. local->mdev->name, prev->dev->name);
  1273. continue;
  1274. }
  1275. rx.skb = skb_new;
  1276. rx.dev = prev->dev;
  1277. rx.sdata = prev;
  1278. ieee80211_invoke_rx_handlers(local, local->rx_handlers,
  1279. &rx, sta);
  1280. prev = sdata;
  1281. }
  1282. if (prev) {
  1283. rx.skb = skb;
  1284. rx.dev = prev->dev;
  1285. rx.sdata = prev;
  1286. ieee80211_invoke_rx_handlers(local, local->rx_handlers,
  1287. &rx, sta);
  1288. } else
  1289. dev_kfree_skb(skb);
  1290. read_unlock(&local->sub_if_lock);
  1291. end:
  1292. rcu_read_unlock();
  1293. if (sta)
  1294. sta_info_put(sta);
  1295. }
  1296. EXPORT_SYMBOL(__ieee80211_rx);
  1297. /* This is a version of the rx handler that can be called from hard irq
  1298. * context. Post the skb on the queue and schedule the tasklet */
  1299. void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb,
  1300. struct ieee80211_rx_status *status)
  1301. {
  1302. struct ieee80211_local *local = hw_to_local(hw);
  1303. BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
  1304. skb->dev = local->mdev;
  1305. /* copy status into skb->cb for use by tasklet */
  1306. memcpy(skb->cb, status, sizeof(*status));
  1307. skb->pkt_type = IEEE80211_RX_MSG;
  1308. skb_queue_tail(&local->skb_queue, skb);
  1309. tasklet_schedule(&local->tasklet);
  1310. }
  1311. EXPORT_SYMBOL(ieee80211_rx_irqsafe);