intr_remapping.c 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450
  1. #include <linux/dmar.h>
  2. #include <linux/spinlock.h>
  3. #include <linux/jiffies.h>
  4. #include <linux/pci.h>
  5. #include <linux/irq.h>
  6. #include <asm/io_apic.h>
  7. #include "intel-iommu.h"
  8. #include "intr_remapping.h"
  9. static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
  10. static int ir_ioapic_num;
  11. int intr_remapping_enabled;
  12. static struct {
  13. struct intel_iommu *iommu;
  14. u16 irte_index;
  15. u16 sub_handle;
  16. u8 irte_mask;
  17. } irq_2_iommu[NR_IRQS];
  18. static DEFINE_SPINLOCK(irq_2_ir_lock);
  19. int irq_remapped(int irq)
  20. {
  21. if (irq > NR_IRQS)
  22. return 0;
  23. if (!irq_2_iommu[irq].iommu)
  24. return 0;
  25. return 1;
  26. }
  27. int get_irte(int irq, struct irte *entry)
  28. {
  29. int index;
  30. if (!entry || irq > NR_IRQS)
  31. return -1;
  32. spin_lock(&irq_2_ir_lock);
  33. if (!irq_2_iommu[irq].iommu) {
  34. spin_unlock(&irq_2_ir_lock);
  35. return -1;
  36. }
  37. index = irq_2_iommu[irq].irte_index + irq_2_iommu[irq].sub_handle;
  38. *entry = *(irq_2_iommu[irq].iommu->ir_table->base + index);
  39. spin_unlock(&irq_2_ir_lock);
  40. return 0;
  41. }
  42. int alloc_irte(struct intel_iommu *iommu, int irq, u16 count)
  43. {
  44. struct ir_table *table = iommu->ir_table;
  45. u16 index, start_index;
  46. unsigned int mask = 0;
  47. int i;
  48. if (!count)
  49. return -1;
  50. /*
  51. * start the IRTE search from index 0.
  52. */
  53. index = start_index = 0;
  54. if (count > 1) {
  55. count = __roundup_pow_of_two(count);
  56. mask = ilog2(count);
  57. }
  58. if (mask > ecap_max_handle_mask(iommu->ecap)) {
  59. printk(KERN_ERR
  60. "Requested mask %x exceeds the max invalidation handle"
  61. " mask value %Lx\n", mask,
  62. ecap_max_handle_mask(iommu->ecap));
  63. return -1;
  64. }
  65. spin_lock(&irq_2_ir_lock);
  66. do {
  67. for (i = index; i < index + count; i++)
  68. if (table->base[i].present)
  69. break;
  70. /* empty index found */
  71. if (i == index + count)
  72. break;
  73. index = (index + count) % INTR_REMAP_TABLE_ENTRIES;
  74. if (index == start_index) {
  75. spin_unlock(&irq_2_ir_lock);
  76. printk(KERN_ERR "can't allocate an IRTE\n");
  77. return -1;
  78. }
  79. } while (1);
  80. for (i = index; i < index + count; i++)
  81. table->base[i].present = 1;
  82. irq_2_iommu[irq].iommu = iommu;
  83. irq_2_iommu[irq].irte_index = index;
  84. irq_2_iommu[irq].sub_handle = 0;
  85. irq_2_iommu[irq].irte_mask = mask;
  86. spin_unlock(&irq_2_ir_lock);
  87. return index;
  88. }
  89. static void qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
  90. {
  91. struct qi_desc desc;
  92. desc.low = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
  93. | QI_IEC_SELECTIVE;
  94. desc.high = 0;
  95. qi_submit_sync(&desc, iommu);
  96. }
  97. int map_irq_to_irte_handle(int irq, u16 *sub_handle)
  98. {
  99. int index;
  100. spin_lock(&irq_2_ir_lock);
  101. if (irq >= NR_IRQS || !irq_2_iommu[irq].iommu) {
  102. spin_unlock(&irq_2_ir_lock);
  103. return -1;
  104. }
  105. *sub_handle = irq_2_iommu[irq].sub_handle;
  106. index = irq_2_iommu[irq].irte_index;
  107. spin_unlock(&irq_2_ir_lock);
  108. return index;
  109. }
  110. int set_irte_irq(int irq, struct intel_iommu *iommu, u16 index, u16 subhandle)
  111. {
  112. spin_lock(&irq_2_ir_lock);
  113. if (irq >= NR_IRQS || irq_2_iommu[irq].iommu) {
  114. spin_unlock(&irq_2_ir_lock);
  115. return -1;
  116. }
  117. irq_2_iommu[irq].iommu = iommu;
  118. irq_2_iommu[irq].irte_index = index;
  119. irq_2_iommu[irq].sub_handle = subhandle;
  120. irq_2_iommu[irq].irte_mask = 0;
  121. spin_unlock(&irq_2_ir_lock);
  122. return 0;
  123. }
  124. int clear_irte_irq(int irq, struct intel_iommu *iommu, u16 index)
  125. {
  126. spin_lock(&irq_2_ir_lock);
  127. if (irq >= NR_IRQS || !irq_2_iommu[irq].iommu) {
  128. spin_unlock(&irq_2_ir_lock);
  129. return -1;
  130. }
  131. irq_2_iommu[irq].iommu = NULL;
  132. irq_2_iommu[irq].irte_index = 0;
  133. irq_2_iommu[irq].sub_handle = 0;
  134. irq_2_iommu[irq].irte_mask = 0;
  135. spin_unlock(&irq_2_ir_lock);
  136. return 0;
  137. }
  138. int modify_irte(int irq, struct irte *irte_modified)
  139. {
  140. int index;
  141. struct irte *irte;
  142. struct intel_iommu *iommu;
  143. spin_lock(&irq_2_ir_lock);
  144. if (irq >= NR_IRQS || !irq_2_iommu[irq].iommu) {
  145. spin_unlock(&irq_2_ir_lock);
  146. return -1;
  147. }
  148. iommu = irq_2_iommu[irq].iommu;
  149. index = irq_2_iommu[irq].irte_index + irq_2_iommu[irq].sub_handle;
  150. irte = &iommu->ir_table->base[index];
  151. set_64bit((unsigned long *)irte, irte_modified->low | (1 << 1));
  152. __iommu_flush_cache(iommu, irte, sizeof(*irte));
  153. qi_flush_iec(iommu, index, 0);
  154. spin_unlock(&irq_2_ir_lock);
  155. return 0;
  156. }
  157. int flush_irte(int irq)
  158. {
  159. int index;
  160. struct intel_iommu *iommu;
  161. spin_lock(&irq_2_ir_lock);
  162. if (irq >= NR_IRQS || !irq_2_iommu[irq].iommu) {
  163. spin_unlock(&irq_2_ir_lock);
  164. return -1;
  165. }
  166. iommu = irq_2_iommu[irq].iommu;
  167. index = irq_2_iommu[irq].irte_index + irq_2_iommu[irq].sub_handle;
  168. qi_flush_iec(iommu, index, irq_2_iommu[irq].irte_mask);
  169. spin_unlock(&irq_2_ir_lock);
  170. return 0;
  171. }
  172. int free_irte(int irq)
  173. {
  174. int index, i;
  175. struct irte *irte;
  176. struct intel_iommu *iommu;
  177. spin_lock(&irq_2_ir_lock);
  178. if (irq >= NR_IRQS || !irq_2_iommu[irq].iommu) {
  179. spin_unlock(&irq_2_ir_lock);
  180. return -1;
  181. }
  182. iommu = irq_2_iommu[irq].iommu;
  183. index = irq_2_iommu[irq].irte_index + irq_2_iommu[irq].sub_handle;
  184. irte = &iommu->ir_table->base[index];
  185. if (!irq_2_iommu[irq].sub_handle) {
  186. for (i = 0; i < (1 << irq_2_iommu[irq].irte_mask); i++)
  187. set_64bit((unsigned long *)irte, 0);
  188. qi_flush_iec(iommu, index, irq_2_iommu[irq].irte_mask);
  189. }
  190. irq_2_iommu[irq].iommu = NULL;
  191. irq_2_iommu[irq].irte_index = 0;
  192. irq_2_iommu[irq].sub_handle = 0;
  193. irq_2_iommu[irq].irte_mask = 0;
  194. spin_unlock(&irq_2_ir_lock);
  195. return 0;
  196. }
  197. static void iommu_set_intr_remapping(struct intel_iommu *iommu, int mode)
  198. {
  199. u64 addr;
  200. u32 cmd, sts;
  201. unsigned long flags;
  202. addr = virt_to_phys((void *)iommu->ir_table->base);
  203. spin_lock_irqsave(&iommu->register_lock, flags);
  204. dmar_writeq(iommu->reg + DMAR_IRTA_REG,
  205. (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
  206. /* Set interrupt-remapping table pointer */
  207. cmd = iommu->gcmd | DMA_GCMD_SIRTP;
  208. writel(cmd, iommu->reg + DMAR_GCMD_REG);
  209. IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
  210. readl, (sts & DMA_GSTS_IRTPS), sts);
  211. spin_unlock_irqrestore(&iommu->register_lock, flags);
  212. /*
  213. * global invalidation of interrupt entry cache before enabling
  214. * interrupt-remapping.
  215. */
  216. qi_global_iec(iommu);
  217. spin_lock_irqsave(&iommu->register_lock, flags);
  218. /* Enable interrupt-remapping */
  219. cmd = iommu->gcmd | DMA_GCMD_IRE;
  220. iommu->gcmd |= DMA_GCMD_IRE;
  221. writel(cmd, iommu->reg + DMAR_GCMD_REG);
  222. IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
  223. readl, (sts & DMA_GSTS_IRES), sts);
  224. spin_unlock_irqrestore(&iommu->register_lock, flags);
  225. }
  226. static int setup_intr_remapping(struct intel_iommu *iommu, int mode)
  227. {
  228. struct ir_table *ir_table;
  229. struct page *pages;
  230. ir_table = iommu->ir_table = kzalloc(sizeof(struct ir_table),
  231. GFP_KERNEL);
  232. if (!iommu->ir_table)
  233. return -ENOMEM;
  234. pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, INTR_REMAP_PAGE_ORDER);
  235. if (!pages) {
  236. printk(KERN_ERR "failed to allocate pages of order %d\n",
  237. INTR_REMAP_PAGE_ORDER);
  238. kfree(iommu->ir_table);
  239. return -ENOMEM;
  240. }
  241. ir_table->base = page_address(pages);
  242. iommu_set_intr_remapping(iommu, mode);
  243. return 0;
  244. }
  245. int __init enable_intr_remapping(int eim)
  246. {
  247. struct dmar_drhd_unit *drhd;
  248. int setup = 0;
  249. /*
  250. * check for the Interrupt-remapping support
  251. */
  252. for_each_drhd_unit(drhd) {
  253. struct intel_iommu *iommu = drhd->iommu;
  254. if (!ecap_ir_support(iommu->ecap))
  255. continue;
  256. if (eim && !ecap_eim_support(iommu->ecap)) {
  257. printk(KERN_INFO "DRHD %Lx: EIM not supported by DRHD, "
  258. " ecap %Lx\n", drhd->reg_base_addr, iommu->ecap);
  259. return -1;
  260. }
  261. }
  262. /*
  263. * Enable queued invalidation for all the DRHD's.
  264. */
  265. for_each_drhd_unit(drhd) {
  266. int ret;
  267. struct intel_iommu *iommu = drhd->iommu;
  268. ret = dmar_enable_qi(iommu);
  269. if (ret) {
  270. printk(KERN_ERR "DRHD %Lx: failed to enable queued, "
  271. " invalidation, ecap %Lx, ret %d\n",
  272. drhd->reg_base_addr, iommu->ecap, ret);
  273. return -1;
  274. }
  275. }
  276. /*
  277. * Setup Interrupt-remapping for all the DRHD's now.
  278. */
  279. for_each_drhd_unit(drhd) {
  280. struct intel_iommu *iommu = drhd->iommu;
  281. if (!ecap_ir_support(iommu->ecap))
  282. continue;
  283. if (setup_intr_remapping(iommu, eim))
  284. goto error;
  285. setup = 1;
  286. }
  287. if (!setup)
  288. goto error;
  289. intr_remapping_enabled = 1;
  290. return 0;
  291. error:
  292. /*
  293. * handle error condition gracefully here!
  294. */
  295. return -1;
  296. }
  297. static int ir_parse_ioapic_scope(struct acpi_dmar_header *header,
  298. struct intel_iommu *iommu)
  299. {
  300. struct acpi_dmar_hardware_unit *drhd;
  301. struct acpi_dmar_device_scope *scope;
  302. void *start, *end;
  303. drhd = (struct acpi_dmar_hardware_unit *)header;
  304. start = (void *)(drhd + 1);
  305. end = ((void *)drhd) + header->length;
  306. while (start < end) {
  307. scope = start;
  308. if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC) {
  309. if (ir_ioapic_num == MAX_IO_APICS) {
  310. printk(KERN_WARNING "Exceeded Max IO APICS\n");
  311. return -1;
  312. }
  313. printk(KERN_INFO "IOAPIC id %d under DRHD base"
  314. " 0x%Lx\n", scope->enumeration_id,
  315. drhd->address);
  316. ir_ioapic[ir_ioapic_num].iommu = iommu;
  317. ir_ioapic[ir_ioapic_num].id = scope->enumeration_id;
  318. ir_ioapic_num++;
  319. }
  320. start += scope->length;
  321. }
  322. return 0;
  323. }
  324. /*
  325. * Finds the assocaition between IOAPIC's and its Interrupt-remapping
  326. * hardware unit.
  327. */
  328. int __init parse_ioapics_under_ir(void)
  329. {
  330. struct dmar_drhd_unit *drhd;
  331. int ir_supported = 0;
  332. for_each_drhd_unit(drhd) {
  333. struct intel_iommu *iommu = drhd->iommu;
  334. if (ecap_ir_support(iommu->ecap)) {
  335. if (ir_parse_ioapic_scope(drhd->hdr, iommu))
  336. return -1;
  337. ir_supported = 1;
  338. }
  339. }
  340. if (ir_supported && ir_ioapic_num != nr_ioapics) {
  341. printk(KERN_WARNING
  342. "Not all IO-APIC's listed under remapping hardware\n");
  343. return -1;
  344. }
  345. return ir_supported;
  346. }